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Abstract. Timing problems involve the choice of task execution dates within a predetermined 
processing sequence, and under various additional constraints or objectives such as time-
windows, time-dependent costs and so on. Their efficient solving is particularly critical in branch 
and bound and neighborhood search methods for vehicle routing, scheduling with idle time, as 
well as in various applications in network optimization or statistical inference. However, although 
timing related problems have been studied for many years, research on it suffers from a lack of 
common consensus, and most knowledge is scattered among operations research and applied 
mathematics domains. This article aims to introduce a classification for timing problems and 
features, as well as a unifying multidisciplinary analysis of timing algorithms. In relation to frequent 
application cases within branching schemes or neighborhood searches, efficient solving of series 
of similar timing subproblems is also analyzed. A dedicated formalism of re-optimization “by 
concatenation" is introduced to that extent, leading sometimes to considerable reductions in the 
computational burden of timing resolution. The knowledge developed through this analysis is 
valuable for modeling work and algorithmic design, for foremost problems such as rich vehicle 
routing variants, and many emerging non-regular scheduling applications. 

Keywords: Timing, scheduling, routing, statistical inference, branch and bound, neighbourhood 
search. 
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1 Introduction

Time-related constraints and objectives appear in a variety of flavors within scheduling, project
management, data transmission, routing, network optimization and numerous other fields. Sev-
eral problem settings in these domains involve the arrangement of elementary actions, named
activities, under time requirements, such as tasks, visits to customers, production of objects,
and so on. These activities come with unalterable features such as processing times, comple-
tion dates requirements, costs functions, and various other possible characteristics, while the
decisional aspect generally involves choices on resource allocation (such as vehicles, machines,
bandwidth) and execution dates. Most problems in the categories described previously can be
seen as a merger of three issues (see Desrosiers et al. 1995): the repartition of activities among
resources, called resource allocation, the choice of an execution order for activities on each re-
source, called sequencing, and finally the adjustment of activity execution dates with respect to
this order, sometimes called scheduling or timing. In this paper we will favor the name timing,
as the word scheduling is already employed for various settings in the literature.

In most situations, the combinatorial aspect of resource allocation and sequencing issues
leads to NP-hard problem setting. Most heuristic searches and exact approaches perform a
search through a large number of sequence and resource allocation alternatives, using repeatedly
a timing algorithm to produce adequate execution dates, filter feasible solutions and evaluate
costs. In all these cases the timing algorithm is called extensively, such that its complexity
impacts dramatically the whole solution method, and makes the difference between successful
algorithmic approaches and failure.

However, despite timing problems being the cornerstone of many algorithms, the literature
on this subject remains scarce and scattered. Most developments on timing are made in relation
to particular fields such as project planning, shortest path, routing, scheduling, as well as in
other related mathematical disciplines like statistical inference that involve, quite unexpectedly,
the same issues. Yet, few relationships between domains have been actually exploited, and thus
close concepts and solution methods are independently developed within different formalisms,
being rarely put in a more general context. The large variety of problem variants, arising from
real life settings, also lead to considerable challenges regarding efficient timing solving. Such set-
tings involve time-windows on activities (eventually multiple in Tricoire et al. 2010), penalized
time-constraint transgressions (Taillard et al. 1997), time-dependent activity durations or costs
(Hashimoto et al. 2008), speed decisions (Norstad et al. 2010), congestion or learning issues
(Alidaee and Womer 1999, Kok et al. 2009), and so on. Although efficient timing algorithms
have been designed for some of these characteristics taken separately, problems involving com-
binations of characteristics become much more complex, and there is generally no systematic
way to derive concepts developed for the separate problems into a methodology for the new
ones.

This paper contributes to the timing field, by means of a multidisciplinary review and anal-
ysis of timing features, problems and algorithmic approaches. A large assortment of problems,
often treated independently in the literature under various names, are identified and classified
in relation to their structure. Successful solution methods and solving concepts are reported
and analyzed, and some brief new results are presented to fill most obvious methodological
gaps. In the most noticeable cases, this analysis led to identify more than 26 algorithms from
various research fields as similar implementations of three main generalist approaches (Sections
5.3-5.4). Not only does this review gather the keys for a stand-alone resolution of a large va-
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riety of timing problems, but it also analyzes efficient timing solving as a subroutine in the
context of global searches such as neighborhood-based heuristics and branch and bound based
approaches. For these latter cases, managing global information through the successive solving
of many similar timing instances can lead to dramatic reductions of the overall solving com-
plexity. To this extent, a re-optimization framework is introduced in the second part of this
paper. The body of knowledge developed in this paper is critical for both modeling work and
algorithmic design, enabling to point out relationships between problems and their respective
complexities. A portfolio of state-of-the-art timing algorithms is identified, which will prove
useful to build more generalist solvers for many variants of difficult combinatorial optimization
problems. To our knowledge, no such unifying review and methodological analysis of this rich
body of problems has been performed in the past.

The remainder of this paper is organized as follows: Section 2 formally defines timing
problems, while Section 3 presents examples of application contexts leading to such settings.
Section 4 provides a detailed classification of the main timing features encountered in the
literature as well as notations. Our methodological analysis of timing problems and their
independent resolution is then organized in three Sections 5, 6 and 7 relatively to the previous
classification. Section 8 finally introduces a re-optimization framework that encompasses state-
of-the-art solving approaches for solving series of similar timing instances. Section 9 highlights
some challenging avenues of research in the field of timing, and concludes our analysis.

2 Problem statement

In this paper, the term activities is used to represent, independently of the field of application,
elementary operations that must be managed. The term date will always stand for a point in
time, whereas the words duration or time will be employed for relative values (e.g., processing
time). Without loss of generality, objective minimization will be considered.

Definition 1 (General timing problem and features). Let A = (a1 . . . an) be a sequence of n
activities with processing times p1 . . . pn. The execution dates of these activities t = (t1 . . . tn)
constitute the decision variables of the timing problem, and are required to follow a total order
with respect to the subscripts, such that ti ≤ ti+1 for i = 1 . . . n-1.

Other complicating features are also given. Let m be the number of such features. A feature
F x for x ∈ [∣1,m∣] involves the specification of additional problem parameters, along with a set
of mx characteristic functions fxy (t) for each y ∈ [∣1,mx∣] involving them. To each feature a role
is also associated, either as objective or constraint. A feature either contributes to the objective
with a value f̃x(t) =

∑
1≤y≤mx

fxy (t), or leads to a set of constraints fxy (t) ≤ 0 for y ∈ [∣1,mx∣].

The general timing problem involves to state on the existence of a feasible timing solution
t = (t1 . . . tn), respecting order and features constraints (for features F x ∈ ℱcons having a role
as constraint), and minimizing the weighted sum c(t) =

∑
�xf̃

x(t) of contributions from all
features F x ∈ ℱobj impacting the objective. This general problem is modeled in Equations (1-3):

min
t=(t1...tn)

∑
Fx∈ℱobj

�xf̃
x(t) (1)

s.t. ti + pi ≤ ti+1 1 ≤ i < n (2)

fxy (t) ≤ 0 F x ∈ ℱcons , 1 ≤ y ≤ mx (3)

2
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Timing problems can be viewed as shifting activity execution dates on a single resource,
without never changing their processing order. This issue is equivalent to idle-time insertion
when processing times are fixed. Most basic versions of timing are straightforward to solve,
while the various features related to application cases can lead to dramatic increases in problem
difficulty. Traditionally in the scheduling domain, some constraints and objectives are based
on activity completion dates Ci = ti + pi. Without loss of generality, these expressions can be
transformed in order to apply on execution dates. Finally, it must be noted that features have
been defined independently from their role as constraint or objective, for two main reasons.
First, many algorithms are concerned with the effective calculation of some quantities, like
total duration for example, that enable to tackle related constraints or objectives in the same
way. Furthermore, constraints can be transformed into objectives by Lagrangian relaxation,
such that it is sometimes artificial to discriminate problems involving a given feature either as
constraint or objective. Our study will thus be articulated around features in general, and their
role will be specified only when relevant to the method.

Two illustrative examples of features follow. The feature due date D, for example, completes
the model with mD = n additional parameters, representing latest execution dates di for
activities, and involve the characteristic functions fDi (t) = (ti − di)+ (i = 1 . . . n). When D
takes the role of a constraint, fDi (t) = (ti − di)+ ≤ 0⇔ ti ≤ di yields the standard formulation
of deadlines, while a role as objective leads to standard tardiness optimization criteria. The
feature time-lags TL involves up to mtl = n2 additional parameters �ij on minimum elapsed
time between the execution dates of activity pairs. The characteristic functions are ftlij (t) =
(tj − �ij − ti)+. Depending on their role, these functions enable to model time-lag constraints,
or minimize total infeasibility with respect to time-lags.

In order to emphasize the relations with practical problem settings, Section 3 details some
major problems in the fields of operations research and applied mathematics leading to under-
lying timing structures.

3 Some application fields

Production scheduling and planning. The development of just-in-time policies in the in-
dustry, as well as the refinement of models, leads to challenging scheduling settings. Among
others, time-dependent processing durations or costs (Alidaee and Womer 1999, Cheng 2004,
Gawiejnowicz 2008), and scheduling with idle time or under non regular objectives are actually
particularly active areas of research (Kanet and Sridharan 2000). In the earliness and tardiness
(E/T) scheduling problem, we are given a sequence of activities (a1, . . . , an), their target execu-
tion dates di and processing time pi, as well as penalty factors for earliness �i and tardiness �i.
The goal is to determine the sequence of tasks and their execution dates on a single machine,
such that linear penalties incurred for early or tardy processing are minimized (see Baker and
Scudder 1990, for a review). This scheduling problem presents a non regular objective, and is
NP-hard in the strong sense (Garey et al. 1988). Most recent approaches for (E/T) scheduling
consider branch and bound, neighborhood search or other metaheuristics frameworks working
on the sequence of activities. For each of the numerous sequences explored, a timing algorithm
is applied to compute the activity execution dates and thus the sequence cost. This timing

3
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problem is modeled in Equations (4-5).

(E/T) timing: min
(t1...tn)

n∑
i=1

{�i(di − ti)+ + �i(ti − di)+} (4)

s.t. ti + pi ≤ ti+1 1 ≤ i < n (5)

(E/T) timing appears as a particular case of the general timing formulation of Section 2
with release dates and deadlines (such that ri = di for i = 1 . . . n to model target execution
dates). The characteristic functions of these features, involved in the objective, are respectively
fi(t) = (ri − ti)

+ and fi(t) = (ti − di)
+. It is also noticeable that, in this case, different

penalty coefficients are frequently associated to each customer and characteristic function. This
timing problem is known to be solvable in O(n log n) (see Sections 5.3 and 5.4). Yet, as the
efficiency of the timing procedure is the main bottleneck for most (E/T) scheduling approaches,
extensive research has been conducted to solve series of timing instances more efficiently within
neighborhood searches. The use of global information through the search leads to timing “re-
optimization” procedures working in amortized O(log n) complexity, and even O(1) for some
particular cases, as described in Section 8.

Network optimization. Timing problems are also frequently encountered in various areas
of network optimization, e.g. shortest path with resource constraints, vehicle scheduling, trav-
eling salesman, vehicle routing with time features, and other complex settings (Solomon and
Desrosiers 1988, Desrochers et al. 1990, Desrosiers et al. 1995). The vehicle routing problem
with time-windows (VRPTW), in particular, consists in designing vehicle itineraries to service
a set of geographically scattered customers within allowed time intervals. The VRPTW makes
for one of the most intensively studied combinatorial optimization problem in the last decades,
as underlined by dozens of literature reviews on the subject (see Kallehauge et al. 2005, Bräysy
and Gendreau 2005a,b, Gendreau and Tarantilis 2010, for the most recent). Timing arises as a
subproblem when checking the feasibility, or estimating the minimal amount of violation with
respect to time-windows, on the sequences (itineraries) produced in the course of the search.
Time-windows are a combination of both deadlines and release dates, and the resulting timing
models are closely related to those presented previously in the case of (E/T) scheduling.

Break scheduling. Noteworthy are also several recent routing and crew scheduling appli-
cations, which require to explicitly consider regulations on working hours and breaks. Especially
in long-haul vehicle routing, determining a feasible timing for a fixed sequence of visits makes
for a highly complex problem. This problem is known to be solvable in O(n2) for United
States working regulations (Archetti and Savelsbergh 2009, Goel and Kok 2009), while the ex-
istence of polynomial algorithms remains open in the case of European Regulations (Goel 2010,
Prescott-Gagnon et al. 2010, Kok et al. 2010). These settings go beyond the timing formulations
presented in Section 2, as they often necessitate to explicitly determine both the execution date
and the nature of working and rest periods (breaks, daily rest periods and weekly rest periods).
Still, the variety of regulations around the world raises a rich emerging body of problems which
share many common points with timing settings, and should be considered relatively to them.

Energy efficient transportation. Norstad et al. (2010) introduce a ship routing problem
with convex speed optimization, which presents two interlaced issues: the design of a ship
itinerary, and the optimization of port arrival dates and speed (PATSO) in order to save energy.

4
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For a fixed sequence of visits, the latter subproblem is formulated in Equations (6-9):

(PATSO): min
t,v

n−1∑
i=1

di,i+1 c(vi,i+1) (6)

s.t. ti + pi + di,i+1/vi,i+1 ≤ ti+1 1 ≤ i ≤ n− 1 (7)

ei ≤ ti ≤ li 1 ≤ i ≤ n (8)

vmin ≤ vi,i+1 ≤ vmax 1 ≤ i ≤ n− 1 (9)

In the previous formulation, the decision variables are the travel speeds vi,i+1 for each port-
to-port leg i ∈ [∣1, n-1∣], and the arrival dates at ports ti, i ∈ [∣1, n∣]. The objective function
involves the sum of the costs of each trip leg, where c(v) represents the cost per mile as a
convex and increasing function of speed, di,i+1 represents the leg distances, and pi denotes
processing times at ports. The remaining constraints (7-9) respectively ensure that port arrival
and departure dates are consistent with leg speeds, that earlier (ei) and later bounds (li) on
arrival dates to nodes are respected, and finally that speeds are in a feasible range.

This problem can be reformulated to rely on arrival dates only, as in (10-12), defining an
extended cost/speed function ĉ(v) (Equation 13) to account for the fact that waiting times can
be used in case of forbidden low speed values.

