
A Randomized Local Search

Algorithm for the Machine-Part

Cell Formation Problem

 Khoa Trinh
 Jacques A. Ferland
 Tien Dinh

June 2011

CIRRELT-2011-35

G1V 0A6

Bureaux de Montréal : Bureaux de Québec :

Université de Montréal Université Laval
C.P. 6128, succ. Centre-ville 2325, de la Terrasse, bureau 2642
Montréal (Québec) Québec (Québec)
Canada H3C 3J7 Canada G1V 0A6
Téléphone : 514 343-7575 Téléphone : 418 656-2073
Télécopie : 514 343-7121 Télécopie : 418 656-2624

 www.cirrelt.ca

A Randomized Local Search Algorithm for the Machine-Part
 Cell Formation Problem

Khoa Trinh1, Jacques A. Ferland2,*, Tien Dinh1

1 Faculty of Information Technology, University of Science, VNU-HCMC, 227 Nguyen Van Cu,
District 5, Ho Chi Minh City, Vietnam

2 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation
(CIRRELT), and Department of Computer Science and Operations Research, Université de
Montréal, C.P. 6128, succursale Centre-ville, Montréal, Canada H3C 3J7

Abstract. In this paper, we study the machine–part cell formation problem. The problem is

to assign the given machines and parts into cells so that the grouping efficacy, a measure

of autonomy, is maximized. First, we introduce a new randomized local search algorithm,

in which the novel part is to solve another subproblem for assigning optimally parts into

cells on the basis of given groups of machines. Second, we propose two exact,

polynomial–time algorithms to solve this subproblem. Finally, we provide the numerical

results of our proposed algorithms, using a popular set of benchmark problems.

Comparisons with other recent algorithms in the literature show that our algorithms are

able to find high quality solutions while maintaining a very competitive running time.

Keywords. Cell formation problem, fractional programming, randomized local search

algorithm.

Acknowledgements. This work was partly supported by the Natural Sciences and

Engineering Council of Canada (NSERC) under grant OGP 0008312. This support is

gratefully acknowledged.

Results and views expressed in this publication are the sole responsibility of the authors and do not
necessarily reflect those of CIRRELT.

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: JacquesA.Ferland@cirrelt.ca

Dépôt légal – Bibliothèque et Archives nationales du Québec
 Bibliothèque et Archives Canada, 2011

© Copyright Trinh, Ferland, Dinh and CIRRELT, 2011

1 Introduction
The machine–part cell formation problem (CFP) is an important application of the group technology. The philoso-
phy behind the problem is to decompose an entire manufacturing system, including machines and parts, into many
subsystems in such a way that the number of interactions between machines and parts within a subsystem is maxi-
mized. In addition, we have to keep the number of interactions between machines and parts belonging to different
subsystems as low as possible. By doing so, we reduce the handling cost, the setup cost, and the processing time
of operating the whole system [1]. Ogoubi et al. also apply the CFP to design 3–D chip networks [2].

More specifically, in the CFP, we are given an incidence matrix that describes the relationships between ma-
chines and parts. We need to group them into several cells so that a certain measure of autonomy is maximized.
In fact, there are several different autonomy measures for the problem [3]. In our study, we choose the popular
grouping efficacy [4] as the measure of efficiency. Since the CFP is known to be NP–hard [5], most of the methods
are based on some heuristics or metaheuristics such as clustering methods [6], genetic algorithms [7], and tabu
search [8]. An exact algorithm for this problem would require enormous computational effort, making it virtually
impractical [9].

The rest of the paper is organized as follows. First, we formulate the CFP rigorously. We then present a
randomized local search algorithm (RLSA). The most novel contribution of this paper is to develop an exact,
polynomial-time algorithm for solving a subproblem of assigning parts to the cells once the assignment of machines
into cells is known. Solving this subproblem efficiently is important since it has to be executed in each iteration
of the RLSA. To this end, we will present two algorithms: one is based on Dynamic Programming (DP) and the
other is based on Fractional Programming (FP). Next, we provide the numerical results of our proposed algorithm
to solve a set of 35 well–known benchmark problems. Finally, we conclude the paper in the last section.

