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Abstract. In this paper we present an exact algorithm for the Capacitated Location-

Routing Problem (CLRP) based on column and cut generation. The CLRP is formulated 

as a set-partitioning problem which also inherits all of the known valid inequalities for the 

flow formulations of the CLRP. We introduce five new families of inequalities that are 

shown to dominate some of the cuts from the two-index formulation. The problem is then 

solved by column generation, where the sub-problem consists in finding a shortest path of 

minimum reduced cost under capacity constraints. We first use the two-index formulation 

for enumerating all of the possible subsets of depot locations that could lead to an optimal 

solution of cost smaller than or equal to a given upper bound. For each of these subsets, 

the corresponding Multiple Depot Vehicle Routing Problem is solved by means of column 

generation. The results show that we can improve the bounds found in the literature, solve 

to optimality some previously open instances, and improve the upper bounds on some 

other. 
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1. Introduction

In the Capacitated Location-Routing Problem (CLRP) we are given a set I of potential
facilities and a set J of customers. With every facility i ∈ I are associated a fixed opening
cost fi and a capacity bi. To every customer j ∈ J is associated a demand dj. Distances
are assumed to be symmetric. The problem can thus be defined on an undirected graph
G = (V,E), where V = I ∪ J is the vertex set and E is the edge set. To every edge
e = {i, j} we associate a routing cost cij . The fleet is assumed to be of unlimited size
and homogeneous, each vehicle having a capacity Q. The objective is to choose a subset
of facilities and to construct vehicle routes around these facilities to visit every customer
exactly once, respecting both vehicle and facility capacities while minimizing the sum of
fixed costs and routing costs.

The CLRP arises in several real-world applications. Labbé and Laporte (1986) solve
the problem of locating postal boxes while minimizing a linear combination of routing costs
(those of the mail collecting trucks) and customer inconvenience produced by their distance
to the nearest postal box. Billionet et al. (2005) consider a location problem arising in mobile
networks. The problem consists in locating radio-communication stations, designing rings
and building antennaes inside these rings at minimum cost. Gunnarsson et al. (2006) solve
a location-routing problem arising in the pulp distribution industry in Scandinavia.

The CLRP can be formulated as a three-index mixed-integer program (Perl and Daskin
1985). In such a formulation, asymmetries in the distance matrix and heterogeneities in the
vehicle capacities can be easily taken into account. However, due to the large number of
variables and its poor linear programming relaxation it has no practical use within an enu-
meration method such as branch-and-bound. In the context of exact algorithms for solving
the CLRP, Belenguer et al. (2010) developed a two-index formulation and proposed sev-
eral families of valid inequalities, such as y-Capacity Cuts (y-CC), Path Constraints (PC),
Facility Degree Constraints (FDC), Imparity Constraints (IC) and Facility Capacity In-
equalities (FCI). They solve the problem by means of branch-and-cut and their algorithm
succeeds in solving small and medium size instances with up to 50 customers. Contardo et al.
(2010) introduced three new formulations of the CLRP based on vehicle flows and commod-
ity flows. They introduced strengthenings of the FCI as well as Location-Routing Comb
Inequalities (LR-CI), Location-Routing Generalized Large Multistar Inequalities (LRGLM)
and y-Generalized Large Multistar Inequalities (y-GLM), exploiting the fact that facilities
have limited capacities. Their algorithms were able to solve instances containing up to 100
customers, the largest for branch-and-cut methods. Akca et al. (2009) developed a set-
partitioning formulation based on a Dantzig-Wolfe decomposition of the three-index model.
They solve the problem by means of branch-and-price, where the subproblem is a shortest
path problem under capacity constraints (SPPRC). Their formulation provides reasonably
good bounds at the root node of the search tree but does not appear to be effective for
closing the gap using branching. Baldacci et al. (2010b) also formulate the CLRP as a
set-partitioning problem. They use three different relaxations of the formulation that are
applied sequentially in an additive manner. In the last step, they solve a small number of
MDVRP by means of a cut-and-price-and-branch method, in which the root node is solved
by colum generation, and then enumerate all of the remaining columns whose reduced cost
is smaller than a given gap. The resulting integer program is then solved by means of a
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general-purpose integer programming solver. They use a stregthened version of the CC as
well as clique inequalities. The bounds provided by their model are very tight, being able to
solve instances with up to 199 customers and 14 facilities.

The CLRP is NP-hard as it generalizes both the Capacitated VRP (CVRP) and the
Capacitated Facility Location Problem (CFLP). Moreover, the presence of capacities for
both the vehicles and the facilities makes it particularly hard. Because of this, solution
approaches for solving medium and large size instances have mainly focused on the devel-
opment of heuristics. These heuristics in most cases use some decomposition scheme to
divide the problem into a design sub-problem for the location decisions and an operational
sub-problem for the routing part (Perl and Daskin 1985, Hansen et al. 1994, Wu et al. 2002,
Lin et al. 2002, Liu and Lin 2005). Recently, Prins et al. (2006a,b, 2007) have proposed
several metaheuristics that include memetic algorithms, cooperative Lagrangean relaxation
with tabu search and greedy randomized adaptive search procedure (GRASP). Computa-
tional experience shows that the second approach is the most effective one for tackling large
instances of the CLRP.

The contributions of this paper can be summarized as follows:

i. We adapt the set-partitioning formulation due to Akca et al. (2009) so that all of the
cuts valid for the two-index formulation of the CLRP (Belenguer et al. 2010, Contardo
et al. 2010) can be easily incorporated.

ii. We introduce two bounding procedures that are applied sequentially and that allow,
in most cases, to reduce the CLRP to a series of multiple depot VRP, as in Baldacci
et al. (2010b). Our computational results show that our bounding procedures can be
stronger than those of Baldacci et al. (2010b) for some instances.

iii. We introduce several new families of cuts that are effective for closing the optimality
gap. Moreover, our computational experience shows that using state-space relaxation
in the pricing problem suffices to get bounds close to those obtained by pricing on
elementary routes (routes that do not contain cycles).

iv. We introduce a new fathoming rule that accelerates the solution of the pricing sub-
problems.

As a result, our algorithm is able to solve all instances that are also solved by the exact
method of Baldacci et al. (2010b) as well as four previously open instances. Additionally,
we improve the best known feasible solution for three other instances. Moreover, for the
instances that remain unsolved we improve the best known lower bounds.

The paper is organized as follows. In Section 2 we present some formulations of the
CLRP, namely the two-index vehicle-flow formulation due to Belenguer et al. (2010) as well
as the set-partitiong formulation due to Akca et al. (2009). In Section 3 we describe the valid
inequalities used through this paper. It includes some known valid inequalities from the two-
index formulation and the set-partitioning problem as well as new valid inequalities that are
shown to be valid for the set-partitioning formulation of the CLRP. In Section 4 we describe
the exact algorithm used to solve the CLRP to optimality. We first describe the separation
algorithms used to find violated valid inequalities. We then describe the different bounding
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procedures as well as the pricing algorithms used to solve the corresponding set-partitioning
problems. Finally, we discuss some computational issues that are mostly implementation-
specific and that have an important impact on the performance of the algorithm. In Section
5 we present our computational results and compare against the state-of-the-art solvers for
solving the CLRP. We conclude in Section 6 with a summary of the proposed methodology
and discuss possible avenues of future research.

2. CLRP Formulations

In this section we first present the two-index vehicle-flow formulation of the CLRP due to
Belenguer et al. (2010) and the set-partitioning formulation introduced by Akca et al. (2009).
We also show that any inequality valid for the two-index formulation can be easily extended
to the set-partitioning formulation.

2.1. Two-index vehicle-flow formulation

Belenguer et al. (2010) proposed the following two-index vehicle-flow formulation for the
CLRP. For every vertex set U , let δ(U) be the edge subset containing all those edges with
exactly one endpoint in U . For two disjoint vertex sets T, U , let (T : U) be the edge subset
containing all edges with one endpoint in T and the other in U . For every facility i ∈ I, let
zi be a binary variable equal to 1 iff facility i is selected for opening. For every edge e ∈ E,
let xe be a binary variable equal to 1 iff edge e is traversed once by some vehicle. Finally,
for every edge e ∈ δ(I) let ye be a binary variable equal to 1 iff edge e is used twice by some
vehicle. For a given edge set F ⊆ E let x(F ) =

∑

e∈F xe, y(F ) =
∑

e∈F ye. For a given
customer subset S ⊆ J , let d(S) =

∑

j∈S dj and r(S) = ⌈d(S)/Q⌉ (which actually is a lower
bound on the number of vehicles needed to serve the customers in S). The formulation is
the following.

min
∑

i∈I

fizi +
∑

e∈E

cexe + 2
∑

e∈δ(I)

ceye (TIF)

subject to

x(δ(j)) + 2y(I : {j}) = 2 j ∈ J (1)

x(δ(S)) + 2y(I : S) ≥ 2r(S) S ⊆ J, |S| ≥ 2 (2)

xij + yij ≤ zi i ∈ I, j ∈ J (3)

x(I : {j}) + y(I : {j}) ≤ 1 j ∈ J (4)

x((I \ {i}) ∪ S : S) + 2y(I \ {i} : S) ≥ 2 i ∈ I, S ⊆ J, d(S) > bi (5)

x(δ(S)) ≥ 2(x({h} : I ′) + x({j} : I \ I ′)) S ⊆ J, |S| ≥ 2, h, j ∈ S, I ′ ⊂ I (6)

zi ∈ [0, 1] and integer i ∈ I (7)

xe ≥ 0 and integer e ∈ E (8)

ye ≥ 0 and integer e ∈ δ(I). (9)
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Constraints (1) are the degree constraints at customer nodes. Constraints (2) are ca-
pacity cuts (CC), whose role is to forbid at the same time proper tours disconnected from
facilities and tours serving a demand larger than Q. Constraints (3) ensure that there is no
outgoing flow leaving from closed facilities. Constraints (4) are the path constraints for single
customers. They forbid routes of the form i1 → j → i2, i1, i2 ∈ I, i1 6= i2, j ∈ J . Constraints
(5) are the facility capacity inequalities (FCI). They forbid the existence of routes leaving
from a same facility i and serving a demand larger than bi. Constraints (6) are the path
constraints (PC) for multiple customers. Their role is to prevent the route of a single vehicle
from joining two different facilities.

Belenguer et al. (2010) have shown that constraints (2) can be strengthened into the
so-called y-Capacity Cuts (y-CC):

x(δ(S)) + 2y(I : S \ S ′) ≥ 2r(S) S ⊆ J, |S| ≥ 2, S ′ ⊂ S, r(S \ S ′) = r(S). (10)

These authors showed that the FCI can be generalized to take into account several
facilities in the same constraint. For a subset I ′ ⊆ I of facilities, they define r(S, I ′) =
⌈(d(S)−b(I ′))/Q⌉ (which is a lower bound on the number of vehicles that are needed to serve
the demand of customers in S from facilities other than those in I ′), where b(I ′) =

∑

i∈I′ bi.
The following constraint, introduced by Contardo et al. (2010) and called strengthened FCI
(SFCI), takes into account this observation and can be shown to dominate the FCI as well
as the SFCI introduced by Belenguer et al. (2010):

x(I \ I ′ : S) + 2y(I \ I ′ : S \ S ′) ≥ 2r(S, I ′) S ⊆ J, I ′ ⊆ I, S ⊂ S ′, r(S \ S ′, I ′) = r(S, I ′).
(11)

2.2. Set-partitioning formulation

We now describe the set-partitioning formulation introduced by Akca et al. (2009) and also
used by Baldacci et al. (2010b), and link it to the two-index vehicle-flow formulation so that
all of the known cuts for the CLRP are also valid. Let us denote by Ωi the set of all routes
(possibly containing cycles) starting and ending at facility i ∈ I and servicing a subset of
at least two customers with total demand of Q or less, and let Ω = ∪i∈IΩi be the set of
all possible routes servicing two or more customers with total accumulated demand of Q
or less. For every l ∈ Ω let us associate a binary variable λl equal to 1 if l appears in
the optimal solution of the CLRP and 0 otherwise, and a cost cl for using this route. For
every edge e ∈ E and route l ∈ Ω let qel be the number of times that edge e appears in
route l. If Ω is restricted to contain only elementary routes then qel is a binary constant,
otherwise it can be a general integer. On the other hand, let us define binary variables yij
for {i, j} ∈ δ(I) equal to 1 iff customer j is served from facility i by a single-customer route.
Note that if distances satisfy the triangular inequality, the optimal solution of this problem
will only contain elementary paths even if Ω is enlarged to contain routes with cycles. In
fact, in this case it is always possible to build from a solution with cycles, another solution
with elementary routes at lower cost. Let us extend the demands to facility nodes by letting
dv = 0 for every v ∈ I. A valid formulation for the CLRP is
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min
∑

i∈I

fizi +
∑

l∈Ω

clλl + 2
∑

e∈δ(I)

ceye (SPF)

subject to

∑

l∈Ω

∑

e∈δ({j})

qel λl + 2y(I : {j}) = 2 j ∈ J (12)

∑

l∈Ωi

∑

e={h,j}∈E

(dh + dj)q
e
l λl + 2

∑

e∈δ({i})

djyij ≤ 2bizi i ∈ I (13)

λl ≥ 0 and integer l ∈ Ω (14)

ye ≥ 0 and integer e ∈ δ(I) (15)

zi ∈ [0, 1] and integer i ∈ I (16)

In this formulation, constraints (12) ensure that each customer is served exactly once.
Constraints (13) are the facility capacity inequalities. They ensure that the demand served
from any facility i will not exceed its capacity bi. The distinction between single-customer
and multiple-customer routes naturally defines a relationship between vehicle-flow variables
x from the two-index formulation and λ, as follows

∑

l∈Ω

qel λl − xe = 0 e ∈ E (17)

In such a way, all of the valid inequalities from the two-index formulation of the CLRP
can be translated into the set-partitioning formulation by using identities (17).