(PATSO-2): min
t

n∑
i=1

di,i+1ĉ

(
di,i+1

ti+1 − ti

)
(10)

s.t. ti + pi + di,i+1/vmax ≤ ti+1 1 ≤ i ≤ n− 1 (11)

ei ≤ ti ≤ li 1 ≤ i ≤ n (12)

with ĉ(v) =

{
c(vmin) if v ≤ vmin
c(v) otherwise

(13)

In this latter model, Equation (11) ensures that each leg can be operated at a feasible speed,
and that port time windows are respected (12). This model falls into the category of timing
problems. It involves time-windows features characterized by functions fi(t) = (ti− li)+ +(ei−
ti)

+ with a role as constraints, as well as flexible processing times characterized by functions
fi(t) = ci(ti+1 − ti) in the objective, such that ci(Δti) = di,i+1ĉ(di,i+1/Δti). Norstad et al.
(2010) propose a Recursive Smoothing Algorithm to solve the previous timing problem with
a worst case complexity of O(n2). Several other timing algorithms, including re-optimization
procedures, exist for these settings (Sections 6.3 and 8.6).

Statistical Inference. The isotonic regression problem under a total order (IRC) consti-
tutes an intensively studied particular case of our models. Given a vector N = (N1 . . . Nn) of n
real numbers, IRC seeks a vector of non-decreasing values t = (t1 . . . tn) as close as possible to
N according to a distance metric ∥ ∥ (generally the Euclidean distance), as in Equations (14-15):

(IRC): min
t=(t1...tn)

∥t−N∥ (14)

ti ≤ ti+1 1 ≤ i < n (15)

As underlined by the seminal books of (Barlow et al. 1972, Robertson et al. 1988), IRC is the
key to perform many restricted maximum likelihood estimates in statistics, and is linked with
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various applications such as image processing and data analysis. It appears here as a timing
problem with separable convex costs, similar to those encountered when solving vehicle routing
problems with time-windows or (E/T) scheduling settings.

Other applications. Timing models finally appear under more general mathematical
formalisms, under the name of projection onto order simplexes in Grotzinger and Witzgall
(1984), or as particular cases of several convex optimization problems with underlying network
structures (Hochbaum 2002, Ahuja et al. 2003). We now develop a new classification, as well
as notations for the main classes of timing features and problems.

4 Features classification and reductions

This section first introduces a classification of main timing features in the literature, and nota-
tions for the related problems. We then examine reduction relationships between features, and
describe the outline of this analysis.

4.1 Classification and notations

The main features encountered in the literature are here classified in relation to the math-
ematical structure of the characteristic functions they involve. We rely to that extent on a
feature dimension measure �, which illustrates the links that a feature creates between decision
variables:

Definition 2 (Feature dimension). The dimension �(F x) of a feature F x corresponds to the
maximum number of variables involved together in any characteristic function fxy (t) for y =
1 . . .mx.

Table 1 presents the most common features in the literature relatively to their dimension
�. The first column provides an abbreviation for each feature, which will be used later on for
problem notations. The next columns describes the parameters, characteristic functions and
dimensions of these features. Finally, we describe the most frequent roles of each feature in the
literature.

Most of the features presented in Table 1 are usual in the scheduling or vehicle routing
literature. Features D, C, and W , can be qualified as regular, as they involve non-decreasing
characteristic functions fxy (t). For these regular features, the set of actives schedules “such that
no operation can be made to start sooner by permissible left shifting” (Giffler and Thompson
1960) is dominating. Solving the timing problem is then straightforward by means of a mini-
mum idle time policy (Section 5.1). However, these regular features present notably different
behaviors with regards to re-optimization, thus motivating a detailed study. Other features
from Table 1 are non-regular, and lead to more complex timing problems, for which idle-time
insertion eventually leads to improvements with respect to objective or constraint satisfaction.

Single and two-dimension features are directly linked to physical quantities, respectively
execution dates and durations, and are thus frequently encountered in timing formulations.
Three dimension features are more unusual, and constitute a major step towards high complex-
ity. Indeed, any mathematical program can be reformulated with constraints and objectives
separable in groups of three variables, and thus almost any problem on totally ordered variables
could be viewed as a timing problem in that sense. A reasonable limit to define ”what a timing
problem is” is to consider, as in the present paper, only applications and problems presenting
explicitly the aspect of an activity sequence.
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Table 1: Classification of timing features and notations

Symbol Parameters Char. functions � Most frequent roles

C max exec date tmax f(t) = (tn − tmax)+ 1 Deadline on last activity, lateness of
last activity, makespan

W weights wi fi(t) = witi 1 Weighted execution dates
D due dates di fi(t) = (ti − di)+ 1 Deadlines constraints, tardiness
R release dates ri fi(t) = (ri − ti)+ 1 Release dates constraints, earliness.
TW time-windows

TWi = [ei, li]
fi(t) = (ti − li)+

+(ei − ti)+
1 Time-window constraints,

soft time-windows.
MTW multiple TW

MTWi = ∪[eik, lik]
fi(t) = min

k
[(ti − lik)+

+(eik − ti)+]

1 Multiple time-window constraints

Σccvxi (ti) convex ccvxi (ti) fi(t) = ccvxi (ti) 1 Separable convex objectives
Σci(ti) general ci(t) fi(t) = ci(ti) 1 Separable objectives,

time-dependent activity costs

DUR total dur. �max f(t) = (tn−�max−t1)+ 2 Duration constraints, min duration
excess

NWT no wait fi(t) = (ti+1 − ti)+ 2 Min idle time
IDL idle time �i fi(t) = (ti+1 − �i − ti)+ 2 Min idle time excess
P (t) time-dependent

proc. times pi(ti)
fi(t) = (ti + pi(ti)

− ti+1)+
2 Min activities overlap

TL time-lags �ij fi(t) = (tj − �ij − ti)+ 2 Min excess with respect to time-lags
Σci(Δti) general ci(t) fi(t) = ci(ti+1 − ti) 2 Separable function of durations be-

tween successive activities, flex.
processing times

Σci(ti, ti+1) general ci(t, t
′) fi(t) = ci(ti, ti+1) 2 Separable objective or constraints

by successive pairs of variables
Σcij(ti, tj) general cij(t, t

′) fij(t)= ci(ti, tj) 2 Separable objective or constraints
by any pairs of variables

c(t) general c(t) f(t) = c(t) – Any feature

We rely in the following on a notation specifying for each problem the features considered, as
well as information regarding their role. Each problem will be noted as a two component string
{O∣C}, where O is a list of features involving the objective and C lists features that participate
to constraints. Separating features in the field O with a comma indicates a weighted sum of
objectives, whereas the sign ∪ is used for multi-objective problems and the sign > indicates
an order of priority. Specificities on parameters are finally reported in parenthesis after the
feature symbol. For example, problems with common deadlines can be marked with (di = d),
null processing times as (pi = 0) and so on.

To illustrate, consider the problem of speed optimization of Section 3. This problem presents
a separable and convex objective as a function of durations between successive activities, along
with time-window constraints. It can thus be categorized as {Σccvx(Δt)∣TW}. The (E/T)
timing problem presents linear penalties around a due date, which can be assimilated to simul-
taneous release dates and deadlines, thus leading to the notation {R,D(ri = di)∣ø}. Finally,
the vehicle routing literature involves problem settings with a hierarchical objective aiming first
to minimize the amount of time-window violations, then duration excess, and finally time-lag
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violations. Such a problem setting can thus be characterized as {TW > D > TL∣ø}.

4.2 Feature reductions.

In the course of this paper, reduction relationships are used to illustrate the level of generality
and complexity of timing features. A rich body of polynomial reductions has been already
developed in the scheduling literature. Most of timing problems, however, are polynomially
solvable, and the use of polynomial reduction relationships leads to encompass most problems
in the same class of equivalence. We thus seek stronger reduction properties to distinguish them.
We also aim to build relationships between features instead of complete problems, leading to
the following definition of features reductions:

Definition 3 (Reducibility among timing features). A feature F is said to be reducible to
feature F ′ if any timing problem T involving F and other features {F 1 . . . F k} admits a linear
many-one reduction to a timing problem T ′ involving F ′ ∪ {F 1 . . . F k}.

To illustrate, the feature release dates R is reducible to the feature time-windows TW , as
any instance of a timing problem with release dates, occurring in objectives or constraints, can
be linearly transformed in an instance of a timing problem with time windows, the ends of time-
windows being set to an arbitrary large value. Many other reduction relationships involving
the features of Table 1 are introduced in the course of this paper.

An overview of the feature reductions is given in Figure 1, where an arrow from feature
F i to F j indicates that feature F i can be reduced to F j . Four different categories of features
are delimited by different shades of gray. On the left, we present features involving at most
one decision variable (the first part of Table 1) and separable costs. Progressing to the right,
the next gray shade represents two-dimension features that involve only pairs of consecutive
activities together, then features involving any pair of activities together, and finally other
features. We also demarcate the area of “NP-hard” features, which alone are sufficient to lead
to NP-hard timing problems.

The hierarchy of reductions presented in Figure 1 gives an indication on the level of generality
of features. Some features, such as Σccvxi (ti), Σci(ti), Σci(Δti), and TL generalize many other
features while remaining polynomially solvable. An algorithm addressing such general features
can tackle many problems, while specialized algorithms for simpler combinations of features are
more efficient. Both specialized and general algorithms are critical for practical applications,
and deserve a detailed study. We thus provide a methodological review ordered by increasing
generality, of the main features, timing problems and solution methods in the literature. We
start with the most simple cases of single-dimension features in Section 5, and follow with two-
dimension features in Section 6 to conclude our analysis of stand-alone methods for timing in
Section 7.

5 Single-dimension features

Problems with single-dimension features are analyzed according to their difficulty and generality.
We start with simple regular features, follow with time-windows TW features, separable convex
costs Σccvxi (ti) and, finally, general separable costs Σci(ti). The latter encompass multiple time-
windows MTW and generalize all problems in this category.

8

A Unifying View on Timing Problems and Algorithms

CIRRELT-2011-43



Figure 1: Hierarchy of timing features

5.1 Makespan, deadlines and weighted execution dates

Maximum execution date C, deadlines D, and weighted execution dates W features lead to
many well-documented performance measures in the scheduling literature, and in operations
research in general, such as tardiness, lateness and maximum completion dates (Graham et al.
1979, Pinedo 2008). W as an objective arises in various routing settings, such as the delivery-
man problem (Fischetti et al. 1993), the minimum latency problem (Blum et al. 1994), and the
cumulative TSP or VRP (Bianco et al. 1993, Ngueveu et al. 2010), where the goal is to service
a set of customer as early as possible. These features are regular (see discussion in the previous
Section), as any backward shift of execution date is beneficial for both feasibility and objective
value. A very simple algorithm results from this observation, that will be refereed to as the
“minimum idle time policy”: For each activity ai of A in the sequence order, schedule ai at
its earliest possible execution date. If ai can not be scheduled, declare problem infeasibility and
stop. If all activities have been scheduled successfully, declare problem feasibility.

This simple way to choose execution dates is used extremely frequently in the literature to
solve timing problems with regular features. An optimal solution is retrieved in n searches of
the earliest feasible execution date, leading generally to O(n) complexity.
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5.2 Release dates and time-windows

Release dates and time-window features appear frequently in vehicle routing and scheduling
applications. Time-window features generalize release dates R and deadlines D, as any release
date ri or deadline di can be transformed into a time-windows with an infinite value on the
right side [ri,+∞], or the left side [−∞, di − pi].

Two main issues are often considered regarding these features. The first involves stating
on the feasibility of a sequence of activities under time-window constraints, whereas the second
problem involves the minimization of infeasibility with respect to the time-windows, and thus
involve characteristic functions fi(t) = (ti − li)+ + (ei − ti)+ in the objective.

Feasibility problem. Solving the feasibility problem {ø∣TW} is straightforward, as the
minimum idle time policy, presented in Section 5.1, is dominating in this respect. For a sequence
of n activities (a1 . . . an), the algorithm starts with t1 = e1, then chooses each subsequent
activity execution date in order to minimize idle time: ti+1 = max(ti + pi, ri+1). Hence,
feasibility can be checked in O(n). More efficient feasibility checking procedures have been
developed by Savelsbergh (1985), in the context of local search for VRPTW, to solve series of
timing instances. These procedures are presented in Section 8.

Minimize violation. Many real-case applications allow lateness or earliness, with respect
to time-windows, as a way to gain flexibility in operations. The so-called soft time-window
settings are very frequently used in heuristics for vehicle routing problems, as managing inter-
mediate infeasible solutions contributes to improve the exploration capabilities of neighborhood
searches, aiming to progress towards feasible solutions. Yet, different conventions for soft time-
windows have been reported in the literature, that vary relative to earliness allowance and the
way infeasibility is penalized. Several contributions, such as Taillard et al. (1997) and Cordeau
et al. (2001), focus on the problem {D∣R}, where late activities are allowed with penalties,
but not early activities. This case falls within the scope of regular features (Section 5.1), and
choosing for each activity the earliest execution date is optimal. The problem can thus be
solved with linear complexity O(n).

However, when early activities are allowed as in {TW ∣ø} (Koskosidis et al. 1992, Balakrish-
nan 1993, Ibaraki et al. 2005), the objective function is no longer non-decreasing. Supposing
that activity ai is finished earlier than the beginning of ai+1 time-window, choice must be
made whether to insert idle time to reach ai+1, or pay a penalty in order to better satisfy the
time-windows of remaining activities. The resulting timing setting can thus become more com-
plex. As an example, we show in Appendix A that the problem of minimizing the number of
time-windows infeasibilities, that we notate {TW (unit)∣ø}, generalizes the Longest Increasing
Subsequence Problem (LISP). LISP has been the subject of extensive research, and admits a
computational lower bound of Ω(n log n) in the comparison tree model (Fredman 1975).

It is remarkable that{TW ∣ø} is a special case of separable piecewise linear convex cost
functions. Sections 5.3 and 5.4 will provide general efficient algorithms to tackle this wide
range of problems, leading to an O(n log n) algorithm for soft time-window relaxations.