2 Problem Formulation and Preliminaries
The Cell Formation Problem is often defined as follows. Consider a set I = {1, 2, · · · ,m} of machines, and a set
J = {1, 2, · · · , n} of parts. Anm–by–n incidence matrixA is also available, where ai,j = 1 if machine i processes
part j, and ai,j = 0 otherwise. We refer to a subset of machines as a “machine group.” Similarly, we refer to a sub-
set of parts as a “part family.” A production cell consists of a pair of a non–empty machine group and a non–empty
part family (i.e. in our formulation, we assume that each production cell should contain at least one machine and
one part). The objective is to find a solution of K production cells (C,F) = {(C1, F1), (C2, F2), · · · , (CK , FK)}
such that C1, C2, · · · , CK form a partition of I , and F1, F2, · · · , FK form a partition of J in order to maximize
the grouping efficacy:

Eff (C,F) =
aIn1

a+ aIn0
,

where

a =
m∑
i=1

n∑
j=1

ai,j ,

aIn0 =
K∑
k=1

∑
i∈Ck

∑
j∈Fk

1− ai,j , aIn1 =
K∑
k=1

∑
i∈Ck

∑
j∈Fk

ai,j .

Note that aIn0 and aIn1 are the number of entries equal to 0 and that of entries equal to 1 in all K cells,
respectively.

2

A Randomized Local Search Algorithm for the Machine-Part Cell Formation Problem

CIRRELT-2011-35

Example 1: Consider the problem with 5 machines and 7 parts where the incidence matrix is the following

A =


0 1 0 1 1 1 0
1 0 1 0 0 0 0
1 0 1 0 0 0 1
0 1 0 1 0 1 0
1 0 0 0 0 0 1


Assuming that we want to find 2 production cells which maximizes the grouping efficacy, one of the optimal

solutions should include the cell (C1, F1) = ({1, 4}, {2, 4, 5, 6}) and the cell (C2, F2) = ({2, 3, 5}, {1, 3, 7}) with
the efficacy Eff = 14

14+3 ≈ 82.35. Figure 1 illustrates these two cells on the matrix solution.

Parts
2 4 5 6 1 3 7

M
ac

hi
ne

s
1 1 1 1 1 0 0 0
4 1 1 0 1 0 0 0
2 0 0 0 0 1 1 0
3 0 0 0 0 1 1 1
5 0 0 0 0 1 0 1

Figure 1: Illustration of the two production cells.

Through out this paper, let aIn1 (j, k) be the number of machines in group k that process part j:

aIn1 (j, k) =
∑
i∈Ck

ai,j ,

and aIn0 (j, k) be the number of machines in group k that do not process part j:

aIn0 (j, k) =
∑
i∈Ck

(1− ai,j).

We use [n] to denote the set {1, 2, · · · , n} and let Eff (C,F) be the grouping efficacy of the solution (C,F).

3 A Local Search Algorithm
In this section, we review the local search algorithm (LSA), introduced and experimented by Elbenani et al. (2010).
The general idea of LSA is to improve the current solution in each iteration. Starting up with an initial solution,
the LSA successively tries to modify the part families (machine groups) on the basis of the machine groups (part
families) so that the grouping efficacy increases as much as possible. For this purpose, the authors use a greedy
method. In particular, to find new part families F ′1, · · · , F ′K , given the current machine groups C1, · · · , CK , for
each part j, the authors estimate the approximation of the impact on the grouping efficacy f(j, k) when assigning
part j to the family k:

f(j, k) =
aIn1 (j, k)∑m

i=1 ai,j + aIn0 (j, k)
.

Then each part j is assigned to the family F ′
k̃(j)

, where k̃(j) = arg maxk∈[K] f(j, k).
If the current solution cannot be improved anymore, then a “destroy&recover” strategy is applied, in which

20% of parts (machines) are swapped in such a way that the grouping efficacy decreases as little as possible. The

3

A Randomized Local Search Algorithm for the Machine-Part Cell Formation Problem

CIRRELT-2011-35

LSA stops when the “destroy&recover” procedure is called exactly 5K times. Furthermore, whenever the current
solution contains some empty group (or family,) a “repair process” is applied to reassign some machines (or parts)
inducing the smallest decrease of the grouping efficacy.

