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Abstract. We propose a new population-based hybrid meta-heuristic for the periodic 

vehicle routing problem with time windows. Two neighborhood-based meta-heuristics are 

used to educate the offspring generated by a new crossover operator to enhance the 

solution quality. This hybridization provides the means to combine the exploration 

capabilities of population-based methods and the systematic, sometimes aggressive 

search capabilities of neighborhood-based methods, as well as their proficiency to explore 

the infeasible part of the search space to both repair infeasible solutions and tunnel 

toward, hopefully, improved ones. Extensive numerical experiments and comparisons with 

all methods proposed in the literature show that the proposed methodology yields very 

high quality solutions, improving those currently published. 
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1 Introduction

The Vehicle Routing Problem (VRP) is one of the most extensively studied problems in
operations research due to its methodological interest and practical relevance to many
fields, including transportation, logistics, telecommunications, and production; see, e.g.,
a number of recent surveys (Bräysy and Gendreau, 2005a,b; Cordeau et al., 2002a,b,
2007; El-mihoub et al., 2006; Gendreau et al., 2002; Golden et al., 2002; Laporte and
Semet, 2002; Laporte et al., 2000) and books (Golden et al., 2008; Toth and Vigo, 2002).
Many of these contributions targeted basic problem settings such as the capacitated VRP
and the Vehicle Routing Problem with Time Windows (VRPTW). More recent and sig-
nificantly less studied are richer problem settings (Hartl et al., 2006) aiming at more
refined representations of actual applications and combining several “complicating” re-
quirements and restrictions, such as customers that require multiple visits, heterogeneous
vehicle fleets, limits on route duration or length, etc.

We focus on such a rich, relatively little studied VRP setting, namely the Periodic
Vehicle Routing Problem with Time Windows (PVRPTW ). Addressing the PVRPTW
requires the generation of a limited number of routes for each day of a given planning hori-
zon, to minimize the total travel cost while satisfying the constraints on vehicle capacity,
route duration, customer service time windows, and customer visit requirements. The
PVRPTW generalizes the VRPTW by extending the planning horizon to several days
where customers generally do not require delivery on every day in this period, but rather
according to one of a limited number of possible combinations of visit days (the so-called
patterns). This generalization extends the scope of applications to many commercial dis-
tribution activities such as waste collection, street sweeping, grocery distribution, mail
delivery, etc. It also raises new resolution challenges due to the requirement of balancing
aggregate daily workloads in order to achieve efficient feasible solutions. The PVRPTW is
actually NP-Hard as it includes the Periodic Vehicle Routing Problem (PVRP), known to
be NP-hard, while the single-period case corresponds to the NP-hard VRPTW (Lenstra
and Rinnooy Kan, 1981).

In this paper, we introduce the first genetic algorithm (GA) for the PVRPTW. It
is a population-based hybrid meta-heuristic in which a set of neighborhood-based meta-
heuristics cooperate with the GA population evolution mechanism to enhance the solution
quality. This hybridization provides the means to combine the exploration capabilities of
population-based methods and the systematic, sometimes aggressive search capabilities
of neighborhood-based methods, as well as their proficiency to explore the infeasible
part of the search space to both repair infeasible solutions and tunnel toward, hopefully,
improved ones.

The crossover operators we propose for the PVRPTW constitute one of the main
contributions of our work and aim to keep the balance between exploration and exploita-
tion. The first operator perturbs parents to uncover new points in the search space,
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thus favoring exploration. The second combines the two selected parents to exploit the
good features and the search history information they contain. The second contribution
is the hybridization, which uses local search procedures and neighborhood-based meta-
heuristics as education strategies to repair and enhance the fitness of the GA population.
Studies have been published where GAs are hybridized with local-search methods in or-
der to improve their exploitation capability (e.g., El-mihoub et al., 2006; Knowles and
Corne, 2000; Ishibuchi and Narukawa, 2004). Local search may reduce the diversity of
the population (Merz and Katayama, 2004), however, and therefore limit the exploring
capability of the GA. A few studies have indicated that a more aggressive search with a
neighborhood-based meta-heuristic starting from the crossover-generated offspring may
improve the diversity makeup of educated offspring and the global performance of the
GA in terms of solution quality (Crainic and Gendreau, 1999; Lü et al., 2010). Our
concept of GA hybridization builds on these insights. In the hybrid algorithm we pro-
pose, offspring are thus first educated using neighborhood-based meta-heuristics, which
extend the search along routes and patterns beyond the offspring’s immediate local opti-
mum. Then, more intensification-oriented local search procedures optimize the educated
offspring relative to its patterns and routes. A logical byproduct of this more extensive
exploration of the offspring neighborhoods by meta-heuristics is a graceful restoration
of the feasibility of a very large percentage of the infeasible offspring produced by GA
crossover operators.

We tested the algorithm we propose on all previously published benchmark instances
and compare our results to all currently published results. The proposed Hybrid Genetic
Algorithm (HGA) produces 19 new best-known solutions and finds 1 best-known solution
on the set of 20 PVRPTW instances of Cordeau et al. (2001), improving the solution
quality by 0.80% on average in term of best solution cost. We also improve all the 45
instances of Pirkwieser and Raidl (2008), improving the average solution cost by 0.90%.
The proposed HGA improves all the currently published results in the literature, and
outperforms the other methods even when they are given the same computational time.
We hope these encouraging results will contribute to stimulate more investigations into
developing hybrid meta-heuristics for solving heavily constrained optimization problems.

The remainder of the paper is organized as follows. We formulate the problem in
Section 2 and give a brief literature review in Section 3. The new HGA and its components
are introduced and discussed in Section 4. Section 5 is dedicated to the experimental
results. Finally, Section 6 concludes the paper.

2 Problem formulation

The PVRPTW is defined on a complete undirected graph G = (V , E), where V =
{0, 1, . . . , n} is the vertex set and E = {(i, j) : i, j ∈ V , i 6= j} is the edge set. A
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distance (or travel time) cij is associated with every edge (i, j) ∈ E . The depot vertex is
indexed by 0. Vc = V\{0} is the set of customer vertices. Each vertex i ∈ Vc has a de-
mand qi ≥ 0 on each day of the planning horizon of T days, a service time si ≥ 0, a time
window [ei, li], where ei is the earliest time service may begin and li is the latest time,
and requires a fixed number of visits fi to be performed according to one of the allowable
visit-day patterns in the list Ri. The time window specifying the interval vehicles leave
and return to the depot is given by [e0, l0]. A fleet of m vehicles, each with capacity Qk

is based at the depot. Vehicles are grouped into set K. Vehicle routes are restricted to a
maximum duration of Dk, k = 1, . . . ,m.

In this paper, we address the case with a homogeneous vehicle fleet with Qk = Q and
a common duration restriction Dk = D, ∀k = 1, . . . ,m. The PVRPTW can then be seen
as the problem of generating (at most) m vehicle routes for each day of the planning
horizon, to minimize the total cost over the entire planning horizon, such as 1) each
vertex i is visited the required number of times, fi, corresponding to a single pattern of
visit days chosen from Ri, and is serviced within its time window; these are soft, i.e.,
a vehicle may arrive before ei and wait to begin service; 2) each route starts from the
depot, visits the vertices selected for that day, with a total demand not exceeding Q, and
returns to the depot after a duration (travel time) not exceeding D.

Let art be 1 if day t ∈ T belongs to pattern r, and 0 otherwise. Route-selection,
pattern-selection, and continuous timing decision variables are used in the formulation:

• xt
ijk =

{
1 if vehicle k ∈ K traverses edge (i, j) ∈ E on day t ∈ T ;

0 otherwise;

• yir =

{
1 if pattern r ∈ Ri is assigned to customer i ∈ Vc;

0 otherwise;

• wt
ik indicates the service starting time for vehicle k ∈ K at customer i ∈ Vc on day

t ∈ T .

Let M be an arbitrary large constant. The PVRPTW can then be formulated as

Minimize
∑
t∈T

∑
(i,j)∈E

∑
k∈K

cijx
t
ijk (1)

S.t.
∑
r∈Ri

yir = 1, ∀i ∈ Vc, (2)

∑
j∈V

xt
ijk =

∑
j∈V

xt
jik, ∀i ∈ V , k ∈ K, t ∈ T , (3)
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∑
k∈K

∑
j∈V

xt
ijk =

∑
r∈Ri

yirart ∀i ∈ Vc, t ∈ T , (4)

∑
k∈K

∑
j∈V

xt
0jk ≤ m, ∀t ∈ T , (5)

∑
i,j∈S

xt
ijk ≤ |S| − 1, ∀S ⊆ Vc, k ∈ K, t ∈ T , (6)

∑
j∈Vc

xt
0jk ≤ 1, ∀k ∈ K, t ∈ T , (7)

∑
i∈Vc

qi

∑
j∈V

xt
ijk ≤ Q, ∀k ∈ K, t ∈ T , (8)

wt
ik + si + cij −M(1− xt

ijk) ≤ wt
jk, ∀(i, j) ∈ E , k ∈ K, t ∈ T , (9)

ei

∑
j∈V

xt
ijk ≤ wt

ik ≤ li
∑
j∈V

xt
ijk, ∀i ∈ Vc; k ∈ K; t ∈ T , (10)

wt
ik + si + ci0 −M(1− xt

i0k) ≤ D, ∀i ∈ Vc; k ∈ K; t ∈ T , (11)

xt
ijk ∈ {0, 1}, ∀(i, j) ∈ E , k ∈ K, t ∈ T , (12)

yir ∈ {0, 1}, ∀i ∈ Vc; r ∈ Ri, (13)

wt
ik ≥ 0, ∀i ∈ Vc, k ∈ K, t ∈ T . (14)

The objective function (1) minimizes the total travel cost. Constraints (2) ensure that
a feasible pattern is assigned to each customer. Constraints (3) enforce flow conservation
ensuring that a vehicle arriving at a customer on a given day, leaves that customer
on the same day. Constraints (4) guarantee that each customer is visited on the days
corresponding to the assigned pattern, while Constraints (5) make sure that the number
of vehicles used on each day does not exceed m. Relations (6) are subtour elimination
constraints. Constraints (7) ensure that each vehicle is used at most once a day, while (8)
guarantee that the load charged on a vehicle does not exceed its capacity. Constraints (9)
enforce time feasibility, i.e., vehicle k cannot start servicing j before completing service at
the previous customer i and traveling from i to j, i.e., not before wt

ik+si+cij. Constraints
(10) ensure that customer time window restrictions are respected, while (11) constrain
the route length. Constraints (12), (13), and (14) define the sets of decision variables.

