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Abstract. In this paper we present a computational comparison of four different flow 

formulations for the capacitated location-routing problem. We introduce three new flow 

formulations for the problem, namely a two-index two-commodity flow formulation, a three-

index vehicle-flow formulation and a three-index two-commodity flow formulation. We also 

consider the known two-index vehicle-flow formulation and extend it by considering new 

families of valid inequalities and separation algorithms. We introduce new branch-and-cut 

algorithms for each of the formulations and compare them on a wide number of instances. 

Our results show that compact formulations can produce tight gaps and solve many 

instances quickly, whereas three-index formulations scale better in time. 
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1 Introduction

In the Capacitated Location-Routing Problem (CLRP) we are given a set I of potential facility
locations and a set J of customers. The problem consists in selecting a subset of facilities and
in designing vehicle routes around these facilities so that every customer is visited exactly
once. Each facility i ∈ I has a capacity bi and a fixed cost fi. The fleet is unlimited and
each vehicle has a capacity Q. Each customer j ∈ J has a demand dj. We define a graph
G = (V,E) where V = I ∪ J is the vertex set and E is the edge set. With every edge
{i, j} ∈ E is associated a cost cij for using edge {i, j}. Each route must start from and
return to the same selected facility, and the sum of the demands of the customers served
along a route cannot exceed Q. In addition, the total demand of the customers served in
routes from facility i cannot exceed bi. The objective consists in minimizing the sum of the
routing costs and the fixed costs associated with the selected facilities.

A three-index mixed-integer programming formulation for the CLRP was introduced by
Perl and Daskin [22] for the general case of an asymmetric network, heterogeneous vehicles
and heterogeneous facilities. Its linear programming relaxation does not, however, provide
lower bounds that are tight enough to be used within a branch-and-cut algorithm. Laporte
et al. [15] proposed the first two-index vehicle-flow formulation for the LRP with uncapac-
itated facilities (ULRP). They have considered vehicle capacity cuts (CC) as well as chain
barring constraints (CBC) and, by means of a branch-and-bound algorithm, were able to
solve small size instances. Based on this work, Belenguer et al. [6] recently proposed a two-
index integer programming formulation for the CLRP, providing strengthened versions of the
CC and the CBC. They also introduced a new version of the facility capacity inequalities
(FCI) and other constraints such as co-circuit constraints and depot degree constraints. The
lower bounds obtained by their algorithm are very tight and suggest that by improving the
separation algortithms as well as developing new families of valid inequalities, the cutting-
plane approach would lead to a successful methodology for solving medium or even large size
instances of the CLRP. Akca et al. [1] have introduced a mixed set partitioning / knapsack
formulation by doing a Dantzig-Wolfe decomposition of the three-index formulation that
is solved by means of a branch-and-price method. The pricing problem consists in finding
elementary paths of minimum reduced cost under capacity constraints. The lower bounds
obtained by their algorithm show a significant improvement with respect to those obtained
by the algorithms based on the two-index vehicle-flow formulation. More recently, Baldacci
et al. [4] have proposed a branch-and-cut-and-price algorithm. They apply two bounding
procedures to compute a tight lower bound, followed by the optimal solution of a small
number of multiple depot vehicle routing problems (MDVRP). They provide a strength-
ened version of the CC as well as clique inequalities for the set-partitioning problem. Their
algorithm improves the lower bounds of the previous approaches and solves to optimality
instances with up to 199 customers and 14 facilities.

The CLRP is known to be NP-hard, as it combines (and includes as particular cases)
both the Capacitated Vehicle Routing Problem (CVRP) and the Capacitated Facility Lo-
cation Problem (CFLP). Authors have thus focused their attention on the development of
heuristic methods to find good quality solutions in reasonable computing times. Most of
these heuristics are based on decomposition techniques that solve a location (design) and a
routing (operational) sub-problem. Depending on whether the algorithm iterates between
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the two subproblems, we distinguish between sequential algorithms [22] and iterative algo-
rithms [13, 25, 16, 17]. Tuzun and Burke [24] decompose the problem into a location and
a routing subproblem, but the location decisions at each iteration only consider the open-
ing of new facilities or the swapping of two already open facilities, so the whole algorithm
rapidly converges to a local optimum. Other heuristics include memetic algorithms [23] or
Lagrangian heuristics [21].

The main contributions of this paper can be summarized as follows:

i. We introduce three new formulations based on vehicle flows and commodity flows,
which are proven to dominate, in terms of the linear relaxation lower bound, the two-
index vehicle-flow formulation of Belenguer et al. [6] at the expense of adding more
variables.

ii. We derive two new families of multistar inequalities from the commodity-flow for-
mulations and introduce separation algorithms for using them inside the vehicle-flow
formulations.

iii. We introduce several new families of valid inequalities for the formulations introduced
in this paper, and strengthen several of the existing ones.

iv. We introduce new, efficient separation algorithms for the inequalities used in our algo-
rithms, which in many cases generalize those introduced by Belenguer et al. [6].

v. We perform a computational study comparing each of the formulations on a large
number of instances and discuss their advantages and disadvantages.

The rest of the paper is organized as follows. In Section 2 we first describe the two-
index formulation introduced by Belenguer et al. [6]. We then introduce the three new
formulations based on vehicle flows and commodity flows. We prove that for the case of the
comodity-flow formulations, some new classes of multistar inequalities are implied. In Section
3 we present both existing and new families of valid inequalities for the CLRP. In Section
4 we begin by introducing a general heuristic for generating cuts, and we then introduce
the separation algorithms for each of the valid inequalities introduced in the paper. In
Section 5 we describe the branch-and-cut algorithms used in our experiments by specifying
the separation and branching strategies. In Section 6 we present a computational study
performed after running our algorithms on several families of instances. This is followed by
the conclusions in Section 7. To improve clarity, we provide in the Appendix the proofs of
the lemmas and propositions introduced in Sections 2, 3 and 4.

2 Mathematical Formulations

In this section we first describe the two-index formulation introduced by Belenguer et al. [6]
for the CLRP with a homogeneous fleet and symmetric costs. We then introduce three new
formulations based on vehicle flows and two-commodity flows.
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2.1 A two-index vehicle-flow formulation [6]

We first introduce the notation that we will use throughout the article and then present the
formulation itself.

Let G = (V,E) be an undirected graph, where V = I ∪ J and E = {{vi, vj} : vi, vj ∈
V } \ I × I. For every subset U ⊆ V , we define E(U) = {{u, w} ∈ E : u, w ∈ U}, and
δ(U) = {{u, w} ∈ E : u ∈ U,w /∈ U}. For every pair of disjoint subsets U and W , let
also (U : W ) = {{u, w} ∈ E : u ∈ U,w ∈ W}. With every edge e ∈ δ(I) are associated
two binary variables: xe equal to 1 iff edge e is used once, and ye equal to 1 iff edge e is
used twice. With every edge e ∈ E(J) is associated a binary variable xe equal to 1 iff edge
e is used. For every facility i ∈ I, let zi be a binary variable equal to 1 iff facility i is
selected. For a given edge set F ⊆ E we define x(F ) =

∑
e∈F xe and y(F ) =

∑
e∈F ye (if

F ⊆ δ(I)). For a given subset S ⊆ J of customers, we define d(S) =
∑

j∈S dj, and a constant
r(S) = ⌈d(S)/Q⌉ which is a lower bound on the number of vehicles required to satisfy the
demand of customers in S. Finally, we define S = J \S. The CLRP can then be formulated
as the following integer program.

min
∑

i∈I

fizi +
∑

e∈E

cexe + 2
∑

e∈δ(I)

ceye (VF2)

subject to

x(δ(j)) + 2y(I : {j}) = 2 j ∈ J (1)

x(δ(S)) + 2y(I : S) ≥ 2r(S) S ⊆ J, |S| ≥ 2 (2)

xij + yij ≤ zi i ∈ I, j ∈ J (3)

x(I : {j}) + y(I : {j}) ≤ 1 j ∈ J (4)

x((I \ {i}) ∪ S : S) + 2y(I \ {i} : S) ≥ 2 i ∈ I, S ⊆ J, d(S) ≥ bi (5)

x(δ(S)) ≥ 2(x({h} : I ′) + x({j} : I \ I ′)) S ⊆ J, |S| ≥ 2, h, j ∈ S, I ′ ⊂ I (6)

zi ∈ {0, 1} i ∈ I (7)

xe ∈ {0, 1} e ∈ E (8)

ye ∈ {0, 1} e ∈ δ(I). (9)

Demand constraints (1) impose that every customer vertex be visited once and also act
as flow conservation equations. Constraints (2) are the capacity cuts (CC) which play a
dual role: they forbid tours disconnected from facilities as well as tours serving a demand
larger than Q. Constraints (3) ensure that there is no outgoing flow from unselected facil-
ities. Constraints (4) forbid single-customer routes to be linked to two different facilities.
Constraints (5) are the facility capacity inequalities (FCI). They forbid the existence of a set
of routes leaving from a given facility i and serving a demand higher than bi. Constraints (6)
are the path constraints (PC) that prevent the route of a vehicle from joining two different
facilities. These constraints are not valid when |S| = 1 and they are thus complementary to
constraints (4).

Unlike in traditional CVRP formulations, two sets of variables (x and y) are associated
with the edges in δ(I). One can in fact check that if these variables are replaced with the
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aggregated variables xe = xe + 2ye, single-customer routes linked to two different facilities
can no longer be correctly eliminated as we do with constraints (4).