Algorithm 1 : Local Search Algorithm
1: Input← m,n,K,A
2: Generate an initial feasible solution (C0, F 0) as in [10]
3: Initialize (C,F)← (C0, F 0), (Cr, Fr)← (C0, F 0)
4: while the destroy&recover procedure is called no more than 5K times do
5: Modify with the greedy method the current part families in F on the basis of machine groups in C.
6: if there is no improvement then
7: Apply destroy&recover strategy to 20% of parts
8: if the current solution (C,F) if better than (Cr, Fr) then
9: (Cr, Fr)← (C,F)

10: Modify with the greedy method the current machine groups in C on the basis of part families in F .
11: if there is no improvement then
12: Apply destroy&recover strategy to 20% of machines
13: if the current solution (C,F) if better than (Cr, Fr) then
14: (Cr, Fr)← (C,F)
15: return (Cr, Fr)

4 A Randomized Local Search Algorithm
In this section, we propose a randomized local search algorithm based on the LSA mentioned above. Basically, the
randomization of the LSA prevents a premature convergence to local optima.

First, we modify the stopping rule, allowing us to improve the current solution for a fixed number of iterations
T .

Second, instead of using the greedy method to generate an initial feasible solution, we simply generate an
initial solution randomly. In fact, the initial solution is not important compared to the procedure of modifying the
current solution in each step.

Third, we change the “destroy&recover” strategy. Whenever we fail to improve the current solution, we simply
reassign randomly p percent of parts (machines) to other random families (groups). Overall, the numerical results
indicate that the random shuffle strategy seems to be better in that it diversifies the search space and prevents the
algorithm from returning to some local extrema. However, we will not present numerical comparisons between
these two strategies due to length limit of the paper.

Finally, our main contribution is to introduce a better way to improve the current solution in each iteration. To
be precise, we are interested in the exact solution of the following subproblem.

Subproblem 1 Assume that K fixed machine groups C1, C2, · · · , CK are specified for the CFP. Determine part
families F1, F2, · · · , FK that form a partition of the set J and maximize the grouping efficacy.

Proposition 1 The subproblem 1 can be solved in polynomial–time.

In the next sections, we will introduce two exact, polynomial–time algorithm to solve the subproblem 1.
Note that the problem of finding machine groups on the basis of specified part families can be solved similarly

by working on the transpose of the matrix A. Moreover, in the case that empty families or groups appear in the
solution, we have to apply the “repair process” [10] in order to deal with empty families or groups. In summary,
the pseudo–code of the RLSA is described as follows.

4

A Randomized Local Search Algorithm for the Machine-Part Cell Formation Problem

CIRRELT-2011-35

Algorithm 2 : Randomized Local Search Algorithm
1: Input← m,n,K,A, T, p
2: Randomly generate an initial feasible solution (C0, F 0)
3: Initialize (C,F)← (C0, F 0), (Cr, Fr)← (C0, F 0)
4: for step← 1 to T do
5: Find Fopt = (F1, F2, · · · , FK) on the basis of machine groups in C to maximize the grouping efficacy

and update F ← Fopt
6: if there is no improvement then
7: Randomly take p percent of parts and reassign them to other random families.
8: if the current solution (C,F) if better than (Cr, Fr) then
9: (Cr, Fr)← (C,F)

10: Find Copt = (C1, C2, · · · , CK) on the basis of part families in F to maximize the grouping efficacy and
update C ← Copt

11: if there is no improvement then
12: Randomly take p percent of machines and reassign them to other random groups.
13: if the current solution (C,F) if better than (Cr, Fr) then
14: (Cr, Fr)← (C,F)
15: return (Cr, Fr)

5 A Dynamic–Programming–Based Algorithm For Subproblem 1

5.1 Description
Recall that, for any feasible solution, each part must belong to exactly one of the K families. Let us define an
indicator function f(j, n0, n1), having the value 1 if and only if it is possible to put the first j parts {1, 2, · · · , j}
into the K families F ′1, F

′
2, · · · , F ′K in such a way that

n0 =
K∑
k=1

∑
i∈Ck

∑
j′∈F ′

k

1− ai,j′ ,

and

n1 =

K∑
k=1

∑
i∈Ck

∑
j′∈F ′

k

ai,j′ .

