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1 Introduction

The Generalized Assignment Problem (GAP), originally specified by Ross and
Soland [11], consists in assigning jobs to agents subject to resource constraints.
Specifically, each job j ∈ {1, . . . , n} must be assigned to one and only one agent
i ∈ {1, . . . ,m}. Assigning job j to agent i incurs a cost cij and consumes aij
resources of that agent having a resource capacity bi. These coefficients are all
assumed to be integers. The mathematical model for (GAP) is as follows:

min
∑m
i=1

∑n
j=1 cijxij

s.t. ∑n
j=1 aijxij ≤ bi, i = 1, . . . ,m, (1)∑m

i=1 xij = 1, j = 1, . . . , n, (2)

xij ∈ {0, 1}, i = 1, . . . ,m,
j = 1, . . . , n.

Several exact search methods presented in the literature are branch-and-bound
methods using the lagrangian relaxation obtained by dualizing the assignment
constraint (2). If λ denotes the vector of multipliers, then this relaxation de-
composes the problem into m 0-1 knapsack problems:

z(λ) =
∑n
j=1 λj + min

∑m
i=1 (

∑n
j=1 (cij − λj)xij)

s.t. ∑n
j=1 aijxij ≤ bi, i = 1, . . . ,m,

xij ∈ {0, 1}, i = 1, . . . ,m; j = 1, . . . , n.

The langrangian dual bound maxλ z(λ) thus obtained is at least as strong as the
linear relaxation bound, which is equal to the langrangian dual bounds obtained
by dualizing either the knapsack constraints, or both knapsack and assignment
constraints, as shown in [13].

Both Haddadi and Ouzia [6] and Nauss [8] use this lagrangian dualizing
the assignment constraints in their branch-and-bound methods. The contri-
bution of Haddadi and Ouzia [6] is a procedure for repairing the solutions of
the lagrangian relaxation obtained during the subgradient search into feasible
solutions which might improve the upper bound. Nauss [8] presents a hybrid
linear and langrangian-relaxation-based method featuring knapsack cover cut
generation. Savelsbergh [12] introduces a branch-and-price method, in which
the columns generated correspond to feasible assignments for an agent. This
method has been improved by Pigatti et al. [9] who propose a scheme for sta-
bilizing the multipliers during the column-generation phase in order to improve
convergence. More recently Avella et al. [2] introduced the best exact search
method in the literature, their branch-and-cut method uses the linear relaxation
supplemented by a sophisticated cut generation scheme. Furthermore, several
heuristic methods have been proposed, in particular Yagiura et al. introduce
a metaheuristic method based on an ejection chain neighborhood [14] [15] and
Diaz and Fernandez [4] propose a simple and effective tabu search method.
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In this paper we introduce a method where the optimization problem is
replaced by a sequence of decision problems. A valid lower bound is computed
for (GAP) and then a search is performed for a feasible solution with the value
of the lower bound. If none is found, the lower bound is incremented and the
procedure is repeated. This continues until a feasible solution is found, which is
then optimal. Naturally, our algorithm can be efficient only if the gap between
the initial lower bound and the optimal solution is small.

Section 2 includes an overview of our algorithm. The variable-fixing pro-
cedure used by our algorithm is described in section 3. This procedure relies
heavily on the notion of relative costs of the assignment variables, which are ob-
tained by a dynamic programming approach based on results due to Karabakal
et al. [7] summarized in section 4. Section 5 presents the numerical results
obtained by running our implementation on the Beasly instance set [3]. The
computation time is often much less than that required by Avella et al. [2].
Furthermore, we provide the previously unknown optimal values for three in-
stances.

2 Solving a sequence of decision problems

Our approach can be outlined as follows:

• Denote by z̄ a lower bound on the optimal value of the problem.

• Solve the following decision problem GAP (z̄):

– Does a feasible solution of cost z̄ or less exist?

• If the answer is yes, then the solution is optimal, otherwise increment z̄
and repeat.