5.3 Separable convex costs

Separable convex costs Σccvxi include a wide range of problem settings as particular cases. The
feature TW , and thus R, D and C, can be reduced to Σccvxi (ti), as any time-window constraint
can be modeled as a piecewise convex cost by associating arbitrary large costs to both sides of
the feasibility interval. This feature also encompasses various other settings from the literature
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such as earliness-tardiness scheduling with common or unequal due dates and various objective
functions (Baker and Scudder 1990), isotonic regression problems with respect to a total order
(Barlow et al. 1972, Robertson et al. 1988), extensions of team orienteering problems (also
called traveling salesman with profits in Feillet et al. 2005), where eventually the profit value
decreases with time (Erkut and Zhang 1996). It also includes problems with various convex
penalty functions for time-window infeasibility (Sexton and Bodin 1985a,b, Ioachim et al. 1998,
Ibaraki et al. 2005), or time-dependent convex processing costs (Tagmouti et al. 2007). The
timing problem {Σccvxi (ti)∣ø} is formulated in Equations (16-17).

min
(t1...tn)

n∑
i=1

ccvxi (ti) (16)

s.t. ti + pi ≤ ti+1 1 ≤ i < n (17)

The literature present a large choice of methods for this setting. We study, in this subsection,
approaches specially designed for separable convex cost functions. Other dynamic programming
based algorithms, relying on fundamentally different concepts, are grouped in Section 5.4.

To bring forth the main characteristics of timing algorithms for {Σccvxi (ti)∣ø}, we introduce a
set of optimality conditions for the problem. The necessary and sufficient conditions we propose
are more general than those developed previously in the literature (Best and Chakravarti 1990),
being applicable to any set of proper convex cost functions, including non-smooth cases, which
arise frequently in these settings. These conditions will be used to analyze the behavior of
methods during the search.

Definition 4 (Activity blocks and prefix blocks). A block B is defined as a subsequence of
activities (aB(1) . . . aB(∣B∣)) processed consecutively (without idle time), such that ti + pi = ti+1

for all i ∈ {B(1), . . . , B(∣B∣) − 1}. Let pij for (i ≤ j) ∈ [∣1, n∣]2 be the cumulative processing
duration of activities ai . . . aj. The block execution cost CB as a function of its first activity
execution time tB(1) is given in Equation (18).

CB(tB(1)) = cB(1)(tB(1)) +

B(∣B∣)∑
i=B(1)+1

ci(tB(1) + pB(1)i−1) (18)

For any k such that B(1) ≤ k < B(∣B∣), we also define the sequence of activities Bk =
(aB(1) . . . ak) as a prefix block of B. Under the assumption that costs are proper convex func-
tions (such that ∃x∣f(x) < +∞ and ∀x, f(x) > −∞), the set of execution dates for the first
activity minimizing this block execution cost is an interval, that we denote as [T−∗B , T+∗

B ]. These
definitions enable to state the following necessary and sufficient optimality conditions:

Theorem 1. Let costs ci(ti) for i = 1 . . . n be proper convex, eventually non-smooth, func-
tions. A solution t∗ = (t∗1 . . . t

∗
n) of {Σccvxi (ti)∣ø}, assimilated to a succession of activity blocks

(B1 . . . Bm), is optimal if and only if the three following conditions are satisfied:

1. Blocks are optimally placed: for each block Bi, t
∗
Bi(1) ∈ [T−∗Bi , T

+∗
Bi

];

2. Blocks are strictly spaced: for each pair of blocks (Bi, Bi+1), t∗Bi(1) + pBi(1)Bi(∣Bi∣) < t∗Bi+1(1);

3. Blocks are consistent: for each block Bi and prefix block Bk
i , T+∗

Bki
≥ t∗Bi(1).

Condition 2 can be stated as primal feasibility, while Condition 3 is related to dual feasibility.
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Proof is given in Appendix B. We now analyze algorithms from the literature, and we
distinguish two categories related to the respect of either these primal or dual conditions through
the search. These algorithms have been published in totally different domains. In the case
of isotonic regression in particular, only precedence constraints among decision variables are
considered (and thus pi = 0 for all i), yet these methods can generally be extended to solve
problems with processing times with only minor modifications. Hence, we illustrate all these
algorithms on a simple problem, for which the cost functions and the processing times are given
in Figure 2.

Figure 2: Illustrative example with six activities: cost functions and durations

5.3.1 Primal feasible and constructive methods:

In the literature, we can identify a first category of methods that always respect the primal
feasibility conditions, and iteratively restore the dual conditions. The first algorithm of this
type has been proposed by Brunk (1955) to solve isotonic regression problems. This so-called
Minimum Lower Set (MLS ) algorithm starts with a single big block, then iteratively for each
block B, finds the biggest prefix block Bk violating dual conditions. If no such violation is found,
this block is optimal, else the current block is split in two at this place, and the procedure is
iterated on each sub-block until there is no remaining dual conditions violation. The algorithm
can be implemented in O(n2) unimodal function minimizations.

Later on, Best and Chakravarti (1990) were the first to provide a primal feasible algorithm
for IRC in O(n) unimodal function minimizations. Again, activities are sequentially examined in
each block to find the first violation of dual conditions (and not the most important violation). If
such a violation exists, the block under consideration is split at this place. The leftmost resulting
block having an earlier optimal starting date, it must eventually be merged with one or several
previously scheduled blocks to reach an optimal execution date. When the cost functions are
quadratic, analytic formulas exist to perform the unimodal function minimizations, such that
the complexity of this algorithm becomes O(n) (elementary operations).

In the domain of scheduling, Garey et al. (1988) propose a timetabling algorithm for (E/T)
timing problems. The method iterates on activities in the order of the sequence, such that at
step i the algorithm yields an optimal solution to the subproblem containing only the first i
activities. Each new activity is inserted at the end of the schedule, to be then left-shifted and
eventually merged into blocks with previous activities, until no improvement may be achieved.
The algorithm runs in O(n log n) when relying on efficient data structures such as heaps.

Figure 3 illustrates the algorithms of Best and Chakravarti (1990) and Garey et al. (1988) on
the example of Figure 2. The problem is solved in six steps, illustrated from top to bottom along
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with the incumbent solutions, representing activities as rectangles with a length proportional
to the processing time. We notice that the activity blocks in presence are very similar, such
that these contributions can be seen as two different implementations of the same underlying
primal feasible algorithm. The only difference is that Garey et al. (1988) consider non-inserted
activities as non-existing in the current solution, whereas Best and Chakravarti (1990) keep
those in one last block that does not respect the dual constraints.

Figure 3: Comparison between Garey et al. (1988) algorithm (left part of the figure), and Best
and Chakravarti (1990) algorithm (right part of the figure)

The method of Garey et al. (1988) has been extended by Lee and Choi (1995) and Pan
and Shi (2005) to address timing problems in (E/T) scheduling with distinct penalty weights
for earliness and tardiness {D,R(di = ri)∣ø} in O(n log n) elementary operations. Szwarc
and Mukhopadhyay (1995) and Feng and Lau (2007) also propose to identify some tasks that
are necessarily processed without idle time (in the same block) before solving. Chrétienne
and Sourd (2003) apply the algorithm to project scheduling with general piecewise convex
cost functions, and Hendel and Sourd (2007) to timing problems with convex piecewise linear
cost functions or convex piecewise quadratic cost. These algorithms proceed in O(n) unimodal
function minimizations, but differ in terms of the data structures used to represent the functions
and thus on the complexity of the function minimizations. When cost functions are piecewise
linear, Hendel and Sourd (2007) attains a complexity of O('c log n), where 'c is the total
number of pieces in all activity cost functions of the sequence.

We finally mention Davis and Kanet (1993), which propose another primal feasible method
for (E/T) scheduling, generalized to general piecewise convex costs by Wan and Yen (2002).
Activities are iteratively added to the solution in reverse order of the sequence. Each activity
is scheduled at date 0, and then shifted onwards (while eventually merging blocks), until no
improvement is achieved. This algorithm is equivalent to Garey et al. (1988) method on a
symmetric problem with reversed sequence, under the change of variables t′i = M − ti, where
M is a big time value.

5.3.2 Dual feasible methods.

Simultaneously with Brunk (1955), another seminal method for IRC was proposed by Ayer
et al. (1955) under the name of pool adjacent violators algorithm (PAV ). Starting with an
initial solution consisting of n separate blocks, one for each activity, successive pairs of blocks
(Bi, Bi+1) not satisfying primal conditions are iteratively identified. Such blocks are merged,
and the next iteration is started. The order in which these couples of blocks are identified
is a choice of implementation, and does not affect the final result of the algorithm. Figure 4
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illustrates the PAV algorithm on the previous example. In this algorithmic implementation, we
identify the first pair of blocks not verifying primal conditions to be merged. We notice that
the optimal solution is reached after three merges (at Step 3 on the figure).

Figure 4: The PAV algorithm illustrated on timing problems

Chakravarti (1989) proved that PAV is a dual feasible method for the linear formulation of
the problem, when the distance considered is ∥ ∥1 (c(t) = Σ∣ti − Ni∣), while Grotzinger and
Witzgall (1984) and Best and Chakravarti (1990) showed that PAV is a dual algorithm for IRC
when quadratic costs are considered (euclidean distance).

The PAV algorithm has also been generalized to convex functions by Best et al. (2000) and
Ahuja and Orlin (2001), achieving a complexity of O(n) unimodal minimizations. It is note-
worthy that, under a totally different formalism, an equivalent algorithm has been discovered
by Dumas et al. (1990) in the vehicle routing context with convex service costs as a function of
time. For the case of the distance ∥ ∥1, the PAV algorithm can be implemented in O(n log2 n)
elementary operations using balanced search trees (Pardalos 1995), or O(n log n) complexity
using scaling techniques (Ahuja and Orlin 2001). Finally, in the case of quadratic costs, an-
alytic formulas are known for function minimas, such that O(n) algorithms can be designed
(Grotzinger and Witzgall 1984, Dumas et al. 1990, Pardalos and Xue 1999).

5.4 Separable costs and multiple time-windows

Without the previous convexity assumption, the timing problems {Σci(ti)∣ø} become naturally
more complex, and many authors have focused on separable piecewise linear costs. The feature
MTW in particular (Christiansen and Fagerholt 2002, Tricoire et al. 2010), also appears as a
case of piecewise linear separable cost, associating infinite cost to forbidden time periods.

When cost functions are non-negative and lower semi-continuous (l.s.c. : ci(ti) ≤ lim�→0

min{ci(ti + �), c(ti − �)} at every discontinuous point), dynamic programming concepts enable
to solve efficiently the timing problems (Ibaraki et al. 2005). A large range of methods (Yano
and Kim 1991, Sourd 2005, Ibaraki et al. 2005, Hendel and Sourd 2006, Ibaraki et al. 2008),
tackling piecewise linear, and eventually convex costs, has been proposed in the routing and
scheduling literature. Both backward or forward dynamic programming approaches have been
applied.

Solving {Σci(ti)∣ø} by forward dynamic programming involves the forward minimum cost
function Fi(t), which evaluates the minimum cost to execute the sequence of activities (a1 . . . ai),
while executing the last activity before t (ti ≤ t). Fi(t) functions can be computed by means
of Equation 19, starting from the case i = 1 with a single activity where F1(t) = min

x≤t
c1(x).

The optimal solution value of the timing problem is z∗ = Fn(+∞), and the optimal activity
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execution dates are straightforward to retrieve from the functions Fn(t).

Fi(t) = min
x≤t
{ci(x) + Fi−1(x− pi−1)} 1 < i ≤ n (19)

The symmetric way to solve this problem by backward programming involves the backward
minimum cost function Bi(t), which evaluates the minimum cost to execute the sequence of
activities (ai . . . an), while executing the first activity ai after t (ti ≥ t). Bi(t) functions are
computed by backward recursion, starting with Bn(t) = min

x≥t
cn(x) and using Equation (20).

After the calculation of Bi(t) for all i, the optimal solution value of the timing problem is given
by z∗ = B1(−∞).

Bi(t) = min
x≥t
{ci(x) +Bi+1(x+ pi)} 1 ≤ i < n (20)

Denoting 'c the total number of pieces in all activity cost functions ci, Ibaraki et al. (2005)
provides an implementation of the forward or backward dynamic programming method working
in O(n'c). In the case where convex cost functions are considered, the use of efficient data
structures such as balanced search trees leads to a complexity of O('c log'c) (Ibaraki et al.
2008), matching the best available approaches in O(n log n) for the particular cases related
to IRC, (E/T) scheduling or soft time-windows. Finally, besides their good complexity for
solving independent timing problems, these dynamic programming approaches are suitable for
efficient re-optimization procedures. Managing dynamic programming data through successive
solving of similar timing instances, in neighborhood searches especially, can lead to a dramatic
reduction of complexity. A thorough analysis of such re-optimization procedures for various
features is provided in the second part of this article (Section 8).

5.5 State-of-the-art: single-dimension features

In this section we introduced and analyzed the main single-dimension features from the litera-
ture, independently of the field of application. The knowledge condensed here leads to a better
understanding of the problems and algorithms at play, helpful for both modeling work and
algorithmic design. For the problems considered, numerous contributions have been examined
to identify state-of the art methods. In the particular case of {Σccvxi (ti)∣ø} and {Σci(ti)∣ø},
we classified 26 methods from various fields such as routing, scheduling and isotonic regression
into three main families, that either respect dual or primal feasibility conditions on a suit-
able model, or exploit dynamic programming concepts. Another key result of this analysis is
that a panel of three families of methods constitute the actual state-of-the-art for timing with
single-dimension features. The simple minimum idle time policy enables to solve problems with
regular features and objectives with a linear complexity. Primal and dual active sets methods
solve timing problems with separable convex costs in n convex functions minimization. And
finally, dynamic programming based methods are state of the art for separable (eventually
convex) piecewise linear costs.

Single dimension features are related to many prominent problems such as LISP and IRC,
which have already been the subject of extensive research. Still, we must keep in mind that
only independent solving of timing problems has been thoroughly considered. As illustrated in
Section 8, solving series of similar timing instances in local search context can be performed
more efficiently by means of re-optimization procedures, and perspectives of research remain
open in this area, even for single-dimension features.
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6 Two-dimension features

We now focus on problems with two-dimension features. In most of the literature, these features
are considered in presence of time-windows. TW is therefore often included as constraints in
the models of this section. The presentation is structured in relation to the level of problem
complexity and generality. Starting with the duration feature DUR, which involves exclusively
the first activity and last activity together, we then examine two-dimension features involving
successive activities: no-wait NWT , idle time IDL, and flexible ci(Δti) or time-dependent P (t)
processing times. Finally, features involving any pair of activities, such as time-lags TL, and
cost functions separable by pairs of variables Σcij(ti, tj) are analyzed.