3 Literature review

The complexity of the PVRPTW calls for heuristic solution approaches when realistically-
sized instances are contemplated. Cordeau et al. (2001) introduced the problem setting
and pioneered the application of heuristics by proposing a tabu search algorithm, which
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allows infeasible solutions together with associated penalty terms in the objective function
for violations of time windows, route duration, and vehicle capacity constraints. Moves
either relocate a customer to a different route in the same day or change its pattern,
which provides two ways to improve solutions, by modifying the routing and the visit
pattern assignments to customers. The authors also introduced a set of 20 benchmark
PVRPTW instances.

Pirkwieser and Raidl (2008) proposed a Variable Neighborhood Search (VNS) heuris-
tic for the PVRPTW, with the particularity that it accepts worsening solutions based on
a Metropolis criterion. Pirkwieser and Raidl (2009a) later introduced a hybrid scheme
between this VNS heuristic and an ILP-based column generation procedure addressing
a set-covering formulation. In this hybrid, the VNS is the sole provider of columns for
the set-covering, which is solved via a generic ILP solver. If the latter improves on the
current best solution, this new solution is transfered to the VNS for further enhance-
ment. Since ILP solvers cannot tackle large instances, validation relied on a new set of
smaller instances derived from the basic Solomon VRPTW - 100 customers instances.
The authors then proposed a hybrid between an evolutionary algorithm and the column
generation approach (Pirkwieser and Raidl, 2010), as well as a rigid synchronous co-
operative multi-search approach, named multiple VNS (mVNS) (Pirkwieser and Raidl,
2009b). In the latter setting, several VNS meta-heuristics run independently, synchronize
after a given number of iterations to determine the best solution, the worst VNS thread
being then restarted from this best solution, while the others continue their own search.
The mVNS was also hybridized with the column generation approach as per Pirkwieser
and Raidl (2009a). At a synchronization point, the best mVNS solution is passed to the
IPL solver. If the resulting solution improves the mVNS best solution, the worst VNS
search is initialized with it and the mVNS is restarted. This mVNS-ILP combination
is repeated a fixed number of times. The mVNS-ILP hybrid generally produced better
results than mVNS, without dominating over the entire instance set.

Overall, the current best published results on the 20 instances of Cordeau et al. (2001)
are reported by Pirkwieser and Raidl (2008). Only the latter authors published results for
the set of smaller instances they introduced Pirkwieser and Raidl (2009b), but reported
average solution costs instead of best solution costs. With respect to this criteria, the
current best solutions are provided by Pirkwieser and Raidl (2009b) for instances with a
planning horizon of four and six days, and by (Pirkwieser and Raidl, 2010) for instances
with planning horizon of eight days.

4 The Proposed Hybrid Meta-heuristic

This section is dedicated to introducing the Hybrid Genetic Algorithm we propose. We
start by describing the individual representation and evaluation procedure (Sections 4.1

5
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and 4.2, respectively). The main phases of the HGA, illustrated in Figure 1, are typi-
cal of generational genetic algorithms and are introduced next. The algorithm uses one
population only, which may contain both feasible and infeasible individuals. The initial
population is created using three greedy heuristics (Section 4.3). A new population is
generated from the current one through selection, crossover, mutation, education, and re-
placement operators (Sections 4.4 to 4.7, respectively). The population is always ordered
in increasing order of fitness. Our contributions are both in adapting GA operators to
the particular requirements of the PVRPTW and in designing the overall organization
of the hybrid algorithm to answer the challenges of this problem setting.

New 

population
Educated 

offspring
OffspringPopulation

Mating 

pool

UTSInitial population 

generator

START

Output 

the best individual

YES

N > maxGEN ?

Education
Crossover & 

mutation
Roulette wheel

Migration

NO

Elite selection

Elite selection

Figure 1: The Hybrid Genetic Algorithm Structure

4.1 Individual representation

An individual for the HGA we propose corresponds to a feasible or infeasible solution
to the PVRPTW, which specifies the pattern assigned to each customer, the number
of routes (that is, vehicles), and the delivery order within each route. Each individual
is then represented by two chromosomes, the first addressing the pattern-to-customer
assignments and the second corresponding to the routes performed on each day of the
planning horizon.

The Pattern chromosome is associated with the n customers. Each entry i of this
chromosome is a positive integer k that describes the pattern assigned to customer i.
The binary representation of k stands for the days the associated customer receives a
visit. Figure 2 illustrates the representation of an individual corresponding to a solution
of an instance of 10 customers and 3 days. In this illustration of the Pattern chromosome
(Figure 2a), the first customer is serviced according to Pattern[1] = 3 = {011}, i.e., on
day 2 and 3 (days are numbered from left to right).

For each day in the planning horizon, a group of routes services customers on that
day. The Route chromosome corresponds to the combination of this set of vectors,
each representing the ordered sequence of customers for one route of a day. Figure 2b
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3        2       7       1        5       4       2        6       3        1Pattern

a. Pattern chromosome

b. Sequences of customers that are served on 3 days

Day 1:

Route 1: 0, 5, 3, 8, 6, 0

3 8

65

0

1

7 9

8 3

2

0

Day 2:

Route 1: 0, 7, 1, 9, 0

Route 2: 0, 8, 2, 3, 0

1

3

5

4

9

0

10

Day 3:

Route 1: 0, 10, 1, 0

Route 2: 0, 9, 4, 3, 5, 0

Route 5      3     8     6     7     1     9     8     2     3    10    1     9     4      3     5

c. Route chromosome

Figure 2: Representation of an individual.

illustrates the routes for the 3 days, while Figure 2c displays the corresponding Route
chromosome (the only route of the first day is emphasized).

4.2 Search space and individual evaluation

Allowing meta-heuristics to consider infeasible solutions often yields a better search able
to reach higher-quality solutions more efficiently (e.g., Cordeau et al., 2001). We follow
this trend and explicitly allow infeasible solutions during the search process by relaxing
constraints on the maximum vehicle load, route duration, and customer service time
windows.

Given a solution s, let c(s) denote the total travel cost of its routes, and let q(s), d(s),
and w(s) denote the total violation of capacity, duration, and time window restrictions,
respectively. The values of q(s) and d(s) are computed on a route basis with respect to
the Q and D values, whereas w(s) =

∑n
i=1 max{(ai − li), 0}, where ai is the arrival time

at customer i. Solutions are then evaluated according to the weighted fitness function

7

A Hybrid Genetic Algorithm for the Periodic Vehicle Routing Problem with Time Windows

CIRRELT-2011-25



f(s) = c(s) + αq(s) + βd(s) + γw(s), where α, β, and γ are penalty parameters adjusted
dynamically during the search.

Several techniques are available to adjust the penalty parameters. Thus, Cordeau
et al. (2001) based their update on the current solution. We prefer to follow Barbosa
and Lemonge (2002), which makes use of information related to the complete population.
Let q, d, and w stand for the violation of vehicle capacity, route duration, and customer
service time window constraints, respectively, averaged over the current population. Let

h =

{
c(sworst) if there is no feasible solution in the population;

c(sbestfeasible) otherwise.

The penalty parameters are then computed by the following rules:

α = h
q

q2 + d
2
+ w2

, β = h
d

q2 + d
2
+ w2

, γ = h
w

q2 + d
2
+ w2

.

Every time the current best feasible solution is improved, h is redefined, all fitness
values are recomputed using the updated penalty coefficients, and the population is
sorted accordingly. This adaptive scheme automatically determines the penalty parame-
ter corresponding to each group of constraints during the evolutionary process so that the
constraints that are more difficult to satisfy receive a relatively higher penalty coefficient.

4.3 Initial population

Solutions in the initial population are generated by, first, assigning randomly an allow-
able pattern of visit days to each customer and, second, by solving a VRPTW for each
day using three greedy heuristics: 1) the Time-Oriented, Nearest-Neighbor heuristic of
Solomon (1987); 2) the parallel route building heuristic of Potvin and Rousseau (1993);
3) our own route construction method. We use the methods of Solomon (1987) and
of Potvin and Rousseau (1993) because these heuristics are very fast, and they appear
to be complementary. Indeed, comparing the two, the former seems to perform better
for clustered problem instances, while the opposite is true for the other problem settings
(Bräysy and Gendreau, 2005a). Moreover, applying three different heuristics helps create
diversity within the initial population.

Our own route construction method is quite flexible with regard to problems with
a fixed number of vehicles. It follows the cluster first - route second scheme. During
clustering, customers are first sorted in increasing order of the angle they make with
the depot. Next, a customer j is chosen randomly and the sequence of n customers
j, j + 1, ..., n, 1, ..., j − 1 is divided into m clusters of size dn/me (the last one may be
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smaller), one for each available vehicle. Clustering is performed by a sweep starting from
j and proceeding counter-clockwise through the customers.

Routing is performed iteratively for each cluster using Solomon’s insertion heuristic of
type I1. For added flexibility in routing, the procedure considers not only the customers
in the cluster, but also a small number of customers not yet being serviced by a route,
selected from the two immediate neighboring clusters. Each route is initialized with the
customer not yet assigned to a route, which displays the lowest ending time for service.
The remaining not-yet-assigned customers are then added sequentially to the route until
it is full, with respect to vehicle-capacity and route-duration constraints. The customers
not yet assigned left once the m routes are created, if any, are then inserted into the
existing routes to minimize the increase in the total travel distance. The algorithm stops
when all customers are serviced.

4.4 Mating selection

The selection operator chooses high-fitness individuals within the population for mating
purposes. A mating pool of nPop individuals is thus formed by using a Roulette-wheel
procedure that provides individuals with high fitness values higher probabilities of being
selected. An individual may be selected more than once. Then, each time offspring are
required during the course of the HGA, two individuals in the mating pool are selected
randomly and passed to the crossover operators. These two individuals are then deleted
from the mating pool.

4.5 Crossover and mutation operators

Exploration and exploitation are important issues for search algorithms. We therefore
propose two crossover operators for the PVRPTW, one aiming at exploring the search
space, while the other seeks to exploit the information present within the population.
Combined, these two crossover operators help to keep the balance between exploration
and exploitation, thus improving the search efficiency of the algorithm. In the following
presentation, P1 and P2 denote the parents involved in a crossover operation.

The first operator favors exploration by perturbing parents to uncover new points
in the search space. It creates offspring by transferring a partial set of routes from one
parent, along with pattern assignments from both. The exploration crossover operator
proceeds in two steps:

STEP 1. Assign a pattern to each customer

(a) Inherit pattern assignments from parent P1. Randomly select two cutting points

9
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in the sequence of customers of the Route chromosome of parent P1. The visit
days of customers between these cutting points are copied into offspring C.