This very crude algorithm relies on the fact that solution values are integer, and
thus transforms the optimization problem into solving a sequence of decision
problems. We use the lagrangian relaxation dualizing the assignment constraints
(2) outlined in the previous section to compute the initial lower bound, and also
to compute the lower bounds for the nodes in the branch-and-bound method to
solve the decision problems GAP (z̄). Our branch-and-bound method to solve
GAP (z̄) can be outlined as follows:

1. Initialize the branch-and-bound active node list with the root node.

2. If the active node list is empty, then the answer to the decision problem
is NO. Otherwise, select and remove a node from the list.

3. Compute a lower bound for this node by solving the corresponding la-
grangian dual. If, during the optimization of the dual, we obtain a relaxed
solution which is feasible and verifying z(λ) ≤ z̄, then the answer to the
decision problem is YES, and the search is over.

2
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4. If the lower bound exceeds the upper bound z̄, go back to step 2.

5. Call the variable-fixing procedure.

6. Select the job j with the highest multiplier λj such that not all xij are
fixed, and branch on each unfixed agent, thus creating up to m child nodes.
Add the child nodes to the active node list and go back to step 2.

Perhaps surprisingly, the numerical results in section 5 indicate that this
approach works very well in practice. We can offer a few tentative explanations
on why this is the case. Firstly, the bound provided by maxλ z(λ) is usually
good enough that the sequence of decision problems to be solved is very short,
thus limiting the replication of computational effort from solving very similar
decision problems. As we pointed out previously, finding good feasible solutions
for (GAP) can be challenging and as a consequence traditional branch-and-
bound methods can perform very poorly.

Secondly, the variable-fixing procedure in step 5 is a key component of our
algorithm since it significantly speeds up the resolution of the decision problems.
Indeed it uses logical inference to fix variables to their locally optimal value
based on the global upper bound z̄ as well as information provided by the
lagrangian relaxation. Obviously, a proper implementation of this procedure
is critical to speed up the resolution of the successive decision problems. It is
especially effective when the optimality gap is tight, and our decision-problem-
sequence approach exploits this well. In the following sections, we present this
procedure in detail.

Finally, current branch-and-bound methods and even the best metaheuris-
tics often fail to identify good feasible solutions but we manage to bypass this
problem entirely with our approach. Indeed, before developing the method
presented in this paper, we tried to solve the optimization problem using a
traditional branch-and-bound method (essentially that proposed by Haddadi
and Ouzia [6]) enhanced with our variable-fixing rules. However, this was not
improving the performance in all cases. Indeed, the variable-fixing rules were
useless before reaching a good enough feasible solution, and for some instances
finding a feasible solution is difficult. The method presented in this paper per-
forms with a more consistent behavior. Additional details are included in our
concluding analysis in subsection 5.4.

3 Variable fixing

As pointed out by Atamtürk and Savelsbergh in their survey [1], variable-fixing
procedures are used in many linear-relaxation-based solvers. Our procedure is
based on similar principles, but they are adapted to our lagrangian relaxation
for (GAP). Consider any node of the branch-and-bound tree, denote by:

• λ∗ the best multipliers found during the search for maxλ z(λ)1,

1Thus the value z(λ∗) is a lower bound for this node

3
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• ∆ the local optimality gap, i.e. ∆ = z̄ − z(λ∗),

• x(λ∗) ∈ {0, 1}mn the optimal value of the lagrangian relaxation using the
multipliers λ∗.

Recall that the solution to the lagrangian relaxation is a binary vector. At any
node, some components of this vector have been fixed to either 0 or 1, either
through earlier branching or through earlier variable fixing. For any unfixed
component xij , if we fix xij to its value x(λ∗)ij , then z(λ∗) does not change.
However, if we fix xij to its complementary value (1−x(λ∗)ij), then z(λ∗) may
increase. If it increases above z̄ we can conclude that no optimal solution can be
found with xij = 1− x(λ∗)ij , hence we may safely fix xij to the value x(λ∗)ij .