6.1 Total duration and total idle time

Accounting for total duration or idle-time is meaningful when one has the possibility to delay
the beginning of operations; otherwise, considering the maximum execution date feature C
would be sufficient. Whereas delaying the start of production is generally not an option in
scheduling problems, it becomes particularly relevant in routing, as real-life objectives, relating
to crew duty time, often involve duration minimization. We mention Savelsbergh (1992) for
duration minimization under time-windows and duration constraints in VRPs, Cordeau et al.
(2004) that generalizes the previous approach for soft time-windows and duration constraints,
Desaulniers and Villeneuve (2000) for shortest path settings with linear idle-time costs and time
windows, and Desaulniers et al. (1998) and Irnich (2008b) for a general framework that enables
to tackle duration and idle time features, among others, in various time-constrained routing
and crew scheduling problems.

Calculation of total duration and total idle time is equivalent, as under fixed processing
times, the total duration and idle time of a schedule t = (t1 . . . tn) differ by one constant only
(Equation 21).

WT (t) =
n−1∑
i=1

(ti+1 − ti − pi) = tn − t1 −
n−1∑
i=1

pi = DUR(t)−
n−1∑
i=1

pi (21)

In order to manage duration features in {DUR∣TW} and {ø∣DUR, TW}, Savelsbergh (1992)
proposes to first rely on a minimum idle time policy, and then shift activity execution dates
forward to reduce the total duration. The related amount of shift has been introduced many
years ago in the project scheduling literature (Malcolm et al. 1959), as the latest processing
date for an activity which does not cause a slippage in the calendar duration. It is also known
in the VRP literature under the name of forward time slack (Savelsbergh 1985, 1992).

The following quantities are computed for each activity ai: the earliest feasible execution
date Ti, the cumulative idle time Wi on the subsequence (a1 . . . ai) according to these execution
dates, and the partial forward time slack Fi on the subsequence (a1 . . . ai). These values are
recursively computed by means of Equations (22-24), starting with the single activity case for
which T1 = e1, W1 = 0 and F1 = l1 − e1.

Ti = max(Ti−1 + pi−1, ei) 1 < i ≤ n (22)

Wi = Wi−1 + Ti − Ti−1 − pi−1 1 < i ≤ n (23)

Fi = min(Fi−1, li − Ti +Wi) 1 < i ≤ n (24)
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The problem admits a feasible solution if and only if Ti ≤ li for all i. The execution date
of the first activity in an optimal solution is given by t∗1 = e1 + min{Fn,Wn}. The other
dates are computed using the minimum idle time policy. Both feasibility checking and dura-
tion minimization problems are thus solved in O(n). Kindervater and Savelsbergh (1997a),
Desaulniers and Villeneuve (2000) and Irnich (2008b) proposed different calculations of this op-
timal schedule. As pointed out by Parragh et al. (2010), all these approaches are closely related.

Tricoire et al. (2010) recently consider a more complex timing setting aiming to minimize
duration under multiple time-window constraints {DUR∣MTW}. Each activity ai is now as-
sociated with a set of ki time-windows, MTWi = {[ei1, li1] . . . [eiki , liki ]}. The authors propose
a procedure that first removes some unnecessary time-windows segments, not suitable for any
feasible solution, while detecting infeasible timing problems. In a second step, the procedure
examines a subset of dominant schedules, such that “no better solution exists with the same
last activity execution date”. For a given execution date tn of the last activity, a dominant
schedule with minimum duration can easily be found using the backward recursion of Equation
(25).

ti−1 = max{t ∣ t ≤ ti − pi−1 ∧ t ∈MTWi} (25)

Starting from the dominant schedule t̄ with earliest completion time, the method iteratively
identifies the last activity ai followed by idle time: t̄i + pi < t̄i+1. If activity ai does not admit
a later time-window, the algorithm terminates. Otherwise, the execution date of activity ai
is set to the beginning of the next time-window, and the execution dates of activities situated
afterwards in the sequence are re-computed with a minimum idle time policy. The execution-
time of the last activity obtained in this way leads to a dominant schedule, which becomes t̄ in
the next iteration.

Tricoire et al. (2010) prove that at least one dominant schedule explored in the course of the
algorithm is optimal. If each customer is associated to at least one time-window, the overall
method can be implemented in O(n'mtw), where 'mtw represent the number of time-windows
in the problem.

Figure 5: Duration minimization under multiple time-window constraints

We illustrate this algorithm in Figure 5 on a small example given with four activities and
two time-windows per activity. Activities are represented from bottom to top with their time-
windows, while the time dimension is represented by the horizontal axis. The earliest completion
date is computed with a minimum idle time policy, illustrated in gray lines. The initial dominant
schedule t̄0 , illustrated in black, is then determined by backward recursion using Equation 25.
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This schedule presents waiting time after activity a3, and thus the execution date of this activity
is delayed to the next time-window, leading to a dominant schedule t̄1. Now the latest activity
followed by waiting-time is a2. Its execution date is delayed, and leads to the dominant schedule
t̄2. The latest activity followed by waiting-time is now a1, as there is no later time-window for
this activity, the algorithm terminates. Among the three dominant schedules explored, the best
solution with minimum duration has been reached by t̄2, which is the optimal solution.

6.2 No-wait and idle time

No wait NWT and idle-time IDL features appear in various situations involving, among others,
deterioration of products, maximum waiting times in passenger transportation, fermentation
processes in the food industry, and cooling down in metal-casting processes. No-wait features
are a special case of idle time IDL when �i = 0. No-wait constraints ti = ti+1 can also be
tackled by problem reformulation, merging unnecessary variables. When no waiting time is
allowed on the entire activity sequence, the timing problem becomes a minimization problem
of a sum of functions on one single variable.

Two main categories of problems have been considered in the literature for NWT and IDL
features: the feasibility problem under idle-time and time-window constraints, presented here;
and the optimization problem when some of these features appear in the objective function,
treated in Section 6.3 in a more general context.

Feasibility checking under maximum idle time and time-window constraints has been fre-
quently studied in the routing literature. Hunsaker and Savelsbergh (2002) design an algorithm
to check the feasibility of itineraries in dial-a-ride settings, corresponding to {ø∣IDL, TW}
timing problem with additional time-lag features. This algorithm involves as special case a
feasibility checking method for {ø∣IDL, TW} working in O(n). The solution to {ø∣IDL, TW}
is found in two scans of the activity sequence. The first pass considers the relaxed subproblem
{ø∣TW}, determining for each activity i the earliest feasible execution dates Ti complying with
time-windows and processing times. This calculation is performed by means of Equation (22).
In a second pass, the algorithm proceeds backward in the sequence to determine the earliest
feasible execution dates T ′i verifying also idle-time constraints (Equation 26), starting with
T ′n = Tn. The problem is declared infeasible as soon as for any i = 1 . . . n, Ti > li or T ′i > li.

T ′i = max(T ′i+1 − pi − �i, Ti) 1 ≤ i < n− 1 (26)

Figure 6: Feasibility checking under time-windows and idle-time constraints

18

A Unifying View on Timing Problems and Algorithms

CIRRELT-2011-43



The two passes are illustrated on Figure 6 for a small problem with four activities, rep-
resented from bottom to top with their time-windows. The first pass (Ti values) has been
represented in gray, while the second backward scan, in black, provides the earliest feasible
execution date for each activity T ′i . As shown in the figure, this value exceeds the time-window
of activity a1 (T ′1 > l1), and thus the timing problem illustrated is infeasible.

6.3 Flexible processing times

NWT, IDL features, and relaxed processing times are sometimes encountered in the objective
function. In maritime transportation, Norstad et al. (2010) introduce a combined routing and
speed optimization problem, where leg durations, assimilated to activity processing times, are
a consequence of the speed choice (see Section 3). Time/resource trade-offs have also been
studied for long in project scheduling, and shorter processing times for activities are eventually
allowed with costs related to additional workforce, energy spent, or a different processing mode
(Kelley and Walker 1959, Talbot 1982). The characteristic functions of NWT and IDL are also
always separable by successive pairs of variables, such that these features reduce to Σci(Δti),
often denoted as flexible processing times or travel times in routing literature.

If no further feature is added to the problem, {Σci(Δti)∣ø} is straightforward to solve, as
all pairs of activities can be independently optimally spaced: ti+1 − ti = arg minΔti Σci(Δti).

In presence of other two-dimension features as constraints, on duration or idle-time, the
problem {Σci(Δti)∣DUR} can be reformulated into a continuous non-linear resource allocation
problem, using the change of variables xi = ti+1− ti−pi. Numerous approaches for solving this
wide class of problems have been proposed in the literature, as underlined by the remarkable
review and annotated bibliography of Patriksson (2008).

The speed optimization problem of Norstad et al. (2010) (Equations 10-12) can be seen as a

special case of {Σccvxi (Δti)∣TW}, where the objective can be expressed as z(t) =
n∑
i=1

di,i+1c̄
(
ti+1−ti
di,i+1

)
,

and functions c̄(Δt) are non-increasing and convex. In presence of such functions, removing
time-window constraints leads to optimal solutions presenting a constant ratio ti+1−ti

di,i+1
for all i,

interpreted as a constant speed on all legs. The recursive smoothing algorithm (RSA) of Norstad
et al. (2010) exploits this property, by maintaining this ratio constant on subsequences, while
re-introducing progressively violated time-window constraints. It is remarkable that, if the
minimum of c̄(Δt) is given, the functions properties enable a resolution with no other call to
the objective, and the algorithm complexity is O(n2) elementary operations.

In general settings though, when flexible processing times are combined with single-dimension
features such as time-windows or time-dependent activity costs, the problem difficulty in-
creases dramatically. Sourd (2005) and Hashimoto et al. (2006) have independently studied
{Σci(Δti),Σci(ti)∣ø} (Equation 27) in the context of (E/T) scheduling and vehicle routing.
Both authors report the NP-hardness of this problem if no assumption is made on the func-
tions at hand.

min
t1...tn

n∑
i=1

ci(ti) +

n−1∑
i=1

c′i(ti+1 − ti) (27)

In the case where the functions are piecewise linear with integer breakpoints, a dynamic
programming algorithm is proposed to solve the problem in O(T 2) where T represents an
upper bound on the schedule durations. As in Section 5.4, this algorithm can be implemented
with a forward dynamic programming function Fi(t) (Equations 28-29), which now evaluates
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the minimum cost to process the subsequence of activities (a1 . . . ai), starting the last activity
exactly at date t (ti = t). The resulting optimal cost is given by z∗ = mint Fn(t).

F1(t) = 0 (28)

Fi(t) = ci(t) + min
0≤x≤t

{Fi−1(x) + c′i−1(t− x)} 1 < i ≤ n (29)

In the particular case where functions c′i(Δt) are piecewise linear and convex, Sourd (2005)
and Hashimoto et al. (2006) propose a polynomial time implementation of the previous ap-
proach. Let 'c and '′c be, respectively, the total number of pieces in cost functions ci and
c′i, and '̂c the number of convex pieces in the cost functions ci. The resulting complexity is
O(n('c+'̂c×'′c)). Efficient re-optimization procedures have also been developed by the authors
(see Section 8).

Finally, DUR involved in the objective can be seen as a special case of Σci(Δti) where
cduri (Δti) = Δti. MTW is also reducible to a piecewise linear Σci(ti) with a total number of
pieces proportional to n+'mtw, where 'mtw represents the total number of time-windows. The
previous algorithm thus provides an alternative way to solve {DUR∣MTW} or {ø∣DUR,MTW}
in O(n+ n'mtw).

6.4 Time dependent processing times

In real life settings, activity processing times are often subject to variations. In scheduling
for example, several studies on learning, deterioration effects and other time-dependencies on
processing times have been performed (see the reviews from Alidaee and Womer 1999, Cheng
2004). In routing and data transmission, network congestion and rush hours are a major concern
(Van Woensel et al. 2008, Kok et al. 2009), and thus the time-dependent processing-time feature
P (t) appears in various network optimization problems: shortest path (Cooke and Halsey 1966,
Dreyfus 1969, Halpern 1977), traveling salesman (Malandraki and Dial 1996), vehicle routing
(Beasley 1981, Malandraki and Daskin 1992, Ichoua et al. 2003, Donati et al. 2008, Hashimoto
et al. 2008) and so on.

Literature on the subject can generally be separated between discrete and continuous set-
tings. Discrete optimization models generally involve time-space networks that are less likely
to present the timing issues studied in this article, whereas several continuous models have led
to explicit timing problems with P (t) features, as in Ichoua et al. (2003), Fleischmann et al.
(2004), Donati et al. (2008) and Hashimoto et al. (2008). These models involve constraints of
the type ti + pi(ti) ≤ ti+1 within a timing formulation with other additional features. Very
often, the FIFO assumption on functions pi is made:

FIFO assumption: ∀i x ≥ y =⇒ x+ pi(x) ≥ y + pi(y) (30)

FIFO implies that any delay in an activity execution date results in a delay in its completion
date. Such assumption is meaningful in real life routing, as two vehicles that behave similarly on
the same route are supposed to remain in the same arrival order, whatever congestion happens
(Ichoua et al. 2003). However, there are situations where FIFO is not relevant, in transportation
modes such as rail, where express trains can eventually arrive at destination before slower trains
with earlier departures for the same destination.

Time-dependent processing time features are generally assumed to result in more complex
timing problems. However, one should clearly identify the source of the difficulty, which is fre-
quently imputable to the calculation and access to pij(t) through the search, and not necessarily
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to the timing problem solving method. Assuming that pij(t) can be evaluated in constant time,
and under FIFO, {D∣R,P (t)} is still solvable in O(n) by means of a minimum idle time policy
(Fleischmann et al. 2004). In the same spirit, Donati et al. (2008) apply the time-slack approach
of Savelsbergh (1992) for {ø∣TW,P (t)}. However, dedicated methodologies are necessary for
other settings such as {DUR∣TW,P (t)}, and re-optimization procedures with P (t) (Section 8).

A general time-dependent timing problem with costs related to service and departure dates
is also tackled by Hashimoto et al. (2008). All functions considered are non-negative, piecewise
linear, and lower semicontinuous. The authors propose a dynamic programming approach,
which extends the method of Section 5.4. It involves the functions Fi(t), which represent
the minimum cost to proceed the subsequence of activities (a1 . . . ai), while starting the last
activity before t (ti ≤ t). These functions can be computed by means of the forward dynamic
programming formulas of Equations (31-32), and the optimal solution cost is given by Fn(+∞).

F1(t) = min
0≤x≤t

{c1(x)} (31)

Fi(t) = min
0≤x≤t

{ci(x) + min
x′+pi(x′)≤x

Fi−1(x′)} 1 < i ≤ n (32)

It is remarkable that, under the assumption of Equation 33, which is slightly weaker than FIFO,
the method can be implemented in O(n('c+'p)), where 'c and 'p denote the total number of
pieces in cost and processing-time functions. This method for {Σci(ti)∣P (t)} thus present the
same quadratic complexity as in the case without time-dependency (Section 5.4).