2.2 A three-index vehicle-flow formulation

Due to their large number of variables, three-index formulations for vehicle routing problems
have limited practical interest. In these formulations, two indices represent a certain edge
while the third index indicates which vehicle uses this edge. These formulations naturally
provide tighter bounds than their two-index counterparts when augmented by all of the
known valid inequalities. However, they also present a lot of symmetry that makes them
of little use within a branch-and-bound framework. We introduce a three-index formulation
which does not suffer from this issue. Indeed, we use the third index to specify the facility
from which the edge is being visited. Symmetry is then not an issue because switching
two facilities does not provide an alternate equivalent solution, either because of feasibility
(facility capacities may not be the same) or costs (switching routes from one facility to
another usually pruduces a change in either the routing costs or the fixed costs). Using the
same notation as for the two-index vehicle-flow formulation, we define binary variables xi

e

equal to 1 iff edge e is used once by a vehicle being from facility i ∈ I (naturally xi
lj = 0 if

l, i ∈ I, l 6= i). We also let yij be a binary variable equal to 1 iff edge e = {i, j} is used twice
(for single-customer routes) by a vehicle linked to facility i. We let uij be a binary variable
equal to 1 iff customer j is served from facility i. Let us define the following notation. For
an edge subset F ⊆ E and a facility subset H ⊆ I we let xH(F ) =

∑
i∈H

∑
e∈F xi

e, and if
H = {i} is a singleton we let xi(F ) = x{i}(F ). The formulation is the following,

min
∑

i∈I

fizi +
∑

i∈I

∑

e∈E

cex
i
e + 2

∑

i∈I

∑

j∈J

cijyij (VF3)

subject to

xi(δ({j})) + 2yij = 2uij i ∈ I, j ∈ J (10)

xi(δ(S)) + 2y({i} : S) ≥
2

Q

∑

j∈S

djuij i ∈ I, S ⊆ J, |S| ≥ 2 (11)

∑

j∈J

djuij ≤ bizi i ∈ I (12)

∑

i∈I

uij = 1 j ∈ J (13)

xi
ij + yij ≤ uij ≤ zi i ∈ I, j ∈ J (14)

zi ∈ {0, 1} i ∈ I (15)

xi
e ∈ {0, 1} i ∈ I, e ∈ E (16)

ye ∈ {0, 1} e ∈ δ(I) (17)

uij ∈ {0, 1} i ∈ I, j ∈ J. (18)

Constraints (10) are a disaggregated form of the degree equations (1), whereas constraints
(11) are a disaggregated form of the capacity inequalities (2). Constraints (12) are the
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facility capacity inequalities. Constraints (13) are the assignment constraints of customers to
facilities. Constraints (14) link the assignment variables with the flow and location variables.

2.3 A two-index two-commodity flow formulation

Each facility node i ∈ I is considered as a source of flow, to which we consider an additional
sink node i′. Let us denote the set of sink facility nodes as I ′, and consider the augmented
undirected graph G = (V ,E) with V = V ∪ I ′ and E = E ∪ {e = {i′, j} : i′ ∈ I ′, j ∈ J}. A
route starting and ending at a facility i in the original graph will be mapped to a flow in the
new graph starting at i and arriving to i′. For this purpose, let us introduce the following set
of continuous variables. For every edge e = {i, j} ∈ E, we define an arc variable wij which
denotes the amount of flow traversing edge e if e is traversed from node i to node j, and wji

represents the remaining capacity on the vehicle traversing this edge. If the trip is done in the
opposite direction the roles of wij and wji are reversed. To take into account the orientation
defined by these new variables, we define for every set U ⊆ V , w(δ+(U)) =

∑
u∈U,v/∈U wuv,

w(δ−(U)) =
∑

u∈U,v/∈U wvu. We keep variables y for single-customer trips, while variables w
are only used for multiple-customer routes (i.e., routes serving two or more customers). The
following set of constraints are thus valid for the CLRP

w(δ−({j}))− w(δ+({j})) + 2djy(I : {j}) = 2dj j ∈ J (19)

w(δ+({i})) +
∑

j∈J

djyij ≤ bizi i ∈ I (20)

w(δ+({i′})) = Qx(δ({i})) i′ ∈ I ′ (21)

wij + wji = Qxij {i, j} ∈ E (22)

wij, wji ≥ 0 {i, j} ∈ E. (23)

Now, vehicle capacities and facility capacities are implied by (19)-(23). A valid formula-
tion for the CLRP is given by

min
∑

i∈I

fizi +
∑

e∈E

cexe + 2
∑

e∈δ(I)

ceye (CF2)

subject to (1), (3)-(4), (6)-(9), (19)-(23).
Baldacci et al. [3] proved that the following flow inequalities (FI) are valid for the two-

index two-commodity flow formulation of the CVRP:

(Q− dj)wij − djwji ≥ 0 {i, j} ∈ E (24)

(Q− di)wji − diwij ≥ 0 {i, j} ∈ E. (25)

It is straightforward to check that they also are for the CLRP. As stated by the following
proposition, they also imply the following y-generalized large multistar inequalities (y-GLM),
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Proposition 2.1. The following y-generalized large multistar inequalities (y-GLM) are im-
plied by formulation (CF2) when augmented with the flow inequalities (FI):

x(δ(S)) + 2
∑

j∈S

dj
Q
y(I : {j}) ≥

2

Q


d(S) +

∑

h∈S
j /∈S

djxhj


 . (26)

The generalized large multistar inequalities (GLM) which are valid for the CLRP differ
from these inequalities in the coefficients dj/Q multiplying the terms y(I : {j}) which are
replaced by 1. Therefore, the y-GLM dominate the GLM.

2.4 A three-index two-commodity flow formulation

Let us consider the three-index vehicle-flow formulation (VF3). As for the previous formula-
tion, we consider the augmented graph G and we use variables wi

hj, w
i
jh for the flow traversing

edge {h, j} from facility i and for the remaining capacity in the vehicle, respectively. We
keep variables yij for single-customer routes. For a facility i ∈ I∪I ′ and a node subset U ⊆ V
we denote wi(δ+(U)) =

∑
u∈U,v/∈U wi

uv, w
i(δ−(U)) =

∑
u∈U,v/∈U wvu. Formulation (VF3) can

thus be augmented by adding these variables and the following set of constraints:

wi(δ−({j}))− wi(δ+({j})) + 2djyij = 2djuij i ∈ I, j ∈ J (27)

wi(δ+({i})) +
∑

j∈J

djyij ≤ bizi i ∈ I (28)

wi(δ+({i′})) = Qxi(δ({i})) i′ ∈ I ′ (29)

wi
hj + wi

jh = Qxi
hj i ∈ I, {h, j} ∈ E (30)

wi
hj, w

i
jh ≥ 0 i ∈ I, {h, j} ∈ E. (31)

The new formulation for the CLRP is the following

min
∑

i∈I

fizi +
∑

i∈I

∑

e∈E

cex
i
e + 2

∑

i∈I

∑

j∈J

cijyij (CF3)

subject to (10), (13)-(18), (27)-(31).
Note that the following disaggregated flow inequalities (DFI) are valid for this formulation

(Q− dj)w
i
hj − djw

i
jh ≥ 0 i ∈ I, {h, j} ∈ E (32)

(Q− dh)w
i
jh − dhw

i
hj ≥ 0 i ∈ I, {h, j} ∈ E. (33)

As a consequence of the extra variables added with respect to the two-index two-commodity
flow formulation, this one also implies the following y-location routing generalized large mul-
tistar inequalities (y-LRGLM),
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Proposition 2.2. The following y-location routing generalized large multistar inequalities
(y-LRGLM) are implied by formulation (CF3) plus the disaggregated flow inequalities (DFI).

xI\H(δ(S)) + 2
∑

j∈S

dj
Q
y(I \H : {j}) ≥

2

Q




∑

i∈I\H

∑

j∈S

djuij +
∑

h∈S
j /∈S

djx
I\H
hj


 . (34)

Remark Note that the particular case H = ∅ corresponds to the y-GLM (26).

3 Valid Inequalities

In this section we consider several families of valid inequalities that can be used to strengthen
the linear relaxation of the previous formulations. We first describe known inequalities and
then introduce new families of valid inequalities.

3.1 Known valid inequalities

In this subsection we describe valid inequalities that are already known for the CLRP. These
include constraints for the CVRP such as framed capacity inequalities (FrCI), strength-
ened comb inequalities (SCI), multistar inequalities (MSI), hypotour inequalities (HYP),
y-capacity cuts (y-CC), strengthened facility capacity inequalities (SFCI), co-circuit con-
straints (CoCC) and facility degree constraints (FDC). For details on each of these inequal-
ities we refer to Lysgaard et al. [18] and to Belenguer et al. [6].

3.1.1 Inequalities for the CVRP

If nodes in I are contracted into a single node, the resulting problem can be seen as a
CVRP instance. If a cut valid for the CVRP is such that the coefficients of the edges
joining the depot to customers do not vary with the depot (as the distance, for instance),
this cut remains valid for the CLRP by considering this contracted graph. This is the
case for all of the known valid inequalities, in particular, strengthened comb inequalities,
multistar inequalities, generalized large multistar inequalities, framed capacity inequalities
and hypotour inequalities [18]. We add them all except for the generalized large multistar
inequalities which are replaced by the y-GLM (26).