Of course, computing z(λ∗) anew after fixing each unfixed component xij
may be unreasonable from a computational point of view. Suppose however we
have c(λ∗) ∈ Rmn, a vector of relative costs associated to x(λ∗). A relative cost
c(λ∗)ij associated to the variable x(λ∗)ij is a lower bound on the increase of the
objective value of the relaxation when xij is forced to its complementary value
(1− x(λ∗)ij). As a consequence, considering any unfixed variable xij :

• if x(λ∗)ij = 0 and c(λ∗)ij > ∆, then xij can be fixed to 0;

• if x(λ∗)ij = 1 and c(λ∗)ij > ∆, then xij can be fixed to 1 and xkj to 0 for
all k 6= i.

The preceding rules can be seen as ’simple’ variable fixation rules, because we
may use more powerful rules by exploiting the structure of the problem, based
on the fact that each job has to be assigned to one and only one agent, and the
fact that the lagrangian relaxation decomposes into m independent knapsack
problems. Consider any unfixed variable xij :

• Suppose that x(λ∗)ij = 0 and
∑m
k=1 x(λ∗)kj ≥ 1:

if xij were to take value 1 in a feasible solution, then all other xkj would
have to take value 0, therefore if

c(λ∗)ij +
m∑

k=1

x(λ∗)kj=1

c(λ∗)kj > ∆,

then xij can be fixed to 0.

• Suppose that x(λ∗)ij = 1 and x(λ∗)kj = 0 for all k 6= i:
if xij were to take value 0 in a feasible solution, then some xkj , k 6= i, not
fixed to 0 would have to take value 1, therefore if

c(λ∗)ij + min {c(λ∗)kj | xkj unfixed, k ∈ {1, . . . , i− 1, i+ 1, . . . ,m}} > ∆,

then xij can be fixed to 1 and xkj can be fixed to zero for all k 6= i.
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• Suppose that xkj is fixed to 0 for all k 6= i:
obviously, xij can be fixed to 1. However if x(λ∗)ij = 0 and c(λ∗)ij > ∆,
then the current node can be culled.

Indeed we may sometimes be able to strengthen the lower bound enough to be
able to cull the current node. Considering now any job j:

• Suppose that
∑m
i=1 x(λ∗)ij = 0:

at least one variable xij for some i ∈ {1, . . . ,m} must take value 1. There-
fore if

min {c(λ∗)ij | xij unfixed, i ∈ {1, . . . ,m}} > ∆,

then the current node can be culled.

• Suppose that xij is fixed to 0 for all i ∈ {1, . . . ,m}:
obviously, the current node can be culled.

Maybe it is possible to derive yet more rules, however these work well enough:
only considering rules which fix variables to their current value in x(λ∗) allows us
to apply them successively to all unfixed variables without needing to recompute
c(λ∗) and x(λ∗) each time. In the following section, we describe how we compute
the relative costs c(λ∗), upon which this variable fixation scheme depends.

4 Lagrangian relative costs

The algorithm to determine the relative costs is based on that introduced by
Karabakal et al in [7]. However, in [7] the output of this algorithm was used
within a steepest-descent heuristic for solving the lagrangian dual maxλ z(λ),
and not for determining relative costs for fixing variables in the branch-and-
bound. Indeed, to our knowledge, we are the first to do so.

We now summarize how Karabakal et al. obtain the relative costs c(λ) for
any multiplier and at any node in the branch-and-bound search. However, for
simplicity and without loss of generality, we shall assume that we are at the
root node, and that none of the variables xij have been fixed yet.

4.1 Decomposition of the lagrangian relaxation

Recall that when solving the lagrangian relaxation for any vector of multipliers
λ, we can decompose the problem into m independent knapsack subproblems.
Denote by zi(λ) the optimal value of the knapsack subproblem corresponding
to agent i given multipliers λ:

z(λ) =
n∑
j=1

λj +
m∑
i=1

zi(λ)
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and
zi(λ) = min

∑n
j=1(cij − λj)xij

s.t. ∑n
j=1 aijxij ≤ bi,

xij ∈ {0, 1}, j = 1, . . . , n.