(HYI) assumption: ∀i x+ pi(x) = y + pi(y) =⇒ x+ pi(x) = z + pi(z) ∀z ∈ [x, y] (33)

However, when the previous assumption does not stand, the dynamic programming method
of Hashimoto et al. (2008) is not polynomial, and the question remains open whether {Σci(ti)∣P (t)}
is polynomially solvable or not in this case. Hypotheses on processing times functions, such as
FIFO, are then crucial to guarantee efficient solution procedures.

6.5 Time-lags

The two-dimension features considered until now involved linking constraints and objectives
between the first and last task, in the case of DUR, or between pairs of successive variables
in the case of NWT and IDL. We now address the time lags TL feature, which involves any
difference of two execution dates in constraints or objectives. This feature is thus naturally a
generalization of NWT , IDL, DUR and processing-times.

To the best of our knowledge, the first research on time lags has been conducted by Mit-
ten (1959) for flowshop scheduling problems. This feature has been used since to model many
problem characteristics in various domains, such as the deterioration of food or chemical prod-
ucts, glue drying, customer requirements in some dial-a-ride problems, elevator dispatching,
quarantine durations and so on. Time-lag scheduling problems on a single machine have also
been shown by Brucker et al. (1999) to generalize all shop, multi-purpose machines, and multi-
processor tasks scheduling problems. Hence, the resulting timing problems with TL are also
likely to be difficult.

The most basic problem with TL feature relates to feasibility checking under time-lag con-
straints of the form ti + �ij ≤ tj . When �ij ≥ 0, the constraint is called positive time-lag, and
corresponds to a minimum delay between activities ai and aj , whereas �ij ≤ 0 corresponds to a
negative time-lag, and involves a maximum delay of −�ij between activities aj and ai. Equality
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constraints ti+�ij = tj involve both positive and negative time-lags. The resulting timing prob-
lem {ø∣TL} can be seen as a special case of project scheduling on a chain of activities, and the
METRA potential method (MPM) of Roy (1959, 1962) can be applied. Following MPM, time
lag constraints can be represented on a graph G = (V,A) where each activity ai is associated
with a node vi ∈ V , and each arc (vi, vj), associated with a weight wij , represents a temporal
constraint of the form tj− ti ≥ wij . Feasibility of the timing problem {ø∣TL} is then equivalent
to the non-existence of a positive length cycle in this graph (Bartusch et al. 1988, Dechter et al.
1991). The algorithm of Floyd-Warshall can be employed to solve this problem in O(n3), but the
longest path procedure of Hurink and Keuchel (2001), also in O(n3), is shown to provide faster
results in practice. Potts and Whitehead (2007) also consider a coupled-operation scheduling
problem with only n/2 time-lag constraints, and timing feasibility is checked in O(n2). The
authors underline the computational burden of such timing algorithms, which strongly degrades
the performance of neighborhood searches or branch and bound procedures.

In the context of dial-a-ride problems, Hunsaker and Savelsbergh (2002) also study a case of
{ø∣TL, TW} timing. Activities represent customer requests on drop-on and drop-off services,
which occur by pairs, such that any drop-on activity always precedes its corresponding drop-off
activity in the sequence. Each such pair of activities is linked by a single positive time-lag
constraint. The total number of time-lag constraints is thus n/2. The problem also involves
time-windows and maximum waiting times for each activity. The authors claim that the result-
ing timing feasibility problem can be solved in three passes on the sequence of activities with
linear complexity. Yet, the algorithm presents a small flaw which is straightforward to correct
(Tang et al. 2010), but results in a complexity of O(n2). An alternative algorithm, proposed
by Haugland and Ho (2010), improves this complexity to O(n log n) by means of heap data
structures.

Finally, Cordeau and Laporte (2003) and Berbeglia et al. (2010) consider a dial-a-ride
setting with an additional duration constraint on the whole vehicle trip duration. The authors
consider a relaxed problem through the search, with a hierarchical objective. Total trip duration
infeasibility is minimized, then time-windows infeasibility and finally time-lag infeasibility, that
is the timing problem {DUR > D > TL∣R}. The algorithm first minimizes duration and time-
window infeasibility as in Section 6.1, then iteratively delays some drop-on services to reduce
time-lag infeasibility without increasing any other violation. A computational complexity of
O(n2) is achieved. It was observed (Private communication 2010), however, that the previous
approach only guarantees optimality under an additional assumption that we call LIFO, and
which requires that for any 1 ≤ i < j < k < l ≤ n, no activities ai, aj , ak, al present “entangled”
time-lag constraints of the form tk − ti ≤ �ik and tl − tj ≤ �jl. An instance presenting this
property is illustrated in the upper part of Figure 7, while at the bottom is represented an
arbitrary instance presenting entangled constraints.

The LIFO assumption is frequently respected in the vehicle routing literature, especially in
pickup and deliveries services, or in presence of complex loading constraints. In this scope, the
last object or customer received in the vehicle is the first one to leave. Without this assumption,
the difficulty of many problems with time-lags strongly increases, and no specialized efficient
algorithm is actually known for {DUR > D > TL∣R} and similar problems.

6.6 Separable costs by pairs of variables

Separable costs by pairs of variables Σcij(ti, tj) generalize all problems combining single or
two-dimension features. The timing problem with this feature alone is NP-hard, as it includes

22

A Unifying View on Timing Problems and Algorithms

CIRRELT-2011-43



Figure 7: Timing problems with time lags: illustration of the LIFO property

{Σci(ti),Σci(Δti)∣ø} as special case (see Section 6.2). Under convexity or linearity assumptions
on the objective function, the timing problem {Σccvxij (tj − ti),Σccvxi (ti)∣ø} given in Equation
(34), is equivalent to the convex cost dual network flow problem, for which weakly polynomial
algorithms are available (Ahuja et al. 2003). This problem constitutes one of the most general
timing setting to remain polynomially solvable.

min
t=(t1...tn)

∑
(i,j)∈Q

ccvxij (tj − ti) +
∑

1≤i≤n
ccvxi (ti) (34)

s.t. ti + pi ≤ ti+1 1 ≤ i < n (35)

7 Conclusion on “stand-alone” timing methods

In contrast to single-dimension features, which appeared as fairly well addressed in Section
5 by means of a few algorithms and concepts, two-dimension features lead to more diverse
problem structures and algorithms. Simple cases with duration minimization or time-dependent
processing times can eventually be solved in linear time, but other problems with time-lags
features actually require O(n3) algorithms to be solved exactly. Although polynomial, the latter
methods can be impracticable in the context of local searches or branch-and-bound approaches.

Many practical timing settings result in models with linear constraints, and linear or sep-
arable convex objectives. For these problems, the linear and convex programming theory en-
sures weakly polynomial resolvability, and provides general solving methods (Khachiyan 1979,
Karmarkar 1984, Hochbaum and Shanthikumar 1990). Some of the most complex timing set-
tings, however, such as {Σci(ti),Σci(Δti)∣ø}, are NP-hard, while for other problems, such as
{Σci(ti)∣P (t)} with general piecewise linear functions P (t), the existence or non-existence of
polynomial algorithm is still open. Timing settings thus lead to a rich variety of problem
structures and complexities.

In all these cases, whether polynomial algorithms are available or not, research is still
open to provide more efficient algorithms exploiting the particular structure of the features
and problems at hand. The present paper has already contributed by building a formalism, a
classification of features, timing problems and methods. We gathered the most efficient timing
approaches from numerous previously separated fields of research, to tackle both specialized
timing settings, and more general features. Now research can turn on filling the gaps which
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have been emphasized in this review, and which continue to appear, following the rich variety
of actual application cases with time constraints emerging nowadays.

Last but not least, we mention finally a key direction of research, which involves more
efficient timing solving, not from a stand-alone view, but considering the general context of a
local search or branch-and-bound approaches. In this scope, closely related timing problems are
repetitively solved for each move in the neighborhood, or at each node of the search tree. We
dedicate a last Section of this paper to efficient re-optimization methods for these important
settings.

8 Timing re-optimization

In the first part of this article, we examined how to address timing problems as a stand-alone
issue. Yet, most neighborhood-search-based heuristics, metaheuristics, and some exact methods
require to solve iteratively a large number of timing instances in close relationships. In this
case, solving each timing problem “from scratch”, without exploiting any knowledge on previous
resolution, can result in a huge loss of information and in redundant computations.

Most local searches for routing and scheduling problems (see the book of Hoos and Stützle
2005 for a thorough presentation of LS) indeed rely on a neighborhood based on a limited
number of sequence changes. One or several timing subproblems are solved for each neighbor
solution, in order to determine the cost or the feasibility of the sequences it involves. Two
classical neighborhoods, dedicated respectively to exchange the tails of two vehicle routes in
VRP context (2-opt* of Potvin and Rousseau 1995), and relocate a sequence of activities (Or-
exchange of Or 1976), are illustrated in Figure 8. It is noticeable that large subsequence of
activities (Seq.A ... Seq.D on the figure) are shared by the successive timing subproblems to
solve.

Figure 8: Sequence invariants in 2-opt* and relocate moves

Also, for problems presenting sequencing issues, several branch and bound based searches
involve branching decisions on sequences characteristics, such as precedence relationships, or
arc or path setting. Timing subproblems can then arise at nodes of the search tree, when
evaluating the cost or feasibility of sequences produced during the search, for lower bound
computation, branch pruning (Hoogeveen and Van De Velde 1996, Sourd and Kedad-Sidhoum
2003), as well as in column generation approaches (Desrochers et al. 1992, Prescott-Gagnon
et al. 2009, Baldacci et al. 2011). In the latter cases, the search for improving columns involves
elementary shortest path problems with combined timing decisions and resource constraints.

In the previous cases, it is noticeable that numerous closely related timing problems must
be solved: large subsequences of consecutive activities remain unchanged, and only a minor
proportion of problem parameters (reduced cost values for column generation) is impacted. In
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order to solve more efficiently these series of similar timing problems, several authors propose to
keep meaningful data on the global search process to save computations. Actually, neighborhood
searches have largely benefited from these techniques, as move evaluation (and thus timing
solving) is responsible for the largest part of the computational effort. Therefore these re-
optimization methodologies can lead to dramatic reductions in the computational burden of
algorithms.

We now formally define these serial timing problems in Section 8.1, and present a general
framework for re-optimization methods based on sequence concatenations in Sections 8.2-8.3.
Links with related re-optimization methodologies are analyzed in Section 8.4, before reviewing
or introducing efficient concatenation-based re-optimization methods for each major timing
feature and related problems in Section 8.5-8.6. The set of timing re-optimization methods
introduced in the remaining sections are fundamental to design efficient neighborhood searches
for a large range of vehicle routing and scheduling problems.

8.1 Problem statement: Serial timing

This section formally defines serial timing problems, and presents the general concepts of re-
optimization from the literature.

Definition 5 (Serial timing). Let T be an incumbent timing problem with n activities (a1 . . . an),
sequence-dependent processing-times pij, and additional features with their data, characteris-
tic functions fxi (t), and role involving new constraints fxy (t) ≤ 0 for y ∈ [∣1,mx∣] or con-

tributing to the objective with a value value f̃x(t) (see Section 2). N permutation functions
�k : {1 . . . n} → {1 . . . n} for k ∈ [∣1, N ∣], are also given. The serial timing problem then
involves solving the timing subproblems T k of Equations (36-38), for k ∈ [∣1, N ∣].

(T ∥) : min
t=(⊔∞...⊔∖)

∑
Fx∈ℱobj

�xf̃
x(t) (36)

s.t. t�k(i) + p�k(i)�k(i+1) ≤ t�k(i+1) 1 ≤ i < n (37)

fxy (t) ≤ 0 F x ∈ ℱcons , 1 ≤ y ≤ mx (38)

Sequence-dependent processing times are considered here, in relation to a large range of
applications in the field of vehicle routing, which heavily rely on re-optimization methods, and
for which this characteristic is central. Sequence-dependency affects the methods at play only
in some timing settings, which are explicitly mentioned in this paper.

Several types of re-optimization approaches have been developed in the literature to take
advantage of the information developed during the successive subproblem solving. To solve
similar timing instances, a first approach involves to re-arrange previously developed schedules
in relation to the new settings. Several timing features, especially, lead to network flows or
shortest-path formulations, on which re-optimization methods related to a change of arcs or
costs in the network have been thoroughly studied (Goto and Sangiovanni-Vincentelli 1978, Pal-
lottino 2003, Frangioni and Manca 2006, Miller-Hooks and Yang 2005). Most timing problems
can also be modeled as linear programming models, on which sensitivity analysis and warm
start following a problem modification has been studied for long, and can eventually be tackled
by means of a primal-dual simplex algorithm. Finally, a last methodology, on which we focus
in the following, is based on the simple observation that a permutation of activities can be
assimilated to a concatenation of some subsequences of consecutive activities. Hence, keeping
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information on subsequences (e.g., dynamic programming computations), can lead to signifi-
cant speed up in solving (Kindervater and Savelsbergh 1997a, Cordone 2000). We introduce
in the next sections a framework for these concatenation properties and the re-optimization
approaches which follow.

8.2 Breakpoints and concatenations

We first introduce some vocabulary, and then emphasize the links between operations on se-
quences of activities, such as activity relocations, or changes of order relations, and properties
of the resulting permutation functions. These observations lead to efficient re-optimization
approaches “by concatenation”.

Definition 6 (Permutation breakpoints). Let � : {1 . . . n} → {1 . . . n} be a permutation. Any
integer b such that �(b)+1 ∕= �(b+1) and 1 ≤ i < n is called a breakpoint of �, and corresponds
to non consecutive values in the permutation representation. The total number of breakpoints
of � is notated b(�), and we denote them as b�1 . . . b

�
b(�) in increasing order.

For example, the permutation �0 : {1, 2, 3, 4, 5, 6} → {4,5,3, 1,2, 6} has three breakpoints
(indicated in boldface): b�01 = 2, b�02 = 3 and b�03 = 5. We now show the links between classical
operations on activity sequences and the resulting permutation function properties in terms of
breakpoints:

Lemma 1 (Order changes). Let A′ be an activity sequence obtained from A by changing l order
relations, and �A→A′ the permutation function at play, then b(�A→A′) = l.

Lemma 2 (Activity relocations). Let A′ be an activity sequence obtained from A by relocating
l activities, and �A→A′ the permutation function at play, then b(�A→A′) ≤ 3l.