3. Valid inequalities

In this section we describe the valid inequalities that can be applied to formulation (SPF)
and that strengthen the LP relaxation. First, we describe some of the valid inequalities
that have been developed in the context of the two-index and three-index formulations by
Belenguer et al. (2010) and Contardo et al. (2010). We then describe new families of valid
inequalities that are shown to dominate several of the former and that effectively strengthen
formulation (SPF).

3.1. Valid inequalities for the two-index formulation

The valid inequalities for formulation (TIF) include several different families. After a series
of preliminary tests, we have decided to keep only a subset of them, namely strengthened
comb inequalities (SCI), framed capacity inequalities (FrCI), effective strengthened facility
capacity inequalities (ESFCI), facility degree constraints (FDC) and location-routing comb
inequalities (LR-CI). To include any of these constraints into formulation (SPF) we use
identity (17). For details on the inequalities we refer to Lysgaard et al. (2004), Belenguer
et al. (2010) and Contardo et al. (2010).
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3.2. Valid inequalities for the set-partitioning formulation

The valid inequalities for the set-partitioning formulation include a strengthening of the y-
SCC introduced by Baldacci et al. (2008) for solving the CVRP and also used by Baldacci
et al. (2010b) for the CLRP. We also introduce strengthenings of the degree constraints
(12), of SFCI constraints (11), ESFCI and FrCI. We complement this with the addition of
subset-row inequalities (SRI).

Any constraint in the two-index space can be translated into a constraint in the route
space by using identity (17). However, the constraints translated this way will not take into
account the fact that a route can cross more than once a given subset of vertices. For a given
subset of routes R ⊆ Ω, let us define λ(R) =

∑

l∈R λl. We also let i(l), J(l) and E(l) to be
the facility to which l is assigned, the set of customers served by l and the set of edges used
by l, respectively.

3.2.1. y-Strengthened CC (y-SCC)

Let us consider, for a given customer set S ⊆ J and subset S ′ ⊂ S such that r(S \S ′) = r(S),
the corresponding y-CC as described in Belenguer et al. (2010) and Contardo et al. (2010),
for formulations (TIF) and (SPF), respectively:

x(δ(S)) + 2y(I : S \ S ′) ≥ 2r(S) for TIF (18)
∑

l∈Ω

∑

e∈δ(S)

qel λl + 2
∑

e∈[I:S\S′]

ye ≥ 2r(S) for SPF. (19)

Baldacci et al. (2008) noted that the CC (2) can be strengthened by setting the coefficient
of a given path variable λl to be 0 if l does not serve a customer in S and 1 otherwise, rather
than counting the number of edges of l that are also in δ(S). For formulation (SPF), the
constraint is the following,

λ({l : J(l) ∩ S 6= ∅}) + y(I : S) ≥ r(S). (20)

For the y-CC we can apply the same reasoning, as stated in the following proposition.

Proposition 3.1. Let S ⊆ J be a subset of customers, and S ′ ⊂ S such that r(S\S ′) = r(S),
the following constraint is valid for the CLRP and dominates the y-CC (19) and the SCC
(20).

λ({l : J(l) ∩ S 6= ∅}) + y(I : S \ S ′) ≥ r(S). (21)

We call this constraint the y-Strengthened CC (y-SCC).

Proof Let us define L(T ) = {l ∈ Ω : J(l) ∩ T 6= ∅}, for T ⊆ J . We then have

λ(L(S)) = λ(L(S \ S ′)) + λ(L(S ′))− λ(L(S \ S ′) ∩ L(S ′)). (22)

We have to prove that
λ(L(S)) + y(I : S \ S ′) ≥ r(S)
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is a valid inequality of the CLRP. In fact, we have

λ(L(S)) + y(I : S \ S ′) = λ(L(S \ S ′)) + λ(L(S ′))− λ(L(S \ S ′) ∩ L(S ′)) + y(I : S \ S ′)

≥ r(S \ S ′) + λ(L(S ′))− λ(L(S \ S ′) ∩ L(S ′))

≥ r(S \ S ′)

= r(S).

The dominance with respect to the y-CC comes from the fact that a route l that visits
a customer set S must have two or more edges crossing it, and the dominance with respect
to the SCC comes from the consideration of the customer set S ′.

3.2.2. Strengthened Degree Constraints (SDEG)

Degree constraints in the two-index space count the number of times that a certain node is
traversed. If a node can be traversed several times by a single route, then a stronger version
of the degree constraint is

λ({l ∈ Ω : j ∈ J(l)}) + y(I : {j}) ≥ 1 j ∈ J. (23)

These constraints are relevant when, instead of restricting the state-space to elementary
routes, it is rather relaxed to contain routes with cycles. In our algorithm we have found that
the addition of these constraints when pricing on non-elementary routes is an effective method
to get bounds close to the ones obtained by pricing on elementary routes. Indeed, the problem
of finding an appropriate balance between speed and lower bound quality for different variants
of the SPPRC has already been studied and is a key aspect in the performance of column
generation based algorithms for vehicle routing problems (see, e.g., Boland et al. 2006, Righini
and Salani 2008, Desaulniers et al. 2008). This intuition is supported by the following
proposition,

Proposition 3.2. The optimal value of the linear relaxation of (SPF) when restricting the
space Ω to elementary routes is the same as when Ω is enlarged to routes with cycles after
adding the SDEG constraints (23).

Proof Obviously elementary routes satisfy constraints (23), so the value of the linear relax-
ation on the elementary case is at least as good as in the relaxed case. On the other hand,
in the relaxed case, no route with cycles will be basic after the addition of (23). Indeed, let
j ∈ J be any customer, and let Ωj ,Ωcyc(j) be the subsets of routes traversing j and containing
a cycle in j, respectively (obviously Ωcyc(j) ⊆ Ωj). For that customer, from constraints (12)
we have

∑

l∈Ωj\Ωcyc(j)

∑

e∈δ({j})

qel λl = 2− 2y(I : {j})−
∑

l∈Ωcyc(j)

∑

e∈δ({j})

qel λl (24)

Using (23), Ωcyc(j) also has to satisfy

∑

l∈Ωj\Ωcyc(j)

λl ≥ 1− y(I : {j})−
∑

l∈Ωcyc(j)

λl (25)
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After multiplying the second equation by two, the left-hand side of both equations coin-
cide, and the following relationship holds between their right-hand sides

∑

l∈Ωcyc(j)

∑

e∈δ({j})

qel λl ≤
∑

l∈Ωcyc(j)

2λl (26)

As
∑

e∈δ({j}) q
e
l ≥ 4 for l ∈ Ωcyc(j) (because j is traversed at least twice, i.e. by at least 4

edges), it follows that λl = 0 for every l ∈ Ωcyc(j).

3.2.3. Set-Partitioning SFCI (SP-SFCI)

Let us consider the SFCI constraints (11), and let S, I ′ and S ′ be as in (11). The following
strengthening of the SFCI, called Set-Partitioning SFCI (SP-SFCI), is valid for the CLRP
and dominates (11):

∑

k∈I\I′

λ({l ∈ Ωk : J(l) ∩ S 6= ∅}) + y(I \ I ′ : S \ S ′) ≥ r(S, I ′). (27)

Before proving the validity of the above constraint, let us define some notation. For each
i ∈ I, j ∈ S, let wij be a binary constant equal to 1 iff customer j is served from facility i.
Let WI′ = {j ∈ J : wij = 1 for some i ∈ I ′}. For given subsets H ⊆ I and S ⊆ J , let us
define LH(S) = ∪i∈H{l ∈ Ωi : J(l) ∩ S 6= ∅}. Now, let us prove the validity of constraints
(27).

Proposition 3.3. Constraints (27) are valid for the CLRP and dominate the SFCI (11).

Proof Let us consider first the case S ′ = ∅. Indeed, if S ⊆ WI′ then constraint (27) is
trivially satisfied (because r(S, I ′) = 0). If S ⊆ W I′ then λ(LI′(S)) = y(I ′ : S) = 0 and
therefore λ(LI\I′(S)) + y(I \ I ′ : S) = λ(LI(S)) + y(I : S) ≥ r(S) ≥ r(S, I ′). If S ∩WI′ 6= ∅
and S ∩ W I′ 6= ∅, we have λ(LI\I′(S)) + y(I \ I ′ : S) = λ(LI\I′(S ∩ WI′)) + y(I \ I ′ :
S ∩WI′) + λ(LI\I′(S ∩W I′)) + y(I \ I ′ : S ∩W I′) ≥ r(S ∩WI′, I

′) + r(S ∩W I′) ≥ r(S, I ′).
Let us suppose now that S ′ 6= ∅. Let S ′′ ⊆ S ′ be such that y(I \ I ′ : S ′) = |S ′′|, i.e.,
the customers in S ′ that are served by single-customer routes from facilities in I \ I ′ are
exactly those in S ′′. As a consequence of this, λ(LI\I′(S)) = λ(LI\I′(S \ S

′′)) and then
λ(LI\I′(S))+ y(I \ I ′ : S \S ′) = λ(LI\I′(S \S

′′))+ y(I \ I ′ : S \S ′′) ≥ r(S \S ′′, I ′) = r(S, I ′).
The dominance with respect to constraints (11) comes from the fact that i) routes crossing
set S several times are only counted once, and ii) edges connecting S with S are considered
only if they belong to routes departing from I \ I ′.

3.2.4. Set-Partitioning ESFCI (SP-ESFCI)

The Effective SFCI were introduced by Belenguer et al. (2010) and Contardo et al. (2010)
and are valid for the two-index formulation (TIF). They can be seen as a strengthening
of the SFCI by noticing that the right-hand side of such constraint can be in fact lifted
whenever zi = 0 for some i ∈ I ′. For the set-partitioning formulation (SPF) they can be
written as
∑

k∈I\I′

λ({l ∈ Ωk : J(l)∩S 6= ∅})+y(I \I ′ : S\S ′) ≥ r(S, I ′)+zi(r(S, I
′\{i})−r(S, I ′)). (28)
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The validity proof follows from the validity of the SP-SFCI for the two cases zi = 1 and
zi = 0.

3.2.5. Strengthened Framed Capacity Inequalities (SFrCI)

The framed capacity inequalities were developed by Augerat (1995) for the CVRP and later
succesfully used by other authors in the development of algorithms based on cutting planes
and column generation (Lysgaard et al. 2004, Fukasawa et al. 2006). Given a customer set
S, that we call the frame, and a partition of it (Si)

t
i=1, the related FrCI seen in formulation

(TIF) is

x(δ(S)) + 2y(I : S) +

t
∑

i=1

(x(δ(Si)) + 2y(I : Si)) ≥ 2

(

BPP (S|(Si)
t
i=1) +

t
∑

i=1

r(Si)

)

, (29)

where BPP (S|(Si)
t
i=1) represents the solution of the following bin-packing problem. For

every i = 1, . . . , t consider ⌈d(Si)/Q⌉ items of size Q except for the last item that will have
size d(Si)− (⌈d(Si)/Q⌉−1)Q. Also, set the bins to have size Q. In addition to using identity
(17) to adapt this constraint to formulation (SPF), the same observation as done for the
y-SCC, SDEG, SP-SFCI and SP-ESFCI can be applied. The following constraint, called
strengthened FrCI (SFrCI) is valid for the CLRP and also dominates the FrCI.

λ({l ∈ Ω : J(l) ∩ S 6= ∅}) +
t
∑

i=1

λ({l ∈ Ω : J(l) ∩ Si 6= ∅}) + 2y(I : S) ≥

BPP (S|(Si)
t
i=1) +

t
∑

i=1

r(Si). (30)

Before proving the validity of the SFrCI we need the following lemma

Lemma 3.4 (Augerat (1995)). Let S ⊆ J and (Si)
t
i=1 a partition of S. If ⌈d(S1 ∪S2)/Q⌉ =

⌈d(S1)/Q⌉+⌈d(S2)/Q⌉ then BPP (S|S1, S2, . . . , St) ≥ BPP (S|S1∪S2, S3, . . . , St). Otherwise
BPP (S|S1, S2, . . . , St) + 1 ≥ BPP (S|S1 ∪ S2, S3, . . . , St).

Proof See Augerat (1995).