Note that the function f is only defined when 1 ≤ n0, n1 ≤ mn and 1 ≤ j ≤ n. Since we can only assign the
part j into one of the K families, it is easy to verify the following recurrence

f(j, n0, n1) =
K∨
k=1

f(j − 1, n0 − aIn0 (j, k), n1 − aIn1 (j, k)) (1)

with j > 1, and
f(1, n0, n1) = 1

⇔ ∃k ∈ [K] : n0 = aIn0 (j, k) ∧ n1 = aIn1 (j, k).

Furthermore, to reconstruct the whole solution, for each reachable state (j, n0, n1), we store in T (j, n0, n1)
one possible choice of family k where the part j can be assigned. After using (1) to compute the values of f for all
possible states (j, n0, n1), we identify a pair (â0, â1)

5

A Randomized Local Search Algorithm for the Machine-Part Cell Formation Problem

CIRRELT-2011-35

(â0, â1) = arg max
(n0,n1)∈[mn]×[mn]

{ n1

a+ n0
|f(n, n0, n1) = 1}

Indeed, the maximum grouping efficacy is â1
a+â0

, and we can trace back the complete solution F1, F2, · · · , FK
by using the information recorded in the 3–dimensional array T .

5.2 Pseudo–code
Note that we only need to know the states for which the function f returns 1. To this end, we maintain a queue
to keep track of all interesting states for each part j, and we use that information to generate other states when
proceeding to part j + 1.

5.3 Time Complexity Analysis
We can easily precompute the values of aIn1 (j, k) and aIn0 (j, k) for all 1 ≤ j ≤ n, 1 ≤ k ≤ K in timeO(mn). The
total number of states (j, n0, n1) is equal to n(mn)2 = m2n3. For each state, we need to iterate through all the K
possible families to determine the value of f(j, n0, n1). Thus, the time complexity of computing the function f for
all states isO(Km2n3). Finally, finding (â0, â1) and reconstructing the whole solution takesO(m2n2). Therefore,
the time complexity of the dynamic–programming–based algorithm is O(Km2n2 max(m,n)). Practically, this
upper–bound is not tight since the number of actual reachable states is much less than m2n2 max(m,n).

Algorithm 3 : Dynamic–Programming–Based Algorithm
1: Input← m,n,A,K,C
2: f [j, n0, n1]← 0 for all 1 ≤ j ≤ n, 1 ≤ n0, n1 ≤ mn
3: Precompute a1[j, k]←

∑
i∈Ck

aij and a0[j, k]←
∑
i∈Ck

1− aij for all 1 ≤ j ≤ n, 1 ≤ k ≤ K
4: Q0 ← ∅, a←

∑
aij

5: for k ← 1 to K do
6: Fk ← ∅
7: Push (a0[1, k], a1[1, k]) into the queue Q0

8: f [1, a0[1, k], a1[1, k]]← 1 , T [1, a0[1, k], a1[1, k]]← k
9: for j ← 2 to n do

10: Q1 ← ∅
11: for all (n0, n1) ∈ Q0 do
12: for k ← 1 to K do
13: if f [j, n0 + a0[1, k], n1 + a1[1, k]] = 0 then
14: f [j, n0 + a0[1, k], n1 + a1[1, k]]← 1 , T [j, n0 + a0[1, k], n1 + a1[1, k]]← k
15: Push (n0 + a0[1, k], n1 + a1[1, k]) into the queue Q1