Denote by:

• x(λ) the optimal solution to the lagrangian relaxation with multipliers λ,

• zi(λ, xij = 0) the optimal value of the knapsack subproblem when a free
variable xij is fixed to 0, and

• similarly zi(λ, xij = 1) when xij is fixed to 1.

Fixing a free variable xij to its value in x(λ) will not change z(λ), since by
definition x(λ) is the optimal solution to the lagrangian relaxation given λ.
However fixing xij to its complement (1 − x(λ)ij) may increase the objective
value of the knapsack subproblem i from zi(λ) to zi(λ, xij = 1 − x(λ)ij). We
may therefore define the vector of lagrangian relative costs c(λ) as the vector of
these modifications:

c(λ)ij =

{
zi(λ, xij = 0)− zi(λ) if x(λ)ij = 1,
zi(λ, xij = 1)− zi(λ) if x(λ)ij = 0,

At this stage we already know zi(λ) for all i, therefore computing c(λ) requires
computing zi(λ, xij = 1 − x(λ)ij) for all (i, j). We now show how to do this
efficiently using a dynamic programming approach.

4.2 Dynamic programming approach

Since the values aij are all integer, we can solve the knapsack subproblem asso-
ciated with each agent i ∈ {1, . . . ,m} using a dynamic programming approach.
For each agent i, we define an initial state si, a final state ti, and the states
vi,jβ associated with each job j ∈ {1, . . . , n} and each possible resource usage
β ∈ {0, . . . , bi}.

We then define the following transition mechanism, given a vector of multi-
pliers λ. Consider any state vi,jβ with 1 ≤ j < n and 0 ≤ β ≤ bi:

• we allow transition to state vi,j+1
β at zero cost,

• we allow transition to state vi,j+1
β+aij

at cost cij − λj if β + aij ≤ bi.

We also allow transition from si to vi,1β as well as from vi,nβ to ti for all β ∈
{0, . . . , bi} at zero cost. The state space for the knapsack problem for agent i
parameterized by the multipliers λ can be represented as a weighted directed
acyclic graph Gi(λ) illustrated in figure 1.

6

An Exact Method with Variable Fixing for Solving the Generalized Assignment Problem

CIRRELT-2011-17



si

β = 0

β = 1

β = bi

j = 1 j = 2 j = nvariable
rhs

vi,10

vi,11

vi,1bi

vi,20

vi,21

vi,2ai1

vi,2ai1+1

vi,2bi

vi,n+1
0

vi,n+1
bi−1

vi,n+1
bi

ti

c
i1 −

λ
1c
i1 −

λ
1

c
i2 −

λ
2c

i2 −
λ
2

c
i2 −

λ
2c

i2 −
λ
2

c
in −

λ
nc
in −
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Figure 1: The graph Gi(λ).

By representing the knapsack subproblem as a shortest-path problem, we
see that the optimal value zi(λ) is the length of the shortest path from si to ti

in Gi(λ). Denote by f i(λ, j, β) the length of the shortest path from si to vi,jβ ,

and by gi(λ, j, β) the length of the shortest path from vi,jβ to ti. Following the
Bellman optimality principle, these values can be expressed recursively:

f i(λ, j, β) =


0 if j = 1,
f i(λ, j − 1, β) if β < aij ,

min

{
f i(λ, j − 1, β),

f i(λ, j − 1, β − aij) + cij − λj

}
otherwise,

gi(λ, j, β) =


0 if j = n+ 1,
gi(λ, j + 1, β) if β > bi − aij ,
min

{
gi(λ, j + 1, β),

gi(λ, j + 1, β + aij) + cij − λj

}
otherwise.

Notice that we may obtain zi(λ) by computing either f i(λ, n, bi) or gi(λ, 0, 0)
using a dynamic programming approach.