Proposition 3.5. Constraints (30) are valid for (SPF).

Proof The proof uses exactly the same arguments as in Augerat (1995). Let us suppose
first that sets Si satisfy d(Si) ≤ Q. Let us consider the bin-packing problem defined above,
with objects of sizes d(Si) for every i = 1, . . . , t and bin size equal to Q. Let us denote
the set of objects by K. In this context, let us call a cut of object k in K the following
operation: remove k (of size d(k)) from K and replace it by two smaller objects whose
total size is equal to d(k). It is known that after a cut operation, the solution of a BPP
is reduced by at most one unit. As a consequence, the same applies for q cut operations,
so that the solution of the BPP is reduced by at most q units. In the case of the CLRP,
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the quantity w =
∑t

i=1(λ({l ∈ Ω : J(l) ∩ Si 6= ∅}) + y(I : Si) − 1) represents exactly
the number of cuts that are applied to the set S, and thus BPP (S|(Si)

t
i=1) + w represents

a lower bound on the number of vehicles needed to serve the demand of S. Now, in the
general case, let (λ, y, z) be a solution of (SPF). For every subset Si, (λ, y) define a partition
Sk
i , k = 1, . . . ni of subsets of Si such that i) λ({l ∈ Ω : J(l) ∩ Sk

i 6= ∅}) + y(I : Sk
i ) = 1

and ii) ni = λ({l ∈ Ω : J(l) ∩ Si 6= ∅}) + y(I : Si). From the first case we have that
λ({l ∈ Ω : J(l) ∩ S 6= ∅}) + y(I : S) ≥ BPP (S|(Sk

1 )
n1
k=1, (S

k
2 )

n2
k=1, . . . , (S

k
t )

nt

k=1). For every
i = 1, . . . , t we apply ni successive contractions of the subsets S

k
i and compute α(i, j) equal to

the number of times that BPP (S|(Sk
1 )

n1
k=1, (S

k
2 )

n2
k=1, . . . , (S

k
t )

nt

k=1) decreases by one unit after
a contraction. By applying the lemma, we have that α(i, 1) = ⌈d(S1

i )/Q⌉ + ⌈d(S
2
i )/Q⌉ −

⌈d(S1
i ∪S

2
i )/Q⌉ = 2−⌈d(S1

i ∪S
2
i )/Q⌉ and, more generally, α(i, j) = j+1−⌈d(

⋃j

k=1 S
k
i )/Q⌉.

At the end of all of these successive contractions we will have that λ({l ∈ Ω : J(l) ∩ S 6=
∅}) + y(I : S) ≥ BPP (S|(Si)

t
i=1)−

∑t

i=1(ni − ⌈d(Si)/Q⌉)

3.2.6. Subset-Row Inequalities (SRI, Jepsen et al. (2008))

The subset-row inequalities are a special case of the clique inequalities (Balas and Padberg
1976) and are valid for the set partitioning formulation of the CLRP. Let us consider the
conflict graph Hλ constructed as follows. The vertices of Hλ are the routes l ∈ Ω such that
λl > 0. Two vertices in V (Hλ) are linked by an edge if they share at least one customer. A
clique in Hλ is a maximal complete induced subgraph of Hλ. For every clique C ⊆ Hλ, the
following clique inequality is valid for the CLRP:

∑

v∈V (C)

λv ≤ 1. (31)

The addition of clique inequalities into the master problem SPF has, however, an impor-
tant drawback: they make the pricing problem of finding routes (with or without cycles) of
negative reduced cost much more difficult. Indeed, during the pricing problem it must be
checked if a partial path participates or not in a clique. This is equivalent to checking if a
partial path intersects every column already in a clique in at least one customer node, which
in practice is difficult to do. Jepsen et al. (2008) introduced the subset-row inequalities. A
subset-row inequality is a clique inequality associated to a clique C to which we assign a sub-
set of customers χ(C) ⊆ J such that every column in C intersects χ(C) in at least a certain
number of customers. If |χ(C)| is small, the pricing problem can be accelerated as only |χ(C)|
comparisons are needed to check if a given path participates in the clique. These inequalities
are a particular case of the clique inequalities and in general provide slightly weaker bounds.
The results obtained by Jepsen et al. (2008) for the particular case of |χ(C)| = 3 show that
the gain for considering the clique inequalities instead of the subset-row inequalities is usually
not worth the extra computational effort.

4. Solution Methodology

In this section we describe the exact algorithm that solves the CLRP to optimality. We
first describe the separation algorithms used in order to find violated inequalities. Then, we
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describe two bounding procedures that are applied sequentially. The first procedure is based
on the two-index formulaton (TIF) with additional cuts. The second procedure is based on
the set partitioning formulation (SPF) with additional cuts. We then describe an enumera-
tion procedure to close the optimality gap that is applied only in certain cases. Finally, we
describe the computational issues in the implementation of the proposed algorithm.

4.1. Separation Algorithms

We now describe the separation algorithms used to separate the different families of valid
inequalities used in our algorithm. Our separation strategy is as follows: we first try to
generate cuts translated from the two-index formulation (TIF). If no such cuts can be
found, we try to generate cuts SDEG, y-SCC, SP-SFCI, SP-ESFCI and SFrCI. If it fails, we
try to generate cuts SRI. This strategy allows us to keep the number of strong constraints
small as their inclusion in the pricing algorithm make it harder.

4.1.1. Inequalities translated from formulation TIF

For the valid inequalities translated from the two-index formulation using identity (17), such
as y-CC, SFCI, ESFCI, SCI, LR-CI or FrCI, we use the separation algorithms introduced by
Lysgaard et al. (2004), Belenguer et al. (2010) and Contardo et al. (2010).

4.1.2. SDEG, y-SCC, SP-SFCI, SP-ESFCI and SFrCI

Although there is a polynomial number of SDEG constraints, we do not add them all at
the beginning of the algorithm, but we rather check if for a certain weak degree constraint,
its related strong constraint is violated, and add it to the problem. For the remaining
constraints, we use the same principle. In fact, we check if, for any previously found weak
constraint y-CC, SFCI, ESFCI or FrCI, its related strong constraint is violated and in this
case we add it to formulation SPF.

4.1.3. Subset-Row Inequalities

The separation of the subset-row inequalities is done by enumeration just as in Jepsen et al.
(2008). Indeed, we only separate SRI for cliques C such that |χ(C)| = 3. We check for every
triplet (i, j, k) ∈ J3, i < j < k if the corresponding SRI is violated. If it is the case, it is
added to the master problem.

4.2. First bounding procedure

In this procedure, an enumeration method based on a branch-and-cut algorithm (Contardo
et al. 2010) is applied to problem (TIF) after dropping the integrality constraints on the edge
variables x and y. This procedure is used to obtain candidate subsets I ′ ⊆ I of facilities
such that the problem restricted to these facilities could lead to a feasible solution with cost
smaller or equal than a given upper bound. We denote the set that contains the subsets
I ′ by I. For finding the subsets in I, a good upper bound is needed to prune nodes in
the branching tree. In our method, we have used the best feasible solutions found in the
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literature. For large instances, however, the computation of the whole branching tree can
be prohibitive. In this case, the branch-and-bound algorithm is terminated earlier and the
uninspected nodes are also added to I. Now, the facilities in a given subset I ′ ∈ I are not
only those that are open but also those that could not be fixed in the current node. During
the process, different families of valid inequalities are added to strengthen the formulation.
However, we only add cuts in nodes whose depth is less than or equal to 5. For each candidate
set I ′ ⊆ I generated by the algorithm we proceed as follows:

i. Based on reduced costs, perform variable fixing on the location variables z, in case set
I ′ contains facilities that remained unfixed.

ii. Based on reduced costs, perform variable fixing on the edge variables x.

iii. Compute the optimal dual variables associated to the degree constraints (1).

iv. Compute Km(I
′) as an upper bound on the maximum number of routes that serve

two or more customers, namely Km(I
′) = ⌊max{1

2
x(δ(I ′)) : (x, y, z) ∈ A}⌋, where A

stands for the set of constraints (1)-(9) plus the generated cuts and after dropping the
integrality conditions.

For each subset I ′ found by this algorithm we apply a second bounding procedure and
a column enumeration method (in this context, the definition of set I ′ is implicit and will
sometimes be omitted). Note that Baldacci et al. (2010b) use a similar approach, except
that their first bounding procedure computes a global lower bound obtained by solving a
relaxation of the set-partitioning problem. This bound is then used to discard non promising
subsets I ′ ⊆ I. In Section 5 we presentr computational results comparing the first bounding
procedure that we propose with the one suggested by Baldacci et al. (2010b).

4.3. Second bounding procedure

In this procedure, the following state-space relaxation of formulation (SPF) is solved by
means of column generation. Instead of considering elementary routes (i.e., routes without
cycles), we allow routes that contain cycles of length three or more, i.e., for nodes i 6= j 6=
k 6= i the subpaths i → i, i → j → i are forbidden, but the sequence i → j → k → i
is permitted. The pricing problem consists in finding routes without cycles of length one
or two and such that the reduced costs are minimized. This problem is known in the
literature as the 2-cyc-SPPRC (Desrochers et al. 1992). This is an important difference with
respect to the method of Baldacci et al. (2010b) in which the resolution of the subproblem
is restricted to elementary routes. During the computation, we add the cuts described in
Section 3. The violation threshold for the strong cuts is initially set to 0.3. When no more
columns of negative reduced cost or violated cuts can be detected, the current objective
function value is in fact a valid lower bound for the problem. Let us call this lower bound
z∗. We run algorithm ENUM-ESPPRC (described in the next section) in order to price
out the remaining columns l ∈ Ω such that cl ≤ zUB − z∗. We have set two hard limits to
algorithm ENUM-ESPPRC: the number of labels cannot exceed at any time a maximum
φmax = 106, and the total number of generated columns cannot exceed ∆max = 107. In
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case of success of this procedure, the columns generated are stored in a column pool P and
the violation threshold for strong constraints is lowered to 0.01. Otherwise, we lower the
violation threshold (thus generating more cuts) and continue with the process. This is done
at most three times before finishing the column generation process. For instance, for the case
of constraints SDEG, the sequence of violation thresholds is (0.3, 0.25, 0.2, 0.1). Whenever
the column enumeration ENUM-ESPPRC is done with success, at every following iteration
of the column generation method, we do not solve the pricing problem 2-cyc-SPPRC but
rather check the reduced costs of columns in P. Note that the size of set P can be huge and
computing the reduced cost of every column in it can be very cumbersome. For dealing with
this issue, at every iteration after the creation of P in which no columns of negative reduced
cost were found, we also delete from the pool all the columns l such that cl > zUB − z∗.
At the very end of the bounding procedure, we either prune the current node if the final
lower bound is greater than or equal to zUB, or otherwise solve the integer problem with the
columns generated so far, with the hope of improving the upper bound. In what follows,
we first describe the decomposition of the reduced costs for the constraints translated from
formulation (TIF), namely all of the constraints in (SPF) plus the cuts that are valid for
this formulation. We then show how to incorporate the set-partitioning constraints, such as
y-SCC, SDEG, SP-SFCI, SP-ESFCI, SFrCI and SRI into the computation of the reduced
costs. We then describe the pricing problem 2-cyc-SPPRC that suits our problem with the
additional cuts. We end by describing how we compute lower bounds out of the result of the
pricing problem.

4.3.1. Decomposition of the reduced costs edge-by-edge

Let us first suppose that only constraints (12), (13) (with duals α and β, respectively)
have been added to the problem. For every i ∈ I ′, define the reduced cost of an edge
e ∈ E(J) ∪ δ({i}) as

ce =

{

ce − (αh + αj)− (dh + dj)βi if e = {h, j} ∈ E(J)

ce − αj − djβi if e = {i, j} ∈ δ({i}).
(32)

Let us write a route l ∈ Ωi like a sequence of edges in E, that is l = (et)
p
t=1 (in the case

in which cycles are permitted, edges may appear more than once in the sequence). Thus,
the reduced cost of such a route is given by the following expression:

cl =

p
∑

t=1

cet . (33)

It follows that in this case a column of minimum reduced cost can be computed as the
solution of |I ′| shortest path problems with resource constraints. Moreover, the addition of
any cut of the general form

∑

i∈I′

τizi +
∑

e∈E

∑

l∈Ω

qel φeλl +
∑

e∈δ(I′)

ςeye ≤ π (34)

produces a contribution to the computation of the reduced cost of the columns that can still
be decomposed by edge, thus without breaking the shortest path structure of the pricing.
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This is the case for all of the cuts valid for the two-index formulation of the CLRP after
being translated to formulation (SPF) using identity (17).

4.3.2. Addition of the strong constraints and effect on the reduced costs

When a constraint cannot be written edge-by-edge, as for constraints (21), (23), (27), (28),
(30) or (31), the contribution to the reduced cost cannot be decomposed edge by edge, and
thus the original structure of the SPPRC is broken.

Indeed, consider a SRI for a clique C such that for χ(C) = {i, j, k} with dual variable
σ ≤ 0. The reduced cost c̄l of a route l ∈ Ω that crosses at least two of those three customers
must be augmented by −σ units.