16: Q0 ← Q1

17: Find (â0, â1) ∈ Q0 such that â1
a+â0

is maximized, Eff ← â1
a+â0

18: for j ← n to 1 do
19: k ← T [j, â0, â1]
20: Ck ← Ck ∪ {j}
21: â0 ← â0 − a0[j, k], â1 ← â1 − a1[j, k]
22: return (Eff , F = (F1, F2, · · · , FK))

6

A Randomized Local Search Algorithm for the Machine-Part Cell Formation Problem

CIRRELT-2011-35

6 A Fractional–Programming–Based Algorithm For Subproblem 1

6.1 An Alternative 0–1 Fractional Programming Formulation
In this section, we formulate subproblem 1 as a mathematical optimization problem. First, we introduce the binary
variables yj,k

yj,k =

{
1 if j ∈ Fk
0 otherwise ,

for all pairs (j, k), j = 1, 2, · · · , n, and k = 1, 2, · · · ,K.
Now, for each valid assignment of parts to the K families, we have the relation

aIn1 =
n∑
j=1

K∑
k=1

∑
i∈Ck

ai,jyj,k, (2)

and

aIn0 =
n∑
j=1

K∑
k=1

∑
i∈Ck

(1− ai,j)yj,k. (3)

Subproblem 1 can be written as the following 0–1 fractional programming problem M

max Eff =
aIn1

a+ aIn0

subject to
K∑
k=1

yj,k = 1 j ∈ [n] (4)

yj,k = 0 or 1 j ∈ [n]; k ∈ [K]. (5)

Note that the constraints (4) and (5) make sure that each part is assigned to exactly one family.

6.2 A Subproblem of Problem M

Let Ω be the set of all feasible solutions y of the program M . In order to solve fractional programming problem M
with the Dinkelbach algorithm, we have to solve a sequence of simpler problems, in which the fractional objective
function is replaced by a linear function. In particular, the Dinkelbach algorithm specifies a sequence of values
λ ∈ R, and the following subproblem M(λ) have to be solved.

max Eff (λ) = aIn1 − λ(a+ aIn0) (6)
subject to y ∈ Ω.

Substitute relations (2) and (3) into (6), we have

Eff (λ) = aIn1 − λ(a+ aIn0)

= −λa+
n∑
j=1

K∑
k=1

∑
i∈Ck

ai,jyj,k

−λ
n∑
j=1

K∑
k=1

∑
i∈Ck

(1− ai,j)yj,k

= −λa

+
n∑
j=1

K∑
k=1

(∑
i∈Ck

[(1 + λ)ai,j − λ]

)
yj,k.

7

A Randomized Local Search Algorithm for the Machine-Part Cell Formation Problem

CIRRELT-2011-35

Let

Mj =
K∑
k=1

(∑
i∈Ck

[(1 + λ)ai,j − λ]

)
yj,k,

we can write

Eff (λ) = −λa+
n∑
j=1

Mj .

It follows that, to maximize the objective function Eff (λ), all separate term Mj’s need to be maximized. Due
to the constraints (4) and (5), for each part j, all but one value of yj,k are zero, which implies

Mjmax = max
k=1,··· ,K

(∑
i∈Ck

[(1 + λ)ai,j − λ]

)
.

Therefore, we only need to assign each part j to the family Fk̄ such that

k̄ = arg max
k=1,··· ,K

(∑
i∈Ck

[(1 + λ)ai,j − λ]

)
,

and the subproblem M(λ) is now solved.

6.3 Applying the Dinkelbach’s algorithm to solve problem M

The details and analysis of the Dinkelbach algorithm can be found in the work by [12]. The pseudo–code for
solving problem M is illustrated as follow.