(b) Inherit pattern assignments from parent P2. Let day(i) denote the set of visit
days currently assigned to customer i in C. Scan the Pattern chromosome of
parent P2 from left to right: for each day t and customer i with frequency not
satisfied yet and not already in C, copy customer i on day t into C if there exists
a pattern of visit days in Ri including day(i) ∪ {t}.

(c) Complete pattern assignments. Assign a random pattern r ∈ Ri, such that r
includes day(i), to each customer i whose frequency is not satisfied.

STEP 2. Assign customers to routes

(a) Copy routes from parent P1. The customers between the two cutting points
determined in Step 1a are routed as in the P1 parent and the corresponding
sequences are copied into C.

(b) Assign remaining customers to routes. The customers in C not yet routed are
assigned to routes using the cost insertion procedure of Potvin and Rousseau
(1993).

Parents selected for mating are instances of good individuals in the current population.
The second crossover operator is designed to exploit the good genetic material and the
search history information they contain through route combination. The exploitation
crossover operator treats each day t in the planning horizon, and randomly selects one
parent among {P1, P2}. All routes of the selected parent in day t are copied into the
offspring C. Then, customers are removed/inserted from/into days such that the pattern
of visit days in C are satisfied for all customers. If there is more than one possibility
to delete a customer, the one that gives the maximum gain is deleted. Customers are
inserted using the cost insertion of Potvin and Rousseau (1993).

The mutation operator is applied to each offspring yielded by the crossover opera-
tors. Mutation consists in changing the pattern assignment of a few customers, which
are selected through a low probability Pm. A new pattern is then assigned to each se-
lected customer i: Either an eligible pattern (i.e., in Ri) not assigned to i in any of the
individuals of the current population, if such a pattern exists, or one not assigned to i in
the current offspring.

4.6 Education

Crossover and mutation operators yield offspring, which may be feasible or infeasible, but
is “sent to school” in all cases. The goal of the Education procedure is to improve the
quality of the offspring, as well as restore as much feasibility as possible (when needed).
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Two issues must be addressed in this context. First, while GAs proved their worth
in exploring broad and complex search spaces, they also appear less well suited for
fine-tuning solutions which are near local optima (Gendreau and Potvin, 2005; Garćıa-
Mart́ınez and Lozano, 2008). Hybridization with local-search methods has been proposed
to address this issue, but this strategy often degrades the diversity of the population
(Merz and Katayama, 2004), and therefore limits the capability of the GA to find suc-
cessions of improvements through its iterative process (“exploration”). The second issue
concerns the fact that crossover and mutation operators often yield offspring that violates
some of the problem requirements and a repair phase is required. Local search has also
been proposed to address this issue, but it might not be sufficient for heavily constrained
optimization problems, like PVRPTW, as our initial experiments have shown.

We therefore propose an education procedure based on a different principle, one which
embeds neighborhood-based meta-heuristics into the GA to both maintain its exploring
ability and restore the feasibility of offspring before its insertion in the population. This
principle follows the insight of our previous work on cooperative search methods (Crainic
and Gendreau, 1999) and has been recently reinforced by the results of Lü et al. (2010).
Compared with local-search procedures, a higher proportion of offspring have their fea-
sibility restored by meta-heuristics and the educated offspring have a higher average
fitness.

The proposed education procedure integrates two meta-heuristics, the Unified Tabu
Search (UTS ) of Cordeau et al. (2001) and the Random Variable Neighborhood Search
(RVNS ) of Pirkwieser and Raidl (2008). We selected these meta-heuristics for several
reasons. On the one hand, they were applied to the PVRPTW and, thus, one obtains not
only a basis for comparisons, but also known behavior and performance for the problem of
interest. On the other hand, while both can contribute to routing and pattern-assignment
improvements by changing the patterns assigned to customers and the routes of each day,
the way moves are selected, evaluated, and performed is particular to each meta-heuristic.
Thus, e.g., UTS selects between a routing or a pattern move based on the maximization of
the cost improvement, while RVNS selects randomly at each iteration whether to execute
a pattern or a route move. Combining the two yields a hybrid HGA, which produces
more diversified individuals across generations.

The pseudo code of Algorithm 1, where cng stands for the current number of gener-
ations, gives the general structure of the education procedure: Offspring is first educated
through the neighborhood-based meta-heuristics and, then, intensification-oriented local
search further enhance the educated offspring in their pattern assignment and routing
dimensions. To save computation time and improve the diversify of the GA, UTS and
RVNS are applied alternately every generation. A rather small number of iterations is
allowed to each meta-heuristic. This may impair the performance of RVNS by “clash-
ing” with its random move-selection characteristic, which helps to explore new points in
the search space but yields poor solutions if the meta-heuristic is interrupted too soon.
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Consequently, a local-search Pattern-Improvement procedure is applied to further im-
prove the solutions obtained by RVNS. Finally, a Route-Improvement procedure locally
re-optimizes the routes for each day separately.

Algorithm 1 EducationProcedure(solution s, cng)

1: if cng is even then
2: UTS(s)
3: else
4: RVNS(s)
5: Pattern improvement(s)
6: end if
7: Route improvement(s)
8: return s

More in detail, the pattern-improvement procedure proceeds by assigning a new pat-
tern to each customer and keeping those that actually improve the solution. Customers
are handled in random order. Then, for each customer i and each of its unassigned pat-
terns r′ ∈ Ri (if any), one removes i from the previous visit days and inserts it in the
corresponding days of the new pattern r′ so as to minimize the increase of the fitness
function. A 2-opt heuristic is then applied to each route changed by this reassignment.
If the new solution improves over the current one, a 2-opt* heuristic is applied for further
improvement of the new current solution. One then proceeds to the next pattern or, if
all have been tried out, to the next customer.

Route-improvement is the last education activity and is performed by applying a
number of well-known local-search route improvement techniques. Two are intra-route
operators, the 2-opt of Lin (1965) and the Or-opt of Or (1976). The others are inter-
route operators, the λ-interchange Osman (1993), the 2-opt* of Potvin and Rousseau
(1995), and the CROSS-exchange of Taillard et al. (1997). For the λ-interchange, we
only consider the cases where λ = 1 and λ = 2 corresponding to the (1,0), (1,1), (2,0),
(2,1), and (2,2)-interchange operators.

The procedure starts by applying in random order the five λ-interchange and the
2-opt* and CROSS-exchange inter-route operators. Each neighborhood is searched on
all possible pairs of routes (in random order) of the same day and stopped on the first
improvement. The solution is then modified and the process is repeated until no further
improvement can be found. The search is then continued by locally improving each
route of the current day in turn. The intra-route 2-opt and Or-opt neighborhoods are
sequentially and repeatedly applied until no more improvement is found.
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4.7 Generation replacement and HGA general structure

Once the mating pool is emptied, the generational change takes place. The goal is to
produce a new generation that conserves the best characteristics of the individuals en-
countered so far and that displays a good variety of genetic material. An elitist approach
is thus used, keeping some of the parents and all children, while also welcoming a few
new individuals generated outside the evolutionary mechanism.

HGA evolves a population of nPop+nKeep+nOFF individuals. Recall (Section 4.4)
that nPop parents are selected from the current population to build the mating pool (the
same individual may appear more than once according to its fitness) and nPop offspring
are created. The next generation is then composed of these nPop new individuals plus
the best nKeep individuals in the current population (nKeep < nPop). This elitism not
only preserves the best individuals from one generation to the next, but also guarantee
that the best individual at generation t + 1 is always better than or equal to the best
individual at generation t. A small number nOFF of new individuals is then created by
using UTS to add new genetic material to the population. nOFF is about 5% of nPop.
Algorithm 2 summarizes the hybrid meta-heuristic we propose for the PVRPTW.

Algorithm 2 Hybrid Genetic Algorithm

1: Randomly generate an initial population of nPop individuals
2: repeat
3: Evaluate the fitness for each population individual
4: Create the mating pool with the nPop size using Roulette wheel
5: while the mating pool is not empty do
6: Select two parents at random from the mating pool
7: Apply crossover operators to produce two offspring
8: Apply mutation operator to each offspring
9: Apply education procedure to the offspring

10: Delete two selected parents from the mating pool
11: end while
12: Generation replacement
13: until stopping condition satisfied
14: Print the current best solution

5 Computational Analyzes

The objective of the numerical experimentations is twofold. First, to study a number
of variants of main algorithmic components and strategies and thus develop insights
into addressing the challenges of designing hybrid meta-heuristics for tightly constrained
combinatorial optimization problems (Section 5.1). The second objective consists in
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evaluating the performance of the proposed HGA through comparisons with currently
published results (Section 5.2).

HGA is implemented in C++. Experiments were run on an Intel Core 2 Duo CPU
workstation with 2.4GHz, 2GB RAM. Two sets of instances were used throughout the
experiments. The first, introduced by Cordeau et al. (2001), is made up of two sets
(identified as a and b) of ten Euclidean instances each, ranging from 48 to 288 customers,
3 to 20 homogeneous vehicles, and with a planning horizon of 4 or 6 days. Instances a
and b have narrow and large time windows, respectively. The depot has a [0,1000] time
window in all instances. The second set of instances was generated by Pirkwieser and
Raidl (2009a) and is made up of three sets of fifteen instances each. These Euclidean
instances were created based on the Solomon VRPTW 100-customer instance set with a
planning horizon of four, six, and eight days, denoted p4, p6, and p8, respectively.

5.1 Analysis of design decisions

A hybrid meta-heuristic like HGA is always the result of a number of decisions on the
structure, components, and parameter values of the method. Two main design com-
ponents are studied through their impact on the behavior of the proposed HGA: the
education process (Section 5.1.1), and the selection and replacement strategies (Section
5.1.2). The calibration of the search parameters is presented in Section 5.1.3.

5.1.1 Variants of the education procedure

The first experiments aimed to measure the impact of each neighborhood-based meta-
heuristic on the GA performance and determine an appropriate hybridization scheme.

We implemented the UTS and RVNS meta-heuristics following the description given
in Cordeau et al. (2001) and Pirkwieser and Raidl (2008), respectively (Annex A details
the algorithms), and set up four hybrid algorithms following the general structure of
Algorithm 2. The first two, HGA-UTS and HGA-VNS, embed one method only, UTS
or RVNS being called at each iteration, respectively. The third, HGA-UTS/VNS, com-
bines the two, UTS and RVNS being used alternately at every generation. The fourth,
HGA, enhances the HGA-UTS/VNS structure by performing the pattern improvement
procedure following the RVNS execution.

