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Abstract. In the Capacitated Arc Routing Problem (CARP), a subset of the edges of an 

undirected graph has to be serviced at least cost by a fleet of identical vehicles in such a 

way that the total demand of the edges serviced by each vehicle does not exceed its 

capacity. This paper describes a new lower bounding method for the CARP based on a 

set partitioning-like formulation of the problem with additional cuts. This method uses cut-

and-column generation to solve different relaxations of the problem, and a new dynamic 

programming method for generating routes. An exact algorithm based on the new lower 

bounds was also implemented to assess their effectiveness. Computational results over a 

large set of classical benchmark instances show that the proposed method improves most 

of the best known lower bounds for the open instances, and can solve several of these for 

the first time. 
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1 Introduction

In arc routing problems, the aim is to determine a least cost traversal of
a subset of arcs or edges of a graph subject to some constraints. The Ca-
pacitated Arc Routing Problem (CARP), introduced by Golden and Wong
[1981], is one of the best known arc routing problems. It consists in servicing
a set of demands associated with required links using a fleet of capacitated
vehicles based at a depot. When all links are required, the problem is known
as the Capacitated Chinese Postman Problem [Christofides, 1973]. Solving
the CARP and computing a 1.5-approximation are both NP-hard [Golden
and Wong, 1981]. In this paper, we restrict our attention to the undirected
version of the CARP.

The CARP arises in a wide variety of contexts, including refuse collec-
tion, street sweeping, winter gritting, postal delivery, inspection of power
lines, bridges and pipeline systems, meter reading, etc. The surveys of As-
sad and Golden [1995] and of Eiselt et al. [1995a,b], and the book of Dror
[2000] describe several real-world applications and discuss different solution
methodologies. More recent surveys are those of Wøhlk [2008] and Corberán
and Prins [2010].

1.1 Literature review

The CARP has been much less studied than the Capacitated Vehicle Routing
Problem (CVRP) which is its natural counterpart in a node setting, and is
considered to be significantly more difficult. To date, most of the research
on the CARP concerns heuristics and lower bounding procedures. The ear-
liest lower bounds for the CARP are based on matching techniques and on
dynamic programming [Golden and Wong, 1981, Assad et al., 1987, Win,
1987, Pearn, 1988, Benavent et al., 1992, Hirabayashi et al., 1992, Amberg
and Voß, 2002, Wøhlk, 2006].

To our knowledge, the first attempt to solve the CARP by means of poly-
hedral combinatorics and linear programming (LP) techniques is due to Be-
lenguer and Benavent [1998]. This paper presented a polyhedral study of the
CARP, and introduced valid inequalities which were computationally tested
within a cutting plane algorithm. Building upon this study, Belenguer and
Benavent [2003] developed a branch-and-cut method based on a very sparse
formulation involving an exponential class of inequalities from Belenguer and
Benavent [1998], and introduced a new class of valid inequalities. Their for-
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mulation is very compact, but it does not always yield a feasible solution.
However, it can be used to provide a lower bound on the CARP optimum.
Computational tests reported by Belenguer and Benavent [2003] have shown
that lower bounds computed by means of this formulation were significantly
better than previous ones, and matched the best known upper bounds for 47
out of the 87 tested instances.

Column generation based approaches for the CARP were recently pro-
posed by Gómez-Cabrero et al. [2005], Letchford and Oukil [2009], and Mar-
tinelli et al. [2010]. These methods are based on formulating the CARP
using an exponential number of variables, each corresponding to a possible
vehicle route. Gómez-Cabrero et al. used a set covering formulation of the
CARP where columns correspond to non-elementary routes, i.e., a relax-
ation of routes where a link is allowed to be serviced more than once. The
LP relaxation of this formulation is strengthened by valid inequalities for
the CARP and solved by cut-and-column generation. Letchford and Oukil
[2009] also adopted a set covering formulation and proposed two column
generation methods based on elementary and non-elementary routes, respec-
tively, with the aim of exploiting the sparsity of the network in generating
routes. Non-elementary routes were computed by dynamic programming,
whereas elementary routes were computed by solving a mixed-integer prob-
lem. Martinelli et al. [2010] applied a similar approach, but used a set parti-
tioning formulation and dynamic programming to generate both elementary
and non-elementary routes. A branch-and-price algorithm for the CARP
was very recently proposed by Bode and Irnich [2011]. This algorithm can
be viewed as a two-phase method that combines the sparse formulation of
Belenguer and Benavent, and a set partitioning formulation based on non-
elementary routes. The idea is to first solve the sparse formulation using a
cutting plane procedure, and then apply a branch-and-price algorithm based
on a set partitioning formulation where the initial master is initialized with
the cuts identified in the first phase.

An indirect approach for solving the CARP was suggested by Longo et al.
[2006] and Baldacci and Maniezzo [2006]. These two papers independently
proposed a method to transform a CARP instance with m required links into
an equivalent CVRP with 2m+1 nodes. In Longo et al. [2006] the resulting
CVRP is solved by branch-and-cut-and-price by adapting the algorithm of
Fukasawa et al. [2006], whereas in Baldacci and Maniezzo [2006] the resulting
CVRP is modeled using a two-index formulation and solved by branch-and-
cut.
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These transformations appear at present to be the most promising meth-
ods for solving the CARP to optimality. They outperformed all other specific
lower bounding procedures, and could solve to optimality several instances
for the first time. However, we note that preliminary results reported by
Bode and Irnich [2011] show that their two-phase method is also competitive
with the best previous methods, and is able to find new optima for some
open benchmark instances.

1.2 Contributions of this paper

We propose a new lower bounding method for the CARP based on cut-
and-column generation to solve a set partitioning (SP) formulation of the
CARP where each column corresponds to a route. The LP relaxation of this
formulation is strengthened using both valid inequalities that are specific to
the CARP, and valid inequalities for the set partitioning polytope.

This method embeds four lower bounding procedures executed in se-
quence to progressively obtain better lower bounds. Two of these proce-
dures are based on non-elementary CARP routes and two on elementary
ones. CARP routes are generated by dynamic programming using a trans-
formation of the original CARP instance into a Generalized Vehicle Routing
Problem (GVRP) in which each required edge is represented by a cluster con-
taining two nodes. The new dynamic programming algorithm uses bounding
functions and different fathoming rules to reduce the size of the state space.
To assess the effectiveness of the new lower bounds, we have implemented
an exact algorithm that uses the final dual solution computed by the lower
bounding method to generate a reduced integer problem which is guaran-
teed to contain an optimal solution, and which is solved using an integer
programming (IP) solver.

We present extensive computational results over five sets of benchmark
CARP instances showing that the proposed lower bound is consistently better
than previous ones. Our results also show that the new exact algorithm based
on this lower bound is competitive with the best known ones, and can solve
to optimality 27 previously unsolved instances with up to 159 required edges,
a size that is likely to be intractable for methods based on a transformation
of the problem into a CVRP.

Improved Lower Bounds and Exact Algorithm for the Capacitated Arc Routing Problem

CIRRELT-2011-33 3



1.3 Organization of this paper

The remainder of the paper is organized as follows. In Section 2 we formally
describe the CARP and formulate it as a set partitioning-like integer model.
In Section 3 we present the valid inequalities used to strengthen the SP
formulation, and we show how some known valid inequalities for the CARP
can be lifted when translated into this formulation. Section 4 provides an
overview of our algorithm. It first computes a lower bound on the CARP
optimum and then uses it to attempt to obtain an optimal solution. In
Section 5, we describe a transformation of the CARP into an asymmetric
GVRP and establish a one-to-one correspondence between optimal CARP
routes and GVRP routes. In Section 6 we describe a dynamic programming
algorithm for the generation of elementary CARP routes based on the results
of Section 5. In Section 7, we detail four lower bounding procedures based
on column generation which are used to compute the final lower bound.
Computational results on the main test instances from the literature are
reported in Section 8, followed by conclusions in Section 9.

2 Formal problem description and mathemat-

ical formulation

Let G = (V,E) be a connected undirected graph where V = {0, . . . , n} is
a set of |V | = n + 1 nodes, node 0 is a depot, and E is a set of edges with
endpoints in V . With each edge e ∈ E are associated a demand qe > 0 and a
travel cost ce > 0. Edges requiring service are called required edges, and the
subset of required edges is denoted by ER ⊆ E. We denote by m = |ER| the
number of required edges and following Belenguer and Benavent [1998, 2003],
we assume that required edges have a strictly positive demand. We denote
by ie and je the two endpoints of edge e, and by A = {(ie, je), (je, ie) : e ∈ E}
the set of arcs associated with E. Conversely, for any arc a = (ie, je) ∈ A,
the mapping e(a) gives the corresponding edge e. We also denote by AR ⊆ A
the subset of arcs associated with the required edge set ER.

The CARP is to find K closed walks in G such that: (i) each walk passes
through the depot, (ii) each required edge is serviced by exactly one walk
traversing it, (iii) the total demand of the edges serviced by any walk does
not exceed a capacity Q, and (iv) the total cost of all walks is minimized. In
the CARP literature, K is sometimes unrestricted or bounded above. As in
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Longo et al. [2006] and Belenguer and Benavent [2003], we assume that K is
unbounded.

A closed walk R = (v0, a0, v1, a1, . . . , vp, ap), with v0, . . . , vp ∈ V , ai =
(vi, vi+1) ∈ A, i = 0, . . . , p− 1, ap = (vp, v0) ∈ A, that traverses an edge set
E(R) and services a subset S(R) ⊆ E(R)∩ER of required edges satisfying (i)
and (iii) is called a CARP route (or simply a route). Each route represents
the walk of a vehicle based at the depot and used to provide service to a
non-empty subset of the required edges. Similarly, we define a CARP walk

as a CARP route not necessarily ending at the depot. An edge traversed by
a route but not serviced by it, or an edge traversed more than once is said to
be deadheaded by that route. Similarly, a path corresponding to a sequence
of edges deadheaded by the same route is said to be deadheaded by that
route.

Let R be the index set of all routes. For each route Rℓ, ℓ ∈ R, let aℓe
be the number of times edge e ∈ ER is serviced by route Rℓ, and let bℓe be
the number of times edge e ∈ E is traversed by route Rℓ. We denote by
S(Rℓ), or simply Sℓ, the set of required edges serviced by route Rℓ, and by
dℓe = bℓe − aℓe the number of times route Rℓ deadheads edge e ∈ E. Let
cℓ =

∑
e∈E bℓece be the cost of route Rℓ, ℓ ∈ R, and let xℓ be a binary

variable equal to 1 if and only if route Rℓ is in the solution. The CARP can
be formulated as the following IP model.

z(SP ) = min
∑

ℓ∈R

cℓxℓ (1)

s.t.
∑

ℓ∈R

aℓexℓ = 1, ∀e ∈ ER, (2)

∑

ℓ∈R

xℓ > K∗, (3)

xℓ ∈ {0, 1}, ∀ℓ ∈ R. (4)

Constraints (2) impose that each required edge is serviced by exactly one
route, and (3) is a redundant constraint imposing a lower bound K∗ =⌈∑

e∈ER
qe/Q

⌉
on the number of routes needed to service all required edges.

Note that in any optimal SP solution, the sequence of edges on a route
Rℓ between any two required edges e1 and e2 serviced consecutively by Rℓ

corresponds to a shortest path between an endpoint of e1 and an endpoint
of e2. Therefore, we assume that routes not satisfying this condition do not
belong to R. If there are several shortest paths of equal length between two
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nodes, we can a priori select one without excluding all optimal solutions.
We henceforth write the shortest path. Let Pij be the shortest path from
node i ∈ V to node j ∈ V . We denote by ζℓij the number of times route
Rℓ deadheads both paths Pij and Pji (i.e., the number of times it deadheads
path Pij , plus the number of times it deadheads path Pji).

3 Valid inequalities for SP

The cost z(LSP ) of an optimal solution to the LP relaxation of SP (denoted
by LSP) may yield a weak lower bound. We now describe three main classes
of valid inequalities that we have incorporated into SP to yield a stronger
formulation: odd edge cutset constraints, capacity constraints, and subset-
row inequalities.

3.1 Odd edge cutset constraints

Odd edge cutset constraints were originally introduced by Belenguer and
Benavent [1998, 2003] and can be defined as follows. Given a feasible SP
solution x, let ze be an integer aggregated variable representing the number
of times edge e is deadheaded:

ze =
∑

ℓ∈R

dℓexℓ. (5)

For any node set S ⊆ V , let δ(S) = {e ∈ E : ie ∈ S, je ∈ V \ S or je ∈
S, ie ∈ V \ S}, and let δR(S) = δ(S) ∩ ER. Define S = {S ⊆ V \ {0} :
|δR(S)| is odd}. Odd edge cutset inequalities are as follows:

∑

e∈δ(S)

ze > 1, ∀S ∈ S . (6)

Because the solution graph induced by any feasible SP solution is Eulerian,
inequalities (6) express the fact that if |δR(S)| is odd, then at least one edge
incident to S must be deadheaded.

Because of the assumption that the shortest path between any two consec-
utive serviced edges is unique, inequalities (6) can be strengthened as follows.
Given a feasible SP solution x, define an aggregated variable yij representing
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the number of times both shortest paths Pij and Pji between nodes i, j ∈ V
are deadheaded, that is:

yij =
∑

ℓ∈R

ζℓijxℓ, ∀i, j ∈ V. (7)

Using variables yij, we obtain the following lifted odd edge cutset inequalities:

∑

i∈S
j∈V \S

yij > 1, ∀S ∈ S . (8)

Constraints (8) are shown to be valid by extending the argument used to
prove the validity of odd edge cutset inequalities. Because |δR(S)| is odd,
each route crosses S an even number of times, and each required edge is
serviced by exactly one route, then at least one path crossing node set S has
to be deadheaded.

Let E(Pij) ⊆ E be the set of edges traversed by path Pij. Note that
because G is symmetric, we can assume Pij = Pji, and therefore variables yij
and ze can be linked by the following equations:

ze =
∑

i,j∈V, i<j,
e∈E(Pij)

yij, ∀e ∈ E. (9)

It is then easy to see that an inequality (8) defined by set S corresponds to
a lifting of the corresponding inequality (6) defined by the same node set. In
fact, using equations (9), (6) can be rewritten as

∑

i,j∈V, i<j,
E(Pij)∩δ(S)6=∅

yij > 1, ∀S ∈ S , (10)

which is dominated by (8).
Note that inequalities (8) can be written in terms of the xℓ variables by

using equations (7), and because their right-hand side is equal to one, their
coefficients are positive integers, and xℓ variables are binary, they can further
be lifted to obtain the following inequalities:

∑

i∈S
j∈V \S

∑

ℓ∈R

ζℓij>0

xℓ > 1, ∀S ∈ S . (11)
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Figure 1: Example of lifted inequality (8) defined by a node set S. From left
to right: input graph (dashed edges are non-required), support graph induced by
variables ze, and support graph induced by variables yij .

However, we use inequalities (8) instead of (11) because it is straightforward
to incorporate these inequalities exactly within the pricing problem.