3.1.2 y-Capacity cuts [6]

Let us consider constraints (2) for a given customer set S. Additionally, suppose that we
are given a customer subset S ′ satisfying r(S \ S ′) = r(S). The following constraint, called
y-capacity cut or simply y-CC, is valid for the CLRP and dominates (2):

x(δ(S)) + 2y(I : S \ S ′) ≥ 2r(S). (35)

For the proof that these constraints are valid, we refer to Belenguer et al. [6].
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3.1.3 Strengthened facility capacity inequalities [6]

For a given facility set I ′, let us denote b(I ′) =
∑

i∈I′ bi. Belenguer et al. [6] proposed the
following two strengthenings for inequalities (5). Let S ⊆ J and i ∈ I be as in inequalities
(5). Let I ′ ⊂ I be a subset of facilities such that i ∈ I ′. If a subset S ′ ⊂ S is such that
d(S \ S ′) > b(I ′) then the following strengthened facility capacity inequality (SFCI) is valid
for the CLRP:

x((I \ I ′) ∪ S̄ : S) + 2y(I \ I ′ : S \ S ′) ≥ 2. (36)

Let r(S, I ′) = ⌈(d(S) − bI′)/Q⌉ be a lower bound on the number of vehicles needed to
serve the demand of customers in S from facilities other that those in I ′. Note that although
r(·) and r(·, ·) represent different quantities, the overloaded notation satisfies r(S, ∅) = r(S)
for every S ⊆ J . The following inequality is valid for the CLRP:

x((I \ I ′) ∪ S̄ : S) + 2y(I \ I ′ : S) ≥ 2r(S, I ′ \ {i}) + 2zi(r(S, I
′)− r(S, I ′ \ {i})). (37)

We call these inequalities the effective SFCI (ESFCI). For the validity of these inequalities
we refer again to Belenguer et al. [6].

3.1.4 Co-circuit constraints [6]

The co-circuit constraints (CoCC) state that the graph resulting from the deletion of the y
variables must still have an even number of edges. They can be written as

x(δ(S) \ F ) ≥ x(F )− |F |+ 1 (38)

for S ⊆ J , F ⊆ δ(S) and |F | odd.

3.1.5 Facility degree constraints [6]

The facility degree constraints (FDC) are valid under the assumption that the triangle in-
equality holds for the edge distances. It states the sub-optimality of solutions in which two
or more vehicles serve a given set of customers if these customers can be served by fewer
vehicles (thus saving travel time). For single-customer routes they can be written as

y(i : S) ≤ zi (39)

∀S ⊆ J such that dh + dj ≤ Q, ∀h 6= j ∈ S, ∀i ∈ I. For general routes, they can be written
as

2y(i : S) + x(i : S) + x(E(S)) ≤ 2zi + |S| − 1 (40)

∀i ∈ I, ∀S ⊆ J, r(S) = 1.

3.2 New valid inequalities

In this subsection we introduce new families of valid inequalities for the CLRP. These include
strengthened versions of the SFCI, ESFCI, location-routing comb inequalities (LRCOMB),
location-routing generalized large multistar inequalities (LRGLM) and flow-assignment in-
equalities (FAI), all of which are valid for the two-index formulations and by extension for
the three-index formulations as well. Moreover, we strengthen some of these inequalities
for the case of the three-index formulations, and add some novel classes of inequalities that
cannot be derived from the former.
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3.2.1 Flow-assignment inequalities

It is easy to check that the following inequalities are valid for the two-index and three index
commodity-flow formulations, respectively:

wij + wji ≤ Q {i, j} ∈ E (41)

wl
ij + wl

ji ≤ Q l ∈ I, {i, j} ∈ E. (42)

However, they can be strengthened as a consequence of the following two observations.
First, for every edge e = {i, j} ∈ E, at least one node i or j belongs to J . For that node, say
j, it cannot happen at the same time that edge {i, j} is used by a vehicle serving two or more
customers and j is served by a single-cutomer route. Thus, the following flow-assignment
inequalities (FAI) are valid for the CLRP:

xij + y(I : {j}) ≤ 1 j ∈ J, {i, j} ∈ E. (43)

wij + wji +Qy(I : {j}) ≤ Q j ∈ J, {i, j} ∈ E. (44)

xl
ij + ylj ≤ ulj l ∈ I, j ∈ J, {i, j} ∈ E. (45)

wl
ij + wl

ji +Qylj ≤ Qulj l ∈ I, j ∈ J, {i, j} ∈ E. (46)

In the case of the three-index formulations, constraints (45)-(46) impose a strong rela-
tionship between the flow variables and the customers assignments. Indeed, if a customer is
not assigned to a given facility, then all flow variables associated to the corresponding facility
and linked to that customer are automatically set to 0.

3.2.2 Disaggregated co-circuit constraints

The co-circuit constraints (38) ensure that an even number of edges will traverse a given
customer subset S ⊆ J . This is in particular valid when restricted to the edges used by
some facility. Thus, for the particular case of the three-index formulations the following
disaggregated co-circuit constraints (DCoCC) are valid for the CLRP:

xi(δ(S) \ F ) ≥ xi(F )− |F |+ 1 i ∈ I, S ⊆ J, F ⊂ δ(S), |F | odd. (47)

Proposition 3.1. Constraints (47) are valid for the CLRP.

3.2.3 Disaggregated facility degree constraints

Using the same reasoning as for the CoCC, the facility degree constraints (40) also have their
disaggregated counterpart. Indeed, if distances satisfy the triangle inequality, the following
inequalities are valid for the three-index formulations of the CLRP:

x(i : S) + 2y(i : S) + xi(E(S)) ≤
∑

j∈S

uij + zi i ∈ I, S ⊆ J, d(S) ≤ Q. (48)

Proposition 3.2. Constraints (48) are valid for the CLRP.
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3.2.4 Strengthened facility capacity inequalities

Let us consider inequalities (36) for given S ⊆ J and I ′ ⊆ I. If S ′ ⊂ S is such that
r(S \ S ′, I ′) = r(S, I ′) let us consider the following inequality:

x((I \ I ′) ∪ S : S) + 2y(I \ I ′ : S \ S ′) ≥ 2r(S, I ′). (49)

Proposition 3.3. Constraints (49) are valid for the CLRP.

As these constraints dominate (36), we will now refer to these inequalities as SFCI.
These constraints are valid for all the formulations studied in this paper. However, for the
three-index case they can be strengthened to the following constraints:

xI\I′(δ(S)) + 2y(I \ I ′ : S \ S ′) ≥ 2r(S, I ′). (50)

3.2.5 Effective strengthened facility capacity inequalities

Let us consider constraints (37) for given S, I ′ and i ∈ I ′. Suppose that S ′ ⊆ S is such that
r(S \ S ′, I ′) = r(S, I ′) and r(S \ S ′, I ′ \ {i}) = r(S, I ′ \ {i}). Then, the following inequality
is valid for the CLRP and dominates (37):

x((I \ I ′) ∪ S : S) + 2y(I \ I ′ : S \ S ′) ≥ 2r(S, I ′ \ {i}) + 2zi(r(S, I
′)− r(S, I ′ \ {i})). (51)

As this inequality dominates (37), we will refer to it as the ESFCI.

Proposition 3.4. Constraints (51) are valid for the CLRP.

Just as with the SFCI, for the three-index case these inequalities can be strengthened to
the following set of inequalities

xI\I′(δ(S)) + 2y(I \ I ′ : S \ S ′) ≥ 2r(S, I ′ \ {i}) + 2zi(r(S, I
′)− r(S, I ′ \ {i})). (52)

Remark Constraints SFCI and ESFCI do not dominate each other. However, in practice, we
have verified that for fractional values of the z variables the ESFCI have a more significant
impact on the lower bound than the SFCI. Conversely, when location variables are fixed
to either 0 or 1, constraints SFCI start playing an important role. Because of that, at
every node of the branching tree we separate constraints ESFCI for facilities i such that
0 < zi ≤ 0.85 and constraints SFCI for every i such that 0.75 < zi ≤ 1. The role of every
cut is complementary: constraints ESFCI help to stregthen the lower bound and hopefully
to prune nodes close to the root, while constraints SFCI start dominating the ESFCI deeper
in the tree.

3.2.6 Location-routing comb inequalities

Comb inequalities were developed by Chvátal [8] for the symmetric traveling salesman prob-
lem (STSP) and have since then received considerable attention in the literature [11, 14, 18].
In particular, stronger versions have been proposed for the CVRP that take advantage of the
vehicle capacities. In what follows we develop a new family of inequalities that are shown to
be valid for the CLRP and include some of the earlier inequalities as special cases. Let sets
H ⊆ V (the handle), Π = (T 1

j )
s1
j=1 ∪ (T 2

j )
s2
j=1 ⊆ P(V ) (the teeth) be such that
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i. |H ∩ T | ≥ 1 T ∈ Π

ii. |T \H| ≥ 1 T ∈ Π

iii. |T ∩ U | = 0 T, U ∈ Π

iv. |H ∩ I| = 0

v. |T 1
j ∩ I| ≥ 1 1 ≤ j ≤ s1

vi. |T 2
j ∩ I| = 0 1 ≤ j ≤ s2

For notational simplicity, for every k, j we denote Sk
j = T k

j ∩ J . If k = 1, we also denote
Ij = T 1

j ∩ I. Let s′1 < s1 and suppose that for each j ∈ {1, . . . , s′1} we also distinguish a
special facility ij ∈ Ij that we call effective. For every set U ⊆ V = I ∪ J let us denote

x(E(U)) =

{
x(E(U)) if U ∩ I = ∅

x(E(U \ I)) + x(U ∩ I : U \ I) + 2y(U ∩ I : U \ I) if U ∩ I 6= ∅.