To level the comparison field, the number of iterations of UTS (1000) and RVNS
(3000) was set to yield comparable computing times. Similarly, the number of iterations
of RVNS was reduced for HGA such that the total computing effort for RVNS and
pattern improvement be approximately the same as that of RVNS in HGA-UTS/VNS.
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Experiments were contucted on the Cordeau et al. (2001) instances.

Table 1: Aggregated performance comparison between education schemes (Cordeau et al.,
2001) instances

HGA-UTS HGA-VNS HGA-UTS/VNS HGA
Time (hours) 19.65 20.18 11.44 10.49

GAP +0.50% +0.94% +0.03% -0.80%

Table 1 displays the aggregated results of this experiment, as the average CPU time
and gap to the best known solution (BKS) of each hybrid strategy. As expected, the
experiments showed that hybridization with UTS and RVNS impacts the method dif-
ferently, the aggregate performances being too close to discriminate (slight advantage
to HGA-UTS). In the main, this is explained by how move types are selected by each
meta-heuristic, either routing or pattern modification based on cost improvement, or
random selection, provided it satisfies the Metropolis selection criteria, respectively. The
results also showed that both hybrids improved in solution quality upon UTS but not
relative to RVNS, and the situation did not change with increased education effort (e.g.,
doubling the number of UTS and RVNS iterations in the hybrids). Combining the two
neighborhood-based meta-heuristics into the same hybrid algorithm produced the de-
sired result, HGA-UTS/VNS outperforming HGA-UTS and HGA-VNS (even when the
education effort was reduced, e.g., running 200 and 800 iterations of UTS and VNS,
respectively). The hybrid also improved the BKS for small instances. The best perfor-
mance, both in solution quality and computation time, is offered by the HGA hybrid,
however, which adds the pattern-improvement post-optimization procedure to RVNS.

5.1.2 Variants of selection and replacement schemes

In the next set of experiments, we analyzed the impact of the selection operator and
replacement policies on the diversity of the mating pool and population. Two types of
selection operators, roulette wheel and binary tournament, were investigated in conjunc-
tion with two replacement strategies:

• Strategy 1. The population of generation i + 1 is made up of the nKeep best
solutions of generation i plus the (nPop− nKeep) best offspring. The population
and mating pool sizes, as well as the number of offspring are all equal to nPop.

• Strategy 2. The population of generation i + 1 is made up of the nKeep best
solutions of generation i plus all nPop offspring. The size of mating pool and
the number of offspring are equal to nPop, while the size of the population is
(nKeep + nPop).
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Table 2: Proportion of individuals in the mating pool from nKeep best solutions of
previous generation

Strategy nKeep Binary Tournament Roulette Wheel

15 35% - 70% 20% - 65%
1

35 65 % - 95% 60% - 85%

15 30% - 60% 10% - 40%
2

35 50% - 80% 30% - 65%

The experiment was run for 1000 generations with nPop = 50 and different values
of nKeep. Table 2 reports the proportion of solutions in the mating pool that comes
from the nKeep best solutions of the previous generation, the percentage values in each
row of the last two columns representing the lower and upper bounds on the number of
solutions from nKeep, respectively. Results show that binary tournament selects more
often solutions from nKeep and, thus, it is more strongly biased toward previous elite
solutions than roulette wheel. This favors the exploitation of accumulated information,
but more education work might be needed to explore new regions of the solution space.
We actually empirically observed a significant difference between the impact of the two
replacement strategies on the performance of the HGA. For both selection operators, bet-
ter solutions were obtained by Strategy 2 than Strategy 1. Consequently, roulette wheel
selection and the second replacement strategy were used in all subsequent experiments.

5.1.3 Calibration of search parameters

The main parameters of the proposed HGA requiring calibration are the population size,
the cardinality of the elite group, and the number of iterations for UTS and RVNS.
The parameter values were selected considering a number of criteria, solution quality,
improvement of the best solution through generations, and the computational cost for
HGA. The calibration was performed using a small set of instances with diverse char-
acteristics, such as small and large time windows, number of customers, and number of
periods, which impact the ease of addressing instances. Thus, larger time windows imply
more feasible places to insert customers into routes, thereby increasing the number of
feasible solutions with respect to this constraint. Similarly, more customers or longer
planning horizons imply more feasible pattern combinations.

Experiments showed that a somewhat larger population size and longer education
explorations (number of iterations of UTS and RVNS meta-heuristics) yield a more ex-
tensive sampling of the solution space and favor identifying good solutions based on cor-
rect selections of patterns for customers together with good routings. The experiments
also showed that appropriate parameter values change with the size of the instance. The

16

A Hybrid Genetic Algorithm for the Periodic Vehicle Routing Problem with Time Windows

CIRRELT-2011-25



interval examined and the final parameter settings appear in Table 3, where small and
large instances consist of less and more than 100 customers, respectively. Additionally,
for all instances, the UTS procedure uses a tabu length of θ = 1.5log10(n) (smaller than
the 7.5log10(n) in Cordeau et al., 2001).

Table 3: Calibration of main HGA parameters
Parameters Interval Final values

explored Small instances Large instances
Population size (nPop) [50, 400] 100 300
Elite set ccardinality (nKeep) [25, 300] 60 200
Number of UTS iterations [50, 150] 60 100
Number of RVNS iterations [100, 800] 400 800
Maximum number of generations [500, 5000] 750 2000, 3000

The last calibration step examined the stopping criterion, which is based on the total
number of HGA iterations. The best solution and corresponding computation time were
measured for each instance from generation 500 to generation 5000, by steps of 250. The
results indicate that, for small instances, the best solutions can not be improved after
1000 generations, while the average improvement of the best solution between generations
750 and 1000 is less than 0.001%. Consequently, the number of generations was set to
750 for small instances. For large instances, the number of generations was set to 2000
and 3000 for instances with less and more than 200 customers, respectively.

5.2 Numerical Results

The performance of the proposed HGA is evaluated by comparing its performance with
published results on the instances provided by Cordeau et al. (2001) and Pirkwieser and
Raidl (2009a). More specifically, comparisons are performed with the UTS of Cordeau
et al. (2001) and the VNS variants of Pirkwieser and Raidl (2008). For concision sake,
only aggregated results are provided in this section. Details may be found in Annex B.

Table 4: Comparative performance on Cordeau et al. (2001) instances
Algorithms Runs Average GAP to BKS Time

Best Average (min)
UTS 11 2.48% 652
VNS 30 0.48% 1.97% 1.40
RVNS 30 0.33% 1.70% 1.53
VNS with 2-opt* 30 0.32% 1.70% 1.42
RVNS with 2-opt* 30 0.18% 1.50% 1.54
HGA 30 -0.80% -0.44% 654
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Table 4 displays comparison results on the Cordeau et al. (2001) instances. We report
the number of repetitions (second column) performed and the corresponding average gap
to the previous best known solutions (BKS) of the best and average solutions (the latter
measure is not available for UTS). Average reported computing times are displayed in
the last column.

HGA produces high quality solutions, with an average error gap of -0.44% to the
previous BKS, compared to more than 1.50% for the other algorithms. HGA and VNS
yield better solutions than UTS on all instances, while HGA produces better solutions
than VNS on 19 out of 20 instances (with a maximum cost reduction of 1.60%), both
algorithms identifying the same solution on instance 1a. The best solutions in the initial
population are 28.38% greater than the best solutions obtained by HGA on average,
illustrating the significant effect of hybrid strategy.

The next round of experimentations focused on the instances proposed by Pirkwieser
and Raidl and used by them in Pirkwieser and Raidl (2009a,b, 2010). It is noteworthy
that the authors truncated the calculated travel costs to one digit, which reduced the total
cost. More importantly, for instances with tight time windows, truncation can produce
many more feasible solutions compared to the no-truncation case, hence resulting in a
quite huge reduction of total cost. We therefore give the performance results of HGA
with and without truncation. One also notes that, best solutions were not reported, and
only average solutions and standard deviations computed over 30 runs for each instance
are available. We therefore selected the best solutions over all their algorithms, noted by
Previous Best Average, and compare the results of HGA to this measure.

Table 5 sums up the comparison of average results from 30 runs of HGA, without
truncation, with the reported results of the algorithms in Pirkwieser and Raidl (2009a,b,
2010): VNS and VNS-ILP (Pirkwieser and Raidl, 2009a); mVNS and mVNS-ILP (Pirk-
wieser and Raidl, 2009b); Evolutionary Algorithm (EA), combination of column gener-
ation and evolutionary algorithm (CG-EA), and CG-ILP (Pirkwieser and Raidl, 2010).
We report for each algorithm, the averages of percentage of deviation from the Previous
Best Average (Column GAP) and computation time (Column Time). Several settings
were given for VNS-ILP, mVNS, and mVNS-ILP, without a clear dominating one. In this
case we selected the best solution over all settings (5 or 7, each with 30 repetitions) for
each instance set, together with the corresponding computation time. One observes that
HGA performs again very well, obtaining the smallest average gap for all 45 instances,
and improving the average cost by 0.33%, 0.68%, and 1.70% on p4, p6, and p8 instances,
respectively.

Table 6 displays the performance of HGA for the two cases, with and without travel-
cost truncation. As expected, HGA displays enhanced performance in the former case
compared to the latter. Experiments also showed that the best solutions in the initial
population were, on average, 20.50% and 17.61% greater than the best solution obtained
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Table 5: Comparative performances on Pirkwieser and Raidl instances
Algorithms p4 p6 p8

Runs GAP Time Runs GAP Time Runs GAP Time
(min) (min) (min)

VNS 90 0.92% 0.81 90 0.44% 0.93 30 0.19% 0.51
VNS-ILP 150 0.72% 0.57 150 0.28% 0.81 30 0.06% 0.58
mVNS 150 0.55% 0.43 210 0.19% 0.80 - - -
mVNS-ILP 150 0.008% 0.70 210 0.04% 0.82 - - -
EA 30 3.14% 0.48 30 3.45% 0.61 30 4.26% 0.73
CG-EA 30 2.06% 0.60 30 2.62% 0.80 30 3.14% 1.00
CG-ILP 30 3.11% 0.56 30 8.77% 0.80 30 12.64% 1.00
HGA 30 -0.33% 70.54 30 -0.68% 86.39 30 -1.70% 97.51

in the cases without and with truncation, respectively, illustrating again the significant
effect of the hybrid meta-heuristic.