The following example shows an inequality (6) defined by a set S dom-
inated by the corresponding lifted inequality (8) defined by the same set.
Consider the graph shown at the left of Figure 1. In this graph, dashed lines
represent non-required edges and a node set S = {b, d} is defined. Suppose all
edge costs correspond to Euclidean distances. A feasible LSP solution is given
by the four routes Rℓ1 = (0, a, b, d, g, d, e, 0) with Sℓ1 = {{a, b}, {b, d}, {d, g}},
Rℓ2 = (0, e, d, g, d, e, 0) with Sℓ2 = {{0, e}, {e, d}, {d, g}},Rℓ3 = (0, a, b, d, e, 0)
with Sℓ3 = {{a, b}, {b, d}, {d, e}}, and Rℓ4 = (0, e, 0) with Sℓ4 = {{0, e}}, and
setting xℓ1 = xℓ2 = xℓ3 = xℓ4 = 0.5. The center and right parts of Figure 1
show the support graphs defined by vectors z and y associated with solution
x, respectively. It is easy to check that inequality (6) defined by node set S
is satisfied by z, whereas inequality (8) is violated by y.

3.2 Capacity constraints

Let F = {F ⊆ ER : |F | > 2} be the family of all subsets of required edges
of cardinality at least 2, and let R(F ) ⊆ R be the index-subset of routes
servicing at least one edge in the set F ∈ F . Moreover, for any edge subset
F ∈ F , let q(F ) =

∑
e∈F qe be the sum of the demands of the edges in

F . Because at least r(F ) = ⌈q(F )/Q⌉ routes are required to service F , the
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following capacity constraints are valid for SP:

∑

ℓ∈R(F )

xℓ > r(F ), ∀F ∈ F . (12)

Because a route is a closed walk starting and ending at the depot, inequal-
ities (12) can be reformulated as follows. Let βℓ

ef be a binary coefficient equal
to 1 if and only if route Rℓ services in sequence required edges e, f ∈ ER.
Moreover, let βℓ

0e be equal to 1 if edge e ∈ ER is the first or last edge serviced
by route Rℓ (β

ℓ
0e = 2 if route Rℓ services only edge e). Given a feasible SP

solution x, define aggregated variables ξef as follows:

ξef =
∑

ℓ∈R

βℓ
efxℓ, ∀e, f ∈ ER, and ξ0e =

∑

ℓ∈R

βℓ
0exℓ, ∀e ∈ ER. (13)

Inequalities (12) can then be written in the following weaker form:

∑

e∈F
f∈ER\F

ξef +
∑

e∈F

ξ0e > 2r(F ), ∀F ∈ F . (14)

The interest of inequalities (14) is that although they are weaker than (12)
they are stronger than the CARP capacity constraints introduced in Be-
lenguer and Benavent [1998, 2003], and can also be incorporated exactly in
the pricing problem.

For any node set S ⊆ V \ {0}, let ER(S) = {e ∈ ER : ie, je ∈ S}. The
CARP capacity constraints are defined in terms of the aggregated variables
ze as follows:

∑

e∈δ(S)

ze > 2

⌈
q(ER(S)) + q(δR(S))

Q

⌉
− |δR(S)|, ∀S ⊆ V \ {0}. (15)

The following theorem shows that inequalities (14) (and therefore (12))
are stronger than the CARP capacity constraints (15).

Theorem 1 Let S ⊆ V \ {0}, and define a corresponding edge set FS =
{ER(S) ∪ δR(S)}. Let x be a feasible LSP solution, and let ξ and z be the

corresponding vectors obtained through equations (13) and (5), respectively.
An inequality (15) defined by node set S is dominated by inequality (14)
defined by edge set FS.
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Let ℓe be the index of the route servicing only required edge e. Denote by
R1(δR(S)) = {ℓ ∈ R : βℓ

ef = 1, βℓ
eg = 1, e ∈ δR(S), f, g ∈ ER \FS} ∪ {ℓ ∈ R :

βℓ
0e = 1, βℓ

ef = 1, e ∈ δR(S), f ∈ ER \ FS} ∪ {ℓe}, and let R2(δR(S)) = {ℓ ∈

R : βℓ
ef = 1, βℓ

eg = 1, e ∈ δR(S), f ∈ ER \ FS, g ∈ ER(S)}. Note that any
route in the set R1(δR(S)) deadheads at least one edge in δ(S). Moreover,
any route servicing in sequence two edges e, f ∈ ER such that e ∈ ER(S)
and f ∈ ER \ FS also has to deadhead at least one edge in δ(S). Therefore
from the definition of variables ze we have:

∑

e∈δ(S)

ze >
∑

e∈ER(S)
f∈ER\FS

ξef +
∑

e∈ER(S)

ξ0e +
∑

ℓ∈R1(δR(S))

xℓ. (16)

The definitions of sets R1(δR(S)), R2(δR(S)) and of variables ξef imply:
∑

e∈δR(S)
f∈ER\FS

ξef +
∑

e∈δR(S)

ξ0e =
∑

ℓ∈R1(δR(S))

xℓ +
∑

ℓ∈R2(δR(S))

xℓ, (17)

and therefore, adding
∑

ℓ∈R2(δR(S)) to both sides of (16) we obtain

∑

e∈δ(S)

ze +
∑

ℓ∈R2(δR(S))

xℓ >
∑

e∈ER(S)
f∈ER\FS

ξef +
∑

e∈ER(S)

ξ0e +
∑

e∈δR(S)
f∈ER\FS

ξef +
∑

e∈δR(S)

ξ0e.

(18)
Let Re = {ℓ ∈ R : aℓe = 1}. Because x satisfies constraints (2), and

R2(δR(S)) ⊆
⋃

e∈δR(S)

Re, we also have
∑

ℓ∈R2(δR(S)) 6 |δR(S)|, and from (18)

we obtain
∑

e∈ER(S)
f∈ER\FS

ξef +
∑

e∈ER(S)

ξ0e +
∑

e∈δR(S)
f∈ER\FS

ξef +
∑

e∈δR(S)

ξ0e 6
∑

e∈δ(S)

ze + |δR(S)|, (19)

and the inequality can be strict. Because FS = {ER(S) ∪ δR(S)}, the left-
hand side of (19) can be rewritten as

∑
e∈FS

f∈ER\FS

ξef +
∑

e∈FS
ξ0e, and we have

2r(FS) = 2
⌈
q(ER(S))+q(δR(S))

Q

⌉
. Then, subtracting 2r(FS) from both sides of

(19) yields
∑

e∈FS

f∈ER\FS

ξef +
∑

e∈FS

ξ0e − 2r(FS) 6
∑

e∈δ(S)

ze + |δR(S)| − 2r(FS), (20)

Improved Lower Bounds and Exact Algorithm for the Capacitated Arc Routing Problem

10 CIRRELT-2011-33



that is, the slack of inequality (14) defined by edge set FS is at least as small
as that of inequality (15) defined by set S. �

Note that inequalities (15) are formally the same as rounded capacity
inequalities for the two-index formulation of the CVRP. Indeed, letting E ′

R =
ER ∪ {0}, it is easy to see that any vector ξ associated with a feasible SP
solution x satisfies

∑

j∈E′

R

ξij = 2, ∀i ∈ ER, (21)

∑

i∈F
j∈E′

R
\F

ξij > 2

⌈
q(F )

Q

⌉
, ∀F ⊆ ER, |F | > 2 (22)

ξij ∈ {0, 1}, ∀i, j ∈ ER, (23)

ξ0i ∈ {0, 1, 2}, ∀i ∈ ER. (24)

Thus, any valid inequality for the polytope associated with (22) – (24) is also
valid for SP, and can be translated into the SP model using equations (13).
In our preliminary experiments, we have considered the use of strengthened
combs and framed capacity inequalities, presented in Lysgaard et al. [2004],
using the CVRPSEP package of Lysgaard [2003] to separate them. How-
ever, because the resulting improvement in the lower bounds was marginal,
these inequalities were not used in the computational experiments reported
in Section 8.

3.3 Subset-row inequalities.

Let C = {C ⊆ ER : |ER| = 3} be the set of all required edge triplets, i.e.,
subsets of three required edges. For C ∈ C , let R2(C) ⊆ R be the subset of
routes servicing at least two edges in C, i.e., R2(C) = {ℓ ∈ R : |Sℓ∩C| > 2}.
Because each required edge has to be serviced by exactly one route, the
following inequalities are valid for SP:

∑

ℓ∈R2(C)

xℓ 6 1, ∀C ∈ C . (25)

Inequalities (25) are a subset of the clique inequalities and a special case of
the subset-row inequalities introduced by Jepsen et al. [2008].

We denote by LRP the LP relaxation of the problem obtained by adding
to SP all inequalities (8), (14), and (25), and by DRP its dual. Let πe,
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e ∈ ER, and π0 be the dual variables associated with constraints (2) and
(3), respectively, and let υF , F ∈ F , wS, S ∈ S , and gC , C ∈ C , be
dual variables associated with constraints (14), (8) and (25), respectively.
We denote a DRP solution by (π,υ,w, g), where π = (π0, . . . , πm), υ =
(υ1, . . . , υ|F |), w = (w1, . . . , w|S |), and g = (g1, . . . , g|C |).

4 Overview of the algorithm

This section provides an overview of our algorithm. This algorithm sequen-
tially executes four lower bounding procedures, called BP1, BP2, BP3 and
BP4, to solve increasingly tighter relaxations of LRP, and thus to compute a
sequence of non-worsening lower bounds. An exact algorithm then exploits
the final lower bound to generate an optimal CARP solution. The four lower
bounding procedures use column generation to dynamically generate the set
of routes R. They thus define an initial master problem in which the full
route set R is substituted by a small subset R ⊆ R. At each iteration they
use the current master dual solution to solve the pricing problem which con-
sists in finding the CARP route of minimum reduced cost with respect to the
master dual solution. A detailed description of procedures BP1, BP2, BP3
and BP4 is provided in Section 7.

To compute the lower bounds, our algorithm first generates CARP routes
by transforming the CARP into an equivalent asymmetric GVRP in which
GVRP routes correspond to CARP routes. This transformation is described
in Section 5, whereas Section 6 describes a dynamic programming algorithm,
called genRoutes, to actually generate the GVRP routes, and translate
them into the corresponding CARP ones.

Procedures BP1 and BP2 are based on non-elementary routes, whereas
BP3 and BP4 use elementary routes. The algorithm described in this paper
can thus be viewed as a three-step procedure (see Figure 2) in which two
lower bounding methods based on elementary and non-elementary CARP
routes are first executed in sequence, and an exact algorithm then attempts
to obtain a reduced integer problem from SP containing at least one optimal
solution.

The algorithm requires the knowledge of a valid upper bound zUB on the
CARP optimum. It starts by executing in sequence procedures BP1, BP2,
BP3, and BP4 to compute a final lower bound LB4 and a corresponding
dual solution (π̄4, ῡ4, w̄4, ḡ4). It then generates the largest subset R∗ ⊆ R
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of routes having a reduced cost smaller than the gap zUB −LB4 with respect
to the final dual solution (π4,υ4,w4, g4). An optimal CARP solution can
then be obtained by solving a reduced problem derived from SP by replacing
the entire route set R with R∗. The full algorithm can be summarized as
follows.

1. Execute in sequence the lower bounding procedures BP1, BP2, BP3, and
BP4. If LB4 = zUB, then stop since zUB is the cost of an optimal solution.

2. Set ̺ = zUB − LB4 and ∆ = ∆MAX . Use algorithm genRoutes to
generate the largest subset R∗ of routes having a reduced cost smaller
than ̺ with respect to the final dual solution (π4,υ4,w4, g4) computed
by BP4.

3. Let S
4
, F

4
, and C

4
be the subsets of inequalities (14), (8), and (25),

respectively, active at the end of procedure BP4. Define the reduced
problem SP∗ derived from SP by (i) replacing the route set R with the

set R∗, and (ii) adding to SP∗ all constraints S
4
, F

4
, and C

4
. The

problem SP∗ is solved by an IP solver.

In the following, we refer to Step 1 as a lower bounding method, and to Steps
2 and 3 as an exact algorithm.

Before solving the reduced problem SP∗ at Step 3, the algorithm re-

places all inequalities (14) defined by edge sets in F
4
with the corresponding

stronger inequalities (12), and solves the LP relaxation of SP∗. The final
lower bound LB4 and the corresponding dual solution (π4,υ4,w4, g4) are
then updated, and all routes having a reduced cost greater than zUB − LB4
with respect to (π4,υ4,w4, g4) are removed from R∗.

5 Transformation of the CARP into a GVRP

We first show how to transform the CARP into an equivalent asymmetric
GVRP. It is indeed well known [see e.g., Ghiani and Improta, 2000, Blais
and Laporte, 2003] that a wide class of arc and node routing problems can
be modeled as a GVRP. Here we describe this transformation in detail over
an asymmetric graph G̃, we establish a one-to-one correspondence between
GVRP routes in G̃ and CARP routes indexed by R, and show that GVRP
paths can be combined to yield CARP routes. As a result, we obtain a
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Lower bounding procedure BP1

Dual ascent method to compute a near-optimal dual solution of

a relaxation RF1 of LRP obtained by ignoring all cuts (14), (8),

and (25), and allowing non-elementary routes. BP1 terminates

with a feasible DRP solution (π̄1, ῡ1, w̄1, ḡ1) of cost LB1.

Lower bounding procedure BP2

Cut-and-column-generation method to solve a relaxation of
LRP obtained by ignoring cuts (25), and allowing non-
elementary routes. BP2 terminates with a feasible DRP solution
(π̄2, ῡ2, w̄2, ḡ2) of cost LB2 > LB1. The initial master problem
is obtained by replacing R with a subset of non-elementary routes
generated using (π̄1, ῡ1, w̄1, ḡ1).

Generation of initial set of elementary CARP routes

Use algorithm genRoutes to generate a subset R2 ⊆ R of ele-
mentary CARP routes having negative reduced cost no greater
than the gap zUB − LB2 with respect to the dual solution
(π̄2, ῡ2, w̄2, ḡ2).

Lower bounding procedure BP3

Cut-and-column-generation method to solve the dual of a re-
laxation of LRP obtained by ignoring cuts (25), and using ele-
mentary routes. BP3 terminates with a feasible DRP solution
(π̄3, ῡ3, w̄3, ḡ3) of cost LB3 > LB2. The initial master problem
is obtained by replacing R with R2.

Update the set of elementary CARP routes

Use algorithm genRoutes to generate a subset R3 ⊆ R of ele-
mentary CARP routes having reduced cost not greater than the
gap zUB−LB3 with respect to the dual solution (π̄3, ῡ3, w̄3, ḡ3).

Lower bounding procedure BP4

Cut-and-column-generation method to solve DRP. BP4 termi-
nates with a feasible DRP solution (π̄4, ῡ4, w̄4, ḡ4) of cost LB4 >

LB3. The initial master problem corresponds to the final mas-
ter of BP3, but route set R3 is checked at each iteration before
attempting to generate routes of negative reduced cost.
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Figure 2: Overview of the algorithm.
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Generation of the final route set R∗

Use algorithm genRoutes to generate the largest subset R∗ of
routes having reduced cost smaller than the gap zUB −LB4 with
respect to the final dual solution (π4,υ4,w4,g4) computed by
BP4.