We now show how this approach also leads itself to solving the knapsack
problem for agent i given the multipliers λ in which a variable xij has been fixed
to a specific value, i.e. zi(λ, xij = 0) or zi(λ, xij = 1). Fixing a variable xij to 1
consists in removing a subset of arcs from the state space Gi(λ), namely the arcs
(vi,jβ , vj+1

β ) for all β ∈ {0, . . . , bi}. Similarly, fixing a variable xij to 0 consists

in removing from Gi(λ) all arcs (vi,jβ , vi,j+1
β+aij

) with β ∈ {0, . . . , bi}. Fortunately,
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the graph Gi(λ) is topologically ordered, and it is relatively easy to compute the
length of the new shortest path. Indeed, according to the Bellman optimality
principle, we have

zi(λ, xij = 0) = min
0≤β≤bi

(
f i(λ, j, β) + gi(λ, j + 1, β)

)
.

and similarly,

zi(λ, xij = 1) = cij − λj + min
0≤β≤bi−aij

(
f i(λ, j, β) + gi(λ, j + 1, β + aij)

)
.

As a consequence the relative costs c(λ) can be found in O(mnbi).
The case where a variable xij′ is fixed to 1 is illustrated in figure 2. The ars

(vi,j
′

β , vi,j
′+1

β ) are removed from Gi(λ) for all β ∈ {0, . . . , bi}. If we assume that

the shortest path marked in full thick lines corresponds to the value of zi(λ),

then to obtain zi(λ, xij′ = 1) we need to examine each arc (vi,j
′

β , vi,j
′+1

β+aij′
) for

all β ∈ {0, . . . , bi − aij′} to determine the new shortest path (marked in dashed
thick lines).

β = 0

β = 1

β = bi

j = j′j = j′ − 1 j = j′ + 1variable
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si ti
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Figure 2: The new shortest path after fixing xij′ to 1.
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5 Computational experience

First we introduce a few details pertaining to the implementation of our method
which warrant further discussion. We then specify the experimental protocol
applied for obtaining our numerical results. These are then presented and com-
pared with the best known results. Finally we conclude by analyzing the effi-
ciency of our variable fixing procedure.

5.1 Implementation details

The efficient resolution of knapsack problems in the implementation of our
method is a matter of great importance. These knapsack problems result from
the decomposition of the lagrangian relaxation of (GAP), and in our method
this relaxation is used in two places: in the resolution of the lagrangian dual,
and in the computation of lagrangian relative costs. In the latter case we use
dynamic programming as explained previously in subsection 4.2, however in
the former we use a more sophisticated algorithm, MINKNAP, developed by
David Pisinger [10]. This choice proved essential to solving the difficult prob-
lem instances in which the coefficients are strongly correlated. Interestingly,
Avella et al. [2] who obtained the best known results also use MINKNAP for
their knapsack cover cut generation. Until now in the Generalized Assignment
Problem literature, such knapsack problems were solved either using a simple
branch-and-bound or even using dynamic programming.

Also until now, it seems that previous authors using lagrangian relaxations
solved the lagrangian dual with a subgradient method. We choose instead to
solve it with a bundle method, and more specifically specifically using Antonio
Frangioni’s [B]TT/OBP solver [5]. The bundle method is robust, requiring fewer
parameter adjustments than the the subgradient method to perform acceptably.
In fact we found that allowing up to around a hundred bundle iterations worked
well enough for all problems in our instance set, and did not tweak the method
further. On the contrary, despite all our efforts in tweaking the magic numbers
for the subgradient method, we never came close to performing as well as the
bundle method. Another motivation for preferring the bundle method is that
in solving maxλ z(λ), the computational bottleneck is clearly in solving z(λ)
for a given λ, rather than in updating and optimizing the bundle model of
{z(λ) | λ ∈ Rn}.

When solving a decision problem GAP (z̄), we naturally choose to use a
depth-first node selection strategy for the branch-and-bound search, since we
wish to find a feasible solution as soon as possible. If there are none, the node
selection strategy has no impact other than on memory use, which fortunately
is minimized when going depth-first. Also, when evaluating the lower bound in
all nodes (except at the root node), the bundle method is initialized with the
best multipliers found for the parent node, and is run until a fixed iteration
limit is reached (around 100 works well), or until the bundle method performs
a minor step of size below a certain threshold (10−5).