Algorithm 4 : Fractional–Programming–Based Algorithm
1: Input← m,n,A,K,C
2: Randomly generate some families F 0 = (F 0

1 , · · · , F 0
K) and initialize ζ ← 0

3: repeat
4: ζ ← ζ + 1
5: λζ ← Eff (C,F ζ−1)
6: Solve the subproblem M(λζ) and let F ζ be an optimal solution.
7: until Eff (λζ) = 0

8: return (Eff (C,F) = λζ , F
ζ = (F ζ1 , F

ζ
2 , · · · , F

ζ
K))

6.4 Time Complexity Analysis
The algorithm will terminate since the generated sequence {λζ} is strictly increasing [12]. Moreover, it can
be derived from a past result [11] that our algorithm will only have to solve at most O(log(mn)) subproblems
M(λζ). Besides, the time complexity of solving each subproblem M(λ) as shown in the previous subsection is
O(nK). Therefore, after taking into account the cost of precomputation, the FP–based algorithm runs in time
O(mn+ max(m,n)K log(mn)).

7 Experimental Results
In this section, we provide the numerical results of our algorithm as well as comparisons with other state–of–the–
art approaches. All algorithms are tested on the 35 well–known benchmark problems for the CFP specified clearly

8

A Randomized Local Search Algorithm for the Machine-Part Cell Formation Problem

CIRRELT-2011-35

Table 1: List of all test problems

Instance Size K Best–known Best–known LSA
solution solution Ref Eff Time

15 16 × 30 6 69.53 [10] 66.42 0.27
16 16 × 43 8 57.53 [13] 56.77 0.49
17 18 × 24 9 57.73 [13] 53.61 0.35
18 20 × 20 5 43.17 [10] 41.29 0.20
19 20 × 23 7 50.81 [15] 50.00 0.30
20 20 × 35 5 77.91 [13] 76.02 0.33
21 20 × 35 5 57.98 [13] 56.08 0.33
22 24 × 40 7 100 [13] 100.00 0.61
23 24 × 40 7 85.11 [13] 85.11 0.59
24 24 × 40 7 73.51 [13] 73.51 0.60
25 24 × 40 11 53.29 [13] 52.94 0.92
26 24 × 40 12 48.95 [13] 48.28 1.00
27 24 × 40 12 46.58 [13] 45.58 0.99
28 27 × 27 5 54.82 [13] 52.09 0.34
29 28 × 46 10 47.06 [10] 45.49 1.10
30 30 × 41 14 63.31 [10] 61.33 1.46
31 30 × 50 13 60.12 [14] 60.12 1.65
32 30 × 50 14 50.83 [15] 50.56 1.78
33 36 × 90 17 47.77 [16] 43.83 3.81
34 37 × 53 3 60.64 [13] 60.34 0.53
35 40 × 100 10 84.03 [17] 84.03 3.34

in the literature [17, 10]. We have already collected the currently best–known solutions for these instances from
various sources [10, 13, 14, 15, 16, 17]. Besides, we compare our RLSA-DP (using DP-based algorithm in RLSA)
and RLSA-FP (using FP-based algorithm in RLSA) with another recent algorithm: a hybrid method combining
LSA and a genetic algorithm (GA) [10]. Our algorithms will be tested with the parameters T = 500 and p = 10.

In Table 1, we record the sizes of problems, the best-known solutions as well as the references where the best-
known solutions are obtained. In case that the solution is obtained by several different methods, we only mention
one reference to that best-known solution. The two last columns indicate the results by the original LSA as well as
its running time. Note that, to make it fair, we also increase the number of iterations of the LSA from 5K (in all
instances: K ≤ 20) to T .

All algorithms are implemented in C++ using the compiler GCC 3.4.2. We conduct all experiments on a
personal computer with the Intel–Quadcore 2.33GHz processor and 4GB RAM. The algorithms GA, RLSA–DP,
and RLSA–FP are tested independently for 10 times, after which we record the average Eff , the average running–
time, and the best solution. The results are summarized in Table 2, but to reduce its size, we only report the results
for problems 15 to 35 [10] since the results for other smaller problems are identical for the all methods.

The percentage of gap of the solution by algorithm 1 with respect to the solution by algorithm 2 is measured
by the ratio of the difference in those solutions to the solution by algorithm 1.

Analysis: It can be seen in Table 2 that our proposed algorithm RLSA–FP is able to reach the best–known
solutions for almost all cases, after 10 independent runs. Remarkably, it manages to improve the best–known
solution for two instances: 29 and 33. The average Eff of the RLSA–FP is greater than that of the GA for 8
instances with an average gap about 0.4%. For another 5 instances, the GA have better average Eff to average gap
only about 0.24%.