Let αx = x(E(H)) +
∑2

k=1

∑sk
j=1 x(E(T k

j )). Define the following constants:

r̂(H, T k
j ) =





r(S1
j , Ij \ {ij}) + r(S1

j \H, Ij \ {ij}) + r(S1
j ∩H) if k = 1, 1 ≤ j ≤ s′1

r(S1
j , Ij) + r(S1

j \H, Ij) + r(S1
j ∩H) if k = 1, s′1 < j ≤ s1

r(S2
j ) + r(S2

j \H) + r(S2
j ∩H) if k = 2, 1 ≤ j ≤ s2

(53)

Λ(H, T 1
j ) = r(S1

j , Ij\{ij})+r(S1
j \H, Ij\{ij})−r(S

1
j , Ij)−r(S

1
j \H, Ij) 1 ≤ j ≤ s1 (54)

r̂(H,Π) =
∑

k=1,2

∑

1≤j≤sk

r̂(H, T k
j ). (55)

If Λ(H, T 1
j ) is even for every 1 ≤ j ≤ s′1 and r̂(H,Π) is odd, the associated location-routing

comb inequality (LRCOMB) is

αx− 1
2

[ ∑

1≤j≤s1

(x(Ij : J) + 2y(Ij : J))+
∑

1≤j≤s′
1

zijΛ(H,T 1
j )
]
≤ |H|+

2∑

k=1

t∑

j=1

|Sk
j |−

⌈
1
2 r̂(H,Π)

⌉
. (56)

Proposition 3.5. The location-routing comb inequality (56) is valid for the CLRP.

Remark 1. For the sake of clarity, we have assumed that s1, s2 > 0. Indeed, it is possible
to omit this assumption and obtain the associated LRCOMB as a consequence.

Remark 2. The interest of considering s′1 < s1 relies on the fact that we can relax the
condition Λ(H, T 1

j ) is even for s′1 < j ≤ s1. This case becomes specially interesting when
zj ∼ 1 for s′1 < j ≤ s1 because in such a case the strength of the comb inequality remains
almost the same.
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3.2.7 Location-routing generalized large multistar inequalities

We now introduce a new class of location-routing generalized large multistar inequalities
that are valid for the two-index vehicle-flow formulation and that cannot be derived from
inequalities (34). For given I ′ ⊂ I, S ⊆ J , and j /∈ S, define η(I ′, S, j) = x(S : j) + 1/2x(I ′ :
{j}) + y(I ′ : {j}). The following Location-routing generalized large multistar inequality
(LRGLM) is valid for the two-index vehicle-flow formulation:

x((I − I ′) ∪ S : S) + 2y(I − I ′ : S) ≥
2

Q


d(S)− b(I ′) +

∑

j /∈S

djη(I
′, S, j)


 . (57)

The validity of constraints (57) is a consequence of the following lemma and proposition.

Lemma 3.6. Let I ′ ⊂ I, S ⊆ J . Let WI′ be the set of customers that are served from
facilities in I ′, and T ⊆ S ∩WI′. Then x(E(S)) + 1/2x(I ′ : S) + y(I ′ : S) ≤ |S| − 1

Q
(d(S ∪

T )− b(I ′)).

Proposition 3.7. Constraint (57) is valid for the CLRP.

Remark A stronger valid inequality can be obtained by replacing the right-hand side of
constraint (57) by

2

Q


d(S)−

∑

i∈I′

bizi +
∑

j /∈S

djη(I
′, S, j)


 . (58)

3.2.8 Lifted cover inequalities

Lifted cover inequalities (LCI) can be useful when facilities have heterogeneous capacities.
In such a case, the valid knapsack inequality

∑
i∈I bizi ≥ d(J) can be used in order to derive

LCI. For details on LCI we refer to Gu et al. [12].

4 Separation Algorithms

In this section we describe the separation algorithms that we use to identify violated valid
inequalities from the families introduced in Section 3. We begin by introducing a general
cut lifting heuristic that takes advantage of the particular underlying structure of some
inequalities, decomposing the separation problem into two easier subproblems that are solved
sequentially. Then, we present the different separation algorithms for the separation of the
inequalities presented in the paper. They include some exact separation algorithms based on
maximum-flow computations as well as connected components or shrinking heuristics. We
make use of the CONCORDE Library [9] to solve the maximum-flow problems as well as the
connected components problems, and the COMBO algorithm [19] for solving 0-1 knapsack
problems.
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4.1 A cut lifting heuristic

In this section we describe a general separation algorithm that takes advantage of the special
structure of some families of valid inequalities. Let us consider a polytope X = {x ∈
Rn, Ax ≤ b} and denote by Y = conv(X ∩ Zn) the convex hull of the integer points of X .
Given a function f : Rn → R and a scalar g ∈ R, we say that the tuple (f, g) is a valid
inequality for Y if f(x) ≤ g for every x ∈ Y . Given two functions f : Rn → R and h : Rn → R

let us denote by [f + h] the function [f + h](x) = f(x) + h(x). Suppose that we are given
a family of valid inequalities for Y , F = {([αj + βjk], γj) : j = 1, . . .J , k = 1, . . . ,Kj} with
βjk(·) ≥ 0 for all j, k. Suppose that the family F1 = {(αj, γj) : j = 1, . . . ,J } is easy to
separate, in the sense that for any ǫ > 0 and x ∈ X the decision problem

∃j ∈ {1, . . . ,J } such that αj(x) > γj − ǫ (P1)

is easy to solve. Suppose that for given j ∈ {1, . . . ,J} and x ∈ X , the problem

max
k

f(k) = βjk(x)

s.t. k ∈ Kj

(P2)

is easy to solve also, or that a good lower bound can be computed efficiently. Thus, given
x ∈ X , the following heuristic aims to find a valid cut ([αj + βjk], γj) ∈ F that is violated
by x:

i. Fix ǫ > 0 and use separation procedures for problem (P1) in order to find one or more
j’s such that αj(x) > γj − ǫ. We say that we find an ǫ-F1 cut.

ii. For every j found in (i) solve problem (P2), obtaining k. If αj(x) + βjk(x) > γj then a
violated inequality has been identified.

This procedure, although not exact, decomposes the problem into two easier subproblems
and, as we will see later, can take advantage of known separation algorithms for related
families of inequalities. We will see that problem (P2) usually corresponds to solving a 0-1
knapsack problem. This problem is weakly NP-hard and efficient exact algorithms have been
proposed. We have chosen to use the COMBO algorithm [19] that stands as the state-of-
the-art solver for the 0-1 knapsack problem.

4.2 CVRP Inequalities

For the CVRP inequalities we make use of the separation algorithms developed by Lysgaard
et al. [18] and which are available on the following website http://www.hha.dk/∼lys.

4.3 y-Capacity constraints

We use the cut lifting heuristic described in Section 4.1 to exploit the well-known separation
algorithms for the capacity constraints of the CVRP. In fact, problem (P1) corresponds to the
separation of the CC. Suppose that a set S has been found that solves the ǫ-CC separation
problem. Problem (P2) then aims to find a subset S ′ ⊆ S such that the quantity y(I : S ′) is
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maximum while respecting the constraint r(S \ S ′) = r(S). This problem can be written as
the following 0-1 knapsack problem:

max
µ

∑

j∈S

µjy(I : j)

s.t.
∑

j∈S

djµj ≤

{
d(S)−Q(r(S)− 1)− 1 if d(S) 6≡ 0 (mod Q)

0 otherwise

µ ∈ {0, 1}|S|.

In our implementation, we have modified the code of Lysgaard et al. [18] to find ǫ-CC.
The 0-1 knapsack problem is solved to optimality using the COMBO algorithm.

4.4 Strengthened facility capacity inequalities

We introduce separation algorithms for the separation of the SFCI (49). Note that as for
the three-index case the inequalities (50) dominate (49), so the separation algorithms for the
latter can in fact be safely used as heuristics. The separation for SFCI constraints (49) is
done in three stages. First, we obtain candidate sets S and facilities i ∈ I by solving the
separation problem for the particular case of |I ′| = 1, |S ′| = 0. We refer to these specific
constraints as the Basic FCI (BFCI). Note that these constraints are enough to ensure the
feasibility of solutions. For each candidate sets S and I ′ = {i}, we use a greedy heuristic to
enlarge the set I ′, and at every iteration in which I ′ is enlarged, we compute the set S ′ ⊂ S
that maximizes the quantity y(I ′, S ′) and such that r(S, I ′) = r(S \S ′, I ′). This last problem
corresponds to a 0-1 knapsack problem with item sizes (dj)j∈S, weights (y(I ′, {j}))j∈S and
knapsack capacity of either d(S) − b(I ′) − Q(r(S, I ′) − 1) − 1 if d(S) − b(I ′) 6= 0 (mod Q)
or 0 otherwise. This procedure is an application of the cut lifting heuristic described in the
subsection above, in which the subproblem corresponds to the described knapsack problem.
We now describe the separation routine for generating the candidate sets S and {i}. We
have implemented a safe shrinking routine, a connected component heuristic and an exact
routine for the fractional case based on a series of min-cut computations, all of which are
applied in the following order:

i. Start applying the shrinking routine. Every time that two customers are chosen for
shrinking, the shrinking heuristic is applied to these customers.

ii. If the shrinking process is completed and the shrinking routine is not able to find a
violated BFCI we run a connected component heuristic over the connected components
of the shrunk graph.

iii. If none of the above procedures is able to find a violated BFCI we solve a polynomial
number of min-cut problems over the shrunk graph.