Indeed, any change in order relation results in exactly one breakpoint, while any relocation
of activity can be assimilated to at most three changes of order relations, and thus results
in three breakpoints. Situations where k order relations or activities are changed from one
timing problem T to another problem T ′ frequently occur in the context of neighborhood
search methods working on sequences of activities, where timing subproblems must be solved
to evaluate cost or feasibility of each sequence explored in the neighborhood. The interest of
breakpoints lies in the following proposition which, although straightforward, provides the basis
of re-optimization methods working by concatenation:

Proposition 1. Let � : {1 . . . n} → {1 . . . n} be a permutation with breakpoints b�1 . . . b
�
b(�). Let

A be a sequence of n activities, then A′ = �(A) corresponds to the concatenation of exactly
b(�) + 1 subsequences of consecutive activities in A, as presented in Equation 39 (a dummy
breakpoint b�0 = 1 represents the beginning of the sequence).

A′ =
⊕

l=0...b(�)−1

(a�(b�l +1) . . . a�(b�l+1)) (39)

Any bounded number of operations transforming an activity sequence A into A′ (reloca-
tion of activities, or changes of order relations) thus involves a permutation function with a
bounded number of breakpoints, such that A′ can be seen as concatenation of a bounded num-
ber of subsequences of A. Pre-processed informations from a bounded number of subsequences
can then be exploited to produce information on their concatenation, to solve the timing sub-
problems without browsing all activities of the sequence at play. The next section formalizes
the re-optimization operations and algorithms which can be developed to this extent.
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8.3 Re-optimization “by concatenation”

Re-optimization by concatenation can be formalized around a set of four basic re-optimization
operators, given in Table 2, which are used for data acquisition and exploitation on subsequences
of consecutive activities. As the goal of this methodology is to avoid redundant computations,
it is particularly crucial for all these operators to maintain the integrity of the input data.

Table 2: Re-optimization operators
Initialization: Initialize the data D(A) of a sequence containing a single activity.
Forward
extension:

Given the data of a sequence A = (ai . . . aj), and an activity ak to be
added forward, determine the data D(A′) for the resulting sequence A′ =
(ak, ai . . . aj)

Backward
extension:

Given the data of a sequence A = (ai . . . aj), and an activity ak to be added
backwards, determine the data D(A′) for the sequence A′ = (ai . . . aj , ak).

Evaluate
concatenation:

From the data D(Al), l ∈ 1...L of one, two, or several activity sequences,
evaluate the optimal cost (and eventually the optimal solution) of the timing
problem involving the concatenation of these sequences

It should first be noted that the forward extension (respectively backward extension) op-
eration of Table 2 directly derives from forward or backward dynamic programming concepts.
Bi-directional dynamic programming approaches can also be assimilated to both forward and
backward extension operations, as well as a single concatenation evaluation to provide the op-
timal solution (Righini and Salani 2006). The re-optimization approach “by concatenation”,
illustrated in Algorithm 1, is also based on these operators. Data is built on subsequences of
the incumbent timing problem T , by means of the forward and backward extension operators.
These data, developed during a preprocessing phase or eventually through the search, are then
used to solve repetitively all the derived subproblems using the evaluate concatenation operator.

Algorithm 1 Re-optimization

1: Build re-optimization data on subsequences of the incumbent timing problem T , using
initialize, and forward extension or backward extension.

2: For each timing subproblem T k, k ∈ [∣1, N ∣],
3: Determine the breakpoints involved in the permutation function �k

4: Evaluate the optimal cost of T k, as the concatenation of b(�) + 1 activity subsequences
from T (see Equation 39), relying on the subsequences re-optimization data.

The efficient applicability of Algorithm 1 directly relies on the potential to develop con-
catenation operations which are less computationally complex than stand-alone methods. One
should also pay attention to the price to pay in terms of data computing on subsequences,
and whether the resulting computational effort is dominated by the quantity of derived timing
subproblems to solve. There is no unique way to apply this method: problem specific design
choices arise for example when determining the nature of the data, the subsequences on which
it is computed, as well as the instants dedicated to data computation.

We therefore illustrate an application in neighborhood search for routing problems with
time constraints on routes. In this scope, a local search improvement procedure based on
sequences changes leads to a number of timing subproblems proportional to the number of
neighborhood solutions to explore. In the VRP or scheduling literature, the number of derived
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timing subproblems is often N = Ω(n2), and the derived activity sequences do not involve the
concatenation of more than k = 2, 3 or 4 subsequences of the original problem.

Attempting to solve each timing subproblem independently, the overall complexity of a
neighborhood exploration is Nc(T ), c(T ) being the computational complexity of one stand-
alone timing solution procedure. A straightforward re-optimization approach consists in ex-
haustively computing the data for each of the n(n − 1) subsequences of consecutive activities
from T , and then use it to evaluate all moves. Data computation is straightforward to per-
form in O(n2c(I) + n2c(F/B)), c(I), c(F/B) being respectively the computational complexity
of initialization and either forward or backward extension. The overall complexity of the new
neighborhood exploration procedure is thus O(n2c(I)+n2c(F/B)+Nc(EC)), c(EC) being the
complexity for evaluating concatenation of less than 4 subsequences. Assuming that N = Ω(n2),
the computational complexity of neighborhood evaluation becomesO(N [c(I)+c(F/B)+c(EC)])
for re-optimization methods instead of Nc(T ) for independent solving. Re-optimization oper-
ators being less computationally complex than stand-alone methods, the resulting approach is
likely to lead to reduced computational effort.

For some settings, such as {ø∣MTW} and most problems with two-dimension features,
concatenation operators involving more than two sequences are not actually available or not
computationally suitable for efficient re-optimization. In such cases, forward and backward
propagation can be used to a larger extent, along with concatenations of only two subsequences,
to perform the timing subproblem evaluations. Such an example is given by the lexicographic
search of Savelsbergh (1985), which enables to evaluate timing subproblems associated to well
known neighborhoods for vehicle routing problems exclusively by means of concatenation of
two subsequences. Designing efficient evaluation orders in such contexts becomes a problem
dependent issue, clearly impacted by the complexity of the operators at hand, and the nature
of the permutations involved.

Finally, if concatenation of many subsequences can be operated efficiently, but that data
creation constitutes the bottleneck in terms of computational effort, the subset of subsequences
involved can be restricted to O(n4/3) or O(n8/7), using the hierarchical approach of Irnich
(2008a). The relevant data to compute can also be tailored relatively to the neighborhoods at
play. For example, the 2-opt* move presented in Figure 8 involves only the concatenation of
subsequences containing the first or last activity, that we call prefix or suffix subsequences. The
number of such subsequences requiring data computation is thus reduced to O(n).

8.4 Related literature

A large range of problems in routing and scheduling with idle-time are tackled using local search
on sequences. Serial timing issues thus frequently arise in these fields.

Generalizing the seminal work of Savelsbergh (1985, 1992) on efficient time-window feasibil-
ity checking and duration minimization in edge exchange based local searches for vehicle routing,
Kindervater and Savelsbergh (1997a) proposed a framework to manage several constraints on
vehicle routes, such as precedence constraints, time-windows, collection and deliveries under
capacity constraints. Most of these constraints either correspond explicitly to timing features
(i.e., time-windows) or result in models tackled in this paper. To perform efficient feasibility
checking, the authors develop global variables on partial routes, which are used in concatena-
tion operations to evaluate moves consisting of a constant number of edge exchanges. Move
evaluations are performed in lexicographic order, to allow calculation of the global variables
through the search.
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Simultaneously, Cordone (2000) reports in a technical note similar concepts of data compu-
tation and concatenation operators. Although the proposed methodology is not extended to a
large variety of constraints as in Kindervater and Savelsbergh (1997a), it explores different pos-
sibilities related to the concept of macro-nodes: if data on subsequences have the same structure
as data on activities, subsequences of activities can be eventually replaced by equivalent single
activities, called macro-nodes, in the method. Concatenation concepts in this case enable to
temporarily reduce the problem size by collapsing nodes into macro-nodes, opening the way
to algorithms based on aggregation of activities and multi-level approaches (Bean et al. 1987,
Walshaw 2002, Elhallaoui et al. 2005).

Campbell and Savelsbergh (2004) present a compilation of efficient insertion heuristics for
many vehicle routing problems with additional characteristics such as shift time limits, variable
delivery quantities, fixed and variable delivery times, and multiple routes per vehicle. These
methods iteratively create solutions by adding customers to the routes. The authors show
that by managing global data on the routes, the cost of feasibility of customer insertions can
be evaluated in amortized O(1) for many of these settings. This approach can be seen as a
specialization of the evaluate concatenation operator applied to a couple of partial routes with
an intermediate activity.

A rich body of dynamic-programming based timing algorithms is also presented in Ibaraki
et al. (2005), Hashimoto et al. (2006, 2008), Ibaraki et al. (2008) and Hashimoto et al. (2010).
Forward and backward propagation is used, with an additional operator (named connect in
Hashimoto 2008) to manage concatenation of two subsequences, thus leading to efficient re-
optimization approaches by concatenation for several timing problems involving piecewise linear
functions.

Finally, the resource extension framework of Desaulniers et al. (1998) models many con-
straints and objectives on sequences of activities as resources that are subject to window con-
straints, and extended from one activity to the next by means of resource extension functions
(REFs). This framework proved extremely efficient to model many crew scheduling and rout-
ing problems, and solve them by column generation (Desaulniers et al. 2005). It has also been
recently extended by Irnich (2008a,b) for efficient neighborhood search design under various
constraints on routes, such as load dependent costs, simultaneous pickup and deliveries, maxi-
mum waiting times and times on duty. To that extent, REFs “generalized to segments” are built
on subsequences to characterize the resource consumption to the last activity of a subsequence
given the resource consumption to the first activity. Inverse resource extension functions are
also introduced, providing upper bounds on feasible resource consumption to the first activity
from the resource availability to the last activity. Developing this data on subsequences en-
ables then to evaluate efficiently the cost or feasibility of local search moves. This framework,
however, requires rather restrictive conditions: the existence of REFs which can be generalized
to subsequences and inversed, and such that the resource extensions functions on subsequences
take the same form as the resource extensions for a single activity. These conditions are satis-
fied only by a limited subset of the timing problems and features introduced previously, such
as {ø∣TW}, {ø∣MTW} or {DUR∣TW}.

Several general methodologies thus exist in the literature to tackle timing problems within
a neighborhood search context. However, these approaches were restricted either by the types
of concatenations allowed, the assumptions made on features, or the applicability of the mod-
els to a wide range of constraints. Less specialized, the timing formalism we propose, and its
generalization to re-optimization operators by concatenation in the spirit of Kindervater and
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Savelsbergh (1997b), is developed for a wider range of timing settings. As shown in the next
Sections (8.5-8.6) through the study of state-of-the-art re-optimization methodologies with var-
ious features, the proposed framework unifies previous successful concepts, and provides a line
of thought for the development of efficient algorithms for various timing problems. It can also
be seen as a generalization of Irnich (2008a,b) concepts, applied to timing problems. Indeed,
generalized resource extensions functions and their inverse provide, when they exist, the suit-
able data for re-optimization. We now review, analyze and develop re-optimization approaches
for main timing features and problems, describing the data and operators involved, and their
performance. As in the first part of this paper, this analysis is organized by increasing order of
complexity and feature dimension.

8.5 Re-optimization for single-dimension features

Constant activity costs & cumulative resources. In presence of constant activity costs
(or in a more general setting any cumulated resource such as distance or load under a global
constraint), evaluating the total cost of a solution “from scratch” would involve to browse each
activity and cumulate the costs (or the resource), resulting in a linear complexity. A simple
and efficient re-optimization approach involves to manage the following data on subsequences:

Data and computation: Cost C(Ai) (or total resource used) for each subsequence Ai.
Evaluate concatenation: Concatenating k subsequences involves k sums: C(A1⊕⋅ ⋅ ⋅⊕Ak) =∑
C(Ai). Evaluating the concatenation of a bounded number of subsequences can thus be

performed in a bounded number of operations, leading to O(1) complexity for move evaluation
when the data is available. Data can be processed in amortized constant time for each move
during a local search procedure for many classic neighborhoods, using a lexicographic order
(Kindervater and Savelsbergh 1997a) for move evaluation, or developed in a preprocessing
phase for a complexity of O(n2), which is often dominated by the neighborhood size.

Weighted execution dates & non-decreasing linear costs. Timing subproblems with
non-decreasing linear costs ci(ti) = witi + ci with wi ≥ 0 for all i can be solved efficiently by
means of the following re-optimization operators.

Data: Total processing time T (Ai) for all the activities of the sequence Ai but the last one.
Waiting cost W (Ai) related to a delay of one time unit in the sequence processing, and sequence
cost C(Ai) when started at time 0.

Data computation and evaluate concatenation: For a sequence A with a single activity,
T (A) = 0, W (A) = wA(1) and C(A) = cA(1). Equations (40-42) enable both to evaluate the
cost of concatenation and compute the data for sequences with more activities.

W (A1 ⊕A2) = W (A1) +W (A2) (40)

C(A1 ⊕A2) = C(A1) +W (A2)(T (A1) + pA1(∣A1∣)A2(1)) (41)

T (A1 ⊕A2) = T (A1) + pA1(∣A1∣)A2(1) + T (A2) (42)

The previous equations have been formulated to also manage sequence dependent processing
times. It is remarkable that, in this case, the re-optimization data simply consists of a general-
ization of single activity characteristics to sequences of activities. It is also expressed as a finite
number of coefficients, and allows for O(1) concatenation operations. In the framework of Irnich
(2008b), this generalization to segments gives the possibility to “aggregate” some sequences of
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nodes to consider those as single activities during the search, thus temporarily reducing the
problem size.

Time-window feasibility check. Savelsbergh (1985) opened the way to efficient feasibility
checking with regards to time-windows in the context of local search. In the subsequent work
of Kindervater and Savelsbergh (1997a), the following re-optimization data and operators are
introduced.

Data: Total processing time T (Ai) for all the activities of the sequence Ai but the last
one. Earliest possible execution date E(Ai) of the last activity in any feasible schedule for Ai.
Latest possible execution date L(Ai) of the first activity in any feasible schedule for Ai. A
record isFeas(Ai) valuated to true if and only if a feasible schedule for Ai exists.

Data computation and evaluate concatenation: For a sequence A with a single activity,
T (A) = 0, E(A) = eA(1), L(A) = lA(1) and isFeas(A) = true. Equations (43-46) enable then
to evaluate the cost of concatenation and compute the data for sequences with more activities
in O(1).