Solution of the final reduced problem SP∗

Define the reduced problem SP∗, derived from SP, by (i) replacing
the route set R with the set R∗, and (ii) adding to SP∗ all con-
straints (14), (8), and (25) that were active at the end of procedure
BP4. The problem SP∗ is solved by means of an IP solver.
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Figure 2 (continued): Overview of the algorithm.

method for generating CARP routes as GVRP routes in G̃. In this section, we
also describe two relaxations of GVRP paths, namely the q-path relaxation
and the ng-path relaxation (originally introduced for the CVRP), to be used
by algorithm genRoutes in Section 5.

5.1 Description of the transformation

Let G̃ = (Ṽ , Ẽ) be a directed graph obtained from G as follows:

• Ṽ contains 2m+1 nodes partitioned intom+1 clusters Ṽ0, . . . , Ṽm, where Ṽ0
contains the depot. For each required edge e ∈ ER, Ṽe contains two nodes
associated with the two arcs (ie, je) ∈ AR and (je, ie) ∈ AR, respectively.

We denote by ν(a) the node v ∈ Ṽ associated with arc a ∈ AR. For

each node v ∈ Ṽ \ {0}, we denote by α(v) ∈ AR the arc associated with
node v, and by i(v) and j(v) the initial and terminal endpoints of α(v),
respectively. Moreover, we denote by ε(v) = e(α(v)) ∈ ER the required

edge corresponding to the arc α(v) associated with v. Note that Ṽε(v)
corresponds to the unique cluster containing v. For notational convenience,
we also define i(0) = j(0) = 0, and ε(0) = e0, where e0 = {0, 0} is a non-
required dummy loop in G of cost ce0 = 0.

• With each node v ∈ Ṽ is associated a demand q̃v = qε(v), (q̃0 = 0).

Improved Lower Bounds and Exact Algorithm for the Capacitated Arc Routing Problem
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• Let sij be the cost of the shortest path Pij from node i ∈ V to node

j ∈ V . For each node pair u, v ∈ Ṽ \ {0} such that ε(u) 6= ε(v), Ẽ
contains two arcs (u, v) and (v, u) of cost c̃uv = sj(u)i(v)+

1
2
cε(u)+

1
2
cε(v) and

c̃vu = sj(v)i(u)+
1
2
cε(u)+

1
2
cε(v), respectively. Moreover, for each v ∈ Ṽ \{0},

Ẽ contains two arcs (0, v) and (v, 0) of cost c̃0v = s0i(v) +
1
2
cε(v) and c̃v0 =

sj(v)0 +
1
2
cε(v), respectively.

A GVRP path P = (v1, . . . , vp) is a simple path in G̃ starting from node
v1 = b(P ), visiting the nodes of V (P ) = {v1, . . . , vp}, ending at node vp =
e(P ), and such that (i) its demand q(P ) =

∑p

k=1 q̃vk does not exceed Q, and

(ii) |V (P ) ∩ Ṽe| 6 1, ∀e ∈ ER. We denote by A(P ) and by V (P ) the set of
arcs and the index set of clusters traversed by path P , respectively. The cost
of path P is defined as c̃(P ) =

∑
(u,v)∈A(P ) c̃uv. A GVRP path P is called

forward if b(P ) = 0, and it is called backward if e(P ) = 0. A GVRP path

R̃ such that b(R̃) = e(R̃) = 0 is called a GVRP route. In the following, we

denote by R̃ the index-set of all GVRP routes in G̃.
It is easy to see that any GVRP route R̃ℓ, ℓ ∈ R̃, can be obtained by

combining a forward GVRP path P and a backward GVRP path P such that
e(P ) = b(P ) = v, for some v ∈ R̃ℓ, and satisfying (A) q(P ) + q(P ) 6 Q+ q̃v
and (B) V (P ) ∩ V (P ) = {0, ε(v)}. Note that although G̃ is asymmet-
ric, because of the definition of costs {c̃uv}, any GVRP backward path

P = (vp, . . . , v1, 0) in G̃ corresponds to a forward path P
R
of the same cost

c̃(P
R
) = c̃(P ) obtained by setting P

R
= (0, Ṽε(v1) \ {v1}, . . . , Ṽε(vp) \ {vp}).

The forward path P
R
is called the reverse path of the backward path P . Fig-

ure 3 depicts a backward path P and its reverse path P
R
. It follows that any

GVRP route R̃ℓ, ℓ ∈ R̃, can be obtained by combining two forward paths

P and P
R
such that P

R
is the reverse of a backward path P , and the pair

{P, P} satisfies conditions (A) and (B), plus the following condition: (C)

e(P
R
) = Ṽε(v) \ e(P ). In the following we refer to conditions (A), (B), and

(C) as route feasibility conditions.

5.2 GVRP paths and CARP routes.

The definition of a CARP route given in Section 2 gives rise to a number of
redundant routes associated with those walks that traverse a serviced edge
more than once, and this redundancy is not removed by the assumption that
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16 CIRRELT-2011-33



b

b

b

b

r

b

b

b

b

b

b

e(P )

0

b(P )

b

b

b

b

r

b

b

b

b

b

b

b(P
R
)

0

e(P
R
)

Figure 3: Example of reverse path in G̃: a backward path P on the left, and its

reverse P
R
on the right.

the path traversed between two edges serviced in sequence is the shortest
one.

Consider a CARP route Rℓ, and let E(Rℓ) ⊆ E be the set of edges
traversed by this route. We call a line of route Rℓ a subset of edges L ⊆ E(Rℓ)
such that: (i) each edge e ∈ L is traversed exactly twice by Rℓ in opposite
directions, (ii) edges in L form a simple open chain in G, and (iii) L is
maximal with respect to inclusion. Each line L of a route Rℓ such that
|Sℓ ∩ L| = r gives rise to 2r routes equivalent to Rℓ (i.e., having the same
cost and servicing the same edges) obtained by switching the service of each
edge e in Sℓ ∩ L from the first to the second time it is visited by Rℓ, or vice
versa. The number of these equivalent routes can be huge, especially for
routes containing more than one line.

A simple method to avoid this drawback is to impose an arbitrary ordering
of service for all edges on a line. We say that a CARP route Rℓ is a forward-

service route if all edges in Sℓ are serviced the first time they are traversed.
Conversely, Rℓ is called a backward-service route if all required edges in Sℓ

are serviced by Rℓ the last time they are traversed. Similarly, we define
a forward-service and backward-service CARP walk. Clearly, it is possible
to assume that in any CARP solution all CARP routes are forward-service
(equivalently, backward-service) routes.

It is easy to see that any GVRP path P = (0, v1, . . . , vp) corresponds to
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a CARP walk that services in sequence edges ε(v1), . . . , ε(vp) through arcs
α(v1), . . . , α(vp), and deadheads paths P0i(v1), . . . , Pi(vp−1)j(vp). Obviously, the

same correspondence holds between any GVRP route R̃ℓ, ℓ ∈ R̃, and a
CARP route Rℓ, ℓ ∈ R. Moreover, assuming that the path deadheaded by
any CARP route Rℓ, ℓ ∈ R, between two edges serviced in sequence is the
shortest one, and that Rℓ is a CARP forward-service route, the converse is
also true. We can therefore establish a one-to-one correspondence between
CARP routes in G indexed by R and GVRP routes in G̃ indexed by R̃, and
between their costs. In the following, we denote by R̃ℓ, ℓ ∈ R̃, the GVRP
route corresponding to CARP route Rℓ, ℓ ∈ R.

Note that any GVRP route R̃ℓ, ℓ ∈ R, corresponding to a forward-service
CARP route Rℓ can be obtained by combining a forward GVRP path P and

a reverse GVRP path P
R

satisfying route feasibility conditions, and such

that P corresponds to a forward-service CARP walk and P
R

corresponds
to a backward-service CARP walk. In the next section, we describe a dy-
namic programming algorithm that exploits this correspondence to generate
CARP routes corresponding to GVRP routes in G̃. This algorithm uses two
relaxations of GVRP paths, namely q-paths and ng-paths, to compute lower
bounds on the cost of the least cost GVRP route that can be obtained by
combining a GVRP path P with any reverse path. These relaxations are
now briefly described.

5.3 q-path relaxation of GVRP paths

The q-path relaxation was introduced by Christofides et al. [1981] for the
CVRP. In the context of the CARP, a similar relaxation was proposed by
Benavent et al. [1992], and also adopted to relax CARP routes by Gómez-
Cabrero et al. [2005], Letchford and Oukil [2009], and Bode and Irnich [2011].

A GVRP (q, v)-path in G̃ is a not necessarily simple path starting from

node 0, ending at node v ∈ Ṽ , and whose total demand does not exceed Q.
A GVRP (q, 0)-path is called a GVRP q-route. Let f(q, v) be the cost of the

least cost GVRP q-path in G̃ ending in v ∈ Ṽ , and let π(q, v) ∈ ER be the
cluster visited just prior to v in this path. Let g(q, v) be the cost of the least
cost GVRP q-path ending at v with the constraint that the cluster χ(q, v)
preceding i in this second path is not equal to π(q, v). We say that a GVRP
q-path contains a loop of k consecutive clusters (k-cluster-loop) if it visits in
sequence k nodes v1, . . . , vk such that ε(v1) = ε(vk). The functions f(q, v),
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and g(q, v) can be computed in pseudo-polynomial time by an extension of
the dynamic programming recursion described by Christofides et al. [1981],
imposing the restriction that the corresponding (q, v)-paths do not contain
2-cluster-loops.

5.4 ng-path relaxation of GVRP paths

The ng-path relaxation was introduced by Baldacci et al. [2011a] for the
CVRP and the vehicle routing problem with time windows. This relaxation
can be extended to the GVRP as follows. For each cluster Ṽe, e ∈ ER, let
Ñe be a subset of clusters (selected according to some criterion) such that

Ve ∈ Ñe and |Ñe| 6 ∆(Ñe), where ∆(Ñe) is an a priori defined parameter.

Clusters in Ñe are called neighbor clusters of Ṽe. Let Π be the family of
all cluster subsets. Using sets Ne, associate with each GVRP path P =
(0, v1, . . . , vp) a cluster subset Π(P ) ∈ Π containing cluster Ṽε(vp) plus every

other cluster Ṽε(vk), k = 1, . . . , p, that belongs to all sets Ñε(vk+1), . . . , Ñε(vp).

Formally, we have Π(P ) = {Ṽε(vk) ∈ V (P ) : Ṽε(vk) ∈
⋂

s=k+1,...,p

Ñε(vs), k =

1, . . . , p− 1} ∪ {Ṽε(vp)}. Note that Π(P ) is a subset of the clusters visited by
P that depends on the order in which these clusters are visited by P . For
any path P in G̃, let P ′ be the subpath of P obtained by removing the last
node from P . A GVRP ng-path (NG, q, v) is a not necessarily simple path

P in G̃ of demand q, starting from node 0, ending at node v ∈ Ṽ , and such
that Π(P ) = NG, and ε(v) 6∈ Π(P ′). Let f(NG, q, v) be the cost of the least
cost ng-path (NG, q, v). Because of the definition of an ng-path (NG, q, v), a
lower bound on the cost c̃(P ) of any forward GVRP path P can be obtained
using functions f(NG, q, v) as follows:

c̃(P ) > min
NG⊆V (P )∩Nε(e(P ))

{f(NG, q(P ), e(P ))} . (26)

The functions f(NG, q, v), ∀NG ∈ Π, ∀v ∈ Ṽ , 0 6 q 6 Q, can be com-
puted by means of a dynamic programming recursion similar to that de-
scribed in Baldacci et al. [2011a]. The computational complexity of this
recursion, unlike that used for q-path functions f(q, v) and g(q, v), is not
pseudo-polynomial because of the exponential size of Π. However, in practice
it is possible to considerably reduce the time spent for computing functions
f(NG, q, v) by limiting the size of sets Ñe, ∀e ∈ ER, and using dominance
rules as described by Baldacci et al. [2011b].
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Note that, depending on the definition of sets Ñe, ng-paths are allowed to
contain two-cluster loops. These loops can be eliminated using the method
described by Christofides et al. [1981] for computing q-paths without 2-vertex
loops. However, we do not implement this method, as in practice it is often
sufficient to set ∆(Ñe) > 10 to avoid such loops.

6 Dynamic programming algorithm genRoutes

We now describe a dynamic programming algorithm, called genRoutes,
used by our lower bounding method to generate CARP routes.

For each route Rℓ, ℓ ∈ R, define the set C (Rℓ) = {C ∈ C : |C ∩Sℓ| > 2},
and let βℓ(F ) =

∑
e∈F

f∈ER\F
βℓ
ef +

∑
e∈F β

ℓ
0e, ∀F ∈ F , and ζℓ(S) =

∑
i,j∈S
i<j

ζℓij ,

∀S ∈ S . Given a DRP solution (π̄, ῡ, w̄, ḡ), the reduced cost c̄r(Rℓ), or
simply c̄rℓ , of CARP route Rℓ, ℓ ∈ R, with respect to (π̄, ῡ, w̄, ḡ) is

c̄rℓ = cℓ −
∑

e∈Sℓ

aeℓπe −
∑

F∈F

βℓ(F )υF −
∑

S∈S

ζℓ(S)wS −
∑

C∈C (Rℓ)

gC − π0. (27)

genRoutes generates GVRP routes in G̃ corresponding to forward-
service CARP routes using bounding functions based on the ng-path and
q-path relaxations. Given dual values (π̄, ῡ, w̄, ḡ), and two user-defined pa-
rameters ∆ and ̺, genRoutes outputs a subset D ⊆ R containing at most
∆ forward-service CARP route Rℓ having reduced cost c̄rℓ not exceeding ̺.

6.1 Description of genRoutes

Let P be the set of all GVRP forward paths in G̃, and let Pv ⊆ P be
the subset of paths ending at vertex v ∈ Ṽ . genRoutes is a two-phase
procedure that generates path sets Pv, v ∈ Ṽ in phase 1, and in phase
2 combines these paths to extract the route set D . It associates with each
GVRP path P ∈ P amodified path cost d̄(P ) such that, for each pair of paths

P, P ∈ P that can be combined to obtain a GVRP route R̃ℓ corresponding
to Rℓ, the modified costs satisfy d̄(P ) + d̄(P ) = d̄(R̃ℓ) 6 c̄rℓ . Therefore, the
set D of CARP routes can be obtained generating all GVRP routes having
a modified cost not exceeding ̺.
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To compute the modified path costs, we associate a modified arc cost d̄uv
to each arc (u, v) ∈ Ã, computed as

d̄uv = c̃uv−
1

2
π̄ε(u)−

1

2
π̄ε(v)−

∑

F∈Fs.t.
ε(u)∈F,ε(v)6∈F

ῡF−
∑

S∈S s.t.
j(u)∈S,i(v)6∈S

w̄S, ∀u, v ∈ Ṽ . (28)

For any edge triplet C = {e1, e2, e3} ∈ C , let C̃ = {Ṽe1, Ṽe2, Ṽe3} be

the corresponding cluster triplet in G̃, and define C k(P ) = {C ∈ C : |C̃ ∩
V (P )| = k} for each GVRP path P . Using modified arc costs d̄uv, the
modified path cost d̄(P ) associated with path P ∈ P is computed as

d̄(P ) =
∑

(u,v)∈A(P )

d̄uv −
∑

C∈C 3(P )

ḡC −
∑

C∈C 2(P )
ε(e(P ))6∈C

ḡC . (29)

The following lemma shows that the modified costs of any two GVRP
paths that can be combined to obtain a GVRP route R̃ℓ corresponding to Rℓ

provide a lower bound on c̄rℓ .