9
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For the root node, we re-use the multipliers obtained during the computa-
tion of the initial lower bound (which also yields the initial z̄), thus avoiding
some replication of effort. Note that it is possible to extend this approach to
other nodes of the search tree where no variables have been fixed other than
by branching, since we find these nodes in the search tree for the next decision
problem GAP (z̄ + 1). We have not bothered to do this, after we noticed in our
computations that the variable-fixing procedure is effective very early on in the
search, in most cases fixing variables in all nodes of a search tree.

We compute the initial lower bound as follows. First we solve the linear
relaxation of the MIP model of the instance with CPLEX. We then initialize
the bundle method with the optimal knapsack constraint multipliers of the linear
relaxation, and we let it run with a much higher iteration limit (around 100,000).

5.2 Experimental protocol

The best known results for these problems are provided by Avella et al. [2]. They
compare thoroughly and favorably their results with the previously best known
results in literature. As most works in the literature, we solve the instances of
the Beasly set [3], which are divided into 5 categories, A B C D and E. We ignore
the instances in categories A and B as Avella et al. have done, because they are
too easy. In our tables the instances are named ymn, where y designates the
category, m the number of agents and n the number of jobs.

The data which interests us is the execution duration of our program, for
the full search as well as for the optimality proof. A full search corresponds to
the execution of our program without prior knowledge of any feasible solution
value. An optimality proof corresponds to showing there are no solutions with
a lower value than the best known. In other words, given a best known solution
value z∗ (as reported in the literature), to prove optimality our program needs
to solve the decision problem GAP (z∗ − 1), and Avella et al. need to explore
their branch-and-cut search tree using z∗ − 1 as a cutoff value.

The computer used by Avella et al. is a Pentium IV CPU clocked at 3.2 GHz.
For our experiments, we had at our disposal a group of cluster nodes all equipped
with identical dual AMD Opteron 246 processors. Since Avella et al. also pro-
vide the computation time to solve the problems with the CPLEX solver (version
10.1), we did the same to conservatively estimate our machines to be twice as
fast as theirs, which concurs with number crunching benchmarks published on
a serious computer hardware website (specifically: tomshardware.com). Our
algorithm is coded in the C language, but since we use C++ code from [B]TT,
we compiled it all with g++ version 4.1 with all optimizations enabled and
targeting a x86-64 architecture. Our program executions were all limited to 24
hours user time.

10

An Exact Method with Variable Fixing for Solving the Generalized Assignment Problem

CIRRELT-2011-17



5.3 Results

Tables 1 2 and 3 present the best lower bounds computed by our program for
each instance. The initial lower bound is obtained when solving the lagrangian
dual in order to determine the initial value of z̄. The two next columns list
the global lower bounds on the optimal value obtained after 30 minutes and
24 hours of execution time of our method. If no value is indicated in these
columns, then the program found an optimal solution before the corresponding
time limit. These optimal values are listed in ’Optimal’, and are highlighted
in bold if they were previously unknown. Otherwise, for the instances which
were not solved to optimality in 24 hours, we provide the best known feasible
solution values found in the literature in the next column ’Best known’.

Table 4 presents the execution times in seconds for our program and Avella
et al. [2]. The results of Avella et al. are indicated as in [2], i.e. without
accounting for the difference in computing power. We removed from the table
the 10 instances for which neither our program or theirs could even perform
an optimality proof. Nine out of these ten are instances of the D category,
characterized by having tight knapsack constraints in which the weights are
strongly correlated to the prices. The improvement factor is the ratio of their
time over our time, divided by 2 to conservatively allow for the difference in
hardware, for both full searches and optimality proofs.

As can be seen, in almost all cases our results are much better than theirs,
which were state-of-the-art. We find three previously unknown optimal solu-
tions, and are able to find the optimal solution of an instance in all cases they
are able to, save one. Our full searches all perform faster and are better than
theirs. There are only five instances for which Avella et al. obtain optimality
proofs faster than we do, and there is only one instance for which we fail to find
an optimal solution while they succeed.

Table 5 lists the total number of nodes evaluated as well as the total num-
ber of lagrangian relaxations solved until finding an optimal solution, for the
instances for which this happened within 24 hours.