We now present in detail the safe shrinking routine as well as each of the heuristic
procedures mentioned above.
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4.4.1 A safe shrinking routine

In what follows we denote by ω∗, φ∗ the weight functions obtained from x∗ and y∗, re-
spectively, after successive contractions, and we keep x∗, y∗ for the weights in the original
unshrunk graph. We denote by d∗ the aggregated demands of super-customers as well, whose
set we denote by JS. A super-customer comprises the set of all customers that have been
shrunk to the same super-node. We will show that it is safe to shrink two customers h, j ∈ JS

whenever

i. d∗h + d∗j ≤ Q and

ii. [ω∗
hj ≥ 1] or [φ∗

ih ≥ 1 and φ∗
ij ≥ 1].

Let us start by fixing a facility i. We will first show that for the separation of a BFCI
using facility i it is safe to shrink any pair of nodes h and j in JS satisfying only condition
ii. If this is the case and [φ∗

ih ≥ 1 and φ∗
ij ≥ 1], the new weights for the shrunk node {h, j}

are

• ω∗
{h,j}v = 0 for all v ∈ I ∪ (JS \ {h, j})

• φ∗
{h,j}v =

{
1 if v = i

0 otherwise

Otherwise (i.e., if ω∗
hj ≥ 1), the new weights are recalculated using the usual rule, as follows:

• ω∗
{h,j}v = ω∗

hv + ω∗
jv for all v ∈ I ∪ (JS \ {h, j}).

Remark For every super-customer h in the shrunk graph it is true that ω∗(δ(h)) + 2φ∗(I :
h) = 2.

Lemma 4.1. For fixed i ∈ I, it is safe to shrink nodes h, j ∈ JS such that ω∗
hj ≥ 1 or

[φ∗
ih ≥ 1 and φ∗

ij ≥ 1].

Remark If φ∗
ih = 1 and φ∗

ij = 1 it is not true that the shrinking of h and j is safe when
considering a BFCI using a different facility, say l. In fact, in such a case, the last inequality
in the proof above will be σl(T )− σl(S) ≤ 2− 2ω∗

hj − (ω∗
lh + 2φ∗

lh) which is equal to 2. The
next lemma proves, however, that in this case and whenever d∗j ≤ Q and d∗h ≤ Q, h and j
can be safely omitted from any BFCI containing facility l.

Lemma 4.2. Let h ∈ JS be such that φ∗
ih = 1 and d∗h ≤ Q. It is safe to omit node h from

any BFCI containing a facility l 6= i.

The following corollary follows as a consequence of Lemmas 4.1 and 4.2.

Corollary 4.3. It is safe to shrink customers h, j such that

i. d∗h + d∗j ≤ Q and

ii. ω∗
hj ≥ 1 or φ∗

ih = φ∗
ij = 1 for some i ∈ I.
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4.4.2 Shrinking heuristic

During the execution of the shrinking routine, we can check at every iteration of the algorithm
if two given super-customers h, j ∈ JS violate a BFCI, i.e., if ω∗

hj +
1
2
ω∗(i : {h, j}) + φ∗(i :

{h, j}) > 2−r({h, j}, {i}) for some i ∈ I. If this is the case, a violated inequality is obtained.
Otherwise, we continue shrinking.

4.4.3 Connected component heuristic

Given a family of weights (x′
e)e∈E, let Gx′ = (V,Ex′) be the graph induced by the edges of

E with strictly positive weights x′
e. The connected component heuristic works under the

principle that if a violated BFCI exists associated to a facility i, then there is one contained
in one of the connected components of the graph Gx′ (see Lemma 4.4 below), with x′ defined
as follows:

x′
e =

{
x∗
e + 2y∗e if e ∈ δ(I)

x∗
e otherwise.

(59)

Lemma 4.4. Let i ∈ I be a facility, and let S ⊆ J be a disconnected (with respect to x′)
customer subset. Without loss of generality suppose that S1, S2 is a partition of S such that
both S1 and S2 satisfy the CC constraints (2). Then, if (i, S) defines a violated BFCI, (i, S1)
or (i, S2) define another BFCI cut with a stronger violation as measured by the difference
between the right-hand side and left-hand side of constraint (49) evaluated in vectors (x∗, y∗).

The description of the algorithm is as follows. We start by looking at the connected
components of the graph Gx′ (we make sure that connected components of Gx′ will satisfy
constraints CC during their separation). Let Sk, Ik be the customers and facilities belonging
to the kth connected component, for k = 1, . . . ,Γ. Then, for every k and for every i ∈ Ik we
set Si

k = Sk \ {h : y∗lh = 1, l 6= i}, and we iteratively check whether the pair (i, Si
k) violates a

BFCI or not. If it does, we have identified a violated inequality. Otherwise we choose j ∈ Si
k

such that the quantity x∗(Si
k \{j} : j)+1/2x∗

ij+y∗ij+r(Si
k, {i})−r(Si

k \{j}, {i}) is minimum
and we remove it from Si

k, repeating this procedure as long as we do not find a violated cut
and Si

k 6= ∅.

4.4.4 Exact separation of fractional BFCI’s

The problem of finding a violated fractional BFCI can be formulated as the solution of |I||J |
minimum {s, t}-cut problems as follows: fix some i ∈ I and j ∈ J . Consider the graph
G′(V ′, A′) produced from G(V,A) after deleting node i and contracting nodes in I \ {i} in a
single super node s. Define the weight of the new edges {h, k} ∈ A′, h < k as

x′
hk =

{∑
l∈I\{i}(x

∗
lk + 2y∗lk)− 2dk/Q if h = s

x∗
hk if h 6= s.

Although there are negative weight edges, the problem of finding a minimum {s, j}-cut
can still be solved in polynomial time as pointed out by McCormick et al. [20]. Obviously
there exists an s − j cut in the modified graph of capacity smaller than −2bi/Q for some
i ∈ I, j ∈ J iff there exists a violated fractional BFCI.
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4.5 Effective strengthened facility capacity inequalities

Analougously to the SFCI, note that for the three-index case, the separation procedures
for constraints (51) can be safely used as heuristics for separating constraints (52). The
separation of the ESFCI (51) is done in a completely analogous way to the SFCI. In a
first stage, we get candidate sets S and I ′ = {i} by solving the separation algorithms
for the EBFCI, that correspond to the particular case of ESFCI when |I ′| = 1, |S ′| = 0.
For every candidate pair S, I ′ = {i}, we enlarge the set I ′ in a greedy way and after
every extension we compute the set S ′ that maximizes the quantity y(I ′, S ′) and such that
r(S, I ′) = r(S \S ′, I ′), r(S, I ′ \{i}) = r(S \S ′, I ′ \{i}). Again, this problem corresponds to a
0-1 knapsack problem and is a direct application of the cut lifting heuristic. The separation
algorithms for the EBFCI are completely analogous to those used for the BFCI and for the
sake of brevity we will omit the remaining details.

Remark Note that the safe shrinking result for the BFCI is also safe for the separation of
the EBFCI. In fact, one can take advantage of this observation and shrink the graph just
once.

4.6 Co-circuit constraints

We have implemented two heuristic procedures and an exact algorithm based on the com-
putation of a minimum-cut tree. Note that for a given set S, the computation of the set
F such that the left-hand side of constraint (38) is minimum can be done in linear time by
defining F = {e ∈ δ(S) : xe ≤ 1/2}. If |F | is even, then we either add to or remove from F
the edge in δ(S) that minimizes the increase of the left-hand side of (38). The first heuristics
checks, for every customer j ∈ S if the corresponding co-circuit constraint is violated for
S = {j}. If we de not find any cut, we compute the blocks (2-connected components) of the
graph G1/2 induced by the edges {e ∈ E : ǫ ≤ xe ≤ 1 − ǫ} and whose weights are taken as
we = min{xe, 1− xe}. For this, we have taken ǫ = 10−5. If this procedure also fails, then we
solve the separation of the blossom inequalities by computing a minimum-cut tree on graph
G1/2 using the Gomory-Hu algorithm [10]. We take as candidate handles the cuts induced
by the edges of this tree. The first heuristic and the exact separation are done as suggested
by Belenguer et al. [6], while the idea of considering the blocks of the graph as candidate
handles has been successfully implemented into the separation of blossom inequalities in the
CONCORDE solver for the TSP [2]. The separation of the DCoCC is done in a completely
analogous way to the CoCC and, for the sake of brevity, we omit the details.

4.7 Facility degree constraints

Constraints (39) are not dynamically added but rather included at the beginning of the
algorithm for the set JQ built as follows. Let JQ = ∅ and let V be the set containing the
customers in J sorted by non-decreasing demands. Pick the first customer v ∈ V and check
if dv + dj ≤ Q for all j ∈ JQ. If that is the case, then add v to JQ, remove v from V and
continue. If not, then stop. This way of constructing the set JQ generalizes the approach of
Belenguer et al. [6] in which JQ is restricted to contain customers whose demands are ≤ Q/2
by adding the possibility of adding one more customer.

A Computational Comparison of Flow Formulations for the Capacitated Location-Routing Problem

CIRRELT-2011-47 17



For the separation of constraints (40) (respectively (48)) we have implemented two
heuristics. First, we fix i ∈ I and set S = ∅. Iteratively we enlarge set S by adding
the customer j /∈ S that maximizes the quantity 2y∗ij + x∗

ij + x∗(S : j) (respectively
2y∗ij + xi∗

ij + xi∗(S : j) − uij). The algorithm terminates if either d(S) ≥ Q or a violated
constraint (40) (respectively (48)) has been detected. If this fails, we check the violation
for every y-CC generated so far during the algorithm such that d(S) ≤ Q, just as done by
Belenguer et al. [6].