Table 6: HGA and the travel-cost truncation issue; Pirkwieser and Raidl instances
Result p4 p6 p8

Previous Best Average Avg cost 3293.80 4414.98 5494.13
Avg cost 3282.82 4385.30 5402.09

HGA with truncation
GAP -0.33% -0.68% -1.70%

Avg cost 3300.51 4410.77 5422.00
HGA without truncation

GAP 0.19% -0.07% -1.34%

We conclude this section with a few remarks on the computational effort of HGA. In its
current implementation, this efforts appears indeed high compared to the methods in the
literature, the meta-heuristic education procedure compounding the issue. Yet, the issue
is not really significant. On the one hand, the proposed methodology may be greatly
accelerated by using the classical strategy of performing the crossover and education
procedures in parallel (Crainic and Toulouse, 2010). This strategy is particularly adapted
to the present case for two main reasons. First, in the generational GA paradigm, all
mating and offspring generation and education is performed before a new generation is
considered. Decomposing this component of the work clearly then yields independent
tasks. Second, each such task is still computation intensive, involving at least a sequence
of mating and offspring generation and education (this case corresponds to the finer-grain
decomposition assigning each pair of parents to a particular processor). Quasi-linear
speedup factors may consequently be expected.

On the other hand, the proposed hybrid GA meta-heuristic is actually using the
computation effort to provide higher-quality solutions. To support this claim, we let the
two neighborhood-based meta-heuristics search address each instance for a computing

19

A Hybrid Genetic Algorithm for the Periodic Vehicle Routing Problem with Time Windows

CIRRELT-2011-25



Table 7: Performance comparison for fixed computing effort; Cordeau et al. (2001) in-
stances

Instances Time (hours) UTS VNS RVNS VNS-2opt* RVNS-2opt* HGA
1a 0.53 -0.47 -1.09 -0.75 -0.48 -0.69 2989.58
2a 0.84 -3.67 -2.21 -2.61 -2.06 -2.28 5107.51
3a 3.73 -3.04 -2.85 -2.79 -2.62 -3.12 7158.77
4a 7.68 -4.66 -2.28 -2.85 -2.61 -2.58 7981.85
5a 13.52 -4.05 -4.07 -4.19 -3.75 -3.88 8584.35
6a 17.76 -5.34 -3.33 -3.56 -3.04 -2.87 10935.60
7a 0.99 -1.46 -2.72 -1.59 -1.92 -1.73 6892.71
8a 6.50 -3.07 -4.58 -4.12 -4.54 -3.99 9730.63
9a 17.09 -3.85 -3.40 -2.88 -3.42 -3.01 13707.30
10a 31.67 -4.14 -4.65 -5.01 -3.94 -3.88 17754.20
1b 0.45 -0.73 -0.35 -0.45 -0.22 -0.18 2284.83
2b 1.13 -2.96 -2.02 -1.48 -1.58 -1.73 4141.15
3b 4.45 -2.12 -2.43 -2.49 -2.73 -2.89 5567.15
4b 14.46 -4.43 -3.37 -2.17 -2.9 -2.24 6471.74
5b 14.43 -1.63 -2.32 -2.02 -2.15 -2.16 6963.11
6b 23.81 -3.06 -1.61 -1.61 -1.65 -1.80 8855.97
7b 1.07 -1.60 -1.75 -1.96 -1.67 -1.42 5509.08
8b 7.40 -3.72 -2.98 -2.62 -3.02 -2.55 7677.68
9b 18.47 -1.81 -2.50 -2.64 -2.27 -2.10 10874.80
10b 31.05 -2.22 -2.73 -2.64 -2.57 -2.77 13851.40

Average 10.85 -2.90 -2.66 -2.52 -2.45 -2.39 8151.97

time equivalent to that of the HGA for the same instance. The results are summed
up in Table 7, which displays the gaps to the solution yielded by HGA of the solutions
obtained by the meta-heuristics in the same computing time as HGA. The negative values
observed for all instances and procedures indicate the computing effort of HGA is well
spent, the proposed hybrid meta-heuristic outperforming the other methods present in
the literature.

6 Conclusion

We introduced HGA, a population-based hybrid meta-heuristic for the periodic vehicle
routing problem with time windows. In this first GA algorithm for the PVRPTW, two
neighborhood-based meta-heuristics are used to “educate” the offspring generated by
a new crossover operator to enhance the solution quality. This hybridization provides
the means to combine the exploration capabilities of population-based methods and the
systematic, sometimes aggressive search capabilities of neighborhood-based methods, as
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well as their proficiency to explore the infeasible part of the search space to both repair
infeasible solutions and tunnel toward, hopefully, improved ones.

Extensive numerical experiments and comparisons with all methods proposed in the
literature showed the proposed methodology to yield very high quality solutions, im-
proving those currently published. The proposed HGA actually outperforms the other
methods, even when these are given the same computational time.

We plan to follow on these encouraging results and explore the potential of hybrid
meta-heuristics to address heavily constrained optimization problems, as well as the
parallelization strategies that make these meta-heuristics computationally attractive.
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C. Garćıa-Mart́ınez and M. Lozano. Local search based on genetic algorithms. In P. Siarry
and Z. Michalewicz, editors, Advances in Metaheuristics for Hard Optimization, Nat-
ural Computing Series, pages 199–221. Springer, Berlin Heidelberg, 2008.

M. Gendreau and J.-Y. Potvin. Metaheuristics in combinatorial optimization. Annals of
Operations Research, 140(1):189–213, 2005.

22

A Hybrid Genetic Algorithm for the Periodic Vehicle Routing Problem with Time Windows

CIRRELT-2011-25



M. Gendreau, G. Laporte, and J.-Y. Potvin. Metaheuristics for the Vehicle Routing Prob-
lem. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, SIAM Monographs
on Discrete Mathematics and Applications, pages 129–154. SIAM, Philadelphia, PA,
2002.

B. L. Golden, A. A. Assad, and E. A. Wasil. Routing vehicles in the real world: Applica-
tions in the solid waste, beverage, food, dairy, and newspaper industries. In P. Toth and
D. Vigo, editors, The Vehicle Routing Problem, pages 245–286. SIAM, Philadelphia,
PA, 2002.

B. L. Golden, S. Raghavan, and E. A. Wasil. The vehicle routing problem: latest advances
and new challenges. Springer, 2008.

R. Hartl, G. Hasle, and G. E. Jansens. Special Issue on Rich Vehicle Routing Problems.
Central European Journal of Operations Research, 13(2), 2006.

H. Ishibuchi and K. Narukawa. Some issues on the implementation of local search in
evolutionary multiobjective optimization. In Proceedings of Genetic and Evolutionary
Computation Conference LNCS, pages 1246–1258, 2004.

J. Knowles and D. Corne. Memetic algorithms for multiobjective optimization: Issues,
methods and prospects. In N. Krasnogor, J. E. Smith, and W. E. Hart, editors, Recent
advances in Memetic algorithms, pages 325–332. Springer, 2000.

G. Laporte and F. Semet. Classical Heuristics for the Vehicle Routing Problem. In Toth,
P. and Vigo, D., editors, The Vehicle Routing Problem, SIAM Monographs on Discrete
Mathematics and Applications, pages 109–128. SIAM, Philadelphia, PA, 2002.

G. Laporte, M. Gendreau, J.-Y. Potvin, and F. Semet. Classical and Modern Heuristics
for the Vehicle Routing Problem. International Transactions in Operational Research,
7(4/5):285–300, 2000.

J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of vehicle routing and scheduling
problems. Networks, 11(2):221–227, 1981.

S. Lin. Computer solutions of the traveling salesman problem. Bell System Technical
Journal, 44:2245–2269, 1965.
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A The UTS and RVNS Meta-heuristics

This Annex briefly presents the two meta-heuristics that have been implemented for the
offspring education procedure.

A.1 Unified Tabu Search

UTS (Cordeau et al., 2001) uses its own penalty coefficients, α1, α2, and α3, for viola-
tions of vehicle capacity, route duration and customer service time window constraints,
respectively. The cost function of a solution s then becomes fit(s) = c(s) + α1q(s) +
α2d(s) + α3w(s).

An attribute set B(s) = {(i, k, l) : customer i is visited by vehicle k on day l} is
associated to each solution s. Let brl be a binary constant equal to 1 if and only if day
l belongs to pattern r, for each pattern r ∈ R and every day l ∈ T of solution s. The
neighborhood N(s) of a solution s is then defined by two transformations to (1) relocate
a customer within a day (routing modification), and (2) replace the pattern of a customer
(pattern modification):

1. Remove customer i from route k on day l and insert it into another route k′.

2. Replace pattern r currently assigned to customer i with another pattern r′ ∈ Ri;
Then, for l = 1, . . . , t do

• If brl = 1 and br′l = 0, remove customer i from its route of day l;

• If brl = 0 and br′l = 1, insert customer i into the route of day l minimizing the
increase in fitness f(s).

UTS starts from a given offspring s and chooses, at each iteration, the best non-tabu
solution in N(s). After each iteration, the values of the parameters α1, α2, and α3 are
modified by a factor 1+ δ; multiplied by the factor is the solution is feasible with respect
to the respective constraint, divided, otherwise. We set δ = 0.5, the best value reported
by the authors (Cordeau et al., 2001).

To diversify the search, any solution s ∈ N(s) such that fit(s) ≥ fit(s) is penal-
ized by a factor p(s) proportional to the addition frequency of its attributes, p(s) =
λc(s)

√
nm

∑
(i,k,l)∈B(s) ρikl, where ρikl is the number of times attribute (i, k, l) has been

added to the solution during the search process and λ = 0.015.

The tabu length was adjusted to the smaller number of iterations performed and set
to θ = 1.5log10(n). The post-optimization heuristic is not implemented in the education
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Algorithm 3 UTS(s)

1: α1 = 1, α2 = 1, α3 = 1
2: s2 ← s, f(s2) = f(s)
3: if s is feasible then
4: s1 ← s
5: c(s1) = c(s)
6: else
7: c(s1) =∞
8: end if
9: flag = 0

10: for it = 1, ..., UTSit do
11: Choose a solution s ∈ N(s) that minimizes fit(s) + p(s) and is not tabu or satisfies

the aspiration criteria.
12: if solution s is feasible and c(s) < c(s1) then
13: s1 ← s
14: c(s1) = c(s)
15: flag = 1
16: else if f(s) < f(s2) then
17: s2 ← s
18: f(s2) = f(s)
19: end if
20: Compute q(s), d(s) and w(s) and update α1, and α2, α3 accordingly
21: s← s
22: end for
23: if flag then
24: return s1

25: else
26: return s2

27: end if
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procedure. The UTS procedure returns the best feasible solution s1 if it exists, the best
infeasible solution s2, otherwise. The procedure is summarized in Algorithm 3.

A.2 Random Variable Neighborhood Search (RVNS)

RVNS (Pirkwieser and Raidl, 2008) uses three different neighborhood structures. For
each of these structures, the authors defined six moves, hence resulting in a total of
18 neighborhoods: (1) randomly changing patterns of customers, (2) moving a random
segment of customers of a route to another route on the same day, and (3) exchanging
two random segments of customers between two routes on the same day. In the latter two
cases, the segments are reversed with a small probability, prev = 0.1. The neighborhoods
are summarized in table A8.