Lemma 1 Let P and P be two GVRP forward paths satisfying route feasi-

bility conditions (A)− (C), and let Rℓ, ℓ ∈ R̃, be the GVRP route obtained

by combining P and P . The reduced cost c̄rℓ of CARP route Rℓ, ℓ ∈ R,

corresponding to R̃ℓ, satisfies c̄
r
ℓ > d̄(P ) + d̄(P ).

Because R̃ℓ corresponds to Rℓ, we have V (P )∪V (P ) = {Ṽe ⊂ Ṽ : e ∈ Sℓ},
and C (Rℓ) = C 3(P )∪C 3(P )∪C 2(P )∪C 2(P ). From the definition of costs
{d̄uv}, we have

c̄rℓ =
∑

(u,v)∈P

d̄uv −
∑

C∈C (Rℓ)

ḡC . (30)

Consider any edge triplet C ∈ C (Rℓ), and let C̃ be the corresponding cluster

triplet in Ṽ , we have the following two cases:

(i) |C̃ ∩ V (P )| = 3: because V (P ) ∩ V (P ) = {Ṽ0, Ṽε(e(P ))}, we have |C̃ ∩

V (P )| 6 1. The same holds for the symmetric case when |C̃∩V (P )| =
3.

(ii) |C̃ ∩ V (P )| = 2: because V (P ) ∩ V (P ) = {Ṽ0, Ṽε(e(P ))}, we have |C̃ ∩

V (P )| 6 1 + |C̃ ∩ Ṽε(e(P ))|.
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From (i) it follows that C 3(P ) ∩ C 3(P ) = ∅, and from (ii) we have C 2(P ) ∩

C 2(P ) ⊆ {C ∈ C : Ṽε(e(P )) ∈ C̃}. Therefore,
∑

C∈C (Rℓ)
ḡC 6

∑
C∈C 3(P ) ḡC +∑

C∈C 2(P )
ε(e(P ))6∈C

ḡC +
∑

C∈C 3(P ) ḡC +
∑

C∈C 2(P )
ε(e(P ))6∈C

ḡC , and because g 6 0 from (30)

we have c̄rℓ > d̄(P ) + d̄(P ). �

Let P ∈ P be any GVRP path, and let (π̄, ῡ, w̄, ḡ) be any DRP solution.
A completion bound on P with respect to (π̄, ῡ, w̄, ḡ) is defined as a lower
bound on the reduced cost with respect to (π̄, ῡ, w̄, ḡ) of any CARP route
corresponding to a GVRP route containing P . When generating the path set
P, genRoutes uses ng-path and q-path bounding functions to associate
with each GVRP path P ∈ P a completion bound LB

ng
(P ) on P with

respect to the input DRP solution. The lower bound LBng(P ) is used to
fathom all paths P generated such that LBng(P ) > ̺, and is computed
according to the following.

Lemma 2 A valid lower bound LB
ng
(P ) on the reduced cost c̄rℓ with respect

to a DRP solution (π̄, ῡ, w̄, ḡ) of any CARP route Rℓ, ℓ ∈ R, corresponding

to a GVRP route R̃ℓ containing path P can be computed as

LBng(P ) = d̄(P ) + min
NG⊆Π s.t. NG∩V (P )={Vε(e(P ))}

q6Q−q(P )+q̃e(P )

{f(NG, q, e(P ))} , (31)

where functions f(NG, q, v) are computed using modified arc costs d̄uv.

Let R be the CARP route having smallest reduced cost c̄r(R) with respect to

(π̄, ῡ, w̄, ḡ) and corresponding to a GVRP route R̃ containing P . Moreover,

let P be the GVRP path that gives R̃ when combined with P . Denote
by d̄ ′(P ) the cost of path P using modified arc costs d̄uv (i.e., d̄ ′(P ) =∑

(uv)∈A(P ) d̄uv ), from expression (26) we have

d̄ ′(P ) > min
NG⊆V (P )∩Ñ

ε(e(P ))

{
f(NG, q(P ), e(P ))

}
. (32)

Because P and P satisfy route feasibility conditions (A)− (C) we have that

ε(e(P )) = ε(e(P )), say ε(e(P )) = e, and V (P ) ∩ V (P ) = {Ṽ0, Ṽe}, and
therefore

{NG ⊆ Π : NG ⊆ V (P ) ∩ Ñe} ⊆ {NG ⊆ Π : NG ∩ V (P ) = {Ṽe}}. (33)
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Moreover, from condition (A),

q(P ) 6 Q− q(P ) + qe. (34)

Therefore, from (32) using (33), (34) we obtain

d̄ ′(P ) > min
NG∩V (P )={Ṽe}

q6Q−q(P )+qe

{
f(NG, q, e(P ))

}
. (35)

Finally, because g 6 0 and from Lemma 1 we obtain

c̄r(R) > d̄(P ) + d̄(P ) > d̄(P ) + d̄ ′(P ). (36)

From (35) and (36) we obtain LBng(P ) 6 c̄r(R). �

Although ng-path functions usually provide a better bound than q-path
functions, because the computation of LB

ng
(P ) can be time-consuming due

to the minimization over Π, we first compute a weaker completion bound
LB

q
(P ) using functions f(q, v) and g(q, v) as follows:

LB
q
(P ) = d̄(P ) + min

q̃e(P )6q6q(P )+q̃e(P )

{
f(q, e(P )), ifπ(q(P ), e(P )) 6∈ V (P )

g(q(P ), e(P )), otherwise,

(37)
where f(q, v) and g(q, v) are computed using modified costs d̄uv. All paths
P such that LB

q
(P ) > ̺ are fathomed.

We now provide a detailed description of the two phases of algorithm
genRoutes called genP and combineP, respectively.

6.2 Phase 1 of genRoutes: Procedure genP

Phase 1 of genRoutes is called genP and corresponds to a Dijkstra-like
algorithm that generates a sequence of GVRP forward paths (P 1, . . . , P h)
satisfying the following conditions:

(C1) LB
ng
(P 1) 6 . . . 6 LB

ng
(P h) 6 ̺;

(C2) c̃(P k) 6 c̃(P s), for each path P s such that V (P k) = V (P s), 1 6 k, s 6
h;

(C3) q̃(P k) 6 ⌈Q/2⌉+ q̃e(P k), 1 6 k 6 h;
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(C4) P k, 1 6 k 6 h, corresponds to either a forward-service CARP walk, or
a backward-service CARP walk.

genP uses a set T of temporary paths which is initialized as T = {P 0},
where P 0 = (0) is an empty path visiting only node 0. At each iteration of
genP, a path P ∈ T having smallest value LB

ng
(P ) is extracted from T

and inserted in Pe(P ). A new path Pv is then created for each v ∈ Ṽ by
inserting v at the end of P . Path Pv is rejected if it does not satisfy (C1)–
(C4), otherwise it is inserted in T . genP terminates when either T = ∅,
or LB

ng
(P ) > ̺.

In order to reduce the number of generated paths, genP uses three
fathoming rules: fathoming 1, fathoming 2, and fathoming 3. Fathoming 1
and 2 are dominance rules used to eliminate GVRP paths that are not optimal
with respect to the arc costs c̃uv: fathoming 1 performs a two-opt check of
the cluster sequence visited by a path, whereas fathoming 2 keeps the cluster
sequence fixed and checks whether the path is the shortest one visiting this
sequence. Fathoming 3 requires the knowledge of a valid upper bound zUB

on z(SP ), and a feasible DRP solution (π̂, υ̂, ŵ, ĝ) of cost ẑ. It is based on
the observation that the reduced cost ĉrℓ with respect to (π̂, υ̂, ŵ, ĝ) of any
route Rℓ being part of a feasible solution of cost zUB satisfies crℓ 6 zUB − ẑ.
Fathoming 3 was introduced by Baldacci et al. [2011a].

Fathoming 1. Let P ∈ P be a forward GVRP path such that |P | > 4
and let e3(P ), e2(P ), e1(P ), be the three nodes preceding e(P ) in this path
(i.e., P = (0, v1, . . . , e

3(P ), e2(P ), e1(P ), e(P ))). Path P can be fathomed if
the subpath (e3(P ), e2(P ), e1(P ), e(P )) has a cost greater than the subpath
(e3(P ), e1(P ), e2(P ), e(P )) with respect to arc costs c̃uv.

Fathoming 2. Let P = (0, v1, . . . , vp) ∈ P be a forward GVRP path,

and let P ∗ be the shortest GVRP path in G̃ using arc costs c̃uv, visiting the
cluster sequence (Ṽ0, Ṽε(v1), . . . , Ṽε(vp−1)), and ending in vp. Path P can be
fathomed if c̃(P ) > c̃(P ∗).

Fathoming 3. Let (π̂, υ̂, ŵ, ĝ) be a feasible DRP solution of cost ẑ,

and let L̂B
ng
(P ), P ∈ P, be a completion bound on P with respect to

(π̂, υ̂, ŵ, ĝ). Any path P ∈ P such that L̂B
ng
(P ) > zUB−ẑ can be fathomed

as it cannot generate any GVRP route corresponding to a CARP route of
any SP solution of cost less than or equal to zUB.

The completion bound L̂B
ng
(P ) required by fathoming 3 is computed as

described in Section 6 using (31) and replacing (π̄, ῡ, w̄, ḡ) with (π̂, υ̂, ŵ, ĝ).
The shortest path P ∗ and its cost c̃(P ∗) required by fathoming 2 can be
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computed in O(|P |) time as follows. Let s̃(P, vk) be the cost of the shortest

path in G̃ starting at 0, visiting cluster sequence (Ṽ0, Ṽε(v1), . . . , Ṽε(vk)), k 6

p−1, and ending at vertex vk ∈ Ṽk. Moreover, define v̄ = Vε(v) \{v}, ∀v ∈ Ṽ .
We have, s̃(P, v1) = c̃0v1 , s̃(P, v̄1) = c̃0v̄1 , and s̃(P, vk) = min{s̃(P, vk−1) +
c̃vk−1vk , s̃(P, v̄k−1) + c̃v̄k−1vk}, s̃(P, v̄k) = min{s̃(P, vk−1) + c̃vk−1v̄k , s̃(P, v̄k−1) +
c̃v̄k−1v̄k}. The cost c̃(P ∗) is then given by setting c̃(P ∗) = min{s̃(P, vp−1)
+c̃vp0, s̃(P, v̄p−1) + c̃v̄p0}.

Note that both fathoming 1 and 2 can be viewed as special cases of
condition (C2). However, because of duals υ and w, given any two paths P k,
P s, 1 6 k, s,6 h, it is often the case that c̃(P k) 6 c̃(P s), but d̄(P k) > d̄(P s),
and the path sequence (P 1, . . . , P h) generated by genP does not in general
satisfy c̃(P 1) 6 . . . 6 c̃(P h). Therefore, using fathoming 1 and 2 can result
in practice in a significant reduction in the computing time and memory
required by procedure genP.

It is clear that by removing condition (C3) procedure genP can be used
directly to generate GVRP routes. In our computational experiments, we
have observed a clear trade-off between the speedup obtained by imposing
condition (C3) when generating path set P and the time spent combining
these paths to obtain routes. In particular, whenever |P| becomes large
(say |P| > 106) we found it convenient to turn genRoutes into a single
phase procedure that directly generates GVRP routes using genP. In this
case, it is possible to modify condition (C4) to also fathom all GVRP paths
corresponding to backward-service CARP walks. Directly generating routes
using genP also avoids the drawback of combining path pairs giving rise to
routes that would be rejected by fathoming 1 or 2.

6.3 Phase 2 of genRoutes: Procedure combineP

Phase 2 of genRoutes is an iterative procedure called combineP which is
executed after genP to combine paths Pv, v ∈ Ṽ , and is designed to avoid
symmetries when combining path pairs to extract route set D .

Procedure combineP is based on the observation that any forward-
service CARP route having reduced cost less than or equal to ̺ corresponds
to a GVRP route R̃ℓ, ℓ ∈ R̃, that can be decomposed into two forward
GVRP paths P and P such that:

(C5) d̄(P ) + d̄(P ) 6 ̺;

(C6) P and P satisfy route feasibility conditions (A)− (C) (see Section 5.1);
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(C7) q(P )− q̃e(P ) 6 q(P ) 6 q(P ) + q̃e(P ).

combineP initializes D = ∅ and generates a sequence of GVRP forward
path pairs L = ((P r1, P

s1
), (P r2, P

s2
), . . . , (P rp, P

sp
)) such that each pair

(P rk , P
sk
) ∈ L satisfies (C5)–(C7), and d̄(P k1)+d̄(P

s1
) 6 d̄(P k2)+d̄(P

s2
) 6

· · · 6 d̄(P kp) + d̄(P
sp
). For each pair h, 1 6 h 6 p, a corresponding CARP

route Rh is obtained, and if c̄r(Rh) 6 ̺, then Rh is added to D . Procedure
combineP terminates whenever either |D | > ∆, or no more pairs (P, P )
satisfying (C5)–(C7) can be extracted from path sets Pv.
Step-by-step description of combineP

Let Pv = (P 1
v , . . . , P

hv
v ), v ∈ Ṽ , be the set of all GVRP paths ending at

node v computed by procedure genP. In the following, we assume that
each Pv is ordered by non-decreasing values of modified path costs, i.e.,
d̄(P 1

v ) 6 · · · 6 d̄(P hv
v ). For the sake of simplicity, we denote by P k

e the path

in position k of ordered set Pv such that ε(v) = e and i(v) < j(v), and by P
k

e

the path in position k of ordered set Pv such that ε(v) = e and i(v) > j(v),

∀e ∈ ER. Thus, P
k
e and P

k

e correspond to CARP walks ending at edge e and
servicing it through arc (ie, je) and (je, ie), respectively. Moreover, we define

v̄ = Vε(v) \ {v}, ∀v ∈ Ṽ . A step-by-step description of procedure combineP

is as follows.

1. Initialize L = ((P 1
e , P

1

e) : P
1
e , P

1

e satisfy (C5)–(C7)), ∀e ∈ ER.

2. If L = ∅, then STOP. Otherwise, extract from L a pair (P r
e , P

s

e) having
smallest value d̄(P r

e ) + d̄(P
s

e), and execute the following steps.

3. Let Rrs
e be the CARP route obtained by combining paths P r

e , P
s

e. If
c̄r(Rrs

e ) 6 ̺ and c(Rrs
e ) < c(R), ∀R ∈ D such that S(R) = S(Rrs

e ), then,
add R to D . If |D | > ∆, STOP. Otherwise, execute the following steps.

4. Add the following pairs to L :

(a) (P r′

e , P
s

e), where r
′ = min{r̄ = r+ 1, . . . , |Pv| s.t. d̄(P

r̄
e ) + d̄(P

s

e) 6 ̺,
and P r̄

e , P
s

e satisfy (C5)–(C7)}, if r − s > 0.