4.8 Path constraints

To separate constraints (6) we first shrink the graph using a safe shrinking routine. Once
the graph has been completely shrunk we find (if one exists) a violated constraint (6) using
a greedy search heuristic or, in case the first fails, a series of min-cut computations, which
yields an exact separation algorithm.

4.8.1 A safe shrinking routine

Using the same notation as before, let JS be the customer set containig the shrunk customers,
and let ω∗, φ∗ be the edge weights in the shrunk graph. The following proposition gives a
safe condition for shrinking customer nodes during the separation of constraints (6).

Proposition 4.5. For the path constraints (6) it is safe to shrink customers u, v ∈ JS such
that ω∗

uv ≥ 1 and ω∗(I : u) = ω∗(I : v) = 0.

4.8.2 Greedy search heuristic

Because solving a max-flow problem can be time-consuming, we have implemented a greedy
search heuristic that aims to find all the chains of length two or three in the shrunk graph.
We simply check for every pair or triplet of customers (in the shrunk graph) whether they
define or not a violated PC.

4.8.3 Exact separation

The problem of finding a violated inequality (6) can be solved in polynomial time [6] in the
following way. For fixed h, j ∈ J contract in the usual way (i.e., by recalculating the edge
weights properly) in the underlying graph G(V,E) nodes in I in a super-node s and nodes
h, j in a super-node t. Let us call J ′ = (J − {h, j})∪ {t}. In this new graph, let us consider
the following weight function:

x′
uv =





x∗(I : v) u = s, v ∈ J ′ \ {t}

x∗(I : {h, j}) u = s, v = t

x∗
uv u, v ∈ J ′ \ {t}

x∗
uh + x∗

uj u ∈ J ′ \ {t}, v = t.

Let us find a cut of minimum weight between s and t in this graph. Let S be the side of
this minimum cut that contains t. Then, define I1 = ∅. For every i ∈ I, if x∗

ih > x∗
ij then
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make I1 ← I1 ∪ {i}. By construction, sets S, I1 will violate constraint (6) iff they define
a violated PC. As only a polynomial number of maximum-flow problems are solved, the
method remains polynomial in |I ∪ J |.

4.9 Location-routing comb inequalities

We present a tabu search algorithm for separating a subset of constraints LRCOMB in which
|Tj ∩ I| ∈ {0, 1} for all j. Given a customer set H and t teeth Π = (Tj)

t
j=1 we call them a

pseudo-comb if they satisfy conditions (iii)-(iv) of the definition of a comb, and |Tj ∩ I| ≤ 1
for all 1 ≤ j ≤ t. Our separation algorithm proceeds in three stages: i) We search for
ǫ-strengthened comb inequalities (SCI), getting candidate handles and teeth; ii) We use a
greedy heuristic that breaks intersections (teeth can intersect in a SCI) by deleting elements
that appear in two or more teeth from those that make the violation the greatest. If all
the depots appear in a tooth, we delete all these depots except the one with the greatest
violation. This process is repeated as many times as needed in order to obtain a pseudo-
comb; iii) For every candidate pseudo-comb found after i) and ii), we proceed with the
following tabu search metaheuristic.

Let us consider a pseudo-comb C = (H,Π = (Tj)
t
j=1). Define v(C) equal to the difference

between the left-hand side of (56) and the right-hand side of (56). If C is a valid comb, then
v(C) represents the violation of the comb. Let us define the pseudo-violation µ(C) equal to

µ(C) = v(C)−
t∑

j=1

δ(H∩Tj = ∅)−
t∑

j=1

δ(Tj\H = ∅)−δ(r̂(H,Π) ≡2 0)−
t∑

j=1

δ(Λ(H, Tj) ≡2 1).

The idea of considering the pseudo-violation instead of just the violation is justified by
the fact that our procedure passes through pseudo-combs. Let T be the tabu list. A member
l of T has two components, say n(l) equal to a node and pos(l) equal to a position relative
to the comb. Here pos(l) can take four values: H \Π, H ∩Π,Π\H and (H,Π), where (H,Π)
is the set containing all nodes not in the pseudo-comb (H,Π). Constructed in this way, the
goal of the list T is to forbid the movement of a node n(l) to position pos(l) during a certain
number of iterations.

Given a pseudo-comb C = (H,Π = (Tj)
t
j=1) we consider several simple neighborhoods,

all of which can be evaluated very quickly.

N1 Pick a customer j from H \ Π and remove it from C. Add (j,H \ Π) to T.

N2 Pick a customer j from H ∩Π and remove it from H . Add (j,H ∩ Π) to T.

N3 Pick a customer j from H ∩Π and remove it from Π. Add (j,H ∩ Π) to T.

N4 Pick a customer j from Π \H and remove it from C. Add (j,Π \H) to T.

N5 Pick a facility i from Π \H and remove it from C. Add (i,Π \H) to T.

N6 Pick a customer j from C and add it to H \ Π. Add (j, C) to T.

N7 Pick a customer j from Π \H and add it to H . Add (j,Π \H) to T.
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N8 Pick a customer j from H \ Π and add it to Π. Add (j,H \ Π) to T.

N9 Pick a customer j from C and add it to Π \H . Add (j, C) to T.

N10 Pick a facility i from C and add it to Π \H . Add (i, C) to T.

The neighborhoods are sorted in such a way that removal and insertion movements are
alternated. If, after inspecting some neighborhood, we get a pseudo-violation of value greater
than the incumbent, we update the incumbent and restart. Otherwise, we continue with the
next neighborhood. We have found convenient to start the next iteration inspecting the
first neighborhood not inspected during the last iteration. If we finish inspecting all the
neighborhoods without finding any pseudo-comb with value greater than the incumbent, we
update it with the best movement found and restart. During the process we do not consider
movements of nodes to a tabu position, thus decreasing the probability of cycling. Note also
that for neighborhoods N5 and N10, the contribution to the pseudo-violation depends on
whether we are in the case 1 ≤ j ≤ s1 or s1 < j ≤ s2 in the definition of a comb. We have
chosen to make this distinction by simply considering the value of zi in the current iteration.
In fact, if zi < 0.75 we consider the first case, otherwise the second. The algorithm finishes
when we have found a valid comb with positive pseudo-violation, or when a maximum number
of iterations has been performed without success. In our experiments we have noticed that
most combs were found during the first 30 iterations. We have thus set the maximum number
of iterations to 300 for the root node and 50 for the remaining nodes.

4.10 y-Generalized large multistar inequalities

The separation problem for the y-GLM (26) can be done in polynomial time by solving a
maximum {s, t}-flow problem in the following graph G′ = (V ′, E ′). Let s and t be two
dummy nodes, and let V ′ = J ∪ {s, t}, E ′ = E(J) ∪ {{s, j} : j ∈ J} ∪ {{j, t} : j ∈ J}. With
every edge e ∈ E ′ we associate a capacity x′

e defined by

x′
e =





x∗(I : {j}) + 2
dj
Q

(
y∗(I : {j})− 1

)
e = {s, j}, j ∈ J

0 e = {j, t}, j ∈ J

x∗
e

(
1− 2

dj
Q

)
e = {h, j}, h, j ∈ J.

(60)

It is easy to check that a maximum {s, t}-flow exists in this graph with negative value
iff there is a violated y-GLM. However, note that while maximum-flow algorithms assume
positive edge capacities, this may not happen. Indeed, if 2dj ≤ Q for all j ∈ J then
the usual weight transformation on the edges joined to nodes s or t suffices. Suppose,
however, that for some j ∈ J , 2dj > Q. The following transformation proposed by Blasum
and Hochstättler [7] can be applied in order to get a non-negative weight digraph whose
minimum-cut coincides with the one we are looking for. Define for every j ∈ J the quantities
dj = min{Q

2
, dj}, dj = dj − dj. Let us consider the following weight function:

x′
e =





x∗(I : {j}) + 2
dj
Q

(
y∗(I : {j})− 1

)
e = {s, j}, j ∈ J

−2
∑

v∈J

(
dv
Q
−

dj
Q

)
x∗
jv e = {j, t}, j ∈ J

x∗
hj

(
1− 2

(
dh
Q
+

dj
Q

))
e = {h, j}, h, j ∈ J.

(61)
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It can be checked that a maximum {s, t}-flow in this modified graph is also a maximum
flow in the original graph, and thus the separation algorithm of the y-GLM is polynomially
solvable.

4.11 y-Location-routing generalized large multistar inequalities

The separation of constraints (34) is done in two stages. In the first stage, we separate what
we call the Basic y-LRGLM (B-y-LRGLM) that corresponds to a y-LRGLM in the particular
case of |H| = 1. For every H = {i} ⊂ I we run an exact polynomial-time algorithm based
on a maximum-flow computation, obtaining a candidate set S. Then, we use a greedy
algorithm for enlarging the set H by inserting at each iteration the facility that makes the
violation the greatest. For the separation of the B-y-LRGLM let us fix a facility i ∈ I. Let
Gi = (Vi = J ∪ {s, t}, Ei = δ(J) ∪ ({s} : J) ∪ (J : {t})) be the support graph, weighted as
follows:

x′
e =





xI\{i}(I : j) +
2dj
Q

(∑
l∈I\{i}(ylj − ulj)

)
e = {s, j}, j ∈ J

0 e = {j, t}, j ∈ J

x
I\{i}
hj

(
1− 2dj

Q

)
h, j ∈ J.

(62)

Again, if the weights on the edges are negative, we apply the same transformation as for
the separation of the y-GLM. It is easy to check that a violated B-y-LRGLM exists iff the
minimum {s, t}-cut in this graph is negative.