5.4 Concluding analysis

Interestingly, three of the five instances for which Avella et al. perform better to
prove optimality are the largest instances of the C category: c40400, c60900 and
c401600. The other instances are e201600, a large instance, and c10200, a small
but easy instance. The instances in categories C and E are also less constrained
than those in category D having tight knapsack constraints whose coefficients
are highly correlated to the assignment prices. As a consequence even finding
good feasible solutions for instances in category D can be a challenge, notice
however that our method performs relatively well in D.
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Figure 3: Impact of variable fixing on the time required for instance e10100.

The curves in figure 3 illustrate the benefit of using our variable-fixing
scheme. The points on FULL indicate the cumulative time spent for solving
the decision problems up to the current value for z̄, when using all variable
fixation rules presented in section 3. The points on SIMPLE correspond to ap-
plying only the so-called simple variable fixation rules, and NONE to applying
no variable fixation rules at all.

This illustrates that computing the lagrangian relative costs and applying
at least the simple rules is strongly beneficial to the overall performance of the
search. Applying the full set of rules incurs little overhead once the relative
costs have been computed, and while the improvement over the simple rules is
not in the same order of magnitude, it still appears to be worthwile.

The results for this 10-agent 100-job instance are representative of the other
instances, for which a similar pattern emerges. The cumulative time also strongly
correlates with the cumulative branch-and-bound tree node count as well as the
cumulative number of lagrangian relaxations evaluated. This is the case for this
instance as well as for the others.

Now let us come back to our clame made in section 2 that our method per-
forms more consistently than more straightforward branch-and-bound methods.
We initially implemented a method very similar to that proposed by Haddadi
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and Ouzia [6], namely a lagrangian branch-and-bound where an additional re-
pair process is applied at each node to reach feasible solutions and improve the
upper bound, to which we added our variable-fixing rules. However, we ob-
served that the performance of such a method is very sensitive to how soon a
good feasible solution is found. In particular, we obtained very uneven results
for the instances in the D category, where the tight knapsack constraints make
it difficult to find feasible solutions.

Figure 4 illustrates this for instance d05100 (5 agents, 100 jobs), the op-
timum being 6353. We plot the evolution of the upper and lower bounds of
three methods: our implementation of Haddadi and Ouzia [6] in light gray,
this method with the addition of our variable-fixing rules in dark gray, and the
method presented in this paper in black. Notice that the use of variable-fixing
rules has hardly any impact on the lower bound in the straighforward branch-
and-bound implementation, in contrast to our method presented in this paper
(also illustrated previously in figure 3).

Let us conclude with a few additional comments. Solving the instance d05100
with our method without using any variable-fixing rules requires about 18 sec-
onds, and this is consistent with the behavior illustrated in figure 3. Note also
that the time reported in table 4 for solving this instance is 5.07 seconds, which is
slightly less than depicted in figure 4. The reason for this apparent discrepancy
is that we used best-first node selection in figure 4 instead of depth-first.

It may be interesting to find other 0-1 problems for which a scheme similar
to ours could be succesfully applied.
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Instance Initial LB LB (1/2h+) LB (24h+) Optimal Best known

c05100 1930 1931
c05200 3455 3456
c10100 1400 1402
c10200 2804 2806
c10400 5596 5597
c15900 11339 11340
c20100 1242 1243
c20200 2391 2391
c20400 4781 4782
c201600 18802 18802 18802
c30900 9982 9982
c40400 4244 4244
c401600 17144 17144 17145 17145
c60900 9325 9326 9326 9326
c801600 16284 16284 16284 16289

Table 1: Solution values found by our method for C instances.

