
 
 

           
  
  
 ___________________________ 
   

First-Order (Conditional) Risk  
Aversion, Backround Risk and  
Risk Diversification   
       

      Georges Dionne 
      Jingyuan Li 
       

                                
April  2011 
 
 
CIRRELT-2011-24 
 
 
 
                              

 
 
 
 
 
 
 
 

G1V 0A6 

Bureaux de Montréal :  Bureaux de Québec : 
Université de Montréal Université Laval 
C.P. 6128, succ. Centre-ville 2325, de la Terrasse, bureau  2642 
Montréal (Québec) Québec (Québec) 
Canada H3C 3J7 Canada G1V 0A6 
Téléphone : 514 343-7575 Téléphone : 418 656-2073 
Télécopie  : 514 343-7121 Télécopie  : 418 656-2624 
 

  www.cirrelt.ca 



 

First-Order (Conditional) Risk Aversion, Backround Risk  
and Risk Diversification  

Georges Dionne1,*, Jingyuan Li2  

1 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation 
(CIRRELT) and Canada Research Chair in Risk Management, HEC Montréal, 3000, Côte-
Sainte-Catherine, Montréal, Canada  H3T 2A7 

2 School of Management, Huazhong University of Science and Technology, Wuhan 430074, 
China 

Abstract. In the literature, utility functions in the expected utility class are generically 

limited to second-order (conditional) risk aversion, while non-expected utility functions can 

exhibit either. First-order or second-order (conditional) risk aversion. This paper extends 

the concepts of orders of conditional risk aversion to orders of conditional dependent risk 

aversion. We show that first-order conditional dependent risk aversion is consistent with 

the framework of the expected utility hypothesis. We relate our results to risk 

diversification and provide additional insights into its application in different economic and 

finance examples. 
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1 Introduction

The concepts of second-order and first-order risk aversion were coined by Segal and Spivak

(1990). For an actuarially fair random variable ε̃, second-order risk aversion means that the

risk premium the agent is willing to pay to avoid kε̃ is proportional to k2 as k → 0. Under

first-order risk aversion, the risk premium is proportional to k. Loomes and Segal (1994) extend

this notion to preferences about uninsured events, such as independent additive background

risks. They introduce the concept of orders of conditional risk aversion. We define ỹ as an

independent additive risk. The conditional risk premium is defined as the amount of money the

decision maker is willing to pay to avoid ε̃ in the presence of ỹ. The preference relation satisfies

first-order conditional risk aversion if the risk premium the agent is willing to pay to avoid kε̃ is

proportional to k as k → 0. It satisfies second-order conditional risk aversion if the risk premium

is proportional to k2.

To the best of our knowledge, utility functions in the von Neumann-Morgenstern expected

utility class can generically exhibit only second-order conditional risk aversion, while non-

expected utility functions can exhibit either first-order or second-order (conditional) risk aver-

sion1. First-order (conditional) risk aversion implies that small risks matter. Since expected

utility theory is limited to second-order (conditional) risk aversion, it cannot take into account

many real world results. For example, Epstein and Zin (1990) find that first-order risk aversion

can help to resolve the equity premium puzzle. Schlesinger (1997) uses first-order risk aversion

to explain why full insurance coverage may be optimal even when there is a positive premium

loading. Further applications of first-order risk aversion appear in Schmidt (1999), Barberis et

al. (2001), Barberis et al. (2006), and Chapman and Polkovnichenko (2009), among others.

In this paper, we extend the concept of order conditional risk aversion to order conditional

dependent risk aversion, for which ε̃ and ỹ are dependent and ỹ may enter the agent’s utility

function in a rather arbitrary manner. We investigate whether first-order conditional dependent

risk aversion appears in the framework of the expected utility hypothesis. The general answer

to the above question is positive with some restrictions.

We propose conditions on the stochastic structure between ε̃ and ỹ that guarantee first-

order conditional dependent risk aversion for expected utility agents with a certain type of risk

preference, i.e., correlation aversion. Eeckhoudt et al. (2007) provide an economic interpretation
1See Eeckhoudt et al. (2005), Chapter 13, for more discussion.
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of correlation aversion: a higher level of the background variable mitigates the detrimental effect

of a reduction in wealth. It turns out that the concept of expectation dependence, proposed by

Wright (1987), is the key element to such stochastic structure. Further, the more information

that we possess about the sign of higher cross derivatives of the utility function,2 the weaker

dependence conditions on distribution we need. These weaker dependence conditions, which

demonstrate the applicability of a weak version of expectation dependence (called N th-order

expectation dependence (Li, 2011)), induce weaker dependence conditions between ε̃ and ỹ, to

guarantee first-order conditional dependent risk aversion.