For the other strong constraints SDEG, y-SCC, SP-SFCI, SP-ESFCI or SFrCI, the con-
tribution to the reduced cost is related to the simple intersection of path l with the sets
describing the constraints. For instance, if we consider a SDEG constraint associated to a
customer j and with dual variable σ ≥ 0, then the reduced cost of a route l will be reduced
by σ units if l passes through node j. Now, consider a constraint y-SCC for given sets S ⊆ J
and S ′ ⊂ S as in (21) with dual value σ ≥ 0. The contribution to the reduced cost will
reduce it by σ units if l intersects set S. For a SP-SFCI or SP-ESFCI associated to sets
S ⊂ J , S ′ ⊂ S, I ′ with dual variable σ ≥ 0, the contribution to the reduced cost will reduce
it by σ units if route l crosses set S but is not linked to a facility in I ′. Finally, for the SFrCI
associated to set S and partition Si, i = 1, . . . , t and with dual variable σ ≥ 0, the reduced
cost must be reduced by σ units once for each time that route l intersects either S or any
of its subsets.

4.3.3. The pricing problem

The pricing problem corresponds to solve |I ′| 2-cyc-SPPRC, one for each facility in I ′. The
resources associated to each label during the recursion are 1) vehicle load, 2) binary resources
related to constraints SDEG, y-SCC, SP-SFCI, SP-ESFCI and SFrCI and 3) resources for
taking into account the SRI. The algorithm used to solve these problems is based on dynamic
programming (DP), as was done by several authors (Desrochers et al. 1992, Baldacci et al.
2008, Feillet et al. 2007, Jepsen et al. 2008, Righini and Salani 2008). Moreover, it is also
possible to solve it by means of bidirectional DP (BDP). In classical uni-directional DP,
paths are extended until reaching the depot node while ensuring that loads do not exceed
capacity. In BDP, however, paths are extended until reaching half of the capacity for later
joining paths pairwise. In this section we describe the 2-cyc-SPPRC algorithm used in the
context of the CLRP. For general use of the dynamic programming method for solving the
SPPRC we refer to the papers cited above. Let us denote by V (L) the set of nodes served
by the path represented by label L.

4.3.3.1 Resources description As said before, three different types of resources are
considered in the problem: vehicle load resource; resources associated to constraints SDEG,
y-SCC, SP-SFCI, SP-ESFCI and SFrCI; and resources associated to SRI.

A Branch-and-Cut-and-Price Algorithm for the Capacitated Location-Routing Problem

14 CIRRELT-2011-44



Vehicle load The vehicle load is defined by an integer variable q that keeps track of the
load of the current path. It is updated every time that a path is extended to a customer
node.

Resources associated to SDEG, y-SCC, SP-SFCI, SP-ESFCI and SFrCI For each
of the constraints SDEG, y-SCC, SP-SFCI and SP-ESFCI, the associated resource is
defined by a single boolean variable that takes the value true if the path intersects the
proper set as described before. We designate those sets as critical sets, and denote
them by S(C) for every constraint C. For each constraint SFrCI, there will be not
one, but as many boolean variables as the size of the partition, plus one for the frame.
Each of these variables will take the value true if the path crosses the proper set. Now,
we do not have one but several critical sets that we denote by S(C, k). Any time that
one of these boolean variables passes from false to true, the reduced cost of the current
path is reduced according to the value of the dual variable.

Resources associated to SRI For every clique C with χ(C) = {i, j, k} we associate three
binary variables rC(k), k = 1, 2, 3 that are initialized to 0 until the path crosses one of
the customers, in which case the proper variable is set to 1, and the reduced cost of a
path will be updated whenever rC(1) + rC(2) + rC(3) reaches the value 2.

4.3.3.2 The 2-cyc-SPPRC algorithm We first describe the definition of a label in the
recursion of the dynamic programming algorithm. Then, we describe the dominance rules
used to discard labels. After that, we describe a fathoming rule that can be aplied in order to
also discard labels that cannot lead to a column of negative reduced cost. Next, we describe
the path joining procedure to construct feasible paths from a given pair of labels. At the
end, we describe the skeleton of the algorithm.

Label definition A label L is defined by

i. A node v(L) which is the end node of the path represented by label L.

ii. A cost c(L) representing the reduced cost of the path represented by label L.

iii. A load resource q(L) representing the load of the path represented by label L.

iv. Resources resC(L) associated to the binding constraints SDEG, y-SCC, SP-SFCI,
SP-ESFCI, SFrCI and SRI. For constraints SFrCI and SRI we write resC(L, k)
for the different sub-resources associated to these constraints.

v. An integer variable vdom(L) initially set to -1 and updated whenever L is found
to be dominated by a label L′, in which case we set vdom(L) = v(pred(L′)).

vi. A boolean variable proc(L) initialized to false and updated to true whenever the
algorithm processes the label and inspects its neighbors.

vii. A pointer to the predecessor label pred(L) of L.

viii. A list succ(L) of pointers to the successors of L. succi(L) denotes the i-th suc-
cessor of label L.
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Dominance rule Let L, L′ be two labels. We denote SRILL′ = {C ∈ SRI :
∑

k resC(L, k) ≤
1 and [

∑

k resC(L
′, k) ≥ 2 or ∃ k s.t. resC(L, k) < resC(L

′, k)]}, nC,L,L′ = |{k : resC(L, k) <
resC(L

′, k)}| and OTHL,L′ = {C ∈ SDEG∪y-SCC∪SP-SFCI∪SP-ESFCI : resC(L) <
resC(L

′)}. We will say that L is dominated by L′ if

i. v(L) = v(L′).

ii. q(L) ≥ q(L′).

iii. c(L) ≥ c(L′)−
∑

C∈SRILL′
σC +

∑

C∈SFrCI nC,L,L′σC +
∑

C∈OTHLL′
σC .

The dominance rule is a direct application of the one used by Archetti et al. (2009)
for the inclusion of SRI and k-path inequalities in the context of the VRP with split
deliveries and time windows (VRPSDTW). A label L that is dominated by another
label L′ cannot be directly eliminated unless v(pred(L)) = v(pred(L′)) or if vdom(L) /∈
{−1, v(pred(L′))}. In that case, label L is removed and recursively we also remove all
of its successors in succ(L). Otherwise, vdom(L) is set to v(pred(L′)). Note that the
inclusion of SDEG constraints allows to weaken the dominance rule with respect to
a traditional elementarity constraint, in which the condition for dominance would be
resC(L) ≥ resC(L

′) for each C ∈ SDEG.

Fathoming rule In addition to the dominance criterion, a fathoming rule can be applied if a
lower bound on the cost of extending a path can be computed. Formally, let L be a label
and let LB(L) be a lower bound on the reduced cost that can be obtained by extending
L, computed as follows. First of all, discard SRI as their dual variables are negative. For
every binding strong constraint C ∈ C = SDEG∪y-SCC∪SP-SFCI∪SP-ESFCI∪SFrCI,
with dual variables (σC)C∈C, and for every edge e crossing the critical sets related to
these constraints, we decrease the reduced cost of that edge by σC/2 units. We refer to
this procedure as under-estimation of constraint C. As a route that crosses a customer
set S must have at least two edges in δ(S) then the reduced cost of a path computed
in this way will in fact be a lower bound on the real reduced cost. We then solve the
related 2-cyc-SPPRC with no resources associated to strong constraints, and compute
functions f, g and π as follows:

f(p, i) = min{c(L) : v(L) = i, q(L) ≤ Q− p+ di} (35)

π(p, i) = v(pred(argmin{f(p, i)})) (36)

g(p, i) = min{c(L) : v(L) = i, q(L) ≤ Q− p+ di, v(pred(L)) 6= π(p, i)} (37)

For a constraint C ∈ SFrCI and a customer i ∈ J , let nC,i = |{k : i ∈ S(C, k)}|. Also,
let

h(L) =

{

f(q(L), v(L)) if π(q(L), v(L)) 6= v(pred(L))

g(q(L), v(L)) otherwise.
.

A lower bound on the reduced cost reachable by extending label L can be computed
as
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LB(L) = c(L) + h(L) +
1

2

∑

C∈C\SFrCI
i∈S(C)

σC +
1

2

∑

C∈SFrCI

nC,iσC . (38)

The two sums aim to compensate the fact that the contribution of the under-estimated
constraints C ∈ C is being considered at least 1.5 times in c(L) and h(L) whenever
i ∈ S(C) or nC,i > 0, thus tightening LB(L). If a label L is such that LB(L) > 0, then
L can be discarded. Similar fathoming rules have been implemented by Christofides
et al. (1981), Baldacci et al. (2008, 2010a) and Baldacci et al. (2010b), for instance.
Note that we have used unidirectional DP for computing functions f, g, π. From an
implementation point of view, it only differs from the BDP in the fact that now all labels
are inspected for extension and not only those whose load is less or equal than Q/2, so
at the end the joining of paths is not necessary. Note also that this fathoming procedure
can be generalized (and also strengthened) by keeping as resources, thus without under-
estimating, the k constraints C ∈ C with the largest duals, where k is a parameter
defined a priori. After doing a series of experiments, we let k = min{20, |C|/5}. For
these constraints, the coefficients in the sums in (38) can now be lifted to 1, as the
contribution to the reduced cost of a customer such that i ∈ S(C) or nC,i > 0 is being
counted twice.

Path joining As the labeling algorithm is bidirectional, the labels must be joined to con-
struct feasible paths. Given two labels L, L′ such that v(L) = v(L′) and q(L)+q(L′) ≤
Q+ dv(L), they will produce a feasible path (one that satisfies capacity constraints and
such that its reduced cost is negative) if

i. min{q(L), q(L′)} ≥
q(L)+q(L′)−dv(L)

2

ii. max{q(L), q(L′)} ≤
q(L)+q(L′)+dv(L)

2

iii. v(pred(L)) < v(pred(L′))

iv. the reduced cost of the concatenated path P = (L, L′) is negative.

The first two conditions are the median conditions (Baldacci et al. 2008) that ensure
that labels L and L′ are the closest possible to half of the load. The third condition
ensures that if path P = (L, L′) is kept, then path P ′ = (L′, L) will be discarded. This
way, symmetric or repeated paths will not be added to the master problem.

The dynamic programming algorithm Let us describe the labeling algorithm by means
of a pseudo-code. Let L0 be the label representing an empty path starting at the facility,
such that all of the resources are set at their default values. Also, let us note that labels
will be stored in buckets, and let B(q, v) be the bucket storing labels L whose loads
are q(L) = q and such that v(L) = v.
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Algorithm 1 2-cyc-SPPRC

1: Compute functions f, g, π using DP.
2: B(0, 0)← {L0},V ← {0},R← ∅.
3: repeat
4: Take node v from V and set V ← V \ {v}.
5: for q = 0 to Q/2 do
6: for all L ∈ B(q, v) such that proc(L) = false do
7: Set proc(L)← true.
8: for all w ∈ Neighbors of v, w 6= 0 and q(L) + dw ≤ Q and pred(L) 6= w do
9: Create L′ such that v(L′) = w and pred(L′) = L. Update resources accordingly.
10: Apply fathoming rule and eventually discard L′.
11: Apply dominance rule and eventually discard L′.
12: if L′ has not been discarded then
13: Make B(q(L′), w)← B(q(L′), w) ∪ {L′}.
14: Apply dominance rule and eventually delete other labels in B(q(L′), w).
15: Make V ← V ∪ {w}.
16: end if
17: end for
18: end for
19: end for
20: until V = ∅
21: Join paths {(L, L′) : v(L) = v(L′) = v, q(L) + q(L′) ≤ Q+ dv} and fill R
22: return R

4.3.4. Computing lower bounds

When pricing problems are solved to optimality, it is possible to obtain a lower bound on the
problem. This lower bound can then be used for fathoming the current node as well as for
early termination criteria. The following proposition provides a way of computing a lower
bound on the CLRP.

Proposition 4.1. Let c̄min be the minimum reduced cost at the current iteration for columns
in Ω, and let z̄ be the value of the master problem at the current iteration. Also, let Kmax be
an upper bound on the number of vehicles that serve two or more customers. A valid lower
bound for the CLRP is given by

zLB = z̄ +Kmaxc̄min. (39)

Proof Let σ be the dual variables of the linear relaxation of problem (SPF). Let (c̄l)l∈Ω be
the reduced costs of columns serving two or more customers, that depend on the duals σ.
The Lagrangean dual of this problem, that can be written in the following form, provides a
valid lower bound for the CLRP

L(σ) = z̄ +min{
∑

l∈Ω

c̄lλl :
∑

l∈Ω

λl ≤ Kmax}. (40)

But now, as c̄min ≤ 0 then min{
∑

l∈Ω c̄lλl :
∑

l∈Ω λl ≤ Kmax} ≤ Kmaxc̄min.
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For every candidate set I ′ we use Kmax = Km(I
′) as described in the first bounding

procedure.