Table A8: Neighborhood structures of RVNS
Neighborhood structure Value of δ Neighborhood

Change pattern up to δ = [1,6] times N1,...,N6

Move segment of maximal length δ = [1, 5] N7, ..., N11

bounded by the route size N12

Exchange segment of maximal length δ = [1,5] N13, ..., N17

bounded by corresponding route size N18

RVNS starts with a random neighborhood ordering and generates a new ordering
each time a full VNS iteration is completed. For intensification, RVNS applies 2-opt in
a best-improvement fashion. Additionally, each new incumbent solution is subject to a
2-opt*. RVNS accepts solutions which degrade the objective value under the Metropolis
criterion, like in simulated annealing. Thus, an inferior solution s′ is accepted with
probability e−(f(s′)−f(s))/T , depending on the cost difference to the current solution s
relative to the temperature T . A linear cooling scheme is applied, T being decreased
every τ iterations by an amount of (T ∗ τ)/τmax, where τmax denoted the maximal VNS
iterations. We set τ=100, the initial temperature value T0 = 10, and τmax = [100, 800].
The detailed description of the implementation is given in Algorithms 4 and 5.

Algorithm 4 Shaking(solution s, int k, double prev)

1: if (1 ≤ k ≤ 6) then
2: s′ ← ShakingPattern(s, k) (i.e., neighborhood Nk)
3: else if (7 ≤ k ≤ 12) then
4: s′ ← ShakingMoveSegment(s, k-6, prev) (neighborhood Nk−6)
5: else if (13 ≤ k ≤ 18) then
6: s′ ← ShakingExchangeSegments(s, k-12, prev) (neighborhood Nk−12)
7: end if
8: return s′
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Algorithm 5 RVNS(solution s, int maxiter)

1: prev = 0.1; T = 10 {initial temperature}
2: s∗ ← s
3: numNeighbor = 18 {number of neighborhoods}
4: curIter = 1 {current iteration}
5: repeat
6: RandPermutation(ar, numNeighbor) {random permunation of neighborhood sequence}
7: curNeighbor = 1 {index of current neighborhood}
8: while (curNeighbor ≤ numNeighbor and curIter ≤ maxiter) do
9: k = ar[curNeighbor]

10: s′ = Shaking(s, k, prev)
11: 2-opt(s′)
12: if (s′ better than s) then
13: 2-opt*(s′)
14: s← s′

15: if (s better than s∗) then
16: s∗ ← s
17: end if
18: curNeighbor = 1
19: RandPermutation(ar, numNeighbor)
20: else
21: {
22: probaccept = e−(f(s′)−f(s))/T

23: if (accept s′ with probability probaccept) {accept worse solution} then
24: s← s′

25: curNeighbor = 1
26: RandPermutation(ar, numNeighbor)
27: else
28: curNeighbor+ = 1
29: end if
30: }
31: end if
32: curIter+ = 1
33: Update temperature T if needed
34: end while
35: until (curIter >maxiter) {exceed maximum number of iterations}
36: return s∗
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B Detailed Results

Table A9 compares the average results of HGA with all other existing algorithms on
Cordeau et al. (2001) instances. The first four columns indicate, respectively, the instance
name, the number of customers n, the number of days T , and the number of vehicles m.
The next group of columns compare the average cost of HGA to the average cost of UTS
(Cordeau et al., 2001) and the VNS variants of Pirkwieser and Raidl (2009a,b, 2010):
VNS, RVNS, VNS with 2-opt* (VNS-2opt*), and RVNS with 2-opt* (RVNS-2opt*). The
last two rows provide average measures over all instances: the average gap to the previous
BKS, and computation time for each algorithm. Boldface indicates instances for which
HGA improves previous BKS. The best solution cost in the initial population for HGA is
also included in Best(Initial) column, for each problem, to confirm that HGA itself has
a significant effect. On average, the best solutions in the initial population are 28.38%
larger than the best solutions obtained by HGA. Tables A10 and A11 report the mean
and standard deviation for computation time and solution cost, respectively.

Table A9: Best performance comparison among PVRPTW algorithms; Cordeau et al.
(2001) instances

Instances UTS VNS RVNS VNS-2opt* RVNS-2opt* HGA prev BKS HGA
No n T m (11 runs) (30 runs) (30 runs) (30 runs) (30 runs) (30 runs) - (all exp.)

Best Average Average Average Average Average Best (Initial)
1a 48 4 3 3007.84 3021.22 3017.18 3014.66 3011.41 3000.56 3864.13 2989.58 2989.58
2a 96 4 6 5328.33 5269.02 5264.30 5262.48 5240.45 5129.45 6501.59 5127.98 5107.51
3a 144 4 9 7397.10 7440.17 7395.76 7414.25 7391.74 7193.20 9544.20 7260.37 7158.77
4a 192 4 12 8376.95 8242.71 8218.47 8205.00 8211.57 8017.42 10786.50 8089.15 7981.85
5a 240 4 15 8967.90 8895.04 8897.47 8870.79 8840.93 8613.09 11762.70 8723.63 8584.35
6a 288 4 18 11686.91 11323.50 11313.85 11281.67 11255.80 10971.81 14243.80 11063.00 10935.60
7a 72 6 5 6991.54 7026.89 7013.80 7033.89 7009.86 6913.35 8321.46 6917.71 6892.71
8a 144 6 10 10045.05 10067.34 10038.22 10055.57 9998.75 9782.38 12726.10 9854.36 9751.66
9a 216 6 15 14294.97 14238.18 14159.34 14105.26 14129.01 13738.84 18232.80 13891.03 13707.30
10a 288 6 20 18609.72 18484.32 18407.11 18369.76 18362.83 17795.88 23738.30 18023.62 17754.20

1b 48 4 3 2318.37 2289.92 2289.54 2291.29 2290.02 2284.83 2644.54 2289.17 2284.83
2b 96 4 6 4276.13 4239.47 4213.42 4238.65 4221.31 4167.17 4980.38 4149.96 4141.15
3b 144 4 9 5702.07 5721.65 5711.27 5705.25 5704.53 5598.37 6964.89 5608.67 5567.15
4b 192 4 12 6789.73 6658.90 6649.30 6656.73 6633.67 6492.64 8232.62 6534.12 6471.74
5b 240 4 15 7102.36 7143.51 7119.15 7146.39 7111.50 6984.43 8924.21 6995.87 6963.11
6b 288 4 18 9180.15 9019.76 9041.25 8999.79 9024.72 8892.68 11042.10 8895.31 8855.97
7b 72 6 5 5606.08 5595.78 5587.57 5576.99 5579.25 5532.97 6635.49 5517.71 5509.08
8b 144 6 10 7987.64 7921.17 7880.96 7887.61 7882.10 7711.76 9861.57 7712.40 7677.68
9b 216 6 15 11089.91 11194.49 11125.45 11136.13 11085.97 10893.22 13486.60 10944.59 10874.80
10b 288 6 20 14207.64 14362.18 14310.99 14330.41 14293.03 13896.22 17036.10 14065.16 13851.40
Avg GAP to prev BKS 2.48% 1.97% 1.70% 1.70% 1.50% -0.44%

Avg Time (min) 652 1.39 1.52 1.41 1.54 654.09

We run our algorithm for both cases, with and without travel cost truncation. Table
A12 summarizes the HGA results for the Pirkwieser and Raidl (2009a) instances with
and without travel cost truncation. The algorithms was run 0 times per instance. Best
results, average results, and standard deviations are reported

Table A13 compares the mean and standard deviation for computation times of HGA
and VNS and VNS-ILP (Pirkwieser and Raidl, 2009a); mVNS and mVNS/ILP (Pirk-
wieser and Raidl, 2009b); Evolutionary Algorithm (EA), combination of column gener-

29

A Hybrid Genetic Algorithm for the Periodic Vehicle Routing Problem with Time Windows

CIRRELT-2011-25



Table A10: Computation time of HGA; Cordeau et al. (2001) instances
Instances HGA

Avg Time (hour) Std
1a 0.53 0.14
2a 0.84 0.44
3a 3.73 5.05
4a 7.68 2.64
5a 13.52 2.42
6a 17.76 6.16
7a 0.99 0.27
8a 6.5 3.94
9a 17.09 5.47
10a 31.67 5.6
1b 0.45 0.11
2b 1.13 0.3
3b 4.45 5.56
4b 14.46 8.85
5b 14.43 14.64
6b 23.81 8.69
7b 1.07 0.33
8b 7.4 8.65
9b 18.47 7.26
10b 32.05 8.21

ation and evolutionary algorithm (CG-EA), and CG-ILP (Pirkwieser and Raidl, 2010).
Using the same format, Tables A14, A15, and A16 compare the mean and standard
deviation for solution cost for four, six, and eight-day planning horizon, respectively.
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Table A11: Average cost and sd. deviation comparison; Cordeau et al. (2001) instances
Instances VNS RVNS VNS-2opt* RVNS-2opt* HGA

Avg Std Avg Std Avg Std Avg Std Avg Std
1a 3021.22 23.90 3017.18 13.59 3014.66 14.48 3011.41 10.53 3000.56 6.9
2a 5269.02 81.33 5264.30 57.77 5262.48 72.61 5240.45 59.99 5129.45 19.26
3a 7440.17 62.66 7395.76 70.35 7414.25 73.30 7391.74 58.16 7193.2 16.20
4a 8242.71 65.99 8218.47 63.12 8205.00 70.97 8211.57 47.10 8017.42 19.24
5a 8895.04 73.42 8897.47 106.92 8870.79 67.32 8840.93 68.52 8613.092 16.52
6a 11323.5 70.66 11313.85 111.59 11281.67 87.08 11255.80 76.96 10971.81 24.05
7a 7026.89 42.88 7013.80 53.16 7033.89 56.08 7009.86 51.16 6913.35 11.20
8a 10067.34 70.00 10038.22 68.20 10055.57 68.83 9998.75 53.58 9782.38 15.40
9a 14238.18 123.64 14159.34 101.71 14105.26 108.49 14129.01 71.15 13738.84 7.75
10a 18484.32 110.50 18407.11 134.36 18369.76 116.09 18362.83 110.74 17795.88 23.92
1b 2289.92 1.73 2289.54 1.13 2291.29 5.73 2290.02 1.66 2284.83 0.00
2b 4239.47 32.79 4213.42 43.10 4238.65 35.48 4221.31 39.67 4167.17 14.81
3b 5721.65 37.38 5711.27 55.32 5705.25 41.98 5704.53 61.81 5598.37 13.20
4b 6658.90 49.35 6649.30 42.44 6656.73 42.52 6633.67 54.37 6492.64 15.74
5b 7143.51 63.16 7119.15 55.09 7146.39 65.42 7111.50 61.57 6984.43 13.93
6b 9019.76 44.14 9041.25 52.28 8999.79 44.26 9024.72 54.87 8892.68 16.65
7b 5595.78 34.44 5587.57 34.42 5576.99 24.15 5579.25 27.29 5532.97 16.27
8b 7921.17 65.48 7880.96 54.95 7887.61 83.12 7882.10 50.62 7711.76 35.00
9b 11194.49 78.77 11125.45 62.99 11136.13 72.75 11085.97 70.57 10893.22 20.77
10b 14362.18 102.60 14310.99 106.21 14330.41 96.90 14293.03 121.86 13896.22 29.11
Avg 8407.76 8382.72 8379.19 8363.92 8180.51