Risk premium is an important concept in economics and finance. Intuition suggests that

the risk premium for a diversified risk should relate to the number of trials n. We investigate

a correlation averse risk premium for a naive diversified risk in the presence of a dependent

background risk. The naive diversified risk is defined as one in which a fraction 1
n of wealth is

allocated to each of the n risks. In the absence of a dependent background risk, the population

mean value of the naive diversified risk approximates the expected value. The “Law of Large

Numbers” states that the risk premium converges to zero when n is large. This is often called

the benefit of diversification. Given that, in real life, an agent can diversify wealth only on a

limited number of risks, a natural question is how small is the risk premium in the presence of

a dependent background risk? In other words, what is the convergence rate or approximation

error? Our results show that the convergence rate is at the order of 1
n2 in the presence of

an independent background risk compared with 1
n in the presence of a dependent background

risk. This difference is a quantitative statement on the benefice of diversification which provides

information on how background risk affects the risk premium of a a naive diversified risk. This

result also provides additional insights regarding previous results on insurance supply, public

investment decisions, naive diversified portfolio pricing, bank lending and lottery business in the

presence of a dependent background risk.

The paper proceeds as follows. Section 2 sets up the model. Section 3 discusses the concept

of orders of conditional risk aversion. Section 4 investigates the orders of conditional dependent

risk aversion. Section 5 discusses some weaker dependence conditions. Section 6 applies the

results to different economic and financial examples. Section 7 concludes this paper.
2Eeckhoudt et al. (2007) provide a context-free interpretation for the sign of higher cross derivatives of the

utility function.
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2 The model

We consider an agent whose preference for a random wealth, w̃, and a random outcome, ỹ, can

be represented by a bivariate expected utility function. Let u(w, y) be the utility function, and

let u1(w, y) denote ∂u
∂w and u2(w, y) denote ∂u

∂y , and follow the same subscript convention for

higher derivatives u11(w, y) and u12(w, y) and so on. We assume that all partial derivatives

required for any definition exist. We make the standard assumption that u1 > 0.

Let us assume that z̃ = kε̃. Parameter k can be interpreted as the size of the risk. One way

to measure an agent’s degree of risk aversion for z̃ is to ask her how much she is ready to pay to

get rid of z̃. The answer to this question will be referred to as the risk premium π(k) associated

with that risk. For an agent with utility function u and non random initial wealth w, the risk

premium, π(k), must satisfy the following condition:

u(w + Ekε̃− π(k), Eỹ) = Eu(w + kε̃, Eỹ). (1)

Segal and Spivak (1990) give the following definitions of first and second-order risk aversion:

Definition 2.1 (Segal and Spivak 1990) The agent’s attitude towards risk at w is of first order

if for every ε̃ with Eε̃ = 0, π′(0) 6= 0.

Definition 2.2 (Segal and Spivak 1990) The agent’s attitude towards risk at w is of second

order if for every ε̃ with Eε̃ = 0, π′(0) = 0 but π′′(0) 6= 0.

They provide the following results linking properties of a utility function to its order of risk

aversion given level of wealth w0:

(a) If a risk averse von Neumann-Morgenstern utility function u is not differentiable at w0 but

has well-defined and distinct left and right derivatives at w0, then the agent exhibits first-order

risk aversion at w0.

(b) If a risk averse von Neumann-Morgenstern utility function u is twice differentiable at w0

with u11 6= 0, then the agent exhibits second-order risk aversion at w0.

Segal and Spivak (1997) point out that, if the von Neumann-Morgenstern utility function is

increasing, then it must be differentiable almost everywhere, and one may therefore convincingly

argue that non-differentiability is not often observed in the expected utility model. Therefore

first-order risk aversion cannot be taken into account in this model.
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3 Order of conditional risk aversion

Loomes and Segal (1994) introduced the order of conditional risk aversion by examining the

characteristic of π(k) in the presence of independent uninsured risks. For an agent with utility

function u and initial wealth w, the conditional risk premium, πc(k), must satisfy the following

condition:

Eu(w + Ekε̃− πc(k), ỹ) = Eu(w + kε̃, ỹ). (2)

where ε̃ and ỹ are independent.