(b) (P r
e , P

s′

e ), where s
′ = min{s̄ = s+ 1, . . . , |Pv̄| s.t. d̄(P

r
e ) + d̄(P

s̄

e) 6 ̺,

and P r
e , P

s̄

e satisfy (C5)–(C7)}, if r − s 6 0.

5. If r − s = 1, or r = s and r − s′ < −1; then set r = r + 1, s = s+ 1, add
pair (P r

e , P
s

e) to L , and go to Step 4. Otherwise, go to Step 2.
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A dominance rule similar to fathoming 3 described for genP is also
applied at Step 3 of combineP. Specifically, the following fathoming pro-
cedure is applied for each route Rrs

e generated at Step 3.
Fathoming 4. Let (π̂, υ̂, ŵ, ĝ) be a feasible DRP solution of cost ẑ, and

let ĉrℓ be the reduced cost with respect to (π̂, υ̂, ŵ, ĝ) of any CARP route Rℓ,
ℓ ∈ R. Any route Rℓ such that ĉrℓ > zUB − ẑ can be fathomed as it cannot
be part of any SP solution of cost less than or equal to zUB.

7 Lower bounding procedures

We have developed four lower bounding procedures BP1, BP2, BP3, and BP4
to compute the final lower bound LB4 on the CARP optimum. Procedure
BP1 is an extension of a procedure originally proposed by Baldacci et al.
[2008] for the CVRP that uses a dual ascent heuristic instead of the simplex
algorithm to solve the master problem. Procedures BP2, BP3, and BP4 use
the same simplex-based cut-and-column generation method, called LPCG,
to solve different relaxations of LRP.

7.1 Lower bounding procedure BP1

Procedure BP1 solves a relaxation of problem LRP, called RF1, where con-
straints (14), (8), and (25) are ignored, and the route set R is enlarged to
contain all CARP q-routes in G.

Here, we briefly define CARP q-routes, and relate them with correspond-
ing GVRP q-routes in G̃ (see Section 5.3). A CARP q-route is defined as
a CARP route where the requirement that a required edge is serviced at
most once is relaxed. A CARP q-route ends at arc a if e(a) ∈ ER is the
last edge serviced, through arc a, before returning to the depot for the
last time. Each CARP q-route ending at arc a corresponds to a GVRP
q-route in G̃ of the same cost ending at node v = ν(a), i.e., visiting node

v = ν(a) ∈ Ṽ just before returning to node 0. Conversely, given any GVRP

q-route R̃ = (0, v1, . . . , v, 0) ending at node v, a corresponding CARP q-route
ending at arc α(v) is obtained by servicing in sequence edges ε(v1), . . . , ε(v)
through arcs α(v1), . . . , α(v), and deadheading the shortest paths P0i(v1), . . . ,
Pj(v)0. It is obvious how to define a CARP (q, a)-path in G, e(a) ∈ ER, using

the same correspondence with a GVRP (q, ν(a))-path in G̃. We say that a
CARP q-route contains a loop of k consecutive edges (k-loop) if it services
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in sequence k required edges e1, . . . , ek = e1 (note that a 1-loop corresponds
to servicing twice the same edge consecutively).

It is worth noting that the q-path relaxation adopted in this paper is
slightly different from that commonly adopted in the previous CARP litera-
ture. Indeed, since we assume that a CARP route always deadheads shortest
paths, a CARP (q, a)-path as defined in this paper always ends at a serviced
edge e(a), whereas the usual q-path relaxation for the CARP is obtained by
defining, for each vertex i ∈ V , a (q, i)-path of demand q ending at vertex
i. This last definition has the advantage of exploiting the sparsity of the
graph, yielding a pricing algorithm for CARP q-routes which can be exe-
cuted in O(Q|E| + |V | log |V |) time [see Letchford and Oukil, 2009] rather
than in O(Q|ER|

2) time as in this paper. However, our definition enables the

generation of CARP q-routes as corresponding GVRP q-routes in G̃, and be-
cause there are no arcs between nodes of a same cluster in G̃, imposing that
GVRP q-routes cannot contain loops of two consecutive clusters implies that
the corresponding CARP q-routes do not contain 3-loops. That is, pricing
GVRP q-routes with 2-cycle elimination yields CARP q-routes without 3-
loops. Therefore, the q-path relaxation adopted in this paper, which is quite
fast to solve in practice, can yield better lower bounds than the classical one
even if 2-cycle elimination is used.

Procedure BP1 is a dual ascent method that uses column generation to
compute a near optimal solution π1 of cost LB1 to the dual of RF1, called
DRF1. The final DRP solution of cost LB1 corresponding to π1 is denoted
by (π1,υ1,w1, g1), where υ1 = 0, w1 = 0, g1 = 0. Procedure BP1 is based
on the following theorem.

Theorem 2 Let λe ∈ R, ∀e ∈ ER, and λ0 ∈ R
+ be penalties associated with

constraints (2) and (3), respectively. A feasible DRF1 solution π of cost

z(DRF1(λ)) can be obtained by means of the following equations:

πe =qe min
ℓ∈R
aeℓ>0

{
(cℓ − λ(Sℓ)− λ0)

q(Sℓ)

}
+ λe, ∀e ∈ ER, (38)

π0 =λ0, (39)

where q(Sℓ) =
∑

e∈Sℓ

aeℓqe and λ(Sℓ) =
∑

e∈Sℓ

aeℓλe.
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Consider any route Rℓ′ , ℓ
′ ∈ R. Because aeℓ′ > 0, ∀e ∈ Sℓ′, we have

qe min
ℓ∈R
aeℓ>0

{
(cℓ − λ(Sℓ)− λ0)

q(Sℓ)

}
6 qe

(cℓ′ − λ(Sℓ′)− λ0)

q(Sℓ′)
, ∀e ∈ Sℓ′. (40)

Using expressions (38) and (39), from (40) we obtain

∑

e∈ER

aeℓ′πe + π0 6
∑

e∈ER

aeℓ′qe
(cℓ′ − λ(Sℓ′)− λ0)

q(Sℓ′)
+ λ(Sℓ′) + λ0 = cℓ′. (41)

�

Procedure BP1 uses subgradient optimization and column generation to
heuristically solve maxλ{z(DRF1(λ))} as follows. Let RF1 be a restricted
problem obtained from RF1 by substituting R with a subset R ⊆ R, and
let π̄ be a solution to the dual DRF1 of problem RF1. We denote by φ̄(a)
the cost of the least cost GVRP q-route ending at ν(a) with respect to the
modified arc costs d̄uv. The value φ̄(a) corresponds to the reduced cost
of the least reduced cost CARP q-route with respect to π̄. Cost φ̄(a) is
computed as φ̄(a) = minq̄=qν(a),...,Q{f(q̄, ν(a))+d̄ν(a)0}, where functions f(q, v)

are calculated using the modified arc costs d̄uv obtained according to equation
(28) by setting ῡ = 0 and w̄ = 0

BP1 initializes LB1 = 0, λ = 0, R = ∅, and executes a fixed number
maxit1 of macro-iterations which perform the following steps:

1. execute a fixed number maxit2 of subgradient iterations using Theorem
2 (where R is replaced by R) to compute a dual solution π̄ of cost z̄ to
RF1, and modifying the penalties λ using the subgradient method;

2. generate a subset N containing the CARP q-route of minimum reduced
cost φ̄a ending at arc a, ∀a ∈ AR. If N = ∅ and z̄ is greater than LB1,
then update LB1 = z̄, and π1 = π̄. Otherwise, update R = R ∪ N .

At Step 1, a subgradient ψ̄ on z(DRF1(λ)) can be computed as follows.
Let ℓe ∈ R, e ∈ ER, be the index of a route Rℓe yielding the minimum
in (38), and define a not necessarily feasible LRF1 solution x̄ setting x̄ℓ =∑

e∈ER
aeℓ(qe/q(Sℓe)), ∀ℓ ∈ R. A valid subgradient on z(DRF1(λ)) is given

by setting ψ̄e =
∑

ℓ∈R
aeℓx̄ℓ − 1, and ψ̄0 =

∑
ℓ∈R

x̄ℓ −K∗.
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7.2 Cut-and-column generation algorithm LPCG

LPCG is a simplex-based cut-and-column generation method for solving LRP
which constitutes the skeleton of procedures BP2, BP3, and BP4. It can be
briefly described as follows.

Let η, γ, and M(N ) be a priori defined parameters. LPCG starts by
defining an initial master problem LRP obtained from LRP by substituting
the route set R with a subset R ⊆ R, and the sets S , F , and C of
inequalities (8), (14), and (25) with subsets S ⊆ S , F ⊆ F , and C ⊆ C .
At each iteration, it solves LRP using the simplex algorithm to obtain an
optimal LRP solution x̄, and a corresponding DRP solution (π̄, ῡ, w̄, ḡ). It
then generates at most η constraints (14), (8), (25) violated by x̄, adds them
to S , F , and C , respectively, and executes a new iteration. Whenever no
violated inequality is found, or after at least γ inequalities have been added to
LRP in subsequent iterations, LPCG solves the pricing problem to generate
a subset N ⊂ R containing at most M(N ) CARP routes having negative
reduced cost with respect to (π̄, ῡ, w̄, ḡ). The new routes are then added to
R. LPCG terminates whenever N = ∅, and no violated inequalities (14),
(8), or (25) were identified in the last iteration. In order to keep the LP
compact, at each iteration, LPCG removes from LRP all variables and cuts
that were inactive in the last θ iterations (say, θ = 20), and moves them into
a route pool R and and a cut pool B, respectively. These pools are checked
at each iteration before attempting to solve the pricing problem and before
generating violated inequalities.

Violated inequalities at each iteration of LPCG are detected in the order
(14), (8), and (25), and the corresponding separation problems are solved as
follows.
Capacity constraints (14). Inequalities (14) are separated as CVRP rounded
capacity inequalities over a weighted undirected graph Ĝ(ξ) = (V̂ (ξ), Ê(ξ))
defined by the aggregated variables ξef obtained through equations (13). The

graph Ĝ(ξ) is defined as follows. The node set V̂ (ξ) contains a node 0 and a
node ue of demand qe for each required edge e ∈ ER. The edge set Ê(ξ) con-
tains an edge {ue, uf} of weight ξef for each pair e, f such that ξef > 0, and

an edge {0, e} of weight ξ0e for each edge e ∈ ER such that ξ0e > 0. Let q(Ŝ)
be the total demand of nodes in Ŝ, for any Ŝ ⊆ V̂ (ξ), and let ξ(δ(Ŝ)) be the
total weight of edges in Ê(ξ) crossing Ŝ. Any set Ŝ ⊆ V̂ (ξ) \ {0} such that
ξ(δ(Ŝ)) < ⌈q(Ŝ)/Q⌉ corresponds to a violated inequality (14) defined by an
edge set F = {e ∈ ER : ue ∈ Ŝ}. We use the package CVRPSEP [Lysgaard,
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2003] to identify sets in Ĝ(ξ) corresponding to violated inequalities (14).
Odd edge cutset constraints (8). Inequalities (8) can be separated exactly
similarly to CARP odd edge cutset constraints (6) over a weighted undirected
graph G(ȳ) = (V (ȳ), E(ȳ)) defined by the aggregated variables yij obtained
through equations (7). Node set V (ȳ) of G(ȳ) corresponds to V , and edge set
E(ȳ) contains an edge {i, j} of weight ȳij for each node pair i, j, i < j, such
that ȳij > 0. For each node in i ∈ V (ȳ), node i is labeled “odd” if |δR(i)| is
odd, and “even” otherwise. Let ȳ(δ(S)) be the total weight of edges in E(ȳ)
crossing S. Any set S ⊆ V (ȳ) \ {0} containing an odd number of odd nodes
and such that ȳ(δ(S)) < 1 corresponds to a violated inequality (8) defined by
a node set S. To determine set S, we use the algorithm of Padberg and Rao
[1982] to compute the minimum weight odd cut (S : V (ȳ) \S) in G(ȳ). Note
that the size of graph G(ȳ) can be reduced by iteratively shrinking edges
having weight greater than or equal to one, and if G(ȳ) is not connected the
search can be restricted by considering each connected component of G(ȳ)
separately.
Subset row inequalities (25). Let R

ε
= {ℓ ∈ R : x̄ℓ > ε}, where ε is an a

priori defined parameter. Inequalities (25) are separated by enumerating all
triplets C and checking the degree of violation of the corresponding inequality
with respect to the routes in R

ε
. When detecting violated inequalities (25),

an attempt is made to avoid generating violated inequalities that will likely
be redundant in subsequent iterations. To this end, let C ′ be the set of
triplets corresponding to all violated inequalities identified in the current
iteration, and let ω(C) be the degree of violation of inequality (25) defined
by C, ∀C ∈ C ′. All triplets C such that, for some C ′ ∈ C ′, ω(C) < ω(C ′),
and |C ′ ∩ C| = 2 are then removed from C ′.

7.3 Lower bounding procedure BP2

Procedure BP2 solves a relaxation of LRP, denoted by RF2, not containing
constraints (25) and in which the set R of CARP routes is enlarged to contain
all CARP q-routes. RF2 is solved by a lower bounding procedure called BP2
which is based on LPCG. The initial master problem RF2 is obtained from
RF2 by substituting R with a subset R ⊆ R containing a CARP q-route
ending in arc a, for each arc a ∈ AR, having minimum reduced cost with
respect to the dual solution (π1,υ1,w1, g1) computed by BP1. The route
and cut pools R and B are initialized as R = ∅, and B = ∅. Moreover,
BP2 initializes S = {{i} : i ∈ V, |δR(i)| is odd}, and F = ∅, C = ∅.
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At each iteration of LPCG, the route subset N is obtained by computing
a CARP q-route of minimum reduced cost φ̄a ending at arc a, ∀a ∈ AR,
with respect to the current master dual solution. Values φ̄a, ∀a ∈ AR, are
computed as φ̄(a) = minq̄=qν(a),...,Q{f(q̄, ν(a))+d̄ν(a)0}, where functions f(q, v)

are calculated using the modified arc costs d̄uv computed according to (28).
In the following, we denote by (π2,υ2,w2, g2), g2 = 0, the final DRP

solution of cost LB2 computed by procedure BP2.

7.4 Lower bounding procedure BP3

Procedure BP3 solves a relaxation RF3 of problem LRP obtained by ignoring
constraints (25). RF3 is solved by a lower bounding procedure called BP3
which is based on LPCG, and applies algorithm genRoutes to generate
CARP routes.

LetM(R2) andM(P2
v ) be two parameters defined a priori. Before start-

ing LPCG, BP3 applies genRoutes to generate a subset R2 ⊆ R con-
taining at most M(R2) CARP routes having reduced cost with respect to
(π2,υ2,w2, g2) less than or equal to the gap zUB −LB2. Let P2 be the set
of all paths generated by genRoutes to compute R2. When generating R2,
we impose that |P2

v | 6M(P2
v ), ∀v ∈ Ṽ , and both fathoming 3 and fathom-

ing 4 are applied within genRoutes using DRP solutions (π1,υ1,w1, g1)
and (π2,υ2,w2, g2). The path set P2 is called optimal if |P2

v | < M(P2
v ),

∀v ∈ Ṽ . Note that if P2 is optimal, it is not required to use genRoutes

within BP3, as all routes that can be part of an optimal solution can be
generated by combining paths in the set P2.