4.12 Location-routing generalized large multistar inequalities

We have implemented the following heuristic procedure for the separation of the LRGLM (57)
strengthened using as right-hand side the expression (58). First, we use an exact algorithm
for finding a ǫ-LRGLM in the particular case in which |I ′| = 1. We call these inequalities
Basic LRGLM (B-LRGLM). For every pair of sets S and I ′ = {i} found by this procedure,
we apply a greedy heuristic that iteratively enlarges I ′ and checks for the violation of the
corresponding LRGLM. The exact procedure used for the separation of the B-LRGLM is as
follows.

Let i ∈ I, and let us consider a digraph whose vertex set is J ∪ {i} ∪ {s}, where s is the
node obtained by the contraction of facilities in I \ {i}. The edge set is determined by the
non-zero weights in the arcs, given by

x′
uv =





−
dj
Q
(x∗

iu + 2y∗iu) u ∈ J, v = i

x∗(I \ {i} : u) + 2y∗(I \ {i} : u)− 2du
Q

u = s, v ∈ J

x∗
uv

(
1− 2dv

Q

)
u, v ∈ J.

It is easy to check that a violated LRGLM exists iff a minimum {s, i}-cut in this digraph
has value less than −2bi

Q
z∗i . In the case of negative weights, we apply the same procedure

already described for the separation of the y-GLM. Thus, the problem of finding a LRGLM
can be solved in polynomial time by computing a minimum {s, i}-cut in this graph.
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4.13 Lifted cover inequalities

We add LCI only at the root node. We use the algorithm of Gu et al. [12] for finding violated
LCI. For details on the algorithm we refer to Gu et al. [12].

5 The exact algorithms

We test the models, separation routines and valid inequalities introduced in this paper by
developing four branch-and-cut algorithms. The first, named VFF2, is a branch-and-cut
over the two-index vehicle-flow formulation (VF2) augmented by the valid inequalities intro-
duced in this paper except those that are specific to the three-index formulations. The second
algorithm, named VFF3, is a branch-and-cut on the three-index vehicle-flow formulation aug-
mented by all the valid inequalities. The third algorithm, named CFF2, is branch-and-cut
algorithm over the two-index two-commodity flow formulation (CF2) augmented by all the
inequalities introduced in this paper except those that are specific to the three-index formu-
lations and the y-GLM. The fourth algorithm, named CFF3, is a branch-and-cut algorithm
over the three-index two-commodity flow formulation (CF3) augmented by all the inequal-
ities except for y-GLM, LRGLM and y-LRGLM. For the two-commodity formulations, we
also replace vehicle-flow variables x with their corresponding commodity-flow variables w us-
ing identities (22) and (30) and by adding (as cutting planes) inequalities (44) and (46) for
the two-index and three-index formulations commodity-flow formulations, respectively. For
the vehicle-flow formulations, we also add inequalities (43) and (45) dynamically as cutting
planes.

5.1 The separation strategies

The separation strategies for the different formulations depend on two criteria: strength of
the inequalities and need for feasibility. Inequalities that are needed to impose feasibility
of integer solutions are thus separated first, while the rest are added as cutting planes,
and among these two families the priority is given to inequalities that, in our experiments,
have shown a bigger impact on the lower bounds. The exception are inequalities FAI that
are separated immediately after the LCI. After some preliminary tests we have found the
convenience of separating these inequalities before any other family of cuts. In addition,
inequalities ESFCI and SFCI that seem to have an important impact in formulations VFF3,
CFF2 and CFF3. Although they are not needed to impose feasibility, they are also separated
first. Taking these observations into account, we have decided to divide the inequalities into
two groups: those that are statically separated (i.e., separated in every node of the branching
tree) and those for which we dynamically decide whether to separate them or not in a certain
node of the branching tree. The criteria for selecting these dynamic cuts are explained later.
In Table 1 we describe the two groups of inequalities as well as their separation order for
each of the four different formulations considered in our study.

Note that in order to avoid errors due to floating point arithmetic, a certain tolerance
ǫ > 0 must be imposed for checking the violation of a certain cut. Moreover, if ǫ is too small,
many cuts whose violations are very close to zero will be added without much impact on
the lower bound. After a series of experiments, we have decided to use ǫ = 0.1 for all of the
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Form. Static Cuts Dynamic Cuts

VFF2
FAI (43), y-CC, ESFCI (51), LCI, FDC (40), CoCC, FrCI, y-GLM,
SFCI (49), SPC LRGLM, SCI, LRCOMB, MSI, HYP

VFF3
FAI (45), y-CC, ESFCI (52), LCI, FDC (40) and (48),
SFCI (50), y-GLM, CoCC, DCoCC, SPC, FrCI,
y-LRGLM, LRGLM SCI, LRCOMB, MSI, HYP

CFF2
FAI (44), y-CC, ESFCI (51), LCI, FDC (40), CoCC, FrCI, LRGLM
SFCI (49), SPC SCI, LRCOMB, MSI, HYP

CFF3
FAI (46), y-CC, LCI, CoCC, DCoCC, FDC (40) and (48),
ESFCI (52), SFCI (50) SPC, FrCI, SCI, LRCOMB, MSI, HYP

Table 1: Separation order of valid inequalities

cuts except for hypotour inequalities and multistar inequalities for which the tolerance was
set to ǫ = 0.4. At the root node, all families of cuts are separated. Moreover, all separation
algorithms are used for each family. More specifically, for the FrCI, the tree size is set to a
maximum of 10,000 nodes, as for the LRCOMB the number of iterations of the Tabu Search
is set to 300.

For the cutting strategy in nodes other than the root, we use the following approach. For
each family of dynamic cuts (see Table 1), say for family C, we let n(C) be the number of
times that a cut of family C has been found to be violated and thus added to the problem.
We keep track of this quantity in the different branches of the tree and at certain depths
we check whether C has been useful in the current branch. If n(C) = 0 then the family C is
not separated anymore during the current branch. For the other cuts, say those such that
n(C) > 0 the counter is reset to 0. After some testing we have decided to perform this check
for the first time at depth 10 and then for multiples of 5. In practice, we have verified that
no dynamic cuts are present after depth 25. Note also that the tree size in the separation
of the inequalities FrCI is lowered to 200 nodes, while the maximum number of iterations of
the Tabu Search algorithm for the separation of LRCOMB is lowered to 50.

Regarding the setting of the cut lifting heuristic described in Section 4.1, we have per-
formed a series of tests in order to choose the value of ǫ that fits best with every cut family.
The values that we have tested are ǫ equal to 0, 0.25, 0.50 and 1.0. For y-CC we have decided
to set ǫ = 0.25 at the root node and ǫ = 0 for the remaining nodes (recall that cuts are not
added unless they are violated by more than 0.1). For the SFCI and ESFCI we have set
ǫ = 0.25 during the whole computation.

5.2 The branching strategy

We use the following branching strategy. We first branch on location variables z. If no
variable z is fractional, we branch on cutsets. For this, we use and idea proposed in Belenguer
et al. [6]: during the root relaxation, each y-CC cut is added as an equality constraint by
adding an extra slack variable to the problem. We then let CPLEX branch on these slack
variables. For the three-index formulations, we then branch on the assignment variables u.
Finally, we branch on the vehicle-flow variables y or x (or in their equivalent expressions
using variables w in the commodity-flow formulations). We have observed that while strong

A Computational Comparison of Flow Formulations for the Capacitated Location-Routing Problem

CIRRELT-2011-47 23



branching produces the smallest branching trees, the computational effort is too high and
for hard instances it is not worthwhile. On the other hand, branching on the most fractional
variables leads to much bigger branching trees. Thus, we let CPLEX branch based on pseudo
costs, which we found to give the best balance between lower bound quality and CPU time.

6 Computational experience

In this section we describe the implementation of the algorithms as well as the results ob-
tained on a series of instances from the litterature.

The algorithms have been coded in C++ using the Concert Technology framework of
CPLEX 12.2. Tests were run on an Intel Xeon E5462, 3.0 Ghz processor with 16GB of
memory under the Linux Operating System kernel 2.6. In order to obtain results purely
related to the strength of the formulations and the cuts used in this paper, other families of
cuts added by CPLEX (such as MIR, knapsack cover, GUB, clique, etc.) have been disabled.
Finally, the node selection strategy has been set to best-first search.

We have run our algorithm on four datasets taken from the literature. The instances
descriptions are as follows:

i. Set S1 contains 17 instances adapted by Barreto [5] from other problems in the literaure.
Only three instances have facilities with limited capacities.

ii. Set S2 contains 24 randomly generated instances from the experiments of Belenguer
et al. [6]. All of the instances have facilities with limited capacities. Customer loads
are taken randomly in the interval [11, 20] and capacities are set in such a way that:
1) the average number of customers served by a vehicle is either 5 or 10, and 2) two
or three facilities are required for serving the whole demand. Note that no customer
with extremely low (10 units or less) or extremely high (more than 20 units) demands
is present.

iii. Set S3 contains 12 randomly generated instances from the experiments of Akca et al.
[1]. Facilities all have limited capacities, chosen in such a way that at least two of the
facilities must be open. The vehicle capacities are such that the average number of
customers per route is between 4 and 7, and that the longest route serves at most 8
customers.

iv. Set S4 contains 6 instances with capacitated vehicles and uncapacitated facilities from
the experiments of Tuzun and Burke [24]. The fixed costs of the facilities are relatively
low compared to the routing costs.