Definition 3.1 (Loomes and Segal 1994) The agent’s attitude towards risk at w is first order

conditional risk aversion if for every ε̃ with Eε̃ = 0, π′c(0) 6= 0.

Definition 3.2 (Loomes and Segal 1994) The agent’s attitude towards risk at w is second order

conditional risk aversion if for every ε̃ with Eε̃ = 0, π′c(0) = 0 but π′′c (0) 6= 0.

It is obvious that the definitions of first and second order conditional risk aversion are more

general than the definitions of first and second order risk aversion

We can extend the above definitions to the case Eε̃ 6= 0. Since u is differentiable, fully

differentiating (2) with respect to k yields

E{[Eε̃− π′c(k)]u1(w + Ekε̃− πc(k), ỹ)} = E[ε̃u1(w + kε̃, ỹ)]. (3)

Since ε̃ and ỹ are independent, then

π′c(0) =
Eε̃Eu1(w, ỹ)− E[ε̃u1(w, ỹ)]

Eu1(w, ỹ)
= 0. (4)

Therefore, not only does πc(k) approach zero as k approaches zero, but also π′c(0) = 0. This

implies that, at the margin, accepting a small zero-mean risk has no effect on the welfare of

risk-averse agents. This is an important property of expected-utility theory: “in the small”, the

expected-utility maximizers are risk neutral.

Using a Taylor expansion of πc around k = 0, we obtain that

πc(k) = πc(0) + π′c(0)k + O(k2) = O(k2). (5)

This result is the Arrow-Pratt approximation, which states that the conditional risk premium

is approximately proportional to the square of the size of the risk.
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Within the von Neumann-Morgenstern expected-utility model, if the random outcome and

the background risk are independent, then second-order conditional risk aversion relies on the

assumption that the utility function is differentiable. Hence, with an independent background

risk, utility functions in the von Neumann-Morgenstern expected utility class can generically

exhibit only second-order conditional risk aversion and cannot explain the rejection of a small,

independent, and actuarially favorable gamble.

4 Order of conditional dependent risk aversion

We now introduce the concept of order of conditional dependent risk aversion. For an agent

with utility function u and initial wealth w, the conditional dependent risk premium, πcd(k),

must satisfy the following condition:

Eu(w + Ekε̃− πcd(k), ỹ) = Eu(w + kε̃, ỹ). (6)

where ε̃ and ỹ are not necessarily independent3.

Definition 4.1 The agent’s attitude towards risk at w is first order conditional dependent risk

aversion if for every ε̃, πcd(k)− πc(k) = O(k).

Definition 4.2 The agent’s attitude towards risk at w is second order conditional dependent

risk aversion if for every ε̃, πcd(k)− πc(k) = O(k2).

πcd(k) − πc(k) measures how dependence between risks affects risk premium. Second order

conditional dependent risk aversion implies that, in the presence of a dependent background

risk, small risk has no effect on risk premium, while first order conditional dependent risk

aversion implies that, in the presence of a dependent background risk, small risk affects risk

premium.

We denote F (ε, y) and f(ε, y) the joint distribution and density functions of (ε̃, ỹ), respec-

tively. Fε(ε) and Fy(y) are the marginal distributions.

Wright (1987) introduces the following idea in the economic literature.

3In the statistical literature, the sequence bk is at most of order kλ, denoted as bk = O(kλ), if for some finite

real number ∆ > 0, there exists a finite integer K such that for all k > K, |kλbk| < ∆ (see, White 2000, p16).

5

First-Order (Conditional) Risk Aversion, Backround Risk and Risk Diversification

CIRRELT-2011-24



Definition 4.3 (Wright 1987) If

ED(y) = [Eε̃− E(ε̃|ỹ ≤ y)] ≥ 0 for all y, (7)

and there is at least some y0 for which a strong inequality holds,

then ε̃ is positive expectation dependent on ỹ. Similarly, ε̃ is negative expectation dependent on

ỹ if (7) holds with the inequality sign reversed.