4.4. Enumeration of remaining columns

For each subset of facilities I ′ as obtained after the first bounding procedure and not dis-
carded after the second procedure, let zLB and σ be the lower bound at the end of the
second bounding procedure and the dual variables associated to such lower bound. If pro-
cedure ENUM-ESPPRC was successful to generate the column set P, we simply compute
the reduced cost of columns in P and add to the master problem those columns l such that
cl < zUB − zLB. We then solve the resulting integer problem using a general-purpose solver
such as CPLEX. If, however, we were not able to obtain set P, we first check whether the
upper bound zUB improved during the second bounding procedure after the consideration
of set I ′. In this case, we run again algorithm ENUM-ESPPRC but now with the updated
upper bound, as the performance of algorithm ENUM-ESPPRC depends strongly on the gap
zUB − zLB. Otherwise, we start the following procedure with the hope of getting a better
upper bound (if any), and in the worst case it gives us a method for tightening the gap.

i. Let ∆← (zUB − zLB)/10. Set k ← 1.

ii. Let z′UB ← zLB + k∆ and try to generate all of the columns whose reduced costs are
smaller or equal than k∆. If more than ∆max = 106 columns are found or if we run
out of memory, we exit. Otherwise we go to step (iii).

iii. Solve the resulting integer problem to optimality. If a new upper bound was found
with value z∗ < zUB, set zUB ← z∗ and zLB ← min{zUB, z

′
UB}. If zLB = z′UB then exit.

Otherwise, if either z′UB < z∗ or the problem was solved to optimality but no integer
solution was found with value less than zUB, set zLB = z′UB. If k < 10 do k ← k + 1
and go back to (ii).

This method generalizes the one proposed by Baldacci et al. (2010b) by artificially low-
ering the optimality gap and iteratively increasing it, thus reducing the negative impact of
an initial upper bound of poor quality. Let us describe the algorithm for solving the column
enumeration problem. This algorithm is a variation of the Elementary SPPRC (ESPPRC)
and we call it ENUM-ESPPRC.

4.4.1. The column enumeration algorithm

Algorithm ENUM-ESPPRC is based on the solution of the ESPPRC, and so as the 2-cyc-
SPPRC, is solved by means of bidirectional dynamic programming. The method presented in
this paper differs from the one proposed by Baldacci et al. (2010b) mainly in the fathoming
rule that considers the inclusion of the strong constraints in the value of the completion
bound for a given path label. As for the description of the 2-cyc-SPPRC, we first describe
the definition of a label in the recursion of the dynamic programming algorithm. Then, we
describe the dominance rules used to discard labels. After that, we describe a fathoming
rule that can be applied in order to also discard labels that cannot lead to a column of
reduced cost smaller than a desired threshold. Next, we describe the path joining procedure
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to build feasible paths from a given pair of labels. At the end, we describe the skeleton of
the algorithm.

Label definition We define a label L containing the same information as for the 2-cyc-
SPPRC algorithm plus

i. A cost c(L) representing the cost of the path represented by label L.

ii. Additional resources associated to nodes. For every customer j ∈ J we associate
a boolean variable resj(L) equal to true if j ∈ V (L), 0 otherwise.

Dominance rule Given two labels L, L′, we say that L is dominated by L′ if

i. v(L) = v(L′)

ii. V (L) = V (L′)

iii. c(L) ≥ c(L′)

Now, dominance is done with respect to the costs instead of the reduced costs. A Label
L that is found to be dominated by another label L′ is removed, and recursively also
all of its successors.

Fathoming rule A similar fathoming rule as the one used for the 2-cyc-SPPRC can be
applied. Indeed, it only differs from the one used for the 2-cyc-SPPRC in the parameter
k for the number of non under-estimated constraints that is set to k = |C|. Thus, a
lower bound LB(L) on the reduced cost of a label L after extending it is given by

LB(L) = c(L) + h(L) +
∑

C∈C\SFrCI
i∈S(C)

σC +
∑

C∈SFrCI

nC,iσC , (41)

where h(L), σC and nC,i are as defined for the fathoming rule of the 2-cyc-SPPRC.
Now, a label L will be discarded if LB(L) ≥ zUB − zLB.

Path joining A similar joining procedure can be applied to algorithm ENUM-ESPPRC as
with the 2-cyc-SPPRC, with the main difference that now cycles are not allowed at
all. Given two labels L, L′ such that v(L) = v(L′) and q(L) + q(L′) ≤ Q + dv(L), they
will produce a feasible path (one that satisfies capacity constraints and such that its
reduced cost is smaller than the desired threshold) if

i. min{q(L), q(L′)} ≥
q(L)+q(L′)−dv(L)

2

ii. max{q(L), q(L′)} ≤
q(L)+q(L′)+dv(L)

2

iii. v(pred(L)) < v(pred(L′))

iv. V (L) ∩ V (L′) = {0, v(L)}

v. the reduced cost of the concatenated path P = (L, L′) is smaller than zUB − zLB.

Now, condition (iv) ensures that paths L, L′ only share the facility and the joining
node.
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The dynamic programming algorithm Let us describe the labeling algorithm by means
of a pseudo-code. Just as before, label L0 represents an empty path starting at the
facility, such that all of the resources are set at their default values. Labels will be stored
in buckets, and let B(q, v) be the bucket storing labels L whose loads are q(L) = q and
such that v(L) = v.

Algorithm 2 ENUM-ESPPRC

1: Compute functions f, g, π using DP.
2: B(0, 0)← {L0},V ← {0},R← ∅
3: repeat
4: Take node v from V and set V ← V \ {v}
5: for q = 0 to Q/2 do
6: for all L ∈ B(q, v) such that proc(L) = false do
7: Set proc(L)← true.
8: for all w ∈ Neighbors of v, w 6= 0 and q(L) + dw ≤ Q and w /∈ V (L) do
9: Create L′ such that v(L′) = w and pred(L′) = L. Update resources accordingly.
10: Apply fathoming rule and eventually discard L′.
11: Apply dominance rule and eventually discard L′.
12: if L′ has not been discarded then
13: Make B(q(L′), w)← B(q(L′), w) ∪ {L′}.
14: Apply dominance rule and eventually delete other labels in B(q(L′), w).
15: Make V ← V ∪ {w}.
16: end if
17: end for
18: end for
19: end for
20: until V = ∅
21: Join paths {(L, L′) : v(L) = v(L′) = v, q(L) + q(L′) ≤ Q+ dv} and fill R.
22: return R

4.5. Computational issues

We now make some observations that can help to accelerate the algorithm.

4.5.1. Initial set of columns

An initial set of columns is required in column generation algorithms. Indeed, at every
iteration of the CG, a feasible solution of the master problem is needed for running the
pricing algorithms. In our algorithm, we let the initial set of columns contain only the
single-customer variables y. Additionally, we also add slack and artificial variables to the
formulation so the problem will always have a feasible solution.

4.5.2. Stabilization of the column generation

With the aim of reducing the oscillation of the dual variables during the first iterations of the
column generation process, we use a box-pen method (du Merle et al. 1999) for stabilizing
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the duals of the degree constraints (12). For every set I ′ ∈ I, the centers are initially set to
the optimal dual variables of the degree constraints (1) after performing the first bounding
procedure.

4.5.3. Column pool management

For some instances, the quantity of columns added can be huge and, moreover, most of them
will be useless. In fact, it is known that at the beginning of the column generation process,
many columns are generated that soon will become non-basic for the rest of the algorithm.
We keep a pool of columns and keep track of the number of consecutive iterations that
columns have been non-basic. Every 30 iterations we check and delete all columns having
been inactive for more than 30 iterations. Note that after the creation of set P during the
second bounding procedure, the columns deleted from the problem must be inserted back
into P.

4.5.4. Memory management

The dynamic programming algorithms can be very demanding in terms of memory. In fact,
every new created label needs to be allocated in memory. In this context, the new and delete
operators of C++ (or malloc and free operators in the case of C) can be very inefficient. We
have decided to manage our own memory pool, in which dynamic memory is allocated in
chunks of 400 MB. The newly created labels are thus allocated inside the previously allocated
memory.

5. Computational Experience

We have run our method on an Intel Xeon E5462, 3.0 Ghz processor with 16GB of memory.
The code was compiled with the Intel C++ compiler v11.0 and executed on Linux, kernel
2.6. Linear and integer programs were solved by CPLEX 12.2. The pricing algorithms 2-cyc-
SPPRC and ENUM-ESPPRC have been coded in C++ using the same compiler as before.
The algorithm has been tested over five sets of instances from the literature, containing
in total 71 instances. The first family (F1) has been adapted by Barreto (2004) from other
vehicle routing problems in the literature and contains 16 instances with capacitated vehicles
and facilities. The second set of instances (F2) has been developed by Belenguer et al. (2010)
and contains 30 instances with capacitated vehicles and facilities. The third set of instances
(F3) has been introduced by Akca et al. (2009) and contains 12 instances with capacitated
vehicles and facilities. The fourth set of instances (F4) has been introduced by Tuzun and
Burke (1999) and contains 9 instances with capacitated vehicles and uncapacitated facilities.
The fifth and last set of instances (F5) has been introduced by Baldacci et al. (2010b) and
contains 4 instances with capacitated vehicles and uncapacitated facilities. The dimensions
of the instances vary from very small instances with 12 customers and 2 facilities up to
very large instances with 199 customers and 14 facilities. We compare our results against
those obtained by other exact algorithms, namely the methods of Belenguer et al. (2010),
Contardo et al. (2010) and Baldacci et al. (2010b). We use as upper bound the best solution
available in the literature for every instance. In Tables 1-5 we present the detailed results
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obtained by our algorithm for every instance and for each of the three bounding procedures.
The columns in these tables are as follows:

i. Instance: name of the instance.

ii. zUB: objective function value of the best feasible solution available in the literature.

iii. z∗: objective function value of the best feasible solution found by our algorithm. The
text in bold characters indicates that this value is strictly lower than the one in column
labeled zUB.

iv. gap1, t1: gap obtained and CPU time taken by the first bounding procedure. The gap
is computed as follows: (z∗ − zLB1)/z

∗ × 100.

v. gap2, t2: gap obtained and CPU time taken by the second bounding procedure.

vi. gap3, t3: gap obtained and CPU time taken by the column enumeration procedure.

vii. |I|: number of subsets obtained by the first bounding procedure.

viii. |R1,2|: maximum number of columns found by the procedure ENUM-ESPPRC after
the second bounding procedure and the final enumeration step, respectively. This
maximum is taken over all subsets I ′ ⊆ I.

ix. t: overall CPU time.

As shown in these tables, our algorithm is capable of solving 58 out of the 71 instances
considered. Moreover, all instances of families F1 and F3 (28 in total) are solved to optimal-
ity, and for none of them was procedure ENUM-ESPPRC called during the third bounding
procedure. Finally, instances Chr-75x10ba, ppw-50x5-2b, ppw-100x5-2b and ppw-200x10-3a
were solved to optimality for the first time, and we have improved the best feasible solution
for three more instances (ppw-100x5-0b, P113112 and P131112). As a matter of fact, our
method is able to solve all instances with 85 customers or less.

We first compare our method against the branch-and-cut algorithms of Belenguer et al.
(2010) and of Contardo et al. (2010). In Tables 6-8 we establish the gaps and CPU times
obtained by every algorithm on three sets of instances. In these tables, headers BBPPW,
CCG-BC and CCG-BCP stand for the methods of Belenguer et al. (2010), Contardo et al.
(2010) and this work, respectively. In the case of method CCG-BC we consider the branch-
and-cut algorithm with the two-index vehicle-flow formulation of the problem. In the case of
the branch-and-cut algorithms, columns labeled gaplr, tlr, gap and t stand for the gaps and
CPU times for the root node relaxation and after the whole branching tree (with a maximum
CPU time of 2 hours). In the case of method CCG-BCP, columns gap1, t1 stand for the gap
obtained after the first bounding procedure, and columns labeled gap, t stand for the final
gap and the total CPU time spent by the method. We highlight in bold characters whenever
a method dominates the other two in terms of bound quality. First of all, the first bounding
procedure produces better bounds than the flow-based algorithms at the root node. This
is not surprising since this procedure uses the code of CCG-BC for doing a partial branch-
and-bound on the location variables. At the end, our method is able to produce tighter
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gaps than the other two. Although a CPU-based comparison can be difficult (because each
algorithm was run on different machines), it is worth noting that our method was some
orders of magnitude faster on the instances of family F3 (Table 8). Moreover, we can solve
48 of the considered instances, 20 more than BBPPW and 18 more than CCG-BC.