T (A1 ⊕A2) = T (A1) + pA1(∣A1∣)A2(1) + T (A2) (43)

E(A1 ⊕A2) = max{E(A1) + pA1(∣A1∣)A2(1) + T (A2), E(A2)} (44)

L(A1 ⊕A2) = min{L(A1), L(A2)− pA1(∣A1∣)A2(1) − T (A1)} (45)

isFeas(A1 ⊕A2) ≡ isFeas(A1) ∧ isFeas(A2) ∧ E(A1) + pA1(∣A1∣)A2(1) ≤ L(A2) (46)

Earliness, tardiness, soft time-windows, and separable convex costs. Timing prob-
lems with tardiness {D∣ø}, earliness and tardiness {R,D(ri = di)∣ø}, or with soft time-windows
{TW ∣ø} in sequencing or vehicle routing problems have been often solved in a stand-alone
way, using respectively an minimum idle time policy in O(n), or variants of the PAV algorithm
(Section 5.3) in O(n log n). Ibaraki et al. (2008) recently considered the efficient solving of
the related serial timing problems, and attained a O(log n) amortized complexity per timing
subproblem for rather general cases. This approach is applicable to {Σccvx(t)∣ø} with piecewise
linear, non-negative, lower semicontinuous, convex activity costs. Another approach by Ergun
and Orlin (2006) and Kedad-Sidhoum and Sourd (2010), presented later in this section, allows
a calculation in O(1) for some particular cases of lateness or (E/T) serial timing problems
without sequence-dependency, and with specific permutation functions.

Ibaraki et al. (2008) develop data on subsequences as piecewise linear convex functions. The
functions involved are exactly the ones previously described in Section 5.4, and are represented
and stored by means of binary search trees. In order to reduce the preprocessing effort, they
are computed only on prefix or suffix subsequences, that contains respectively the first or the
last activity of the incumbent timing problem.

Data: Total duty time T (Ai) on a partial sequence Ai. Optimal cost F̄ (Ai)(t) of a schedule
for Ai, when the first activity is executed before t(tAi(1) ≤ t). Optimal cost B̄(Ai)(t) of a
schedule for Ai, when the last activity is executed after t.

Data computation: Data computation of F̄ (Ai)(t) and B̄(Ai)(t) is respectively performed
by means of forward and backward dynamic programming (Equations 19-20). Using efficient
structures as in Ibaraki et al. (2008) to represent piecewise linear functions, data computation
can be performed in O('c log'c) for a subsequence, where 'c is the total number of pieces in
the cost functions of the timing subproblem.

31

A Unifying View on Timing Problems and Algorithms

CIRRELT-2011-43



Evaluate concatenation: Equation (47) returns the optimal cost Z∗(A1 ⊕A2) of the timing
problem related to the concatenation of two sequences. With the same notations as previously,
an amortized complexity of O(log'c) is attained. When the number of pieces of cost functions is
linear in the number of activities, as in earliness, tardiness or soft time-window timing settings,
a complexity of O(log n) is attained. Evaluations of concatenations involving three or four
subsequences can be performed with the same efficiency. We refer to Ibaraki et al. (2008) for
details on the equations required.

Z∗(A1 ⊕A2) = min
t≥0
{F (A1)(t) +B(A2)(t) + pA1(∣A1∣)A2(1))} (47)

The approach of Ibaraki et al. (2008) is fairly general, enabling to tackle earliness, tardiness,
and soft time-windows features for any combination of subsequence concatenation. Yet, the
resulting complexity in higher than in the case of other timing problems, like hard time-window
checking, which led to re-optimization operators in O(1). This logarithmic complexity is related
to the calls to convex functions, stored in trees structures, that constitute the subsequence data.

Only Ergun and Orlin (2006) and Kedad-Sidhoum and Sourd (2010) have actually reported
methods with an “evaluate concatenation” operator working in amortized constant time for
{D∣ø} and {D,R(di = ri)∣NWT} serial timing respectively, and under particular types of
permutation functions (corresponding to neighborhood searches based on swap, insert as well
as compound moves). The cornerstone of these two approaches is that they call the functions
B(A2)(t) associated to subsequences by series of O(n) increasing values of t, thus enabling
to call the piecewise convex functions in amortized constant time. The methodology requires
some orderings, which are performed in a pre-processing phase in O(n log n). Such complexity
is generally dominated by the number N of timing subproblems. It is actually an open question
whereas this type of approach can be extended to more general problems. This approach is likely
to become far more complex when tackling sequence dependent processing times in particular.
Approximate serial timing procedures in O(1) can also be used when computational time is
critical (Taillard et al. 1997).

Separable cost functions (including multiple time-windows). Ibaraki et al. (2005) and
Hendel and Sourd (2006) introduced simultaneously, respectively in the domains of VRP and
scheduling, a re-optimization approach in O('c) for timing problems with piecewise linear cost
functions. This re-optimization approach involves the same quantities T (Ai), F̄ (Ai)(t) and
B̄(Ai)(t) as in the piecewise linear case presented in the previous sub-section. In this case,
simple linked lists are sufficient for function representation. Evaluating the concatenations is
also performed by means of Equation (47), resulting in O('c) complexity.

Perspectives: re-optimization for single-dimension features. For most single-dimension
features, re-optimization approaches lead to large computational complexity reductions, fre-
quently by a factor of n or 'c. There are still some particular cases, such as the timing problem
{D∣R}, which can be solved “from scratch” in O(n), but only allows a O(log n) re-optimization
methodology for general settings. This timing problem is involved in many VRP heuristics,
which temporarily relax time-window constraints to allow lateness in the course of the search,
thus increasing the connectivity of the search space. Yet, this choice of relaxation results in an
increased complexity of O(log n), against O(1) for simple feasibility checking, or for a different
relaxation scheme (see Section 8.6). Choices of relaxation at the heuristic design level must
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thus be taken carefully. Also, further work on {D∣R}, to either show the impossibility to reach
O(1) re-optimization methodologies in the general case, or to provide new methods, would be
extremely valuable.

8.6 Re-optimization for two-dimension features

Total duration and idle time. Savelsbergh (1992) enabled to perform move evaluations in
O(1) for VRPs involving {ø∣DUR, TW} or {DUR∣TW} as subproblems. Noteworthy is the
approach of Kindervater and Savelsbergh (1997a), which derives from this work, and has been
presented in Section 8.5 for {ø∣TW}. Indeed, the total sequence duration can be retrieved in
O(1) from the re-optimization data of Equations (43-46) using Equation (48).

DUR(Ai) = max{E(Ai)− L(Ai), T (Ai)} (48)

Flexible processing times. The flexible processing time feature involves separable functions
of successive activity execution dates. Complex problems are raised when this feature is cou-
pled with time-window constraints as in {Σci(Δti)∣TW} (Equations 49-50), or with separable
activity execution costs. The total order constraints can be directly taken into account in the
objective, with cost functions cij such that for Δt < 0, cij(Δt) = +∞.

min
t1...tn

n∑
i=1

c′�i�i+1
(t�i+1 − t�i) (49)

s.t. ei ≤ ti ≤ li 1 ≤ i ≤ n (50)

We first present a re-optimization approach for a particular shape of cost functions cij , intro-
duced by Nagata (2007) in the context of VRP with time-window constraints, as an alternative
relaxation of time-windows to be used during heuristic search. Instead of allowing earliness
or lateness with respect to time-window constraints, penalized processing times reductions are
allowed. The resulting cost functions are given in Equation 51.

c′ij(Δt) =

{
0 if Δt ≥ pij
�(pij −Δt) otherwise

(51)

This case is relatively exotic in the timing context, as no limit is fixed on the amount of
processing time reduction, thus allowing negative processing times and non infinite cij values
on ℝ∗−. Nagata et al. (2010) and Hashimoto et al. (2008) proposed forward and backward
dynamic programming functions, which allowed to concatenate only pairs of subsequences. We
present here the re-optimization approach of Vidal et al. (2011), which enables to work with any
number of concatenations, and accounts for duration features. This approach is closely related
to the method of Kindervater and Savelsbergh (1997b) for {ø∣DUR} and {ø∣DUR, TW}.

Data: Minimum duration D(Ai) to perform all the activities of Ai but the last one. Earliest
execution date E(Ai) of the first activity in any feasible schedule with minimum idle time for Ai.
Latest possible execution date L(Ai) of the first activity in any feasible schedule with minimum
processing time reduction for Ai. Minimum processing time reduction TW (Ai) in any feasible
schedule for Ai.

Data computation and evaluate concatenation: For a sequence A with a single activity, we
have D(A) = TW (A) = 0, E(A) = eA(1) and L(A) = lA(1). Equations (52-57) enable both to
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evaluate the cost of concatenation and compute the data for sequences with more activities:

with �WT = max{E(A2)−D(A1) + TW (A1)− pA1(∣A1∣)A2(1) − L(A1), 0} (52)

and �TW = max{E(A1) +D(A1)− TW (A1) + pA1(∣A1∣)A2(1) − L(A2), 0} (53)

E(A1 ⊕A2) = max{E(A2)−D(A1) + TW (A1)− pA1(∣A1∣)A2(1), E(A1)} − �WT (54)

L(A1 ⊕A2) = min{L(A2)−D(A1) + TW (A1)− pA1(∣A1∣)A2(1), L(A1)}+ �TW (55)

D(A1 ⊕A2) = D(A1) +D(A2) + pA1(∣A1∣)A2(1) + �WT (56)

TW (A1 ⊕A2) = TW (A1) + TW (A2) + �TW (57)

This approach enables to evaluate in O(1) the minimum amount of processing time reduction
for any constant number of subsequence concatenations. In contrast, soft time-window relax-
ations {TW ∣P} or {D∣R,P} only allowed for O(log n) move evaluations.

General flexible processing-times. Sourd (2005) and Hashimoto et al. (2006) tackle a
more general serial timing problem with flexible and sequence dependent processing time/cost
trade-off functions, and costs on activity execution dates {Σci(Δti),Σci(ti)∣ø}. This problem is
formulated in Equation 58. Functions ci(t) and c′ij(t) are assumed to be piecewise linear, lower
semicontinuous, non negative and take infinite value for t < 0, and functions c′�i�i+1

(Δt) are
convex.

min
t1...tn

n∑
i=1

ci(ti) +

n−1∑
i=1

c′�i�i+1
(t�i+1 − t�i) (58)

Data: Optimal cost F (Ai)(t) (respectively B(Ai)(t)) of a schedule for Ai, when the first
(respectively the last) activity is executed exactly at t.

Data computation: For a sequence A with a single activity, F (A)(t) = B(A)(t) = cA(1)(t).
Equations (59-60) can then be used to compute and store the F (Ai)(t) and B(Ai)(t) functions
respectively on prefix and suffix subsequences of the incumbent timing problem.

F (Ai ⊕A)(t) = cA(1)(t) + min
0≤x≤t

{F (Ai)(x) + c′A1(∣A1∣)A(1)(t− x)} (59)

B(A⊕Ai)(t) = cA(1)(t) + min
x≥t
{B(Ai)(x) + c′A(1)A1(∣A1∣)(x− t)} (60)

Evaluate concatenation: Equation (61) returns the optimal cost Z∗(A1 ⊕A2) of the timing
problem related to the concatenation of a prefix and a suffix subsequence.

Z∗(A1 ⊕A2) = min
t
{F (A1(t) + min

t′
(c′A1(∣A1∣)A2(1)(t

′ − t) +B(A2)(t′)} (61)

Evaluating the concatenation of two subsequences can be performed inO('c+'̂c×'′c) (Hashimoto
et al. 2006), where 'c and '′c are respectively the total number of pieces in cost functions ci
and c′�i�i+1

, and '̂c represents the number of convex pieces in c′�i�i+1
.

Finally, we remarked in Section 6.3 that {DUR∣MTW} and {ø∣DUR,MTW} constitute
special cases of {Σci(Δti),Σci(ti)∣ø}. Hence, the previous re-optimization approach applies,
leading to an amortized complexity ofO('mtw) for solving successive {DUR∣MTW} or {ø∣DUR,
MTW} subproblems, where 'mtw denotes the total number of time windows in the problem,
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and when the number of subproblems is large enough. This consequence leads to theoretical
(and eventually practical) improvements upon the previous procedures in O(n'mtw) for these
settings.

Time-dependent processing times. Time-dependent processing times, when coupled with
time-window constraints or other activity costs, lead to complicated timing problems, which
often require additional assumptions on the nature of the processing times, such as the FIFO
or HYI rules (Section 6.4), to ensure polynomial solution methods.

Donati et al. (2008) studied the feasibility problem {ø∣P (t), TW} within local searches
for vehicle routing, and proposed to extend the methodology of Savelsbergh (1985) for time-
windows feasibility checking to time-dependent processing times. Let gij(t) = t + pij(t) be
defined as the completion date of an activity i started at t, and followed by activity j. Under
the assumption that all gij(t) are continuous and strictly increasing (any activity started strictly
later will finish strictly later), the inverse function g−1

ij (t) can be defined, and the following re-
optimization method enables to perform efficient feasibility checking:

Data: Earliest possible execution date E(Ai) of the last activity in any feasible schedule for
Ai. Latest possible execution date L(Ai) of the first activity in any feasible schedule for Ai.

Data computation: For a sequence A with a single activity, E(A) = eA(1), and L(A) = lA(1).
Equations (62-65) then enables to determine the re-optimization data on prefix and suffix
subsequences, by forward and backward dynamic programming.

E(A1 ⊕A) = max{eA(1), g(E(A1))} (62)

isFeas(A1 ⊕A) ≡ isFeas(A1) ∧ E(A1 ⊕A) ≤ lA(1) (63)

L(A⊕A2) = min{lA(1), g
−1(L(A2))} (64)

isFeas(A⊕A2) ≡ isFeas(A2) ∧ L(A⊕A2) ≥ eA(1) (65)

Evaluate concatenation: Equation (66) enables to state on the feasibility of any concatenation
of a pair of prefix and suffix subsequences.

isFeas(A1⊕A2) ≡ isFeas(A1) ∧ isFeas(A2) ∧ E(A1) +pA1(∣A1∣)A2(1)(E(A1)) ≤ L(A2) (66)

Under the assumption that function g−1(t) is evaluated in O(1), the previous re-optimization
framework enables to evaluate the feasibility of a concatenation of two subsequences in O(1).
However, it does not allow to concatenate more than two subsequences, as opposed to the fixed
processing-time setting treated in Section 8.5. For these cases, particular orders of timing prob-
lem evaluations can eventually enable to solely rely on forward extension, backward extension
and concatenation of two subsequences to perform re-optimization.