Wright (1987, p115) interprets negative first-degree expectation dependence as follows: “when

we discover ỹ is small, in the precise sense that we are given the truncation ỹ ≤ y, our expectation

of ε̃ is revised upward”. This definition of dependence is useful for deriving an explicit value of

πcd(k).

Lemma 4.4

πcd(k) = −k

∫∞
−∞ED(y)u12(w, y)Fy(y)dy

Eu1(w, ỹ)
+ O(k2). (8)

Proof From the definition of πcd(k), we know that

Eu(w + Ekε̃− πcd(k), ỹ) = Eu(w + kε̃, ỹ). (9)

Differentiating with respect to k yields

π′cd(k) =
Eε̃Eu(w + Ekε̃− πcd(k), ỹ)− E[ε̃u1(w + kε̃, ỹ)]

Eu1(w − πcd(k), ỹ)
. (10)

Since πcd(0) = 0, we have

π′cd(0) =
Eε̃Eu1(w, ỹ)−E[ε̃u1(w, ỹ)]

Eu1(w, ỹ)
. (11)

Note that

E[ε̃u1(w, ỹ)] = Eε̃Eu1(w, ỹ) + Cov(ε̃, u1(w, ỹ)) (12)

and the covariance can always be written as (see, Cuadras (2002), Theorem 1)

Cov(ε̃, u1(w, ỹ)) =
∫ ∞

−∞

∫ ∞

−∞
[F (ε, y)− Fε(ε)FY (y)]dεdu1(w, y). (13)

Since we can always write (see, e.g., Tesfatsion (1976), Lemma 1)

∫ ∞

−∞
[Fε(ε|ỹ ≤ y)− Fε(ε)]dε = Eε̃− E(ε̃|ỹ ≤ y), (14)
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hence, by straightforward manipulations we find

Cov(ε̃, u1(w, ỹ)) =
∫ ∞

−∞

∫ ∞

−∞
[F (ε, y)− Fε(ε)Fy(y)]u12(w0, y)dεdy (15)

=
∫ ∞

−∞

∫ ∞

−∞
[Fε(ε|ỹ ≤ y)− Fε(ε)]dεFy(y)u12(w, y)dy

=
∫ ∞

−∞
[Eε̃− E(ε̃|ỹ ≤ y)]Fy(y)u12(w, y)dy (by (14))

=
∫ ∞

−∞
ED(y)u12(w, y)Fy(y)dy.

Finally, we get

π′cd(0) = −
∫∞
−∞ED(y)u12(w, y)Fy(y)dy

Eu1(w, ỹ)
. (16)

Using a Taylor expansion of π around k = 0, we obtain that

πcd(k) = πcd(0) + π′cd(0)k + O(k2) = −k

∫∞
−∞ED(y)u12(w, y)Fy(y)dy

Eu1(w, ỹ)
+ O(k2). (17)

Q.E.D.

Lemma 4.4 shows the general condition for first order risk aversion. The condition involves

two important concepts u12 and ED(y). The sign of u12 indicates how this first element acts

on utility u. Eeckhoudt et al. (2007) provide a context-free interpretation of the sign of u12.

They show that u12 ≤ 0 is necessary and sufficient for “correlation aversion”, meaning that a

higher level of the background variable mitigates the detrimental effect of a reduction in wealth.

This condition involves the expectation dependence between two risks and the cross derivative

of the utility function. It captures the welfare interaction between the two risks. The sign

of the first-degree expectation dependence indicates whether the movements on background

risk tend to reinforce the movements on wealth (positive first-degree expectation dependence)

or to counteract them (negative first-degree expectation dependence). Lemma (4.4) allows a

quantitative treatment of the direction and size of first-degree expectation dependence effect

on first order risk aversion. To clarify this, consider the following cases: (1) assume the agent

is correlation neutral (u12 = 0) or the background risk is independent (ED(y) = 0), then the

agent’s attitude towards risk is second order conditional dependent risk aversion; (2) Assume

u12 < 0 and ED(y) > 0 (ED(y) < 0), then the agent’s attitude towards risk is first order

conditional dependent risk aversion and her marginal risk premium for a small risk is positive

(negative) (i.e., limk→0+ π′cd(k) > (<)0).