9

A Randomized Local Search Algorithm for the Machine-Part Cell Formation Problem

CIRRELT-2011-35

Table 2: The results of all algorithms

Instance Best–known GA RLSA–DP RLSA–FP
Solution Max Avg Time Max Avg Time Max Avg Time

15 69.53 69.53 69.53 22.14 69.53 69.53 8.50 69.53 69.53 0.34
16 57.53 57.53 57.36 87.50 57.53 57.53 12.54 57.53 57.50 0.46
17 57.73 57.73 57.53 52.06 57.73 57.69 4.79 57.73 57.73 0.33
18 43.17 43.17 43.14 18.81 43.17 43.08 4.08 43.17 43.07 0.27
19 50.81 50.81 50.81 40.02 50.81 50.81 5.69 50.81 50.81 0.33
20 77.91 77.91 77.64 41.97 77.91 77.91 13.42 77.91 77.91 0.44
21 57.98 57.98 57.39 35.81 57.98 57.98 11.14 57.98 57.98 0.42
22 100.00 100.00 100.00 47.16 100.00 100.00 16.47 100.00 100.00 0.62
23 85.11 85.11 85.11 78.86 85.11 85.11 16.13 85.11 85.11 0.61
24 73.51 73.51 73.51 94.01 73.51 73.51 14.88 73.51 73.51 0.63
25 53.29 53.29 53.29 222.95 53.29 53.29 15.17 53.29 53.29 0.61
26 48.95 48.95 48.95 296.03 48.95 48.57 11.79 48.95 48.67 0.64
27 46.58 46.58 46.58 280.81 46.58 46.34 11.43 46.58 46.37 0.62
28 54.82 54.82 54.82 28.01 54.82 54.82 29.06 54.82 54.82 0.45
29 47.06 47.06 46.91 328.76 47.08 47.04 47.63 47.08 47.06 0.79
30 63.31 63.31 63.07 765.03 63.31 63.20 25.49 63.31 63.25 0.79
31 60.12 60.12 60.12 617.88 60.12 60.08 28.01 60.12 60.10 0.90
32 50.83 50.83 50.83 838.67 50.83 50.72 28.86 50.83 50.75 0.96
33 47.77 47.77 47.74 2199.88 48.00 47.87 219.16 48.00 47.82 1.58
34 60.64 60.63 60.39 68.68 60.64 60.64 203.11 60.64 60.64 1.04
35 84.03 84.03 84.03 1021.55 84.03 84.03 413.54 84.03 84.03 2.23

10

A Randomized Local Search Algorithm for the Machine-Part Cell Formation Problem

CIRRELT-2011-35

On average, it takes the RLSA–FP only about 2.3 seconds to solve the largest instance (with a 40x100 incidence
matrix) on our computer. The GA runs very slowly on instances that have big values ofK. The RLSA–DP requires
more computational effort than the RLSA–FP when the size of input increases. Note that, although the original
LSA runs as fast as the RLSA–FP, the quality of solutions by this algorithm is not very good. It fails to reach the
best–known solution for 21/35 instances.

Indeed, if we increase the parameter T , the average Eff of our algorithm will be improved. However, we
recommend to keep this parameter small, say, less than 2000, in order to take advantage of its very fast speed while
the returned solution is as good as (and sometimes better than) the best solutions found by other current algorithms
in the literature.

8 Conclusions
In this work, we have presented a randomized local search algorithm (RLSA) for the cell formation problem. The
novel idea is to find a new, better way to improve the current solution in each iteration of the RLSA. To this end,
we introduce two exact, polynomial–time algorithms to solve a special case of the CFP, in which an assignment of
machines (or parts) is already known. We then experimentally show that our RLSA–FP outperforms other current
algorithms in the literature in terms of the quality of solutions as well as the running time. It also improves the best–
known solutions for two instances. The time complexity of RLSA–FP is only O(mn+ max(m,n)K log(mn)) if
we fix T as a constant, allowing us to solve very large inputs, say, with thousands of machines and parts, in just
few minutes on a normal personal computer. This fact suggests further practical use of our algorithm.