The initial master problem of LPCG is obtained setting R = R2, and
S = ∅, F = ∅, and C = ∅. The route pool R is initialized as R = ∅, and
the cut pool B initially contains all inequalities found by procedure BP2.
At each iteration of LPCG, the subset N ⊆ R containing at most M(N )
routes of negative reduced cost is generated according to the following two
cases:

1. P2 6= ∅:

(i) Extract from P2 a subset Pv ⊆ P2
v containing the M(Pv)

(M(Pv) defined a priori) paths of minimum modified cost d̄(P )

ending at node v, ∀v ∈ Ṽ , and such that LB
ng
(P ) 6 0, ∀P ∈ Pv,

v ∈ Ṽ .
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(ii) Use procedure combineP to combine paths in Pv, ∀v ∈ Ṽ ,
setting ∆ = M(N ) and ̺ = 0.

(iii) If |N | = 0 we have to consider two cases:
(a) P2 is not optimal: set P2 = ∅, and go to case 2.

(b) P2 is optimal and |Pv| < |P2
v | for some v ∈ Ṽ : setM(Pv) =

∞ and return to (i).

2. P2 = ∅:

a Use genRoutes to compute route subset N by setting ∆ =M(N )

and ̺ = 0, and imposing |Pv| 6 M(Pv), ∀v ∈ Ṽ , within genP.

b If |N | = 0 and |Pv| = M(Pv) for some v ∈ Ṽ , then set M(Pv) =
∞ and repeat case 2.

In both cases 1 and 2, whenever |N | = ∅ or genRoutes runs out of
memory procedure BP3 terminates prematurely.

When generating N , fathoming 3 and fathoming 4 are applied within gen-

Routes using both DRP solutions (π1,υ1,w1, g1) and (π2,υ2,w2, g2). More-
over, any route R such that c(R) > c(Rℓ), for some ℓ ∈ R ∪ R, and such
that S(R) = S(Rℓ) is removed from N . In the following, we denote by
(π3,υ3,w3, g3), g3 = 0, the final DRP solution of cost LB3 computed by

procedure BP3, and by R
3
, S

3
and F

3
the subsets of routes and inequalities

(8) and (14), respectively, of the final master RF3 at the end of BP3.

7.5 Lower bounding procedure BP4

Procedure BP4 is similar to BP3 except that it incorporates constraints (25).
It is executed after BP3 and starts by generating a subset R3 ⊆ R con-
taining at most M(R3) CARP routes having reduced cost with respect to
(π3,υ3,w3, g3) less than or equal to the gap zUB − LB3, where M(R3) is
defined a priori. Fathoming 3 and fathoming 4 are applied within genP

and combineP using DRP solutions (π1,υ1,w1, g1), (π2,υ2,w2, g2), and
(π3,υ3,w3, g3). When generating R3, we impose that |P3| 6 M(P3),
where P3 is the set of all paths that are generated by genRoutes to com-
pute route set R3, and M(P3) is a parameter defined a priori. Path set P3

is called optimal if |P3| < M(P3).
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BP4 uses the route set R3 to update the pool R as R = R∪R3, whereas

the master problem is initialized by setting R = R
3
, and S = S

3
, F = F

3
.

At each iteration of LPCG, the subset N ⊆ R is generated according to
the same strategy as in procedure BP3 where P2 is replaced with P3, and
fathoming rules 3 and 4 are applied within genRoutes using DRP solutions
(π1,υ1,w1, g1), (π2,υ2,w2, g2), and (π3,υ3,w4, g3).

8 Computational experiments

All algorithms were coded in C and compiled under Visual Studio 2008.
CPLEX 12.1 [CPLEX, 2008] was used as the LP solver in procedures BP2,
BP3, BP4, and as the IP solver in the exact algorithm. All computational
experiments were run on an Intel Xeon E5310 Workstation clocked at 1.6
GHz with 8 Gb RAM running Windows Server 2003 x64 Edition.

8.1 Test instances

We have used five sets of CARP benchmark instances called egl [Belenguer
and Benavent, 2003], val [Benavent et al., 1992], gdb [Golden et al., 1983],
kshs [Kiuchi et al., 1995], and bmcv [Beullens et al., 2003]. The sets val,
gdb, and kshs correspond to Capacitated Chinese Postman Problems in that
all edges of the corresponding graphs are required. Data set egl is based on
data from a winter gritting application in Lancashire, England [Li and Eglese,
1966, Eglese, 1994] and contains 24 instances based on two networks created
by changing the set of required edges and the capacities of the vehicles.
These instances involve up to 140 nodes and 190 edges, and the demand
quantities for the required edges are proportional to their costs. Data set val
contains 34 instances with up to 50 vertices and 97 edges obtained from 10
randomly generated graphs by changing the capacity of the vehicles. Data
sets gdb and kshs contain 23 randomly generated instances with up to 27
nodes and 55 edges, and six instances with up to 10 nodes and 15 edges,
respectively. Finally, the data set bmcv is made up of 100 instances with up to
97 vertices and 142 edges obtained by partitioning the inter-city road network
of Flanders, Belgium, into districts in the context of winter gritting. The
latter instances are further partitioned into four classes, called C, D, E and
F. Instances D and F are defined over the same graphs as instances C and E
but double the vehicle capacity. Data sets egl, val, gdb, and kshs are publicly
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available at http://www.uv.es/~belengue/carp.html, whereas instances
bmcv were kindly provided to us by Beullens and Muyldermans [2010].

8.2 Computational results

In Tables 1–5 we compare the results obtained by the four lower bounding
procedures BP1, BP2, BP3, and BP4, and by our exact algorithm (columns
headed “Our algorithm”) with those obtained by the methods of Baldacci
and Maniezzo [2006] (columns “BM”), Longo et al. [2006] (columns “LPU”),
Belenguer and Benavent [2003] (columns “BB”), and Beullens et al. [2003]
(columns “BMCV”).

The algorithm of Baldacci and Maniezzo works by transforming the CARP
into an equivalent CVRP which is solved by branch-and-cut using a two-
index formulation strengthened by the generation of several classes of valid
inequalities for the CVRP. The algorithm of Longo et al. is also based on a
transformation of the CARP into a CVRP. However, these authors model this
CVRP as a set covering-like problem which is solved by branch-and-cut-and-
price. This formulation is strengthened using rounded capacity cuts, framed
capacity, and strengthened comb cuts. The algorithm of Belenguer and Be-
navent is a cutting plane method based on a sparse formulation described
by integer variables representing the number of times an edge is deadheaded.
This formulation contains capacity constraints, odd edge cutset constraints,
and disjoint path inequalities. Finally, the lower bounds computed by Beul-
lens et al. are obtained by first applying the cutting plane algorithm of
Belenguer and Benavent, but ignoring disjoint path inequalities, and then
using the CPLEX IP solver to obtain an integer solution.

In all instances, edge costs are represented as integers, and therefore the
final lower bounds obtained by procedures BP1, BP2, BP3, and BP4 are
rounded up to the nearest integer. Tables 1 – 5 display the following data
for each instance. Column “Ins.” reports the instance name whereas col-
umn “zUB” reports the best known upper bound (either taken from Santos
et al. [2010], or computed by our exact algorithm; bold values indicate an im-
provement over the best known upper bound), and column “zLB” reports the
best lower bound found by our algorithm. Columns “%LBx”, x = 1, . . . , 4,
report the percentage ratio of lower bounds LBx computed by procedures
BPx (i.e., %LBx = LBx/zUB · 100); columns “tx”, report the total (cumu-
lative) time in seconds spent by procedures “BPx” (e.g., t4 is the total time
spent for computing LB1, LB2, LB3, and LB4). Columns “%LB” under
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headings LPU, BM, BB, and BMCV report the percentage ratio of the best
lower bound obtained by the respective authors, and columns “t”, give the
corresponding computing times in seconds (computing times for BMCV are
not available). Lower bound ratios reported for Longo et al., Baldacci and
Maniezzo, and Belenguer and Benavent are computed with respect to the
root lower bounds, whereas those of Beullens et al. are relative to the best
lower bound at termination. Columns “|R∗|” give the cardinality of the final
route set R∗ computed by the exact method described in Section 4. Finally,
column “t∗” provides the total computing time for the instances solved to
optimality.

A time limit of four hours was imposed to all lower bounding procedures
described in this paper. An entry tl in column “tx” indicates that the the time
limit was reached. An additional time limit of six hours was then allowed to
the execution of the exact algorithm described in Section 4. An entry M in
columns “LBx” and in column “|R∗|” indicates that genRoutes ran out
of memory in generating the route set N within procedure BPx and route
set R∗ at Step 2 of the exact algorithm, respectively. In these cases, the
algorithm terminated prematurely.

All computing times reported for Longo et al., and Baldacci and Maniezzo
are relative to an Intel Pentium IV clocked at 2.8 GHz, and to an Intel Pen-
tium IV clocked at 2.4 GHz, respectively. In order to allow a fair compari-
son between the running times of these algorithms and ours, we have used
the CPU2000 benchmarks, reported by the Standard Performance Evalua-
tion Corporation (SPEC 2005), which are publicly available at http://www.
spec.org/cpu/results/. According to these benchmarks the SPECint and
SPECfp scores for the Intel Xeon E5310 used in this paper are 1,680 and
1,619, whereas the scores for the Pentium IV at 2.8 GHz of Longo et al.
are 976 and 915, and those of the Pentium IV at 2.4 GHz of Baldacci and
Maniezzo are 852 and 840. Therefore, we estimate that our computer is ap-
proximately 1.8 times faster than that of Longo et al., and twice faster than
that of Baldacci and Maniezzo. Belenguer and Benavent used a SUN Sparc
20. We could not find benchmarks for this computer, but our machine is
clearly much faster, probably by at least one order of magnitude.

The following parameter settings were used by our algorithm to obtain all
results reported in Tables 1 – 5: maxit1 = 100, andmaxit2 = 50 in procedure
BP1; M(R2) = 100000, M(R1) = 50000, M(P2

v ) = ⌈10000000
|ER|

⌉, M(Re) =

⌈1000000
|ER|

⌉, in procedure BP3; M(R3) = 50000 and M(P3) = 50000000, in
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procedure BP4; M(N ) = 500 andM(Pv) = 50000, in both procedures BP3
and BP4. Finally, we set ∆MAX = 1000000 in the exact method.

8.3 Analysis of the computational results

The results reported in Tables 1 – 5 show that the new lower bounds are
tighter than the previous best ones. Lower bound LB2 is on average better
and significantly faster all previous best ones. An exception is data-set val
where LB2 is on average slightly worse than the lower bound of LPU but
runs approximately 20 times faster. The final lower bound LB4 is more time
consuming, but is on average significantly tighter than previous ones on all
data-sets tested. Indeed, LB4 is never worse than previous lower bounds,
except for two instances (E21 from data-set bmcv, and s4-A from data-set
egl). On average, it is always within less than 0.5% from the best known
upper bounds.

Concerning the exact method, our results confirm the usefulness of the
new lower bounds. A total of 27 instances could be solved for the first time
by the exact algorithm: six from data-set egl, and 21 from data-set bmcv.
Five new upper bounds were also found, two of which are optimal. The two
val instances 5D and 8C are solved for the first time by our exact algorithm
and by the algorithm of Bode and Irnich [2011]. The latter algorithm also
optimally solves instances 4D and 5C for the first time. At present, 13
instances from egl, one from val, and 34 from bmcv remain open. Tables 1,
4, and 5 show that our exact algorithm outperforms the branch-and-cut-and-
price of Longo et al., solving 11 more instances from data-sets egl and val,
and being on average faster. It is also competitive with the branch-and-cut
of Baldacci and Maniezzo, solving six more instances from data-sets egl and
val, even though it is on average slower on data-set egl. Note that the model
used by Baldacci and Maniezzo assumes that the number of vehicles K is an
input parameter.

It is interesting to note that on data-set val the improvement of lower
bound LB3 over LB2 is rather marginal. This seems to suggest that for these
instances pricing elementary routes instead of non-elementary ones may not
be worth the extra computational effort. Indeed, BP2 alone yields in this case
very strong lower bounds within a rather limited computing time, suggesting
that a branch-and-cut-and-price based on non-elementary routes may prove
to be an effective solution method. The preliminary results reported by
Bode and Irnich seem to confirm this hypothesis, although the incorporation
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of BP2 as a lower bounding method could provide some advantages because
of the stronger cuts and q-route relaxation.

Table 1: Lower bounds on gdb and kshs instances

Our algorithm LPU
Ins. zUB %LB1 t1 %LB2 t2 %LB3 t3 %LB4 t4 |R∗| t∗ t∗1

gdb1 316 91.14 0.7 100.00 0.9 100.00 0.9 100.00 0.9 - 0.9 3.1
gdb2 339 93.81 0.1 100.00 0.2 100.00 0.2 100.00 0.2 - 0.2 1.4
gdb3 275 92.36 0.1 100.00 0.2 100.00 0.2 100.00 0.2 - 0.2 0.8
gdb4 287 93.73 0.1 100.00 0.1 100.00 0.1 100.00 0.1 - 0.1 0.8
gdb5 377 96.55 0.2 100.00 0.2 100.00 0.2 100.00 0.2 - 0.2 1.0
gdb6 298 95.97 0.1 100.00 0.1 100.00 0.1 100.00 0.1 - 0.1 0.3
gdb7 325 90.15 0.1 100.00 0.3 100.00 0.3 100.00 0.3 - 0.3 1.8
gdb8 348 94.83 0.3 100.00 1.2 100.00 1.2 100.00 1.2 - 1.2 32.5
gdb9 303 97.03 0.5 100.00 1.2 100.00 1.2 100.00 1.2 - 1.2 31.0
gdb10 275 93.09 0.1 100.00 0.2 100.00 0.2 100.00 0.2 - 0.2 6.3
gdb11 395 93.16 0.6 100.00 2.6 100.00 2.6 100.00 2.6 - 2.6 1364.6
gdb12 458 96.51 0.1 99.13 0.1 99.13 0.2 99.78 0.2 65 0.2 5.2
gdb13 536 98.13 0.2 99.63 0.3 99.63 0.6 99.63 0.7 3642 2.6 93.0
gdb14 100 100.00 0.1 100.00 0.1 100.00 0.1 100.00 0.1 - 0.1 0.2
gdb15 58 100.00 0.2 100.00 0.2 100.00 0.2 100.00 0.2 - 0.2 3.8
gdb16 127 96.06 0.3 100.00 0.4 100.00 0.4 100.00 0.4 - 0.4 26.4
gdb17 91 95.60 0.2 100.00 0.3 100.00 0.3 100.00 0.3 - 0.3 34.8
gdb18 164 100.00 0.5 100.00 0.5 100.00 0.5 100.00 0.5 - 0.5 56.4
gdb19 55 100.00 0.0 100.00 0.0 100.00 0.0 100.00 0.0 - 0.0 0.1
gdb20 121 94.21 0.2 100.00 0.3 100.00 0.3 100.00 0.3 - 0.3 4.5
gdb21 156 97.44 0.3 100.00 0.4 100.00 0.4 100.00 0.4 - 0.4 20.9
gdb22 200 98.50 0.4 100.00 0.6 100.00 0.6 100.00 0.6 - 0.6 112.1
gdb23 233 100.00 0.7 100.00 0.7 100.00 0.7 100.00 0.7 - 0.7 145.5