From Lemma (4.4) and Equation (5), we obtain

7
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Proposition 4.5 (i) If ε̃ is positive expectation dependent on ỹ and u12 < 0, then the agent’s

attitude towards risk is first order conditional dependent risk aversion and πcd(k) − πc(k) =

|O(k)|;
(ii) If ε̃ is negative expectation dependent on ỹ and u12 > 0, then the agent’s attitude towards

risk is first order conditional dependent risk aversion and πcd(k)− πc(k) = |O(k)|;
(iii) If ε̃ is positive expectation dependent on ỹ and u12 > 0, then the agent’s attitude towards

risk is first order conditional dependent risk aversion and πcd(k)− πc(k) = −|O(k)|;
(iv) If ε̃ is negative expectation dependent on ỹ and u12 < 0, then the agent’s attitude towards

risk is first order conditional dependent risk aversion and πcd(k)− πc(k) = −|O(k)|.

We consider two examples to illustrate Proposition 4.5.

Example 1. Consider the additive background risk case u(x, y) = U(x + y). Here x

may be the random wealth of an agent and y may be a random income risk which cannot be

insured. Since u12 < 0 ⇔ U ′′ < 0, part (i) and (iv) of Proposition 4.5 implies that, if the

agent is risk averse and ε̃ is positive (negative) expectation dependent on the background risk

ỹ, then the agent’s attitude towards risk is first order conditional dependent risk aversion and

πcd(k) > (<)πc(k).

Example 2. Consider the multiplicative background risk case u(x, y) = U(xy). Here x may

be the random wealth of an agent and y may be a random interest rate risk which cannot be

hedged. Since u12 < 0 ⇔ −xy U ′′(xy)
U ′(xy) > 1 (relative risk aversion greater than 1), Proposition

4.5 implies that, (i) if −xy U ′′(xy)
U ′(xy) > 1 and ε̃ is positive (negative) expectation dependent on the

background risk ỹ, then the agent’s attitude towards risk is first order conditional dependent

risk aversion and πcd(k) > (<)πc(k); (ii) if −xy U ′′(xy)
U ′(xy) < 1 and ε̃ is positive (negative) expec-

tation dependent on the background risk ỹ, then the agent’s attitude towards risk is first order

conditional dependent risk aversion and πcd(k) < (>)πc(k).

5 First-order conditional dependent risk aversion and N th-order

expectation dependent background risk

Li (2011) considers the following weaker dependence: suppose ỹ ∈ [c, d], where c and d are

finite. Rewriting 1thED(x̃|y) = FED(x̃|y), 2thED(x̃|y) = SED(x̃|y) =
∫ y
c FED(x̃|t)Fy(t)dt,

8
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and repeated integrals defined by

N thED(x̃|y) =
∫ y

c
(N − 1)thED(x̃|t)dt, for N ≥ 3. (18)

Definition 5.1 (Li 2011) If mthED(x̃|d) ≥ 0, for m = 2, ..., N − 1 and

N thED(x̃|y) ≥ 0 for all y ∈ [c, d], (19)

then x̃ is positive N th-order expectation dependent (NED) on ỹ. The family of all distributions F

satisfying (19) will be denoted by HN . Similarly, x̃ is negative N th-order expectation dependent

on ỹ if (19) holds with the inequality sign reversed, and the family of all negative N th-order

expectation dependent distributions will be denoted by IN .

From this definition, we know that HN ⊃ HN−1 and IN ⊃ IN−1. In the following lemma, we

obtain the risk premium in the presence of an N th-order expectation dependent background

risk.

Lemma 5.2

πcd(k) (20)

= −k

∑N
m=2(−1)mu12(m−1)(w, d)mthED(x̃|d) +

∫ d
c (−1)N+1u12(N)(w, y)N thED(x̃|y)dy

Eu1(w, ỹ)

+O(k2).

Proof From (12) and (14), we know that

E[ε̃u1(w, ỹ)] = Eε̃Eu1(w, ỹ) + Cov(ε̃, u1(w, ỹ)) = Eε̃Eu1(w, ỹ) +
∫ ∞

−∞
ED(y)u12(w, y)Fy(y)dy.(21)

We simply integrate the last term of (21) by parts again and again until we obtain:

Cov(ε̃, u1(w, ỹ)) =
N∑

m=2

(−1)mu12(m−1)(w, d)mthED(x̃|d) (22)

+
∫ d

c
(−1)N+1u12(N)(w, y)N thED(x̃|y)dy, forN ≥ 2.