Acknowledgements. This research was supported by the NSERC grant (OGP0008312) from CANADA.

References
[1] Wemmerlov U., Hyer N. Research issues in cellular manufacturing, International Journal of Production Re-

search, Volume 25, (1987) 413–431

[2] Ogoubi E., Ferland J.A., Hafid A., Turcotte M., and Bellemare J., A multi–constraint cell formation problem
for large scale application decomposition, Working paper, DIRO, Universit de Montral, Qubec, Canada. (2010)

[3] Papaioannou G., Wilson J. M., The evolution of cell formation problem methodologies based on recent studies
(1997–2008): Review and directions for future research, European Journal of Operational Research, Volume
206, (2010) 509–521

[4] Sarker B. R., Khan M., A comparison of existing grouping eciency measures and a new weighted grouping
eciency measure, IIE Transactions, Volume 33, (2001) 11–27

[5] Dimopoulos C., Zalzala A. M. S., Recent Developments in Evolutionary Computation for Manufacturing Op-
timization: Problems, Solutions and Comparisons, IEEE Transactions on Evolutionary Computation, Volume
4, Issue 2, (2000) 93–113

[6] Srinivasana G., Narendrana T. T., A nonhierarchical clustering algorithm for group technology, International
Journal of Production Research, Volume 29, Issue 3, (1991) 463–478

[7] Tunnukij T., Hicks C., An Enhanced Grouping Genetic Algorithm for solving the cell formation problem,
International Journal of Production Research (2010)

11

A Randomized Local Search Algorithm for the Machine-Part Cell Formation Problem

CIRRELT-2011-35

[8] Zolfaghari S., Liang M., Comparative study of simulated annealing, genetic algorithms and tabu search for
solving binary and comprehensive machine–grouping problems, International Journal of Production Research,
Volume 40, Issue 9, (2002) 2141–2158

[9] Elbenani B., and Ferland J.A., An exact method for solving the manufacturing cell formation problem, Publi-
cation CIRRELT, Universit de Montral, Qubec, Canada (2010)

[10] Elbenani B., Ferland J.A., and Bellemare J., Genetic algorithm and large neighborhood search to solve the
cell formation problem, Publication CIRRELT, Universit de Montral, Qubec, Canada (2010)

[11] Matsui T., Saruwatari Y., and Shigeno M., An Analysis of Dinkelbach’s Algorithm for 0–1 Fractional Pro-
gramming Problems, Dept. Math. Eng. Inf. Phys., University of Tokyo. (1992)

[12] Crouzeix J.P., Ferland J. A., and Hien N., Revisiting Dinkelbach–Type Algorithms for Generalized Fractional
Programs, Operational Research Society of India, Volume 45. (2008)

[13] Tunnukij T., Hicks C., An Enhanced Genetic Algorithm for solving the cell formation problem, International
Journal of Production research, Volume 47. (2009)

[14] Mahdavi I. , Paydar M.M., Solimanpur M., Heidarzade A., Genetic algorithm approach for solving a cell
formation problem in cellular manufacturing, Expert Systems with Applications 36, (2009) 6598–6604

[15] James T.J., Brown E.C., Keeling K.B., A hybrid Grouping Genetic Algorithm for the cell formation problem,
Computers & Operations Research 34, (2007) 2059–2079

[16] Luo L., Tang L., A hybrid approach of ordinal optimization and iterated local search for manufacturing cell
formation, International Journal of Advance Manufacturing Technology 40, (2009) 362–372

[17] Goncalves J., Resende M.G.C., An evolutionary algorithm for manufacturing cell formation, Computers &
Industrial Engineering 47, (2004) 247–273

12

A Randomized Local Search Algorithm for the Machine-Part Cell Formation Problem

CIRRELT-2011-35

	CIRRELT-2011-35pp
	CIRRELT-2011-35-abstract
	CIRRELT-2011-35
	Sans titre