Finally, we compare the proposed methodology against the column generation method of
Baldacci et al. (2010b). In Tables 9-12 we compare the three bounding procedures introduced
in this paper against the similar bounds used in the method of Baldacci et al. (2010b). Note
that, although the second and third bounding procedures in both methods are very similar,
the first bounding used by Baldacci et al. (2010b) is a relaxation of the set-partitioning
formulation, while in our case it is based on the two-index vehicle-flow formulation of the
problem. In these tables the legend is analogous to that used for the previous set of tables.
We also highlight in bold characters whenever a bound dominates the other. As shown
in these tables, our method is able to produce tighter bounds than that of Baldacci et al.
(2010b) for most instances and for every bounding procedure. Our first bounding procedure
is quite effective whenever branching decisions on the location variables have a significant
impact on either the bounds or the feasibility of the problem. Indeed, this is the case for
all sets of instances except for F5. Our first bounding procedure obtains smaller gaps than
that of Baldacci et al. (2010b) in 51 out of the 71 instances considered. For the second
bounding procedure, our algorithm obtains smaller gaps in 43 out of the 71 instances. This
shows the strength of the set-partitioning formulation with the additional cuts. Our third
bounding procedure, although it can be very time consuming, is shown to be effective for
solving instances Chr-75x10ba and ppw-200x10-3a in which the initial upper bounds are
significantly improved during this procedure. In general, our algorithm is able to solve four
instances that are not solved by the method of Baldacci et al. (2010b), and improves the best
known feasible solution in three other instances. However, for the instances in family F5 our
method is outperformed by that of Baldacci et al. (2010b). The overall results suggest that
our method is competitive against the one of Baldacci et al. (2010b). This is the result of
several refinements with respect to their method, namely the use of the new cuts, as well as
the use of efficient pricing algorithms that properly handle these new cuts. This includes the
use of stronger fathoming procedures based on the solution of a 2-cyc-SPPRC with resources.

6. Concluding remarks

In this paper, we have presented an exact method for solving the CLRP. The methodology
consists in formulating the CLRP as a set-partitioning problem that is solved in three stages:
in a first stage we consider the two-index formulation and branch on the location variables.
This strategy works well for instances in which branching decisions on the location variables
have a significant impact on the feasibility or the bound at the resulting nodes in the branch-
ing tree. The remaining gap is then closed by sequentially applying two procedures, both
based on the set-partitioning formulation and solved by means of column-and-cut generation.
The algorithm proposed in this paper is able to produce the tightest gaps on a large number
of instances. In addition, it has solved to optimality four previously open instances and
improved the best known feasible solution for three additional ones. The methodology can
be easily adapted to solve other routing problems. For instance, it would be interesting to
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measure the impact of y-SCC and SFrCI cuts on solving hard instances of the CVRP. With
respect to the pricing algorithm introduced in this paper, the consideration of SDEG cuts
allows to get lower bounds that are comparable to those obtained when pricing on elemen-
tary routes in a fraction of the computational effort. Indeed, in most cases only a fraction
of SDEG cuts need to be added to the master problem to obtain significant improvements
in the lower bound. Moreover, we show how to take advantage of this pricing problem in
the computation of tight fathoming rules that speed up the whole algorithm. Further re-
search related to the methodology introduced in this paper should address the development
of new cutting planes for the set-partitioning formulation and to adapt some of them to
other routing problems.
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Instance zUB z∗ gap1 |I| t1 gap2 |R1| t2 gap3 |R2| t3 t

Perl83-12x2 204.00 204.00∗ 0.00 1 0.02 0.00 4 0.01 0.00 0 0.00 0.03
Gas67-21x5 424.90 424.90∗ 1.61 2 0.25 0.00 17 0.08 0.00 0 0.00 0.33
Gas67-22x5 585.11 585.11∗ 0.10 1 0.05 0.00 24 0.18 0.00 0 0.00 0.23
Min92-27x5 3062.02 3062.02∗ 0.00 1 0.21 0.00 15 0.10 0.00 0 0.00 0.31
Gas67-29x5 512.10 512.10∗ 1.88 1 0.44 0.00 2077 3.76 0.00 0 0.00 4.20
Gas67-32x5 562.22 562.22∗ 1.24 1 0.57 0.00 12512 5.95 0.00 0 0.00 6.52
Gas67-32x5-2 504.33 504.33∗ 0.01 1 0.51 0.00 9 0.19 0.00 0 0.00 0.70
Gas67-36x5 460.37 460.37∗ 0.00 0 1.04 0.00 0 0.00 0.00 0 0.00 1.04
Chr69-50x5ba1 565.62 565.62∗ 1.58 2 6.53 0.00 10797 5.55 0.00 0 0.00 12.08
Chr69-50x5be2 565.60 565.60∗ 2.14 5 8.70 0.00 11928 18.66 0.00 0 0.00 27.36
Perl83-55x15 1112.06 1112.06 1.96 200 197.21 0.00 26860 43.54 0.00 0 0.00 240.75
Chr69-75x10ba1 886.30 844.40∗ 7.27 489 1243.61 0.48 2199569 5749.77 0.00 0 13.04 7006.42
Chr69-75x10be2 848.85 848.85∗ 6.71 195 485.76 0.00 442577 3945.23 0.00 0 0.00 4430.99
Chr69-75x10bmw3 802.08 802.08∗ 6.02 117 207.56 0.00 1172461 1733.37 0.00 0 0.00 1940.93
Perl83-85x7 1622.50 1622.50∗ 1.65 19 76.12 0.00 767712 101.80 0.00 0 0.00 177.92
Chr69-100x10 833.43 833.43∗ 1.81 27 419.35 0.00 771623 1130.42 0.00 0 0.00 1549.77

Average 2.12 165.50 0.03 796.16 0.00 0.81 962.47
1 Instance used by Barreto (2004).
2 Instance used by Belenguer et al. (2010).
3 Instance used by Baldacci et al. (2010b).
∗ Optimal solution.

Table 1: Results on family F1

A Branch-and-Cut-and-Price Algorithm for the Capacitated Location-Routing Problem

26 CIRRELT-2011-44



Instance zUB z∗ gap1 |I| t1 gap2 |R1| t2 gap3 |R2| t3 t

ppw-20x5-0a 54793 54793∗ 3.06 3 0.29 0.00 372 0.31 0.00 0 0.00 0.60
ppw-20x5-0b 39104 39104∗ 0.00 0 0.03 0.00 0 0.00 0.00 0 0.00 0.03
ppw-20x5-2a 48908 48908∗ 2.40 2 0.14 0.00 587 0.42 0.00 0 0.00 0.56
ppw-20x5-2b 37542 37542∗ 0.00 0 0.02 0.00 0 0.00 0.00 0 0.00 0.02
ppw-50x5-0a 90111 90111∗ 5.95 3 7.25 0.15 51513 9.69 0.00 0 0.14 17.08
ppw-50x5-0b 63242 63242∗ 3.55 1 4.18 0.58 2456549 296.71 0.00 0 177.14 478.03
ppw-50x5-2a 88298 88298∗ 3.92 3 6.31 0.00 21673 7.18 0.00 0 0.00 13.49
ppw-50x5-2b 67340 67308∗ 3.77 3 2.84 0.00 346704 441.49 0.00 0 0.00 444.33
ppw-50x5-2a’ 84055 84055∗ 1.99 2 7.44 0.03 134118 22.01 0.00 0 0.08 29.53
ppw-50x5-2b’ 51822 51822∗ 0.69 2 1.49 0.00 40913 5.76 0.00 0 0.00 7.25
ppw-50x5-3a 86203 86203∗ 3.93 3 13.19 0.82 113809 25.12 0.00 0 55.93 94.24
ppw-50x5-3b 61830 61830∗ 2.30 4 5.78 0.00 937460 80.95 0.00 0 0.00 86.73
ppw-100x5-0a 274814 274814∗ 4.55 4 144.98 0.20 469031 238.71 0.00 0 62.44 446.13
ppw-100x5-0b 214392 213568 3.14 2 119.05 0.46 ∆max 24902.90 0.29 248557 22824.30 47846.20
ppw-100x5-2a 193671 193671∗ 3.52 1 36.06 0.06 64646 19.92 0.00 0 0.55 56.53
ppw-100x5-2b 157173 157095∗ 2.14 2 42.68 0.10 978507 10486.60 0.00 0 2047.04 12576.30
ppw-100x5-3a 200079 200079∗ 3.55 1 35.56 0.19 529311 53.88 0.00 0 34.30 123.74
ppw-100x5-3b 152441 152441∗ 1.95 1 23.85 0.00 210300 446.04 0.00 0 0.00 469.89
ppw-100x10-0a 289017 289017 5.77 5 1147.03 1.70 ∆max 1623.27 1.27 251056 43573.30 46343.60
ppw-100x10-0b 234641 234641 4.44 5 163.75 2.06 ∆max 15156.30 1.94 321769 22772.60 38092.70
ppw-100x10-2a 243590 243590∗ 2.82 8 169.38 0.32 1811787 729.95 0.00 0 1353.58 2252.91
ppw-100x10-2b 203988 203988∗ 0.79 3 72.55 0.00 161828 252.17 0.00 0 0.00 324.72
ppw-100x10-3a 252421 252421 6.02 18 1425.99 2.00 ∆max 1026.68 1.60 166861 22460.70 24913.40
ppw-100x10-3b 204597 204597 4.02 6 150.36 1.49 ∆max 50030.40 1.36 151231 30015.40 80196.10
ppw-200x10-0a 479425 479425 8.66 31 3861.00 1.28 ∆max 13040.60 1.15 894085 32897.40 49799.00
ppw-200x10-0b 378773 378773 5.32 10 3367.07 1.19 ∆max 148669.00 1.19 ∆max 85063.50 237100.00
ppw-200x10-2a 450468 450468 5.06 3 359.83 0.88 ∆max 8838.32 0.80 683782 22043.00 31241.20
ppw-200x10-2b 374435 374435 3.10 3 566.81 0.42 ∆max 61771.20 0.37 ∆max 30157.70 92495.60
ppw-200x10-3a 472898 469433∗ 6.61 16 3788.52 0.12 ∆max 10313.30 0.00 169099 4636.90 18738.80
ppw-200x10-3b 364178 364178 4.92 6 2482.11 1.00 ∆max 37910.00 1.00 ∆max 4621.82 45013.90

Average 3.60 600.18 0.50 12879.96 0.37 10826.59 24306.75
Average on solved instances 2.87 218.13 0.13 1171.51 0.00 418.41 1808.05
Average on unsolved instances 5.04 1364.30 1.25 36296.87 1.10 31642.97 69304.17
∗ Optimal solution.

Table 2: Results on family F2
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Instance zUB z∗ gap1 |I| t1 gap2 |R1| t2 gap3 |R2| t3 t

cr30x5a-1 819.52 819.52∗ 2.89 2 0.60 0.00 2891 1.85 0.00 0 0.00 2.45
cr30x5a-2 821.50 821.50∗ 3.73 1 0.38 0.00 857 3.34 0.00 0 0.00 3.72
cr30x5a-3 702.30 702.30∗ 0.00 1 0.44 0.00 14 0.06 0.00 0 0.00 0.50
cr30x5b-1 880.02 880.02∗ 2.69 2 1.01 0.00 2963 3.56 0.00 0 0.00 4.57
cr30x5b-2 825.32 825.32∗ 1.22 1 0.97 0.00 29 0.27 0.00 0 0.00 1.24
cr30x5b-3 884.60 884.60∗ 2.33 1 0.92 0.00 31 0.31 0.00 0 0.00 1.23
cr40x5a-1 928.10 928.10∗ 3.30 7 3.99 0.00 14135 10.68 0.00 0 0.00 14.67
cr40x5a-2 888.42 888.42∗ 2.80 3 2.25 0.19 53615 9.58 0.00 0 0.05 11.88
cr40x5a-3 947.30 947.30∗ 3.02 4 3.09 0.00 9166 8.27 0.00 0 0.00 11.36
cr40x5b-1 1052.04 1052.04∗ 5.78 8 5.49 0.00 2522 5.00 0.00 0 0.00 10.49
cr40x5b-2 981.54 981.54∗ 2.09 3 1.63 0.00 329 2.14 0.00 0 0.00 3.77
cr40x5b-3 964.33 964.33∗ 2.00 1 1.67 0.00 33 1.01 0.00 0 0.00 2.68

Average 2.65 1.87 0.02 3.84 0.00 0.00 5.71
∗ Optimal solution.

Table 3: Results on family F3

Instance zUB z∗ gap1 |I| t1 gap2 |R1| t2 gap3 |R2| t3 t

P111112 1467.68 1467.68∗ 4.63 42 885.82 0.00 2065379 3581.25 0.00 0 0.00 4467.07
P111212 1394.80 1394.80∗ 4.67 52 859.13 0.00 3429771 20689.10 0.00 0 0.00 21548.30
P112112 1167.16 1167.16∗ 2.74 1 75.47 0.00 35633 235.30 0.00 0 0.00 310.77
P112212 791.66 791.66∗ 1.36 1 21.32 0.00 4800861 1818.15 0.00 0 0.00 1839.47
P113112 1245.45 1238.24 3.95 13 454.58 0.61 ∆max 118970.00 0.34 ∆max 52278.40 171703.00
P113212 902.26 902.26∗ 0.49 2 51.30 0.00 8502 101.93 0.00 0 0.00 153.23
P131112 1900.70 1896.98 6.24 206 11926.90 0.85 ∆max 299823.00 0.64 ∆max 38047.20 349797.00
P131212 1965.12 1965.12 8.43 282 10682.50 0.95 ∆max 207942.00 0.82 258029 33676.30 252301.00
P132112 1443.33 1443.32∗ 5.68 16 3582.12 0.00 1120735 15021.90 0.00 0 0.00 18604.00

Average 4.24 3171.02 0.27 74242.51 0.20 13777.99 91191.54
Average on solved instances 3.26 912.53 0.00 6907.94 0.00 0.00 7820.47
Average on unsolved instances 6.21 7687.99 0.80 208911.67 0.60 41333.97 257933.67
∗ Optimal solution.