From (11), we have

π′cd(0) (23)

=
Eε̃Eu1(w, ỹ)−E[ε̃u1(w, ỹ)]

Eu1(w, ỹ)

−k

∑N
m=2(−1)mu12(m−1)(w, d)mthED(x̃|d) +

∫ d
c (−1)N+1u12(N)(w, y)N thED(x̃|y)dy

Eu1(w, ỹ)
.

9
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Using a Taylor expansion of π around k = 0, we obtain that

πcd(k) (24)

= πcd(0) + π′cd(0)k + O(k2)

= −k

∑N
m=2(−1)mu12(m−1)(w, d)mthED(x̃|d) +

∫ d
c (−1)N+1u12(N)(w, y)N thED(x̃|y)dy

Eu1(w, ỹ)

+O(k2).

Q.E.D.

From Lemma (5.2) and Equation (5), we obtain

Proposition 5.3 (i) If (ε̃, ỹ) ∈ HN and (−1)mu12(m−1) ≤ 0 for m = 1, 2, ..., N + 1, then the

agent’s attitude towards risk is first order conditional dependent risk aversion and πcd(k) −
πc(k) = |O(k)|;

(ii) If (ε̃, ỹ) ∈ IN and (−1)mu12(m−1) ≥ 0 for m = 1, 2, ..., N + 1, then the agent’s attitude

towards risk is first order conditional dependent risk aversion and πcd(k)− πc(k) = |O(k)|;
(iii) If (ε̃, ỹ) ∈ HN and (−1)mu12(m−1) ≥ 0 for m = 1, 2, ..., N + 1, then the agent’s attitude

towards risk is first order conditional dependent risk aversion and πcd(k)− πc(k) = −|O(k)|;
(iv) If (ε̃, ỹ) ∈ IN and (−1)mu12(m−1) ≤ 0 for m = 1, 2, ..., N + 1, then the agent’s attitude

towards risk is first order conditional dependent risk aversion and πcd(k)− πc(k) = −|O(k)|.

Eeckhoudt et al. (2007, p120) also provide an intuitive interpretation for the meaning of the

sign of the higher order cross derivatives of utility function, u12(k) . For example, u122 > 0 is a

necessary and sufficient condition for “cross-prudence in wealth”, meaning that higher wealth

reduces the detrimental effect of the background risk. We consider two examples to illustrate

Proposition 5.3.

Example 3. Consider the additive background risk case u(x, y) = U(x + y). Since

(−1)mu12(m−1) ≤ 0 ⇔ (−1)mU (m) ≤ 0, parts (i) and (iv) of Proposition 4.5 imply that, if

the agent is kth degree risk averse (See Ekern, 1980 and Eeckhoudt and Schlesinger, 2006 for

more discussions of kth degree of risk aversion.) for m = 1, 2, ..., N + 1 and ε̃ is positive (neg-

ative) Nth expectation dependent on the background risk ỹ, then the agent’s attitude towards

risk is first order conditional dependent risk aversion and πcd(k) > (<)πc(k).

Example 4. Consider the multiplicative background risk case u(x, y) = U(xy). Since

(−1)mu12(m−1) ≤ 0 ⇔ (−1)mxy
U (m+1)(xy)
U (m)(xy)

≥ m, for m = 1, 2, ..., N + 1 (25)
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(multiplicative risk apportionment of order m for m = 1, 2, ..., N + 1)

(See Eeckhoudt et al., 2009, Wang and Li, 2010 and Chiu et al., 2010 for more discussions of mul-

tiplicative risk apportionment of order m.) Proposition 4.5 implies that, (i) if (−1)mxy U(m+1)(xy)

U(m)(xy)
≥

m for m = 1, 2, ..., N + 1 and ε̃ is positive (negative) expectation dependent on the background

risk ỹ, then the agent’s attitude towards risk is first order conditional dependent risk aversion

and πcd(k) > (<)πc(k); (ii) if (−1)mxy U(m+1)(xy)

U(m)(xy)
≤ m for m = 1, 2, ..., N + 1 and ε̃ is positive

(negative) expectation dependent on the background risk ỹ, then the agent’s attitude towards

risk is first order conditional dependent risk aversion and πcd(k) < (>)πc(k).