Average 96.01 0.3 99.95 0.5 99.95 0.5 99.97 0.5 0.6 84.6
kshs1 14661 94.64 0.6 100.00 0.6 100.00 0.6 100.00 0.6 - 0.6 0.8
kshs2 9863 90.53 0.3 100.00 0.4 100.00 0.4 100.00 0.4 - 0.4 0.5
kshs3 9320 91.18 0.1 100.00 0.2 100.00 0.2 100.00 0.2 - 0.2 1.0
kshs4 11498 97.04 0.0 99.89 0.1 100.00 0.1 100.00 0.1 - 0.1 1.0
kshs5 10957 94.53 0.2 100.00 0.3 100.00 0.3 100.00 0.3 - 0.3 0.7
kshs6 10197 91.64 0.2 100.00 0.3 100.00 0.3 100.00 0.3 - 0.3 1.5

Average 93.26 0.2 99.98 0.3 100.00 0.3 100.00 0.3 0.3 0.9
1. Total computing time spent by the branch-and-cut-and-price of Longo et al.
for solving the problem to optimality by transforming it into a CVRP.
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Table 2: Lower bounds on bmcv instances, classes C and E

Our algorithm BMCV
Ins. zUB zLB %LB1 t1 %LB2 t2 %LB31 t3 %LB41 t4 |R∗| t∗ %LB2

C01 4150 4105 93.52 3.4 98.92 42.6 98.92 M 2571.3 98.92 2571.3 - - 98.31
C02 3135 3135 95.18 1.0 100.00 5.0 100.00 5.0 100.00 5.0 - 5.0 100.00
C03 2575 2567 94.37 2.0 99.57 16.3 99.57 219.9 99.69 509.0 55344 547.7 98.06
C04 3510 3478 93.73 2.7 99.09 30.8 99.09 M 1999.1 99.09 1999.1 - - 98.43
C05 5365 5365 95.56 2.0 99.48 20.2 99.48 1834.1 100.00 2461.7 - 2461.7 98.88
C06 2535 2532 93.45 1.0 99.57 15.2 99.57 248.6 99.88 652.8 211326 1277.8 98.42
C07 4075 4063 93.33 0.9 98.67 14.4 98.80 372.8 99.71 814.9 9365 827.1 98.53
C08 4090 4083 94.28 1.6 99.44 21.5 99.44 59.0 99.83 90.6 5415 94.6 97.80
C09 5260 5233 95.25 4.0 99.49 73.9 99.49 M 3270.9 99.49 3270.9 - - 99.14
C10 4700 4660 93.91 0.8 98.53 5.4 98.66 47.0 99.15 103.8 33557 127.8 98.30
C11 4635 4583 95.19 5.1 98.79 56.0 98.88 1472.8 98.88M 9795.7 - - 98.17
C12 4240 4209 94.29 1.8 98.70 42.2 98.73 1410.4 99.27 6386.2 M - 97.64
C13 2955 2940 94.65 1.1 98.71 9.6 98.82 304.1 99.49 2301.2 372209 4200.2 97.97
C14 4030 4030 96.15 1.2 99.55 16.2 99.73 214.6 100.00 380.9 - 380.9 98.51
C15 4940 4912 95.91 8.6 99.43 101.3 99.43 M 5829.1 99.43 5829.1 - - 98.08
C16 1475 1475 93.29 0.8 99.93 6.4 99.93 20.5 100.00 24.2 - 24.2 99.66
C17 3555 3555 93.50 0.7 100.00 3.4 100.00 3.4 100.00 3.4 - 3.4 99.44
C18 5620 5577 95.46 9.5 99.23 133.6 99.23 M 6637.5 99.23 6637.5 - - 98.75
C19 3115 3096 93.90 2.7 99.39 23.0 99.39 M 1341.4 99.39 1341.4 - - 98.39
C20 2120 2120 93.07 1.4 100.00 12.1 100.00 12.1 100.00 12.1 - 12.1 100.00
C21 3970 3960 95.29 3.3 99.75 59.1 99.75 M 3084.1 99.75 3084.1 - - 99.50
C22 2245 2245 95.59 1.2 100.00 5.0 100.00 5.0 100.00 5.0 - 5.0 100.00
C23 4085 4032 91.55 5.7 98.70 59.3 98.70 M 6057.7 98.70 6057.7 - - 98.29
C24 3400 3384 96.32 5.6 99.53 46.4 99.53 M 2971.3 99.53 2971.3 - - 99.12
C25 2310 2310 95.02 0.7 100.00 2.1 100.00 2.1 100.00 2.1 - 2.1 100.00

Average 94.47 2.7 99.38 32.8 99.40 1599.7 99.58 2292.4 98.78
Solved 14 4

E01 4910 4885 95.97 2.2 99.12 30.3 99.14 2467.8 99.49 13009.0 M - 98.37
E02 3990 3978 96.67 1.4 99.27 9.3 99.57 74.3 99.70 185.1 53650 251.6 99.25
E03 2015 2015 92.31 1.1 100.00 8.5 100.00 8.5 100.00 8.5 - 8.5 100.00
E04 4155 4154 95.96 3.7 99.78 40.9 99.81 1010.8 99.98 2046.4 14445 2062.4 99.28
E05 4585 4585 96.10 1.6 99.76 15.6 99.93 49.4 100.00 61.2 - 61.2 99.35
E06 2055 2055 96.69 0.8 100.00 4.3 100.00 4.3 100.00 4.3 - 4.3 100.00
E07 4155 4133 95.84 0.8 98.92 6.4 99.09 94.2 99.47 291.1 26687 319.0 97.11
E08 4710 4702 94.82 1.3 99.55 18.3 99.66 104.8 99.83 165.6 40983 200.2 98.51
E09 5820 5780 95.57 5.7 99.31 53.2 99.31 M 2428.5 99.31 2428.5 - - 98.71
E10 3605 3605 97.53 0.8 100.00 3.7 100.00 3.7 100.00 3.7 - 3.7 100.00
E11 4655 4637 94.44 4.6 99.61 49.4 99.61 M 8881.2 99.61 8881.2 - - 99.46
E12 4180 4161 96.34 1.5 98.64 20.3 99.02 1005.1 99.55 4761.4 611460 6585.4 97.25
E13 3345 3337 95.87 1.0 99.07 9.7 99.16 312.5 99.76 1217.6 76847 1362.1 99.25
E14 4115 4115 94.63 1.4 99.95 10.5 100.00 67.1 100.00 67.1 - 67.1 99.27
E15 4205 4189 92.70 8.9 99.62 134.3 99.62 M 6743.7 99.62 6743.7 - - 99.17
E16 3775 3755 96.58 2.4 99.47 20.3 99.47 M 1787.4 99.47 1787.4 - - 98.94
E17 2740 2740 92.01 0.7 100.00 2.7 100.00 2.7 100.00 2.7 - 2.7 100.00
E18 3835 3825 94.00 5.8 99.74 104.8 99.74 M 5999.8 99.74 5999.8 - - 99.74
E19 3235 3222 94.19 2.8 99.60 37.6 99.60 M 2270.5 99.60 2270.5 - - 98.92
E20 2825 2802 93.81 1.8 99.01 27.0 99.19 2616.3 99.19M 10029.8 - - 98.58
E21 3730 3728 94.66 3.6 99.95 26.3 99.95 M 2348.3 99.95 2348.3 - - 99.87
E22 2470 2470 94.45 2.2 99.84 10.2 100.00 149.4 100.00 149.4 - 149.4 98.79
E23 3710 3686 91.29 4.5 99.35 92.4 99.35 M 6350.0 99.35 6350.0 - - 99.06
E24 4020 4001 93.63 5.9 99.53 48.0 99.53 M 2682.9 99.53 2682.9 - - 97.76
E25 1615 1615 95.73 0.4 100.00 1.2 100.00 1.2 100.00 1.2 - 1.2 100.00

Average 94.87 2.7 99.56 31.4 99.63 1898.6 99.73 2859.9 99.07
Solved 14 5

1. M : Algorithm genRoutes runs out of memory.
2. Lower bound obtained by Beullens et al. by optimally solving a relaxation of the problem.
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Table 3: Lower bounds on bmcv instances, classes D and F

Our algorithm BMCV
Ins. zUB zLB %LB1 t1 %LB2 t2 %LB31 t3 %LB41 t4 |R∗| t∗ %LB2

D01 3215 3215 92.07 6.4 100.00 83.9 100.00 83.9 100.00 83.9 - 83.9 100.00
D02 2520 2520 93.57 2.4 100.00 18.8 100.00 18.8 100.00 18.8 - 18.8 100.00
D03 2065 2065 92.74 2.0 100.00 49.4 100.00 49.4 100.00 49.4 - 49.4 100.00
D04 2785 2785 89.48 5.8 100.00 70.0 100.00 70.0 100.00 70.0 - 70.0 100.00
D05 3935 3935 91.69 3.8 100.00 21.9 100.00 21.9 100.00 21.9 - 21.9 100.00
D06 2125 2125 89.18 2.8 100.00 15.8 100.00 15.8 100.00 15.8 - 15.8 100.00
D07 3115 3078 90.69 1.6 97.66 26.3 98.07 911.9 98.81 4478.4 418361 10446.1 96.79
D08 3045 2995 91.07 1.7 98.36 67.2 98.36 M 6714.5 98.36 6714.5 - - 97.70
D09 4120 4120 93.11 12.4 100.00 102.8 100.00 102.8 100.00 102.8 - 102.8 100.00
D10 3340 3335 96.14 1.9 99.79 17.7 99.79 76.6 99.85 104.6 5789 107.2 99.70
D11 3745 3745 90.33 10.9 100.00 122.5 100.00 122.5 100.00 122.5 - 122.5 100.00
D12 3310 3310 89.52 4.1 100.00 77.7 100.00 77.7 100.00 77.7 - 77.7 100.00
D13 2535 2535 88.36 2.1 100.00 18.0 100.00 18.0 100.00 18.0 - 18.0 100.00
D14 3280 3272 90.00 2.8 99.76 49.0 99.76 M 5261.1 99.76 5261.1 - - 99.70
D15 3990 3990 90.60 17.2 100.00 336.3 100.00 336.3 100.00 336.3 - 336.3 100.00
D16 1060 1060 98.11 0.8 100.00 8.6 100.00 8.6 100.00 8.6 - 8.6 100.00
D17 2620 2620 90.46 0.7 100.00 8.6 100.00 8.6 100.00 8.6 - 8.6 100.00
D18 4165 4165 92.70 26.2 100.00 454.9 100.00 454.9 100.00 454.9 - 454.9 100.00
D19 2400 2393 93.00 3.8 99.71 115.6 99.71 M 3413.1 99.71 3413.1 - - 98.75
D20 1870 1870 91.18 3.3 100.00 27.4 100.00 27.4 100.00 27.4 - 27.4 100.00
D21 3050 2985 91.61 8.5 97.87 156.2 97.87 M 5292.3 97.87 5292.3 - - 96.39
D22 1865 1865 92.12 3.0 100.00 19.7 100.00 19.7 100.00 19.7 - 19.7 100.00
D23 3130 3114 91.57 12.5 99.49 976.4 99.49 M 6897.1 99.49 6897.1 - - 99.36
D24 2710 2676 91.77 14.2 98.75 304.5 98.75 M 7105.6 98.75 7105.6 - - 98.15
D25 1815 1815 91.96 0.9 100.00 11.1 100.00 11.1 100.00 11.1 - 11.1 100.00

Average 91.72 6.1 99.65 126.4 99.67 1484.8 99.70 1628.6 99.46
Solved 19 17

F01 4040 4040 87.97 8.5 100.00 88.1 100.00 88.1 100.00 88.1 - 88.1 100.00
F02 3300 3300 94.00 2.9 100.00 18.9 100.00 18.9 100.00 18.9 - 18.9 100.00
F03 1665 1665 92.31 2.6 100.00 23.4 100.00 23.4 100.00 23.4 - 23.4 100.00
F04 3485 3476 89.07 7.4 99.74 126.3 99.74 M 4109.4 99.74 4109.4 - - 99.71
F05 3605 3605 90.85 4.1 100.00 27.5 100.00 27.5 100.00 27.5 - 27.5 100.00
F06 1875 1875 90.72 2.1 100.00 12.1 100.00 12.1 100.00 12.1 - 12.1 100.00
F07 3335 3335 92.08 1.8 100.00 11.2 100.00 11.2 100.00 11.2 - 11.2 100.00
F08 3705 3690 89.26 2.3 99.60 50.3 99.60 M 3385.6 99.60 3385.6 - - 99.73
F09 4730 4730 90.97 15.8 100.00 136.6 100.00 136.6 100.00 136.6 - 136.6 100.00
F10 2925 2925 92.99 2.0 100.00 8.4 100.00 8.4 100.00 8.4 - 8.4 100.00
F11 3835 3835 88.89 13.7 100.00 133.5 100.00 133.5 100.00 133.5 - 133.6 100.00
F12 3395 3390 91.22 4.3 99.85 77.1 99.85 M 3125.7 99.85 3125.7 - - 99.71
F13 2855 2855 91.24 2.0 100.00 14.3 100.00 14.3 100.00 14.3 - 14.3 100.00
F14 3330 3330 90.15 3.0 100.00 26.3 100.00 26.3 100.00 26.3 - 26.3 100.00
F15 3560 3560 87.05 25.1 100.00 279.3 100.00 279.3 100.00 279.3 - 279.3 100.00
F16 2725 2725 96.70 4.8 100.00 27.2 100.00 27.2 100.00 27.2 - 27.2 100.00
F17 2055 2055 94.31 0.7 100.00 6.0 100.00 6.0 100.00 6.0 - 6.0 100.00
F18 3075 3063 91.71 14.0 99.61 318.5 99.61 M 9900.6 99.61 9900.6 - - 99.51
F19 2525 2500 91.56 6.6 99.01 134.9 99.01 M 5814.4 99.01 5814.4 - - 98.42
F20 2445 2445 90.47 5.1 100.00 42.1 100.00 42.1 100.00 42.1 - 42.1 100.00
F21 2930 2930 92.35 9.2 100.00 70.4 100.00 70.4 100.00 70.4 - 70.4 100.00
F22 2075 2075 88.63 2.8 100.00 18.1 100.00 18.1 100.00 18.1 - 18.1 100.00
F23 3005 2994 90.48 9.5 99.63 340.4 99.63 M 9260.5 99.63 9260.5 - - 99.33
F24 3210 3210 90.69 15.2 100.00 146.2 100.00 146.2 100.00 146.2 - 146.2 100.00
F25 1390 1390 92.01 0.8 100.00 2.1 100.00 2.1 100.00 2.1 - 2.1 100.00