Table 4: Results on family F4
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Instance zUB z∗ gap1 |I| t1 gap2 |R1| t2 gap3 |R2| t3 t

M-n150x14a 1352.93 1352.93∗ 9.61 2331 34342.60 0.09 3251152 351540.00 0.00 0 1.32 385884.00
M-n150x14b 1212.46 1212.46∗ 7.50 2465 39786.80 0.20 4507242 352454.00 0.00 0 30.68 392272.00
M-n199x14a 1644.35 1644.35∗ 12.06 1598 64412.40 0.15 4557968 616522.00 0.00 0 10.81 680945.00
M-n199x14b 1480.43 1480.43∗ 10.22 1513 67992.50 0.09 2141465 1006620.00 0.00 0 1.98 1074610.00

Average 9.85 51633.57 0.13 581784.00 0.00 11.20 633427.75
∗ Optimal solution.

Table 5: Results on family F5

Instance zUB z∗
BBPPW CCG-BC CCG-BCP

gaplr tlr gap t gaplr tlr gap t gap1 t1 gap t
Perl83-12x2 204.00 203.98 0.61 0.01 0.00 0.02 0.00 0.02 0.00 0.03
Gas67-21x5 424.90 424.90 3.91 0.22 0.00 0.60 3.99 0.21 0.00 0.59 1.61 0.25 0.00 0.33
Gas67-22x5 585.11 585.11 0.28 0.14 0.00 0.20 0.10 0.04 0.00 0.07 0.10 0.05 0.00 0.23
Min92-27x5 3062.02 3062.02 5.62 0.27 0.00 0.80 5.62 0.29 0.00 0.73 0.00 0.21 0.00 0.31
Gas67-29x5 512.10 512.10 4.72 0.41 0.00 1.00 4.89 0.46 0.00 1.01 1.88 0.44 0.00 4.20
Gas67-32x5 562.22 562.22 6.11 0.61 0.00 3.45 5.72 0.51 0.00 1.76 1.24 0.57 0.00 6.52
Gas67-32x5-2 504.33 504.33 3.46 0.39 0.00 0.50 3.27 0.80 0.00 1.01 0.01 0.51 0.00 0.70
Gas67-36x5 460.37 460.37 2.79 0.72 0.00 2.10 1.30 1.40 0.00 2.80 0.00 1.04 0.00 1.04
Chr69-50x5ba 565.62 565.62 5.62 3.74 0.00 44.78 1.58 6.53 0.00 12.08
Chr69-50x5be 565.60 565.60 10.15 2.70 0.00 181.10 8.85 3.04 0.00 68.79 2.14 8.70 0.00 27.36
Perl83-55x15 1112.06 1112.06 3.42 6.17 0.70 7496.92 1.96 197.21 0.00 240.75
Chr69-75x10ba 886.30 844.40 10.23 23.54 4.51 7408.62 7.27 1243.61 0.00 7006.42
Chr69-75x10be 848.85 848.85 10.83 37.66 4.48 3017.83 10.42 15.25 3.26 7367.52 6.71 485.76 0.00 4430.99
Chr69-75x10bmw 802.08 802.08 9.27 20.18 3.37 7468.83 6.02 207.56 0.00 1940.93
Perl83-85x7 1622.50 1622.50 2.53 18.93 0.68 7557.62 1.65 76.12 0.00 177.92
Chr69-100x10 833.43 833.43 4.89 9.71 0.51 7385.58 1.81 419.35 0.00 1549.77

Average BBPPW1 5.32 4.79 0.50 356.40 4.91 2.44 0.36 827.14 1.52 55.28 0.00 496.85
Average CCG-BC2 5.05 6.52 0.81 2800.42 2.12 165.50 0.00 962.47
1 Average on instances reported by Belenguer et al. (2010).
2 Average on instances reported by Contardo et al. (2010).
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Instance zUB z∗
BBPPW CCG-BC CCG-BCP

gaplr tlr gap t gaplr tlr gap t gap1 t1 gap t
ppw-20x5-0a 54793 54793 7.13 0.34 0.00 2.41 4.57 0.35 0.00 5.04 3.06 0.29 0.00 0.60
ppw-20x5-0b 39104 39104 0.00 0.17 0.00 0.13 0.00 0.02 0.00 0.03 0.00 0.03 0.00 0.03
ppw-20x5-2a 48908 48908 3.53 0.25 0.00 2.81 2.71 0.26 0.00 1.31 2.40 0.14 0.00 0.56
ppw-20x5-2b 37542 37542 0.00 0.06 0.00 0.06 0.00 0.01 0.00 0.02 0.00 0.02 0.00 0.02
ppw-50x5-0a 90111 90111 11.61 12.38 2.26 7212.25 10.94 27.10 1.77 7336.51 5.95 7.25 0.00 17.08
ppw-50x5-0b 63242 63242 7.96 3.97 1.37 5557.95 7.50 5.05 1.23 7304.54 3.55 4.18 0.00 478.03
ppw-50x5-2a 88298 88298 7.48 8.14 1.11 7208.06 7.52 5.08 1.00 7265.57 3.92 6.31 0.00 13.49
ppw-50x5-2b 67340 67308 5.19 2.45 1.43 6013.58 5.63 2.75 1.17 7282.73 3.77 2.84 0.00 444.33
ppw-50x5-2a 84055 84055 1.97 7.19 0.47 7207.95 1.95 29.50 0.28 7244.32 1.99 7.44 0.00 29.53
ppw-50x5-2b 51822 51822 0.67 1.55 0.00 9.16 0.86 1.76 0.00 10.64 0.69 1.49 0.00 7.25
ppw-50x5-3a 86203 86203 11.25 6.88 1.80 7206.95 10.23 14.67 1.16 7283.89 3.93 13.19 0.00 94.24
ppw-50x5-3b 61830 61830 7.95 3.14 0.00 96.86 6.26 4.38 0.00 71.76 2.30 5.78 0.00 86.73
ppw-100x5-0a 274814 274814 3.56 2509.03 2.36 7293.80 4.55 144.98 0.00 446.13
ppw-100x5-0b 214392 213568 3.21 391.48 2.19 7420.00 3.14 119.05 0.29 47846.20
ppw-100x5-2a 193671 193671 3.77 365.93 1.60 7398.86 3.52 36.06 0.00 56.53
ppw-100x5-2b 157173 157095 2.34 83.27 0.78 7323.10 2.14 42.68 0.00 12576.30
ppw-100x5-3a 200079 200079 8.82 108.07 1.44 7340.95 3.55 35.56 0.00 123.74
ppw-100x5-3b 152441 152441 5.08 27.40 0.57 7332.99 1.95 23.85 0.00 469.89
ppw-100x10-0a 289017 289017 7.88 1133.84 3.74 7394.33 5.77 1147.03 1.27 46343.60
ppw-100x10-0b 234641 234641 4.74 147.20 2.48 7334.20 4.44 163.75 1.94 38092.70
ppw-100x10-2a 243590 243590 4.07 1473.84 1.40 7351.82 2.82 169.38 0.00 2252.91
ppw-100x10-2b 203988 203988 2.50 90.42 0.00 4734.83 0.79 72.55 0.00 324.72
ppw-100x10-3a 252421 252421 8.65 740.38 4.02 7326.18 6.02 1425.99 1.60 24913.40
ppw-100x10-3b 204597 204597 5.00 112.22 2.15 7338.32 4.02 150.36 1.36 80196.10
ppw-200x10-1a 479425 478845 8.66 3861.00 1.15 49799.00
ppw-200x10-1b 378773 378773 5.32 3367.07 1.19 237100.00
ppw-200x10-2a 450468 450468 5.06 359.83 0.80 31241.20
ppw-200x10-2b 374435 374435 3.10 566.81 0.37 92495.60
ppw-200x10-3a 472898 469433 6.61 3788.52 0.00 18738.80
ppw-200x10-3b 364178 364178 4.92 2482.11 1.00 45013.90

Average BBPPW1 5.39 3.88 0.70 3376.51 4.85 7.58 0.55 3650.53 2.63 4.08 0.00 97.66
Average CCG-BC2 4.91 303.08 1.22 5391.49 3.09 149.17 0.27 10617.25
1 Average on instances reported by Belenguer et al. (2010).
2 Average on instances reported by Contardo et al. (2010).
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Instance zUB z∗
BBPPW CCG-BC CCG-BCP

gaplr tlr gap t gaplr tlr gap t gap1 t1 gap t
r30x5a-1 819.51 819.51 4.28 0.70 0.00 50.22 3.33 0.89 0.00 3.23 2.89 0.60 0.00 2.45
r30x5a-2 821.50 821.46 6.41 0.53 0.00 53.89 5.89 0.41 0.00 8.77 3.73 0.38 0.00 3.72
r30x5a-3 702.30 702.29 1.09 0.52 0.00 0.73 0.56 0.71 0.00 0.91 0.00 0.44 0.00 0.50
r30x5b-1 880.02 880.02 7.58 0.47 0.00 8.48 7.39 0.52 0.00 9.05 2.69 1.01 0.00 4.57
r30x5b-2 825.30 825.30 4.38 0.50 0.00 1.09 3.52 1.31 0.00 2.55 1.22 0.97 0.00 1.24
r30x5b-3 884.60 884.58 3.14 0.95 0.00 5.63 3.33 1.09 0.00 3.25 2.33 0.92 0.00 1.23
r40x5a-1 928.10 928.10 9.32 1.14 0.00 305.25 8.95 1.32 0.00 140.31 3.30 3.99 0.00 14.67
r40x5a-2 888.40 888.40 8.86 0.94 0.00 98.34 8.83 1.04 0.00 86.31 2.80 2.25 0.00 11.88
r40x5a-3 947.30 947.30 7.66 2.34 0.00 158.27 7.47 2.48 0.00 76.63 3.02 3.09 0.00 11.36
r40x5b-1 1052.00 1052.00 10.60 1.31 0.00 3694.45 10.26 2.80 0.00 3115.92 5.78 5.49 0.00 10.49
r40x5b-2 981.50 981.50 8.92 1.38 0.00 10.25 8.57 1.26 0.00 7.61 2.09 1.63 0.00 3.77
r40x5b-3 964.30 964.30 5.21 1.48 0.00 11.36 4.51 2.32 0.00 12.33 2.00 1.67 0.00 2.68

Average 6.45 1.02 0.00 366.50 6.05 1.35 0.00 288.91 2.65 1.87 0.00 5.71

Table 8: Comparison with the methods of Belenguer et al. (2010) and Contardo et al. (2010) on family F3

Instance zUB z∗
BMW CCG-BCP

gap1 t1 gap2 t2 gap3 t3 t gap1 t1 gap2 t2 gap3 t3 t
Perl-12x2 203.98 203.98 1.50 0.30 0.00 0.20 0.00 0.00 0.50 0.00 0.02 0.00 0.01 0.00 0.00 0.03
Gas-21x5 424.90 424.90 2.40 3.10 0.00 0.80 0.00 0.00 3.90 1.61 0.25 0.00 0.08 0.00 0.00 0.33
Gas-22x5 585.11 585.11 1.50 5.40 0.00 0.60 0.00 0.00 6.00 0.10 0.05 0.00 0.18 0.00 0.00 0.23
Min-27x5 3062.02 3062.02 3.00 39.10 0.00 7.90 0.00 0.00 47.00 0.00 0.21 0.00 0.10 0.00 0.00 0.31
Gas-29x5 512.10 512.10 7.20 110.70 0.00 67.50 0.00 0.00 178.20 1.88 0.44 0.00 3.76 0.00 0.00 4.20
Gas-32x5 562.22 562.22 6.00 13.00 0.10 45.60 0.00 4.80 63.40 1.24 0.57 0.00 5.95 0.00 0.00 6.52
Gas-32x5b 504.33 504.33 2.60 99.60 0.00 18.30 0.00 0.00 117.90 0.01 0.51 0.00 0.19 0.00 0.00 0.70
Gas-36x5 460.37 460.37 5.50 1.60 0.00 1.30 0.00 0.00 2.90 0.00 1.04 0.00 0.00 0.00 0.00 1.04
Chr-50x5ba 565.62 565.62 5.80 48.90 0.00 44.50 0.00 0.50 93.90 1.58 6.53 0.00 5.55 0.00 0.00 12.08
Chr-50x5be 565.60 565.60 6.00 47.10 0.00 65.80 0.00 0.00 112.90 2.14 8.70 0.00 18.66 0.00 0.00 27.36
Perl-55x15 1112.06 1112.06 3.10 102.20 0.00 189.00 0.00 0.00 291.20 1.96 197.21 0.00 43.54 0.00 0.00 240.75
Chr-75x10ba 886.30 844.40 7.27 1243.61 0.48 5749.77 0.00 13.04 7006.42
Chr-75x10be 848.85 848.85 7.80 1330.40 0.10 2072.60 0.00 10.50 3413.50 6.71 485.76 0.00 3945.23 0.00 0.00 4430.99
Chr-75x10bmw 802.08 802.08 7.80 1004.70 0.50 790.30 0.00 1031.90 2826.90 6.02 207.56 0.00 1733.37 0.00 0.00 1940.93
Perl-85x7 1622.50 1622.50 2.80 221.90 0.00 266.20 0.00 0.00 488.10 1.65 76.12 0.00 101.80 0.00 0.00 177.92
Chr-100x10 833.43 833.43 6.80 2609.90 0.30 9898.60 0.00 566.20 13074.70 1.81 419.35 0.00 1130.42 0.00 0.00 1549.77