6 Applications: the importance of background risk in risk di-

versification

In this section we illustrate the applicability of our results. In particular, we demonstrate how

our results can be used to gain additional insight into risk diversification in the presence of a

dependent background risk. We also show how our framework extends the understanding of

insurance supply, public investment decisions, naive diversified portfolio pricing, bank lending

and lottery business in the presence of a dependent background risk.

6.1 Background risk and risk diversification

Common wisdom suggests that diversification is a good way to reduce risk. Consider a set of n

lotteries whose net gains are characterized by ε̃1, ε̃2,...,ε̃n that are assumed to be independent

and identically distributed. Define the sample mean ε̃ = 1
n

∑n
i=1 ε̃i, then, when w is not random,

Eu(w + Eε̃− πc(
1
n

), ỹ) = Eu(w + ε̃, ỹ), where ε̃ and ỹ are independent, (26)

and

Eu(w +Eε̃−πcd(
1
n

), ỹ) = Eu(w + ε̃, ỹ), where ε̃ and ỹ are not necessary independent. (27)

From (5), we know that πc( 1
n) = O( 1

n2 ). When n →∞, πc( 1
n) → 0 because diversification is an

efficient way to reduce risk. With an independent background risk, diversification can eliminate

idiosyncratic risk at the rate of 1
n2 and the agent is second order risk aversion. This is the well

known benefit of diversification. However, with a dependent background risk, it is not clear that

the benefit of diversification holds for a correlation averse agent.
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From Proposition 5.3 and equation (5), we obtain:

Proposition 6.1 (i) If (ε̃, ỹ) ∈ HN and (−1)mu12(m−1) ≤ 0 for m = 1, 2, ..., N + 1, then

πcd( 1
n) = |O( 1

n)|;
(ii) If (ε̃, ỹ) ∈ IN and (−1)mu12(m−1) ≥ 0 for m = 1, 2, ..., N + 1, then πcd( 1

n) = |O( 1
n)|;

(iii) If (ε̃, ỹ) ∈ HN and (−1)mu12(m−1) ≥ 0 for m = 1, 2, ..., N + 1, then πcd( 1
n) = −|O( 1

n)|;
(iv) If (ε̃, ỹ) ∈ IN and (−1)mu12(m−1) ≤ 0 for m = 1, 2, ..., N + 1, then πcd( 1

n) = −|O( 1
n)|.

Proposition 6.1 signs the effect of dependent background risk on the benefits of diversification:

if ε̃ and ỹ are positive (negative) expectation dependent and the agent is correlation aversion,

then πcd( 1
n) will be greater (less) than zero. Proposition 6.1 also shows that, in the presence

of an expectation dependent background risk, diversification can eliminate idiosyncratic risk

(πcd( 1
n) → 0, as n →∞). Therefore, for correlation averse agents, the benefit of diversification

holds. However, the convergence rate is 1
n rather than 1

n2 which implies that if we use zero

to approximate πcd( 1
n), then the error will be much larger in the presence of an expectation

dependent background risk.

6.2 Insurance supply

It is well known that the “Law of Large Numbers” is the actuarial basis of insurance pricing:

by pooling the risks of many policyholders, the insurer can take advantage of the “Law of Large

Numbers”. While Li (2011) and Soon et al. (2011) investigate how dependent background

risk affects the demand for insurance, Proposition 6.1 shows how dependent background risk

affects insurance supply. If 1
n

∑n
i=1 ε̃i and ỹ are positive (negative) expectation dependent and

the insurer is correlation averse, then the insurance premium will be higher (lower) than the

actuarially fair premium. Suppose that ε̃i is the loss for insured i, and πcd( 1
n) and πc( 1

n) are the

risk premiums of the insurance company for the individual loss ε̃i. Proposition 6.1 implies that,

in the presence of a dependent background risk, the insurer can not always take advantage of

the benefit of diversification because the insurance risk will be eliminated only at the rate of 1
n .