For a general case with time-dependent (and sequence dependent) processing times with
separable execution costs {Σci(ti)∣P (t)}, encompassing the previous problems as a special case,
Hashimoto et al. (2008) proposed a dynamic programming approach is the same spirit as those
of Sections (8.5) and (8.6). Concatenation evaluations for pairs of subsequences A1 and A2

can then be performed in O('c + 'p), where 'c and 'p denote respectively the total number
of pieces in the cost and processing-time functions of the subproblem at play. For the sake of
brevity, details of the related re-optimization operators are given in the Appendix C.
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Table 3: Complexity of algorithms and re-optimization operators for common timing problems
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8.7 Perspectives: re-optimization for two-dimension features

Table 3 summarizes complexities of stand-alone and re-optimization approaches for the main
timing settings in the literature. The leftmost column lists the problems, while the next block of
columns present stand-alone approaches and their complexity. Following to the right, the next
columns are dedicated to summarize re-optimization approaches, the complexity of forward
and backward data construction, “F/B”, the complexity of concatenation of two, “C2”, and
more than two subsequences, “C3+”, if available. Column “Sd” finally indicates whether
the re-optimization approach enables to tackle problems with sequence dependent parameters.
Additional assumptions on the problems are listed in the last column.

Re-optimization has clearly proven successful to tackle several settings more efficiently than
from scratch, but still results in several challenges regarding two-dimension features. Several
problems remain, such as {DUR∣MTW}, {ø∣DUR,MTW}, {DUR∣TW,P (t)}, {ø∣TL, TW}
and {DUR > D > TL∣R}, for which serial timing has not actually be considered. Another
research issue involves the study of re-optimization data and concatenation operators involving
more than two subsequences, and able to manage sequence dependent problems. Such operators
are still missing in several cases, such as {Σci(ti)∣P (t)} or {Σccvxi (Δti),Σci(ti)∣ø}, for which
particular evaluation orders of timing subproblems are for now necessary.

9 Conclusion

We described and classified a rich body of problems with time characteristics and totally ordered
variables. Methods from various fields of research have been analyzed, in order to present key
problem features and main solving concepts. As timing subproblems frequently arise in the
context of local searches, we analyzed both stand-alone resolution, and efficient solving of series
of problems by means of re-optimization approaches. A general re-optimization framework,
based on decomposition and recombination of sequences, has been introduced to that extent,
and links with actual re-optimization approaches have been examined. We identified a subset of
timing methods originating from various research fields, constituting the actual state-of-the-art
for main timing problems. For several combinatorial optimization settings involving timing
subproblems, this development is the key to progress towards more generic solvers, relying on
the algorithms presented in this paper to tackle a wide range of problem particularities.

As a result of this work, many interesting avenues of research arise. First of all, for many
timing features studied in this article, more efficient stand-alone or re-optimization methods
should be sought, and dedicated work would also be conducted on better exploiting the par-
ticularities of problems at hand, such as the nature of permutations functions for serial tim-
ing. The impact of sequence-dependency on re-optimization is another interesting concern, as
sequence-dependency constitute a fundamental delimitation between routing related problems
and scheduling settings. Identifying precisely its impact on re-optimization procedures should
lead to a better insight on local search based methods for these two important classes of prob-
lems. Finally, even if the focus has been put on time characteristics, other cumulative resources
such as loads, energy or workforce lead to similar features and models. The work performed on
timing can thus prove useful for an even broader range of applications.
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Appendix

A Reduction of LISP to {TW (unit)∣P}
Given a vector N = (N1 . . . Nn) of n real numbers, LISP aims to find the maximum length L
of a non-decreasing subsequence of numbers: L = max{k : 1 ≤ i1 < ⋅ ⋅ ⋅ < ik ≤ n and Ni1 ≤
... ≤ Nik}.

From a LISP instance, we construct the following instance T of {TW (unit)∣ø}, with n
activities such that for all i ∈ [∣1, n∣], ei = li = Ni and pi = 0. This instance is created in n
elementary algorithmic operations.

Let z∗(T ) be the optimal solution cost of T . This solution naturally initiates as much
activities as possible without penalties, within a non-decreasing order of execution dates. Hence,
the activities realized without penalties corresponds to the LISP subsequence sought in the
original problem, whose length is L∗ = n − z∗(T ). Hence, LISP admits a many-one reduction
to {TW (unit)∣ø}. Conversely, {TW (unit)∣ø} generalizes LISP.

B Proof of Theorem 1: Block optimality conditions of {Σccvx
i (ti)∣ø}

We first recall the timing problem at play, given in Equations (67-68).

min
(t1...tn)

n∑
i=1

ci(ti) (67)

s.t. ti + pi ≤ ti+1 1 ≤ i < n (68)

The functions ci(t) : ℜ → ℜ are assumed to be convex, but not necessarily smooth. We
denote as �ci(t) the subdifferential of ci at t, which is necessarily a non-empty interval, as a
byproduct of the convexity assumption and the space of definition. We first recall some useful
properties on subdifferentials, to follow with the proof of Theorem (1).

Proposition 2. Let f1 . . . fm be subdifferentiable functions on ℜn, then:

�(f1(x) + ⋅ ⋅ ⋅+ fm(x)) ⊃ �f1(x) + ⋅ ⋅ ⋅+ �fm(x) ∀x (69)

Theorem 2 (Rockafellar 1970). Let f1 . . . fm be a set of proper convex functions on ℜn having
at least one common point in the relative interior of their domains ri(dom(fi)), then:

�(f1(x) + ⋅ ⋅ ⋅+ fm(x)) = �f1(x) + ⋅ ⋅ ⋅+ �fm(x) ∀x ∈
∩
ri(dom(fi)) (70)

Constraint qualifications hold as the constraints are linear, and any solution with idle time
between each activity is feasible, thus taking place in the relative interior of the polytope. Hence,
strong duality applies, leading to the following necessary and sufficient optimality conditions:
A solution t∗ = (t∗1 . . . t

∗
n) of Problem (67-68) is optimal if and only if a set of Lagrangian multi-

pliers (�∗1 . . . �
∗
n−1) exists, such that conditions (71) are satisfied (Bertsekas2003 , Propositions

5.7.1 and 6.4.2).
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⎧⎨⎩

t∗i−1 + pi−1 ≤ t∗i ∀i ∈ [∣2, n∣]
0 ∈ �c1(t∗1) + �∗1

0 ∈ �ci(t∗i ) + �∗i − �∗i−1 ∀i ∈ [∣2, n− 1∣]
0 ∈ �cn(t∗n)− �∗n−1

�∗i−1(t∗i−1 + pi−1 − t∗i ) = 0 ∀i ∈ [∣2, n∣]
�∗i ≥ 0 ∀i ∈ [∣1, n∣]

(71)

Solution t∗ can be represented as a succession of blocks of activities (B1 . . . Bm), such
that activities within each block are processed without idle time, and last activities of blocks
are followed by non-null idle time. The previous definition, combined with primal feasibility,
involves that t∗Bj(∣Bj ∣) + pBj(∣Bj ∣) < t∗Bj(∣Bj ∣)+1, and thus �∗Bj(∣Bj ∣) = 0 for each j ∈ [∣1,m − 1∣].
Conditions (71) are thus equivalent to primal feasibility (equivalent to the first condition of (1)
combined with the definition of blocks) and the following independent systems of equations for
each block:

∀j ∈ [∣1,m∣],

⎧⎨⎩

i) 0 ∈ �cBj(1)(t
∗
Bj(1)) + �∗Bj(1)

ii) 0 ∈ �ci(t∗Bj(1) + pBj(1)i−1) + �∗i − �∗i−1 ∀i ∈ [∣Bj(1) + 1, Bj(∣Bj ∣)− 1∣]

iii) 0 ∈ �cBj(∣Bj ∣)(t
∗
Bj(1) + pBj(1)Bj(∣Bj ∣−1)))− �∗Bj(∣Bj ∣)−1

iv) �∗i ≥ 0 ∀i ∈ [∣Bj(1), Bj(∣Bj ∣)∣]
(72)

Necessary condition proof: We refer to pij for (i ≤ j) ∈ [∣1, n∣]2, as the cumulative pro-
cessing duration of activities ai to aj . Relying on Proposition (2), we can sum i) , ii) and iii)
of (72), leading to:

0 ∈ �cBj(1)(t
∗
Bj(1)) +

Bj(∣Bj ∣)∑
i=Bj(1)+1

�ci(t
∗
Bj(1) + pB(1)i−1)⇒ 0 ∈ �CBj (t∗Bj(1)) (73)

and thus, following the definition of the optimal block execution cost of Equation (18), t∗Bi(1) ∈
[T−∗Bi , T

+∗
Bi

]. Any optimal solution thus verifies the first statement of Theorem (1). Finally, for

any block Bj and prefix block Bk
j , summing i) , ii) and iii) for j ∈ [∣Bj(1) + 1, k∣] leads to:

−�∗k ∈ �cBj(1)(t
∗
Bj(1)) +

k∑
i=Bj(1)+1

�ci(t
∗
Bj(1) + pB(1)i−1)⇒ −�∗k ∈ �CBj (t∗Bkj (1)

) (74)

which can be reformulated as T+∗
Bkj
≥ t∗Bj(1) and implicates the last statement of Theorem (1).

Sufficient condition proof: Supposing that a solution t = (t1 . . . tn) is given with its blocks
(B1 . . . Bm), respecting conditions of Theorem (1). Following block definitions and primal
feasibility, it only remains to prove that Conditions (72) are respected for each block. We
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choose the following Lagrangian multipliers, which are non negative as T+∗
Bki
≥ tBi(1) ⇒ ∃x ≤

0 ∈ �CBij (tBj(1))).

∀j ∈ [∣1,m∣],

{
�∗i = −min(x ∈ �CBij (tBj(1))) ∀i ∈ [∣Bj(1) + 1, Bj(∣Bj ∣)− 1∣]

�∗Bj(∣Bj ∣) = 0
(75)

Proposition (2) then involves that for any j ∈ [∣1,m∣] and i ∈ [∣Bj(1) + 1, Bj(∣Bj ∣)− 1∣],

−�∗i ∈ �CBij (tBj(1)) = �cBj(1)(tBj(1)) +
i∑

k=Bj(1)+1

�ck(tBj(1) + pBj(1)k−1) (76)

In the case where i = Bj(1), Equation (76) proves statement i) of (72). Also, �∗Bj(1) ∈
�(−cBj(1))(tBj(1)), and we can sum this statement with Equation (76) for i = Bj(1) + 1, using
Proposition 2), and leading to:

�∗Bj(1)+1 − �
∗
Bj(1) ∈ �(−cBj(1))(tBj(1)) + �cBj(1)(tBj(1)) + �cBj(1)+1(tBj(1) + pBj(1))

= �cBj(1)+1(tBj(1) + pBj(1))
(77)

The remaining statements of Equation ii), and Equation iii) in (72) are proven by recurrence,
assuming that for a given i ∈ [∣Bj(1) + 1, Bj(∣Bj ∣) − 1∣], �∗i−1 − �∗i ∈ �ci(tBj(1) + pBj(1)i) leads
to:

�∗i − �∗i+1 = −�∗i+1 + �∗i−1 − (�∗i−1 − �∗i )

∈ �cBj(1)(tBj(1)) +
i+1∑

k=Bj(1)

�ck(tBj(1) + pBj(1)k−1) + �(−cBj(1))(tBj(1))

+
i−1∑

k=Bj(1)

�(−ck)(tBj(1) + pBj(1)k−1) + �(−ci)(tBj(1) + pBj(1)i−1)

⊂ �ci+1(tBj(1) + pBj(1)i)

(78)

All the sufficient optimality conditions of the problem are thus satisfied by solution t =
(t1 . . . tn). ⊓⊔

C Re-optimization and time-dependent processing times

The original time-dependent problem presented by Hashimoto et al. (2008) in VRP context
involves the determination of both services dates to customers and departure dates on the
route. Both services and travels are considered here indifferently as activities characterized by
a time-dependent cost, and a time and sequence dependent processing time. This problem can
then be reformulated as {Σci(Δti), P (t)}, and is given in Equations (79-80), where function
cij(t) are assumed to take infinite value for t < 0.

min
t1...tn

n∑
i=1

c�i�j (t�i) (79)

s.t. t�(i) + p�(i)�(j)(t�(i)) ≤ t�(i+1) 1 ≤ i < n (80)
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When the functions are piecewise linear, lower semicontinuous, non negative, and that property
(HYI) (Section 6.4) is satisfied, the following re-optimization approach can be applied.

Data at play: Optimal cost F̄ (Ai)(t) (respectively B̄(Ai)(t) ) of a schedule for Ai, when the
first (the last) activity is started before (after) t.

Data computation: For a sequence A with a single activity, F̄ (A)(t) = min
0≤x≤t

cA(1)(x) and

B̄(A)(t) = min
x≥t

cA(1)(x). The forward and backward dynamic programming equations of (81-82)

can then be used to compute functions F̄ (Ai)(t) and B̄(Ai)(t) respectively on prefix and suffix
subsequences of the incumbent timing problem:

F̄ (Ai ⊕A)(t) = min
0≤x≤t

{cA(1)(x) + min
x′:x′+pAi(∣Ai∣)A(1)(x

′)≤x
F̄ (Ai)(x

′)} (81)

B̄(A⊕Ai)(t) = min
x≥t
{cA(1)(x) + min

x′≥x
B̄(Ai)(x

′ + pA(1)Ai(∣Ai∣)(x
′))} (82)

Evaluate concatenation: Equation (83) returns the optimal cost Z∗(A1 ⊕A2) of the timing
problem related to the concatenation of a prefix and a suffix subsequence.

Z∗(A1 ⊕A2) = min
0≤x
{ min
x′:x′+pA1(∣A1∣)A2(1)

(x′)≤x
F̄ (A1)(x′) + B̄(A2)(x)} (83)

Evaluating the concatenation of two subsequencesA1 andA2 can be performed inO('c+'p),
where 'c and 'p denote respectively the total number of pieces in the cost functions and time-
dependent processing times functions of the subproblem at play. Yet, this approach actually
enables only to concatenate a pair of subsequences. For series of timing problems issued from
more than two sequences, as in many neighborhood searches for TSP or VRP for example,
additional properties on the order of evaluation of the timing problems are necessary to lead to
efficient re-optimization approaches.
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