GAP to BKS 1.97% 1.70% 1.70% 1.50% -0.44%
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Table A12: HGA results on Pirkwieser and Raidl (2009a) instances with and without
travel cost truncation

Instances Previous HGA HGA
Best Average with truncation without truncation

No Avg Best (Initial) Best Avg Std Best (Initial) Best Avg Std

p4r101 4090.09 4590.6 4082.6 4085.94 2.41 4795.34 4142.35 4163.43 5.6
p4r102 3732.34 4011.6 3725.2 3730.56 2.42 4027.44 3739.34 3744.30 3.24
p4r103 3165.72 3675.6 3153.1 3160.81 5.02 3685.05 3165.62 3168.57 2.81
p4r104 2595.44 3010.0 2570.8 2581.53 6.92 3099.08 2582.67 2592.07 8.53
p4r105 3675.09 4092.1 3638.9 3650.45 8.92 4153.81 3664.14 3678.06 11.09

p4c101 2909.39 3203.6 2907.4 2907.49 0.24 3233.38 2913.81 2913.83 0.13
p4c102 2905.16 3694.0 2883.3 2890.98 5.84 3908.80 2888.31 2893.86 7.51
p4c103 2759.78 3528.2 2735.8 2746.23 9.59 4388.63 2742.17 2763.43 8.99
p4c104 2454.69 2804.8 2424.3 2450.91 11.23 2853.89 2446.85 2468.79 14.58
p4c105 2906.69 3326.1 2884.1 2895.33 6.90 3995.58 2893.99 2907.47 9.39

p4rc101 3974.09 4785.3 3955.9 3963.02 5.84 4785.22 3975.39 3977.81 4.31
p4rc102 3764.99 4331.4 3755.8 3761.92 6.27 4381.65 3765.03 3777.56 8.11
p4rc103 3466.99 4232.4 3450.1 3454.60 4.82 4239.32 3472.07 3479.30 5.75
p4rc104 3031.49 3419.0 2996.5 3008.34 12.42 3504.05 3004.59 3019.73 14.52
p4rc105 3970.49 4505.4 3942.6 3954.16 8.05 4511.63 3953.91 3959.46 9.08

p6r101 5385.03 5741.9 5377.5 5379.73 3.98 5835.14 5394.13 5398.65 4.14
p6r102 5237.75 5612.0 5206.4 5215.61 4.62 5648.08 5295.50 5302.56 6.37
p6r103 3991.46 4586.5 3946.9 3968.69 10.04 4792.17 3961.67 3980.51 14.02
p6r104 3370.82 3820.2 3352.9 3362.09 8.41 3930.49 3361.71 3375.91 8.02
p6r105 4328.45 5005.4 4291.0 4302.94 10.93 5036.95 4308.19 4321.17 10.06

p6c101 4049.95 4624.1 3984.3 3995.69 5.99 4694.64 3992.66 4015.34 14.12
p6c102 3861.62 4572.0 3841.7 3853.83 5.25 4614.18 3850.02 3858.76 7.20
p6c103 3574.98 4486.7 3529.6 3555.71 17.63 4523.24 3535.06 3575.18 23.18
p6c104 3278.92 4486.9 3236.5 3248.35 6.94 4994.83 3244.48 3259.09 11.99
p6c105 4104.31 4733.6 4052.1 4060.14 4.31 5310.62 4059.07 4076.46 11.42

p6rc101 5815.8 6262.8 5791.9 5801.08 7.37 6566.15 5799.67 5812.68 10.06
p6rc102 5440.55 6222.9 5352.6 5373.82 17.14 6263.21 5387.76 5402.64 21.45
p6rc103 4344.02 4957.6 4288.1 4298.33 11.76 5084.31 4316.78 4339.45 17.24
p6rc104 4122.25 4764.1 4092.5 4100.14 10.26 4786.14 4109.99 4152.33 22.73
p6rc105 5318.69 6232.8 5253.0 5263.35 10.76 6231.85 5280.32 5290.84 9.56

p8r101 6557.78 6927.4 6472.7 6482.12 8.39 6949.77 6492.00 6506.12 6.96
p8r102 6193.62 6357.3 6102.0 6111.74 11.99 6685.53 6155.07 6166.42 8.51
p8r103 4806.69 5834.8 4698.8 4712.29 8.36 5887.78 4717.23 4750.36 12.49
p8r104 4477.2 5610.0 4394.5 4413.17 6.58 5794.33 4411.70 4431.75 14.42
p8r105 5585.25 6639.3 5473.2 5496.06 13.15 6877.9 5491.93 5506.08 17.51

p8c101 4781.05 5203.6 4695.2 4746.40 14.95 5559.17 4704.07 4741.37 12.56
p8c102 5169.88 6557.1 4933.3 4981.59 23.16 6543.74 4976.19 5003.14 16.36
p8c103 4788.86 6536.4 4672.6 4705.75 9.28 7555.88 4700.94 4714.46 5.13
p8c104 4845.02 5496.9 4638.9 4653.45 8.39 5583.63 4650.28 4669.24 11.43
p8c105 5237.81 6297.9 5143.4 5215.40 19.21 6489.18 5164.94 5230.06 17.76

p8rc101 7035.37 7823.1 6891.7 6924.30 21.76 7897.33 6922.45 6952.49 12.05
p8rc102 5951.36 6326.6 5787.6 5823.83 13.69 6477.04 5805.43 5827.16 10.69
p8rc103 5552.43 6989.7 5448.7 5458.14 10.15 6858.05 5463.97 5486.54 14.16
p8rc104 5071.39 6119.8 5003.5 5046.43 19.31 6101.96 5013.45 5054.10 17.68
p8rc105 6358.24 7769.6 6232.0 6260.65 12.89 7494.72 6265.06 6290.74 10.88

Average 4400.87 5106.87 4339.81 4356.74 5258.46 4359.60 4377.76
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Table A13: Computation time comparisons; Pirkwieser and Raidl (2009a) instances
Instances VNS VNS/ILP mVNS mVNS/ILP EA CG-EA CG-ILP HGA

Average Time (min) Avg Time (min) Std
p4r101 0.74 2.70 1.15 1.31 0.47 0.52 0.47 51.45 0.08
p4r102 0.77 2.90 1.20 1.36 0.45 0.52 0.50 73.62 0.17
p4r103 0.40 2.98 1.23 1.46 0.44 0.56 0.55 71.83 0.19
p4r104 0.90 3.40 1.39 2.12 0.47 0.67 0.67 75.98 0.21
p4r105 0.79 3.84 1.22 2.08 0.44 0.49 0.48 65.65 0.12
p4c101 0.73 0.38 1.12 1.18 0.51 0.58 0.19 68.52 0.12
p4c102 0.81 2.90 1.25 1.50 0.50 0.74 0.68 71.34 0.17
p4c103 0.91 0.50 1.41 1.98 0.51 0.73 0.72 88.64 0.13
p4c104 0.87 3.31 1.35 1.98 0.48 0.77 0.77 93.87 0.14
p4c105 0.80 2.78 1.24 1.56 0.49 0.63 0.62 69.34 0.13
p4rc101 0.84 0.43 1.30 1.78 0.44 0.52 0.51 60.86 0.13
p4rc102 0.84 0.43 1.29 1.72 0.47 0.53 0.52 66.11 0.33
p4rc103 0.91 0.48 1.40 1.57 0.47 0.58 0.57 64.92 0.14
p4rc104 0.92 3.46 1.46 2.35 0.49 0.65 0.64 70.22 0.14
p4rc105 0.81 0.43 1.26 1.67 0.47 0.51 0.50 65.88 0.08

Average 0.81 2.06 1.29 1.71 0.48 0.60 0.56 70.54

p6r101 0.85 3.25 3.08 3.91 0.66 0.69 0.68 77.52 0.14
p6r102 0.89 4.43 3.21 5.70 0.61 0.71 0.71 75.02 0.06
p6r103 0.96 4.05 3.42 5.45 0.61 0.80 0.80 89.49 0.07
p6r104 0.98 0.68 3.50 5.67 0.61 0.88 0.87 95.14 0.07
p6r105 0.47 3.80 3.37 5.51 0.59 0.73 0.72 77.45 0.05
p6c101 0.65 3.47 3.57 5.32 0.61 0.83 0.82 75.87 0.06
p6c102 0.98 3.63 3.55 5.50 0.64 0.92 0.91 88.61 0.06
p6c103 1.11 4.16 4.03 6.36 0.62 0.92 0.91 104.54 0.06
p6c104 1.07 4.62 3.89 6.16 0.60 0.90 0.90 105.61 0.05
p6c105 0.98 3.52 3.54 5.56 0.61 0.88 0.88 85.56 0.18
p6rc101 0.90 0.51 3.27 5.73 0.57 0.65 0.65 75.95 0.20
p6rc102 0.93 3.50 3.38 5.70 0.60 0.70 0.69 83.86 0.13
p6rc103 1.06 3.91 3.82 6.08 0.59 0.84 0.83 83.95 0.06
p6rc104 1.05 4.35 3.71 6.55 0.60 0.84 0.83 97.06 0.15
p6rc105 0.96 3.50 3.44 5.79 0.59 0.70 0.69 80.23 0.13