6.3 Public investment decisions

Arrow and Lind (1970) investigated the implications of uncertainty for public investment deci-

sions. They considered the case where all individuals have the same preferences U , and their

disposable incomes are identically distributed random variables represented by Ã. Suppose that
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the government undertakes an investment with returns represented by B̃, which are independent

of Ã. Let B̄ = EB̃ and X̃ = B̃− B̄. Consider a specific taxpayer and denote his fraction of this

investment by s with 0 ≤ s ≤ 1. Suppose that each taxpayer has the same tax rate and that

there are n taxpayers, then s = 1
n . Arrow and Lind (1970) show that

EU(Ã +
B̄

n
+ r(n)) = EU(Ã +

B̄ + X̃

n
), (28)

where r(n) is the risk premium of the representative individual. They show that not only does

r(n) vanish, but so does the total of the risk premiums for all individuals: nr(n) approaches

zero as n rises.

Proposition 6.1 allows us to investigate the cases where Ã and B̃ are dependent. Since (28)

can be rewritten as

EU(Ã +
B̄

n
+ r(n)) = EU(Ã +

B̃

n
), (29)

from Proposition 6.1, we obtain:

Proposition 6.2 (i) If (B̃, Ã) ∈ HN and (−1)ku12(k−1) ≤ 0 for k = 1, 2, ..., N + 1, then r(n) =

−|O( 1
n)|;

(ii) If (B̃, Ã) ∈ IN and (−1)ku12(k−1) ≥ 0 for k = 1, 2, ..., N + 1, then r(n) = −|O( 1
n)|;

(iii) If (B̃, Ã) ∈ HN and (−1)ku12(k−1) ≥ 0 for k = 1, 2, ..., N + 1, then r(n) = |O( 1
n)|;

(iv) If (B̃, Ã) ∈ IN and (−1)ku12(k−1) ≤ 0 for k = 1, 2, ..., N + 1, then r(n) = |O( 1
n)|.

Therefore, when Ã and B̃ are expectation dependent, r(n) can not vanish as n becomes large.

Proposition 6.2 shows that if the return of the investment and the disposable incomes are positive

(negative) expectation dependent and the society is risk averse, then the risk premium of the

representative individual will remain less (greater) than zero for any large n.

6.4 Naive diversified portfolio pricing

The naive portfolio diversification rule is defined as one in which a fraction 1
n of wealth is

allocated to each of the n assets available for investment at each rebalancing date. This rule is

easy to implement because it does not rely either on estimation or optimization. Many investors

continue to use this simple rule for allocating their wealth across assets (see, Benartzi and Thaler

2001; Huberman and Jiang 2006). DeMiguel et al. (2009) find that there is no single model that

consistently delivers a Sharpe ratio or a certainty-equivalent return that is higher than that of

the 1
n portfolio rule.
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Suppose that ε̃i is the return of stock i, ε̃ is the return of a portfolio consisting of 1
n shares

of each stock, and πcd( 1
n) and πc( 1

n) are minimum risk premiums the investor will demand for

this portfolio. Proposition 6.1 shows that, in the presence of a dependent background risk, the

investor can not always take advantage of the benefit of diversification and the portfolio risk will

be eliminated only at the rate of 1
n . If ε̃ and ỹ are positive (negative) expectation dependent

and the investor is correlation averse, then the return of the naive diversified portfolio will be

higher (lower) than that corresponding to the portfolio’s expected return.

6.5 Other examples

We can also apply our result to other examples. Suppose that ε̃i is the default risk of borrower i,

and πcd( 1
n) and πc( 1

n) are the yield spread charged by the banker. Proposition 6.1 shows that if

ε̃ and ỹ are positive (negative) expectation dependent and the banker is correlation averse, then

the yield spread will be higher (lower) than that corresponding to the expected loss of default

risk.

It is believed that the lottery business is rather safe, because the “Law of Large Numbers”

entails that the average of the results from a large number of independent bets is quasi constant

(with a very small variance). Suppose that ε̃i is the payment to a winner i, πcd( 1
n) and πc( 1

n) are

the average risk premiums for a lottery ticket. Proposition 6.1 shows that if ε̃ and ỹ are positive

(negative) expectation dependent and the lottery business is correlation averse, then the price

for a lottery ticket must be higher (lower) than the expected payment of the lottery game.

7 Conclusion

In this study, we have generated the concepts of orders of conditional risk aversion to orders

of conditional dependent risk aversion. We have shown that first-order conditional dependent

risk aversion can appear in the framework of the expected utility function hypothesis. Our

contribution provides insight into the difficulty of obtaining risk diversification in the presence

of a dependent background risk.
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