Average BMW1 4.65 375.86 0.07 897.95 0.00 107.59 1381.40 2.12 165.50 0.03 796.16 0.00 0.81 962.47
1 Average on instances reported by Baldacci et al. (2010b).
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Instance zUB z∗
BMW CCG-BCP

gap1 t1 gap2 t2 gap3 t3 t gap1 t1 gap2 t2 gap3 t3 t
ppw-20x5-0a 54793 54793 3.60 8.00 0.10 2.10 0.00 0.10 10.20 3.06 0.32 0.00 0.32 0.00 0.00 0.64
ppw-20x5-0b 39104 39104 2.10 8.70 0.00 9.20 0.00 0.00 17.90 0.00 0.03 0.00 0.00 0.00 0.00 0.03
ppw-20x5-2a 48908 48908 0.80 1.60 0.00 2.20 0.00 0.00 3.80 2.40 0.16 0.00 0.33 0.00 0.00 0.49
ppw-20x5-2b 37542 37542 3.70 12.10 0.00 32.70 0.00 0.00 44.80 0.00 0.02 0.00 0.00 0.00 0.00 0.02
ppw-50x5-0a 90111 90111 5.90 45.80 0.30 6.70 0.00 0.40 52.90 5.96 20.50 0.11 12.88 0.00 0.10 33.48
ppw-50x5-0b 63242 63242 5.10 467.10 2.10 92.90 0.00 8368.90 8928.90 4.01 9.00 0.58 648.79 0.00 503.83 1161.62
ppw-50x5-2a 88298 88298 6.10 8.40 1.40 10.50 0.00 52.70 71.60 4.05 11.39 0.07 6.31 0.00 0.05 17.75
ppw-50x5-2b 67340 67308 6.10 69.00 2.70 75.90 2.70 9386.90 9531.80 3.77 3.70 0.00 227.31 0.00 0.00 231.01
ppw-50x5-2a 84055 84055 4.00 7.80 0.60 20.50 0.00 30.20 58.50 2.01 4.48 0.01 27.30 0.00 0.08 31.86
ppw-50x5-2b 51822 51822 6.50 55.90 0.00 136.10 0.00 0.00 192.00 0.69 1.99 0.00 9.79 0.00 0.00 11.78
ppw-50x5-3a 86203 86203 6.10 20.20 1.00 18.80 0.00 22.50 61.50 3.92 33.37 0.82 30.94 0.00 107.65 171.96
ppw-50x5-3b 61830 61830 5.50 45.00 0.30 80.40 0.00 5.80 131.20 2.53 8.29 0.00 74.80 0.00 0.00 83.09
ppw-100x5-0a 274814 274814 1.20 292.30 0.20 63.70 0.00 46.60 402.60 4.55 514.97 0.20 322.41 0.00 133.69 971.07
ppw-100x5-0b 214392 213568 0.72 773.60 0.42 91.00 0.42 8869.60 9734.20 3.14 391.58 0.43 6858.13 0.29 12354.60 19604.40
ppw-100x5-2a 193671 193671 1.30 91.10 0.10 23.10 0.00 2.30 116.50 3.52 112.82 0.06 22.22 0.00 0.66 135.70
ppw-100x5-2b 157173 157095 1.80 2419.30 0.40 624.20 0.40 12415.40 15458.90 2.14 146.75 0.10 15324.80 0.00 5392.35 20863.90
ppw-100x5-3a 200079 200079 2.10 227.00 0.20 31.70 0.00 14.70 273.40 3.59 118.87 0.17 67.38 0.00 38.95 225.20
ppw-100x5-3b 152441 152441 2.00 734.20 0.10 270.50 0.00 14.80 1019.50 2.08 70.44 0.00 539.20 0.00 0.00 609.64
ppw-100x10-0a 289017 289017 2.70 257.50 1.90 115.60 1.90 23089.40 23462.50 5.76 4411.79 1.69 1627.38 1.35 42053.90 48093.10
ppw-100x10-0b 234641 234641 3.20 426.60 2.20 437.60 2.20 19278.00 20142.20 4.39 581.21 2.08 20735.90 2.04 22541.80 43858.80
ppw-100x10-2a 243590 243590 2.60 275.70 0.50 65.50 0.00 7495.60 7836.80 2.82 589.95 0.39 725.90 0.00 5677.72 6993.57
ppw-100x10-2b 203988 203988 1.90 842.20 0.10 882.20 0.00 31.50 1755.90 0.80 210.36 0.00 339.55 0.00 0.00 549.91
ppw-100x10-3a 252421 252421 6.20 100.50 2.10 137.00 2.10 14558.70 14796.20 6.02 4011.62 1.91 1231.36 1.53 33510.20 38753.20
ppw-100x10-3b 204597 204597 4.40 504.10 1.60 529.70 1.60 19289.50 20323.30 4.00 616.12 1.55 15007.20 1.53 23181.40 38804.70
ppw-200x10-1a 479425 478845 8.55 12970.70 1.15 12418.10 1.04 32031.80 57420.70
ppw-200x10-1b 378773 378773 5.32 11168.90 1.18 383307.00 1.18 157438.00 551914.00
ppw-200x10-2a 450468 450468 5.06 1107.24 0.87 9552.10 0.82 21913.90 32573.20
ppw-200x10-2b 374435 374435 3.04 1509.01 0.40 68446.80 0.36 76737.80 146694.00
ppw-200x10-3a 472898 469433 6.61 13541.20 0.13 11677.20 0.00 11579.70 36798.00
ppw-200x10-3b 364178 364178 4.92 9072.59 1.01 56865.70 1.01 15068.20 81006.50

Average BMW1 3.57 320.57 0.76 156.66 0.47 5123.90 5601.13 3.13 494.57 0.42 2660.01 0.28 6062.37 9216.95
Average on solved by BMW 3.56 184.89 0.41 102.87 0.00 946.24 1234.00 2.71 100.41 0.14 166.36 0.00 380.16 646.93
Average on solved by CCG-BCP 3.60 296.39 0.53 128.89 0.16 1994.13 2419.41 2.73 97.76 0.13 967.38 0.00 623.95 1689.09
1 Average on instances reported by Baldacci et al. (2010b).
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Instance zUB z∗
BMW CCG-BCP

gap1 t1 gap2 t2 gap3 t3 t gap1 t1 gap2 t2 gap3 t3 t
r30x5a-1 819.5 819.5 3.30 49.20 0.70 24.80 0.00 1.40 75.40 2.89 0.60 0.08 1.85 0.00 0.02 2.47
r30x5a-2 821.5 821.5 5.40 88.60 1.60 27.50 0.00 5.80 121.90 3.73 0.38 0.00 3.34 0.00 0.00 3.72
r30x5a-3 702.3 702.3 3.70 35.80 0.00 30.50 0.00 0.00 66.30 0.00 0.44 0.00 0.06 0.00 0.00 0.50
r30x5b-1 880.0 880.0 6.40 75.40 0.00 21.50 0.00 0.00 96.90 2.69 1.01 0.00 3.56 0.00 0.00 4.57
r30x5b-2 825.3 825.3 3.00 50.30 0.00 6.80 0.00 0.00 57.10 1.22 0.97 0.00 0.27 0.00 0.00 1.24
r30x5b-3 884.6 884.6 1.30 31.90 0.00 7.30 0.00 0.00 39.20 2.33 0.92 0.00 0.31 0.00 0.00 1.23
r40x5a-1 928.1 928.1 6.60 169.60 0.00 99.50 0.00 0.00 269.10 3.30 3.99 0.00 10.68 0.00 0.00 14.67
r40x5a-2 888.4 888.4 5.60 181.20 0.20 78.80 0.00 0.70 260.70 2.80 2.25 0.19 9.58 0.00 0.05 11.88
r40x5a-3 947.3 947.3 4.90 158.80 0.10 84.50 0.00 0.80 244.10 3.02 3.09 0.00 8.27 0.00 0.00 11.36
r40x5b-1 1052.0 1052.0 5.50 159.70 0.00 70.60 0.00 0.00 230.30 5.78 5.49 0.00 5.00 0.00 0.00 10.49
r40x5b-2 981.5 981.5 6.20 213.90 0.00 82.90 0.00 0.00 296.80 2.09 1.63 0.00 2.14 0.00 0.00 3.77
r40x5b-3 964.3 964.3 3.30 209.70 0.00 21.50 0.00 0.00 231.20 2.00 1.67 0.00 1.01 0.00 0.00 2.68

Average 4.60 118.67 0.22 46.35 0.00 0.72 165.75 2.65 1.87 0.02 3.84 0.00 0.01 5.71

Table 11: Comparison with the method of Baldacci et al. (2010b) on family F3

Instance zUB z∗
BMW CCG-BCP

gap1 t1 gap2 t2 gap3 t3 t gap1 t1 gap2 t2 gap3 t3 t
P111112 1467.68 1467.68 8.70 1471.60 0.20 3039.80 0.00 57.60 4569.00 4.63 885.82 0.00 3581.25 0.00 0.00 4467.07
P111212 1394.80 1394.80 9.00 1571.30 0.40 5122.90 0.00 416.30 7110.50 4.67 859.13 0.00 20689.10 0.00 0.00 21548.23
P112112 1167.16 1167.16 4.70 1518.40 0.00 2503.50 0.00 0.00 4021.90 2.74 75.47 0.00 235.30 0.00 0.00 310.77
P112212 791.66 791.66 6.00 1818.90 0.10 4100.60 0.00 15.50 5935.00 1.36 21.32 0.00 1818.15 0.00 0.00 1839.47
P113112 1245.45 1238.24 9.10 2615.30 1.60 17579.50 1.60 37716.50 57911.30 3.95 454.58 0.61 118970.00 0.34 52278.40 171702.98
P113212 902.26 902.26 5.20 2755.00 0.00 4509.60 0.00 0.00 7264.60 0.49 51.30 0.00 101.93 0.00 0.00 153.23
P131112 1900.70 1892.17 7.50 2408.70 1.00 7156.60 1.00 27217.40 36782.70 6.24 11926.90 0.85 299823.00 0.64 38047.20 349797.10
P131212 1965.12 1965.12 8.00 2165.30 1.00 6686.30 1.00 17537.90 26389.50 8.43 10682.50 0.95 207942.00 0.82 33676.30 252300.80
P132112 1443.33 1443.32 3.00 19150.40 0.00 19081.70 0.00 70.90 38303.00 5.68 3582.12 0.00 15021.90 0.00 0.00 18604.02

Average 6.80 3941.66 0.48 7753.39 0.40 9225.79 20920.83 4.24 3171.02 0.27 74242.51 0.20 13777.99 91191.52
Average on solved instances 6.10 4714.27 0.12 6393.02 0.00 93.38 11200.67 3.26 912.53 0.00 6907.94 0.00 0.00 7820.47

Table 12: Comparison with the method of Baldacci et al. (2010b) on family F4
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Instance zUB z∗
BMW CCG-BCP

gap1 t1 gap2 t2 gap3 t3 t gap1 t1 gap2 t2 gap3 t3 t
M-n150x14a 1352.93 1352.93 7.60 1266.20 0.20 89144.50 0.00 5320.10 95730.80 9.61 34342.60 0.09 351540.00 0.00 1.32 385883.92
M-n150x14b 1212.46 1212.46 7.30 2499.80 0.40 48694.00 0.00 324.00 51517.80 7.50 39786.80 0.20 352454.00 0.00 30.68 392271.48
M-n199x14a 1644.35 1644.35 6.50 14428.10 0.30 188049.90 0.00 606.50 203084.50 12.06 64412.40 0.15 616522.00 0.00 10.81 680945.21
M-n199x14b 1480.43 1480.43 7.40 6187.60 0.10 259498.30 0.00 149.60 265835.50 10.22 67992.50 0.09 1006620.00 0.00 1.98 1074614.48

Average 7.20 6095.43 0.25 146346.67 0.00 1600.05 154042.15 9.85 51633.57 0.13 581784.00 0.00 11.20 633428.77

Table 13: Comparison with the method of Baldacci et al. (2010b) on family F5
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