Average 0.93 3.42 3.52 5.67 0.61 0.80 0.80 86.39

p8r101 0.43 0.49 0.73 0.89 0.88 88.19 0.14
p8r102 0.47 0.51 0.74 1.01 1.00 90.47 0.34
p8r103 0.53 0.60 0.73 1.02 1.01 102.05 0.10
p8r104 0.54 0.71 0.73 1.04 1.03 104.63 0.09
p8r105 0.47 0.59 0.71 0.97 0.96 90.61 0.11
p8c101 0.50 0.54 0.73 1.03 1.02 99.21 0.40
p8c102 0.63 0.65 0.74 1.08 1.07 102.43 0.10
p8c103 0.59 0.67 0.73 1.04 1.03 122.56 0.08
p8c104 0.44 0.62 0.69 1.00 0.99 92.66 0.13
p8c105 0.51 0.55 0.76 1.02 1.02 95.24 0.07
p8rc101 0.47 0.52 0.72 0.91 0.91 82.47 0.08
p8rc102 0.49 0.53 0.69 1.00 1.00 96.19 0.42
p8rc103 0.55 0.57 0.74 1.02 1.02 95.06 0.07
p8rc104 0.53 0.63 0.72 1.00 0.99 106 0.07
p8rc105 0.47 0.54 0.71 0.97 0.96 94.85 0.11

Average 0.51 0.58 0.73 1.00 1.00 97.51
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Table A14: Average cost and st. deviation for 4-day planning horizon; Pirkwieser and
Raidl (2009a) instances

Instances VNS VNS/ILP mVNS mVNS/ILP
Avg Std Avg Std Avg Std Avg Std

p4r101 4134.47 18.81 4112.11 18.7 4118.6 12.07 4090.09 5.29
p4r102 3756.77 15.45 3742.11 9.45 3741.79 5.01 3732.34 1.94
p4r103 3191.59 13.56 3182.65 11.98 3184.83 9.37 3165.72 6.95
p4r104 2604.74 12.94 2599.43 13.06 2602.15 11.10 2595.44 8.20
p4r105 3692.96 14.74 3675.09 16.22 3687.94 8.92 3679.66 11.93
p4c101 2910.53 0.37 2910.13 0.38 2909.91 0.72 2909.39 0.76
p4c102 2960.70 37.37 2951.60 35.15 2921.32 20.02 2905.16 14.38
p4c103 2793.80 30.37 2801.59 37.26 2777.30 20.18 2759.78 13.82
p4c104 2476.27 19.95 2473.77 19.26 2465.70 11.65 2454.69 12.32
p4c105 2973.57 42.71 2990.91 59.02 2942.26 29.05 2906.69 15.55
p4rc101 4001.34 14.66 3980.51 12.04 3988.69 11.61 3974.09 6.40
p4rc102 3798.00 14.47 3795.87 15.96 3801.01 14.74 3764.99 6.76
p4rc103 3494.06 23.22 3485.33 26.11 3494.62 18.55 3466.99 12.01
p4rc104 3058.48 18.83 3045.37 18.22 3042.86 11.52 3031.49 17.15
p4rc105 4001.89 20.06 3988.68 24.21 3995.56 13.49 3970.49 5.67
Average 3323.28 3315.68 3311.64 3293.80
GAP 0.90% 0.67% 0.55% 0.009%

Instances EA CG-EA CG-ILP HGA
p4r101 4199.14 45.00 4162.54 35.92 4119.54 15.56 4085.94 2.41
p4r102 3784.31 33.14 3780.5 24.52 3777.63 29.37 3730.56 2.42
p4r103 3248.05 31.50 3217.31 24.84 3258.92 44.13 3160.81 5.02
p4r104 2691.66 36.48 2673.09 29.85 2780.10 64.70 2581.53 6.92
p4r105 3777.90 34.10 3745.00 28.82 3801.99 33.80 3650.45 8.92
p4c101 2918.47 12.02 2921.08 22.11 2917.91 6.32 2907.49 0.24
p4c102 3032.23 49.41 2963.28 42.32 2925.01 49.33 2890.98 5.84
p4c103 2874.99 54.80 2825.01 42.33 2973.94 89.65 2746.23 9.59
p4c104 2542.46 24.39 2518.90 32.90 2479.80 24.76 2450.91 11.23
p4c105 3072.79 86.04 2977.45 54.82 2991.24 77.13 2895.33 6.90
p4rc101 4081.77 44.36 4047.87 32.44 4087.80 43.80 3963.02 5.84
p4rc102 3904.33 56.09 3869.21 53.28 3870.02 35.30 3761.92 6.27
p4rc103 3596.08 45.32 3549.13 33.54 3670.73 60.17 3454.60 4.82
p4rc104 3142.79 37.99 3114.51 36.46 3185.14 42.46 3008.34 12.42
p4rc105 4052.78 42.09 4040.32 22.11 4047.39 40.29 3954.16 8.05
Average 3394.65 3360.35 3392.48 3282.82
GAP 3.07% 2.03% 3.01% -0.33%
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Table A15: Average cost and st. deviation for 6-day planning horizon; Pirkwieser and
Raidl (2009a) instances

Instances VNS VNS/ILP mVNS mVNS/ILP
Avg Std Avg Std Avg Std Avg Std

p6r101 5417.67 20.27 5395.27 11.92 5400.68 7.1 5385.03 3.33
p6r102 5261.35 17.65 5237.75 9.99 5250.62 13.72 5244 13.18
p6r103 4014.16 21.37 4001.86 20.65 4004.61 15.35 3991.46 12.83
p6r104 3380.17 13.35 3371.90 16.1 3376.35 12.41 3370.82 11.53
p6r105 4355.02 27.43 4334.60 26.79 4340.76 15.94 4328.45 16.34
p6c101 4072.01 38.11 4070.44 40.33 4049.95 24.47 4050.81 26.17
p6c102 3876.88 17.27 3883.75 16.49 3861.62 10.81 3861.86 8.69
p6c103 3583.02 33.04 3594.89 43.15 3579.45 19.34 3574.98 24.81
p6c104 3291.93 16.76 3280.58 17.62 3278.92 18.69 3280.17 14.42
p6c105 4139.66 53.95 4158.06 51.36 4110.27 26.88 4104.31 23.19
p6rc101 5833.84 26.41 5826.98 19.20 5830.37 13.51 5815.80 16.78
p6rc102 5473.67 24.34 5463.50 26.65 5449.68 26.63 5440.55 27.78
p6rc103 4360.17 21.22 4344.02 19.31 4365.63 19.79 4351.50 18.34
p6rc104 4127.46 23.06 4122.25 21.93 4130.70 17.69 4132.90 21.11
p6rc105 5330.60 19.67 5319.48 27.39 5326.71 17.63 5318.69 16.99
Average 4434.51 4427.02 4423.76 4416.76
GAP 0.44% 0.27% 0.20% 0.04%

Instances EA CG-EA CG-ILP HGA
p6r101 5471.23 33.24 5453.07 32.6 5505.08 42.9 5379.73 3.98
p6r102 5315.03 31.43 5318.87 25.76 5445.35 40.39 5215.61 4.62
p6r103 4149.57 41.18 4120.37 34.46 4254.40 67.58 3968.69 10.04
p6r104 3465.46 28.20 3441.55 22.04 3665.01 62.43 3362.09 8.41
p6r105 4514.95 46.59 4457.93 48.46 4647.59 112.43 4302.94 10.93
p6c101 4192.24 77.09 4162.92 68.33 4592.38 194.23 3995.69 5.99
p6c102 3960.89 56.36 3950.54 65.92 4414.48 208.85 3853.83 5.25
p6c103 3788.68 63.95 3719.95 82.20 4191.75 170.11 3555.71 17.63
p6c104 3450.31 54.19 3422.22 56.05 3766.94 92.55 3248.35 6.94
p6c105 4285.79 84.27 4181.5 56.15 4551.39 187.19 4060.14 4.31
p6rc101 5932.49 46.38 5909.63 40.87 6128.02 67.00 5801.08 7.37
p6rc102 5577.50 54.72 5553.47 52.54 5756.83 83.19 5373.82 17.14
p6rc103 4521.57 50.34 4476.44 45.03 4699.27 67.30 4298.33 11.76
p6rc104 4306.30 52.83 4267.67 41.26 4436.69 85.22 4100.14 10.26
p6rc105 5467.39 58.06 5450.10 44.81 5582.21 70.66 5263.35 10.76
Average 4559.96 4525.74 4775.83 4385.30
GAP 3.28% 2.51% 8.17% -0.68%
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Table A16: Average cost and st. deviation for 8-day planning horizon; Pirkwieser and
Raidl (2009a) instances

Instances VNS VNS/ILP EA CG-EA CG-ILP HGA
Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std

p8r101 6574.92 36.55 6557.78 37.26 6711.50 46.38 6696.89 75.06 6820.33 68.96 6482.12 8.39
p8r102 6193.62 99.24 6205.41 45.66 6300.33 49.19 6313.65 70.20 6508.59 125.34 6111.74 11.99
p8r103 4809.73 26.53 4806.69 34.24 4999.87 67.08 4930.83 43.14 5250.39 114.26 4712.29 8.36
p8r104 4495.36 28.29 4477.20 28.89 4667.39 52.74 4598.77 64.23 5181.33 117.11 4413.17 6.58
p8r105 5600.71 39.34 5585.25 37.59 5817.43 69.13 5744.09 53.36 6013.38 105.65 5496.06 13.15
p8c101 4781.05 41.91 4786.88 39.11 4991.15 119.77 4900.84 75.41 5185.67 131.66 4746.40 14.95
p8c102 5169.88 71.00 5188.8 76.68 5410.25 121.16 5308.69 114.27 6442.4 0.00 4981.59 23.16
p8c103 4794.7 50.18 4788.86 36.49 5029.64 105.63 4965.95 69.92 6428.76 272.02 4705.75 9.28
p8c104 4845.02 71.06 4853.57 65.88 5234.18 79.30 5202.05 91.42 5592.48 254.28 4653.45 8.39
p8c105 5261.79 58.32 5237.81 42.58 5434.17 91.13 5384.95 95.36 6293.36 254.71 5215.40 19.21
p8rc101 7075.80 75.20 7035.37 64.98 7225.04 98.40 7134.84 80.09 7432.93 152.95 6924.30 21.76
p8rc102 5951.36 47.72 5954.42 67.27 6249.95 102.21 6163.02 76.37 6392.33 149.02 5823.83 13.69
p8rc103 5560.42 34.89 5552.43 33.69 5847.79 95.54 5778.00 73.80 6126.24 128.82 5458.14 10.15
p8rc104 5080.84 35.82 5071.39 38.96 5301.08 52.53 5277.23 46.59 5873.2 144.27 5046.43 19.31
p8rc105 6383.60 43.49 6358.24 30.28 6606.78 79.69 6530.36 62.94 6727.78 120.43 6260.65 12.89
Average 5505.25 5497.34 5721.77 5662.01 6151.28 5402.09
GAP 0.20% 0.06% 4.14% 3.06% 11.96% -1.70%
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