Average 91.11 6.6 99.90 85.6 99.90 1467.5 99.90 1467.5 99.86
Solved 19 19

1. M : Algorithm genRoutes runs out of memory.
2. Lower bound obtained by Beullens et al. by optimally solving a relaxation of the problem

Improved Lower Bounds and Exact Algorithm for the Capacitated Arc Routing Problem

40 CIRRELT-2011-33



Table 4: Lower bounds on egl instances

Our algorithm LPU BM BB
Ins. zUB zLB %LB1 t1 %LB2 t2 %LB31 t3 %LB41 t4 |R∗|1 t∗ %LB2 t t∗ %LB3 t t∗ %LB4 t

e1-A 3548 3548 95.69 3.9 100.00 15.9 100.00 15.9 100.00 15.9 - 15.9 100.00 144.2 144.2 100.00 12.7 12.7 99.07 32.0
e1-B 4498 4487 94.40 3.5 99.33 16.1 99.49 736.4 99.76 2527.8 43699 2619.5 99.33 52.6 - 99.24 23.7 450.3 98.62 35.8
e1-C 5595 5580 96.94 1.6 99.11 9.6 99.34 332.6 99.73 714.7 10465 732.7 99.05 46.1 - 98.89 38.5 - 97.46 22.4
e2-A 5018 5012 93.80 10.9 99.88 104.6 99.88 M 1485.1 99.88 1485.1 - - 99.86 521.2 - 99.86 159.1 182.0 99.52 50.5
e2-B 6317 6284 94.63 5.4 99.48 36.9 99.48 M 2368.4 99.48 2368.4 - - 99.41 198.5 - 99.27 121.0 - 98.92 19.1
e2-C 8335 8319 97.37 3.5 99.08 14.1 99.47 564.9 99.81 3934.9 93018 4204.1 98.79 66.9 - 97.96 153.2 - 97.35 18.8
e3-A 5898 5898 95.07 15.9 100.00 72.6 100.00 72.6 100.00 72.6 - 72.6 100.00 924.9 924.9 100.00 143.5 143.5 99.51 86.8
e3-B 7775 7711 96.15 9.5 99.01 59.8 99.18 1078.7 99.18 M 8894.6 - - 99.00 375.6 - 98.88 350.2 - 98.34 58.3
e3-C 10292 10244 96.75 5.3 98.98 22.7 99.13 658.0 99.53 2345.4 M - 98.75 142.1 - 98.45 594.4 - 97.35 19.9
e4-A 6444 6395 94.94 19.2 99.24 184.3 99.24 M 3856.8 99.24 3856.8 - - 99.24 1171.6 - 99.18 391.2 - 98.88 43.1
e4-B 8961 8935 95.50 9.4 99.26 46.8 99.43 830.1 99.71 8455.4 M - 99.14 419.0 - 99.04 698.2 - 98.30 15.9
e4-C 11562 11493 97.31 7.4 99.05 28.1 99.21 644.1 99.40 2060.6 M - 98.83 202.7 - 98.37 682.3 - 97.53 16.5
s1-A 5018 5018 95.72 7.2 99.92 84.7 99.96 794.6 100.00 1232.3 - 1232.3 99.92 750.4 - 99.95 89.7 91.8 99.48 1085.5
s1-B 6388 6388 95.13 4.4 99.87 64.3 99.94 315.4 100.00 344.1 - 344.1 99.86 204.5 - 99.85 148.2 - 97.07 216.1
s1-C 8518 8517 96.82 3.5 99.66 26.5 99.94 155.8 99.99 173.9 21158 195.8 99.55 67.0 - 99.46 457.1 - 97.56 102.7
s2-A 9884 9825 96.32 36.2 99.40 369.5 99.40 tl 99.40 tl - - 99.39 3260.3 - - - - 98.95 521.8
s2-B 13100 13017 97.05 21.8 99.03 134.5 99.24 830.4 99.37 3777.8 M - 98.99 896.7 - - - - 98.37 170.2
s2-C 16425 16407 98.57 14.7 99.63 59.3 99.75 867.9 99.89 2468.6 602630 15082.9 99.56 408.9 - - - - 98.76 274.2
s3-A 10220 10145 95.67 40.1 99.27 435.9 99.27 M 5066.1 99.27 5066.1 - - 99.25 1680.4 - - - - 98.09 206.3
s3-B 13682 13648 97.28 26.1 99.54 155.5 99.64 1536.0 99.75 10721.5 M - 99.52 1639.5 - - - - 99.06 504.3
s3-C 17188 17163 98.62 17.6 99.57 71.9 99.70 1261.9 99.85 4091.0 438007 13201.8 99.49 635.3 - - - - 98.73 182.7
s4-A 12268 12141 96.27 57.6 98.96 459.9 98.96 M 7506.0 98.96 7506.0 - - 98.98 14318.1 - - - - 98.04 324.7
s4-B 16321 16098 96.12 37.2 98.54 219.3 98.63 2590.8 98.63 tl - - 98.60 2761.1 - - - - 97.62 1173.0
s4-C 20481 20430 98.00 24.8 99.52 125.2 99.63 655.9 99.75 3355.9 M - 99.48 1120.0 - - - - 98.53 211.0

Average5 96.25 16.1 99.39 117.4 99.50 2026.0 99.61 4344.5 99.33 1333.6 - - 98.38 224.6
Average6 95.75 7.4 99.46 52.5 99.58 927.3 99.71 2565.5 99.38 352.5 99.23 270.9 98.33 121.6
Solved 10 2 5 0

1. M : algorithm genRoutes runs out of memory.
2. Lower bound obtained by Longo et al. without branching by transforming the problem into a CVRP.
3. Lower bound obtained by Baldacci and Maniezzo without branching by transforming the problem into a CVRP.
4. Lower bound obtained by Belenguer and Benavent without branching by solving a relaxation of the problem.
5. Average over all instances considered by Longo et al.
6. Average over all instances considered by Baldacci and Maniezzo.
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Table 5: Lower bounds on val instances

Our algorithm LPU BM BB
Ins. zUB zLB %LB1 t1 %LB2 t2 %LB31 t3 %LB41 t4 |R∗|1 t∗ %LB2 t t∗ %LB3 t t∗ %LB4 t

val1A 247 247 89.07 1.4 100.00 5.9 100.00 5.9 100.00 5.9 - 5.9 100.00 98.3 98.3 100.00 2.0 2.0 100.00 0.5
val1B 247 247 90.28 0.8 100.00 4.8 100.00 4.8 100.00 4.8 - 4.8 100.00 54.6 54.6 100.00 2.1 2.1 100.00 0.6
val1C 319 314 92.79 0.1 98.12 1.7 98.12 15.4 98.43 39.7 54992 133.8 97.81 771.9 8916.8 97.35 45.8 890.4 96.87 0.7
val2A 298 298 91.61 1.0 100.00 5.5 100.00 5.5 100.00 5.5 - 5.5 100.00 79.4 5.5 100.00 0.5 0.5 100.00 0.1
val2B 330 330 92.12 0.6 99.70 8.1 100.00 290.3 100.00 290.3 - 290.3 99.70 169.0 671.3 99.61 9.9 11.1 100.00 0.2
val2C 528 528 98.11 0.1 100.00 0.2 100.00 0.2 100.00 0.2 - 0.2 100.00 1.0 1.0 99.67 4.8 7.8 99.62 0.4
val3A 105 105 88.57 0.8 100.00 5.5 100.00 5.5 100.00 5.5 - 5.5 100.00 127.6 127.6 100.00 1.5 1.5 100.00 0.2
val3B 111 111 90.99 0.3 100.00 3.6 100.00 3.6 100.00 3.6 - 3.6 100.00 134.3 134.3 100.00 1.3 1.3 100.00 0.2
val3C 162 162 95.68 0.2 99.38 1.3 100.00 3.0 100.00 3.0 - 3.0 99.38 3.2 328.9 100.00 5.3 5.3 99.38 0.9
val4A 522 522 91.76 12.5 100.00 80.0 100.00 80.0 100.00 80.0 - 80.0 100.00 2475.3 2475.3 100.00 60.8 60.8 100.00 0.5
val4B 534 534 92.13 6.0 100.00 49.5 100.00 49.5 100.00 49.5 - 49.5 100.00 1178.4 1178.4 100.00 54.8 54.8 100.00 0.3
val4C 550 550 93.64 5.3 100.00 28.2 100.00 28.2 100.00 28.2 - 28.2 100.00 824.6 824.6 100.00 86.7 86.7 100.00 1.0
val4D 652 649 95.09 1.8 99.39 20.2 99.39 1386.6 99.54 7926.6 M - 99.39 76.6 - 98.40 186.1 - 98.77 7.2
val5A 566 566 92.93 7.9 100.00 34.2 100.00 34.2 100.00 34.2 - 34.2 100.00 629.4 629.4 100.00 53.0 53.0 100.00 1.4
val5B 589 588 93.04 5.8 99.83 48.8 99.83 M 2737.4 99.83 2737.4 - - 99.83 388.1 - 99.44 99.8 4202.3 100.00 2.1
val5C 617 613 93.68 4.9 99.35 37.8 99.35 912.0 99.35 1293.4 M - 99.35 274.8 - 98.63 114.2 - 99.19 1.7
val5D 718 717 96.10 1.6 99.58 9.3 99.72 108.6 99.86 280.6 295009 702.0 99.72 62.8 - 99.10 155.0 - 99.44 1.0
val6A 330 330 91.52 2.3 100.00 11.3 100.00 11.3 100.00 11.3 - 11.3 100.00 158.7 158.7 100.00 9.8 9.8 100.00 0.6
val6B 340 337 91.47 0.9 99.12 10.8 99.12 M 1647.3 99.12 1647.3 - - 99.12 169.3 - 98.50 24.3 201.6 99.41 2.3
val6C 424 421 95.75 0.5 98.82 2.2 98.82 17.3 99.29 26.7 29798 55.7 99.06 119.4 - 98.58 14.0 312.0 98.58 1.8
val7A 382 382 92.15 3.1 100.00 24.6 100.00 24.6 100.00 24.6 - 24.6 100.00 319.4 319.4 100.00 9.2 9.2 100.00 0.3
val7B 386 386 91.97 2.6 100.00 13.3 100.00 13.3 100.00 13.3 - 13.3 100.00 163.8 163.8 100.00 8.3 8.3 100.00 0.2
val7C 437 437 92.45 0.9 99.08 23.8 99.08 319.7 100.00 1760.0 - 1760.0 99.77 607.6 132.0 99.70 15.5 92.6 99.77 3.2
val8A 522 522 93.87 6.0 100.00 20.9 100.00 20.9 100.00 20.9 - 20.9 100.00 359.4 359.4 100.00 32.7 32.7 100.00 0.3
val8B 531 531 94.73 4.0 100.00 16.4 100.00 16.4 100.00 16.4 - 16.4 100.00 168.9 168.9 100.00 34.7 34.7 100.00 0.1
val8C 657 655 97.11 1.2 99.54 6.6 99.54 52.7 99.70 226.7 607971 2496.3 99.54 376.9 - 98.52 98.1 - 99.39 3.7
val9A 450 450 90.67 30.2 100.00 212.8 100.00 212.8 100.00 212.8 - 212.8 100.00 17722.6 17722.6 100.00 406.5 406.5 100.00 4.32
val9B 453 453 91.39 14.4 100.00 114.7 100.00 114.7 100.00 114.7 - 114.7 100.00 4520.03 4520.03 100.00 430.6 430.6 100.00 1.97
val9C 459 459 91.72 9.7 100.00 63.2 100.00 63.2 100.00 63.2 - 63.2 100.00 1460.89 1460.89 100.00 517.8 517.8 100.00 2.07
val9D 516 512 94.38 2.7 99.22 31.1 99.22 579.8 99.22 8237.1 M - 99.22 305.16 - 97.21 785.9 - 98.64 21.84
val10A 637 637 92.78 31.1 100.00 214.7 100.00 214.7 100.00 214.7 - 214.7 100.00 13336.6 13336.6 99.88 394.1 879.3 100.00 1.67
val10B 645 645 92.87 17.9 100.00 156.5 100.00 156.5 100.00 156.5 - 156.5 100.00 13719.4 13719.4 99.43 327.3 4250.4 100.00 1.44
val10C 655 655 93.13 10.9 100.00 96.8 100.00 96.8 100.00 96.8 - 96.8 100.00 5078.57 5078.57 99.44 468.3 5560.1 100.00 0.83
val10D 734 734 94.82 4.0 100.00 60.8 100.00 60.8 100.00 60.8 - 60.8 100.00 473.63 473.63 99.16 684.7 - 99.73 8.38

Average 92.95 5.7 99.74 41.9 99.77 273.3 99.83 755.7 99.76 1953.2 99.49 151.3 99.67 2.2
Solved 29 26 28 22

1. M : algorithm genRoutes runs out of memory.
2. Lower bound obtained by Longo et al. without branching by transforming the problem into a CVRP.
3. Lower bound obtained by Baldacci and Maniezzo without branching by transforming the problem into a CVRP.
4. Lower bound obtained by Belenguer and Benavent without branching by solving a relaxation of the problem.
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9 Conclusions

We have developed a new lower bounding methodology and an exact algo-
rithm based on a set partitioning-like formulation of the CARP strengthened
by additional valid inequalities. We have reported results of an extensive
computational study over a set of CARP benchmark instances showing that
the new bounding scheme yields very tight lower bounds, and significantly
improves most of the best known lower bounds for the open benchmark
instances. To the best of our knowledge, this study represents the first im-
plementation and computational evaluation of a direct solution method for
the CARP based on column generation, and combining elementary CARP
routes and cutting planes. The effectiveness of our proposed lower bounding
algorithm was assessed by embedding it into an exact algorithm which proved
to be competitive with the best known exact algorithms. It was capable of
solving 27 open instances for the first time.

The methodology described in this paper can be extended in different
ways. As is usually the case for cut-and-column-generation methods, major
improvements can come from a more efficient column generation or stronger
cutting planes. The most recent studies on the classical CVRP and the VRP
with time windows [Fukasawa et al., 2006, Jepsen et al., 2008, Baldacci et al.,
2008, 2011a] have reported major improvements in the effectiveness of state-
of-the-art solution methods stemming from new developments in column gen-
eration techniques, and from a better integration between pricing and cut-
ting. However, in the case of the CARP the situation is less clear. Polyhedral
and mathematical programming approaches to the CARP can still be con-
sidered in their infancy, and pure branch-and-cut approaches suffer from the
lack of a practical formulation containing a polynomial number of variables.
This paper demonstrates that a direct cut-and-column-generation approach
to the CARP using elementary CARP routes and cutting planes derived
from different relaxations constitutes a promising solution approach. How-
ever, pricing elementary CARP routes seems to be particularly challenging
and, unlike what happens for the CVRP, a set partitioning-like formulation
for the CARP using elementary routes, but without incorporating additional
cuts, yields a rather weak lower bound (in our preliminary experiments, the
average lower bound ratio was ∼ 93.5% for data-set val, and ∼ 97.5% for
data-set egl). We therefore believe that improvements to the effectiveness
of cut-and-column-generation methods for the CARP can come both from
the development of new pricing techniques, and from the integration of new
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cutting planes.
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