Instance Initial LB LB (1/2h+) LB (24h+) Optimal Best known

d05100 6350 6353
d05200 12741 12742
d10100 6342 6347
d10200 12426 12430
d10400 24959 24961
d15900 55403 55403 55404 55414
d20100 6177 6184 6185
d20200 12230 12234 12235 12244
d20400 24561 24562 24563 24585
d201600 97823 97824 97824 97837
d30900 54833 54833 54834 54868
d40400 24350 24350 24350 24417
d401600 97106 97106 97106 97113
d60900 54551 54551 54551 54606
d801600 97034 97034 97034 97052

Table 2: Solution values found by our method for D instances.
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Instance Initial LB LB (1/2h+) LB (24h+) Optimal Best known

e05100 12673 12681
e05200 24927 24930
e10100 11568 11577
e10200 23302 23307
e10400 45745 45746
e15900 102420 102421
e20100 8432 8436
e20200 22377 22379
e20400 44876 44877
e201600 180644 180645
e30900 100427 100427
e40400 44557 44561
e401600 178292 178293
e60900 100147 100148 100149
e801600 176819 176820

Table 3: Solution values found by our method for E instances.
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Our program Avella et al. Improvement factor

Instance Search Proof Search Proof Search Proof

c05100 .05 .04 2.39 .60 23.9 7.5
c05200 .42 .36 9.03 1.50 10.8 2.1
c10100 .16 .13 2.67 .80 8.3 3.1
c10200 3.12 2.28 17.13 2.90 2.7 .6
c10400 4.54 2.65 38.61 5.70 4.3 1.1
c15900 17.27 2.70 2,257.37 418.0
c20100 .29 .17 1.83 .80 3.2 2.4
c20200 .81 .17 13.98 1.80 8.6 5.3
c20400 25.32 9.79 91.52 21.90 1.8 1.1
c201600 5,804.55 3.52
c30900 373.27 3.35 3,997.56 12.30 5.4 1.8
c40400 9.94 2.87 52.38 3.30 2.6 .6
c401600 11,831.26 3,231.14 .1
c60900 203.99 8,369.69 121.40 .3

d05100 5.07 1.28 17.08 13.30 1.7 5.2
d05200 2.33 1.24 17.83 13.80 3.8 5.6
d10100 41.33 13.37 385.29 14.4
d10200 1,144.67 417.02 8,921.75 10.7
d10400 513.14 174.43
d20100 4,010.77 2,425.81 27,783.04 5.7

e05100 1.05 .28 5.33 2.00 2.5 3.6
e05200 .59 .23 5.69 1.50 4.8 3.3
e10100 2.92 .90 8.94 4.70 1.5 2.6
e10200 4.91 2.92 39.41 7.40 4.0 1.3
e10400 .86 .56 98.91 3.50 57.5 3.1
e15900 3.58 .95 203.45 6.60 28.4 3.5
e20100 2.53 1.21 51.14 8.30 10.1 3.4
e20200 .98 .65 42.89 5.80 21.9 4.5
e20400 1.97 .94 79.89 8.10 20.3 4.3
e201600 40.02 35.80 1,003.47 32.70 12.5 .5
e30900 4.56 .77 671.51 13.20 73.6 8.6
e40400 104.59 56.58 2,875.01 636.60 13.7 5.6
e401600 243.02 3.69 4,123.61 54.60 8.5 7.4
e60900 23,181.30 1,360.24 6,341.15 2.3
e801600 75.51 12.05

Table 4: Performance.
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Instance Nodes Relaxations

c05100 6 397
c05200 11 2,112
c10100 31 1,543
c10200 248 17,970
c10400 157 13,898
c15900 406 26,894
c20100 50 2,226
c20200 52 3,689
c20400 1,034 63,210
c201600 62,630 3,759,201
c30900 6,826 369,235
c40400 253 16,626

d05100 617 36,848
d05200 159 10,535
d10100 3,824 191,735
d10200 58,840 3,346,652
d10400 19,577 1,157,941
d20100 379,632 13,857,852

e05100 231 14,013
e05200 82 5,389
e10100 425 23,040
e10200 441 27,903
e10400 27 2,385
e15900 67 4,573
e20100 207 10,788
e20200 34 2,662
e20400 79 4,071
e201600 386 24,803
e30900 71 3,743
e40400 3,223 143,889
e401600 1,631 84,549
e60900 210,933 9,519,630
e801600 285 14,230

Table 5: Node and lagrangian relaxation evaluation count.
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