Additionally, sets S1 and S2 are also subdivided into small instances (those with 50
customers or less) and large instances (those having more than 50 customers). We have
used the upper bounds reported by Baldacci et al. [4] as cutoff values during the branch-
and-bound search. The idea is to measure the efficiency of each of the formulations for
closing the optimality gap. For a self-contained methodology, these upper bounds should
be obtained by a suitable heuristic, which is beyond the scope of this paper. The data sets
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can all be obtained from the website http://www.crt.umontreal.ca/∼ccontard. We have
designed and implemented five sets of experiments.

In the first set of experiments, we compute the linear relaxation lower bound for each of
the four formulations, and compare their quality as well as the CPU time taken by each of
them. The results are reported in Tables 2-5. In these tables, columns labeled z∗ represent
the upper bound for each instance. Columns labeled gap (%) and t (s) stand for the relative
gap (for a given lower bound zlb it is computed as (z∗ − zlb)/z

∗ × 100) and the CPU time in
seconds. As shown by these tables, algorithms VFF3 and CFF3 normally produce the tightest
lower bounds, at the expense of much larger computing times. However, algorithms VFF2
and CFF2 are the fastest to compute their respective lower bounds. There are two possible
readings for these results. On the one hand, compact two-index formulations give reasonably
good lower bounds in very short computing times. Therefore, much larger branching trees
can be inspected during the same amount of time, with respect to formulations with more
variables. On the other hand, the lower bounds obtained by three-index formulations are in
some cases much tighter than the ones obtained by the two-index formulations. Therefore,
the structure of the CLRP is better captured in the former case, and in some instances the
differences are dramatic (like on instances of set S4). One could thus ask, whether it is
possible or not to tighten two-index formulations with valid inequalities so to produce lower
bounds that are comparable to those obtained by three-index formulations.

In the second set of experiments, we have run the four algorithms for a maximum time
of two hours. The objective is to test and compare their efficiency to rapidly solve some rel-
atively easy instances. In Tables 6-9, columns are similar to previous tables. We have added
a column labeled nodes that reports the number of nodes inspected during the branching
tree. As we can see, formulation VFF2 gives the best results on average. Indeed, it is able
to solve 32 instances, four more than VFF3, three more than CFF2 and 6 more than CFF3.
However, three-index formulations produce tighter gaps on instances ppw-50x5-0b and ppw-
50x5-2b. This suggests that two-index formulations are not able in those cases to capture
some important underlying information of the CLRP structure that is indeed beneficial to
three-index formulations. Moreover, instance ppw-50x5-0b is solved to optimality only by
formulation VFF3. The overall conclusion is that compact two-index formulations produce
the best average results at the expense of underestimating some important information.

In the third set of experiments, we have run the algorithms for a maximum time of 12
hours. The objective is to measure the efficiency of each formulations for solving of some
hard instances of the CLRP. The results are summarized in Tables 10-13. The columns are
the same as for the previous experiments. Now, the number of instances solved is 32 for
VFF2 and VFF3, 30 for CFF2 and 29 for CFF3. Note that this increase in the cpu time
has a marginal impact on the performance of two-index formulations, whereas three-index
formulations seem to scale better. The is due mainly to the fact that branching has a lower
impact on trees of large size, which is typically the case with compact two-index formulations.

In the fourth set of experiments, we compare algorithm VFF2 against the branch-and-
cut algorithm of Belenguer et al. [6]. In Table 14, headers # instances, # solved and avg.
gap stand for the total number of instances, the number of instances solved to optimality
and the average optimality gap on each subset of instances. Our implementation of the
branch-and-cut algorithm VFF2 is able to produce tighter gaps in average than the one of
Belenguer et al. [6]. Moreover, our algorithm scales to solve some large instances with up
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to 100 customers (ppw-100x10-2b, P112212, P113212), while the method of Belenguer et al.
[6] was able to solve instances with up to 50 customers. Several refinements in our imple-
mentation might explain these results, including the use of stronger inequalities, efficient
separation algorithms, as well as the dynamic separation strategy during the branching tree
that deactivates cuts that do not seem promising in a certain branch.

In the fifth and last set of experiments, we compare the results obtained by our branch-
and-cut algorithms against the branch-and-cut-and-price method of Baldacci et al. [4]. In
Table 15 we summarize the number of instances solved by their method (column BMW)
against the instances solved by all of our methods (column FF). As shown in this table, the
branch-and-cut-and-price method of Baldacci et al. [4] is able to solve much more instances
than all of the flow formulations together. This is not a surprising result since column gen-
eration algorithms are based on much tighter formulations. However, it is worth noticing
that their method failed to solve instance ppw-50x5-2b which has been solved by algorithm
VFF3, and also solves instance ppw-50x5-0b in a much longer time than VFF3, which sug-
gests that some of the inequalities introduced in this paper would deserve being included
into set-partitioning formulations.

7 Concluding Remarks

We have introduced three new flow formulations for the CLRP that dominate, in terms of the
linear relaxation lower bound, the previous two-index vehicle-flow formulation of Belenguer
et al. [6]. We derive new valid inequalities for each of the formulations and strengthen some of
the previously known inequalities. In addition, we are able to obtain new classes of multistar
inequalities for the vehicle-flow formulations as linear combinations of the degree constraints
and assignment constraints for the commodity-flow formulations. For each of the inequalities
used in this paper, we introduce separation algorithms that are either new or that generalize
the separation methods introduced by Belenguer et al. [6]. We have implemented suitable
branch-and-cut algorithms using each of the three formulations introduced in this paper plus
the original two-index vehicle-flow formulation and present computational results comparing
them. The results show that, in most cases, compact formulations produce the tightest
gaps in the long run due to their ability to perform more branching nodes. However, on
some hard instances where facility capacities are important, three-index formulations seem
to be the right choice (like on instances ppw-50x5-0b, ppw-50x5-2b, ppw-100x5-3b, ppw-
100x10-3b). This is a direct consequence of an important drawback of compact two-index
formulations with respect to three-index formulations, and it is the fact that it is not possible
to follow the flow leaving from a facility at every single node of the graph. We also compare
the algorithms used in this paper against the state-of-the-art solvers for solving the CLRP,
namely the branch-and-cut method of Belenguer et al. [6] and the branch-and-cut-and-price
of Baldacci et al. [4]. The results show that our implementation of the branch-and-cut on the
two-index vehicle-flow formulation produces tighter gaps than the one of Belenguer et al. [6],
and is able to scale and solve large instances with up to 100 customers. The branch-and-cut-
and-price algorithm of Baldacci et al. [4] in general outperforms the flow-based algorithms;
however, it is worth remarking that on two instances (ppw-50x5-0b, ppw-50x5-2b) the three-
index formulation obtained tighter gaps, and even solved ppw-50x5-2b which no other exact
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method did before. These results suggest that taking into consideration the facilities from
where the flow originates has significant impact on the performance of an exact algorithm. As
an avenue of future research, we believe that embedding some of the inequalities introduced
in this paper into a branch-and-cut-and-price algorithm could result in a more robust exact
algorithm for the CLRP.
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Instance z∗
VFF2 VFF3 CFF2 CFF3

gap (%) t (s) gap (%) t (s) gap (%) t (s) gap (%) t (s)
Perl83-12x2 204.00 0.61 0.01 0.00 0.03 0.48 0.08 0.00 0.03
Gas67-21x5 424.90 3.99 0.21 3.12 0.84 4.12 0.44 2.98 0.53
Gas67-22x5 585.11 0.10 0.04 0.10 0.24 0.10 0.07 0.10 0.41
Min92-27x5 3062.02 5.62 0.29 2.15 2.26 6.24 0.39 2.64 1.32
Gas67-29x5 512.10 4.89 0.46 3.26 2.11 4.76 1.90 3.64 1.74
Gas67-32x5 562.22 5.72 0.51 3.90 3.59 5.72 1.26 4.05 1.33
Gas67-32x5-2 504.33 3.27 0.80 1.86 2.17 3.24 1.25 2.19 1.29
Gas67-36x5 460.37 1.30 1.40 1.16 8.28 1.35 5.35 0.71 9.42
Chr69-50x5ba 565.62 5.62 3.74 4.41 14.32 5.63 6.40 3.83 6.76
Chr69-50x5be 565.60 8.85 3.04 7.34 16.15 8.82 15.44 5.90 5.45
Perl83-55x15 1112.06 3.42 6.17 2.44 676.90 3.42 14.29 2.06 64.25
Chr69-75x10ba 886.30 14.47 23.54 11.67 1406.12 14.63 164.87 11.47 306.63
Chr69-75x10be 848.85 10.42 15.25 7.77 1920.82 9.84 227.24 7.40 284.03
Chr69-75x10bmw 802.08 9.27 20.18 6.68 1165.53 9.69 92.79 6.58 237.99
Perl83-85x7 1622.50 2.53 18.93 2.06 966.41 2.53 199.44 1.96 153.35
Das95-88x8 355.78 5.73 13.15 4.81 1028.53 6.03 66.88 4.73 336.98
Chr69-100x10 833.43 4.89 9.71 4.07 2299.52 4.82 51.37 3.79 709.63

Average 5.34 6.91 3.93 559.64 5.38 49.97 3.77 124.77
Average in small instances 4.00 1.05 2.73 5.00 4.05 3.26 2.60 2.83
Average in large instances 7.25 15.28 5.64 1351.98 7.28 116.70 5.43 298.98

Table 2: Gaps and CPU times after linear relaxation on instances of set S1
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Instance z∗
VFF2 VFF3 CFF2 CFF3

gap (%) t (s) gap (%) t (s) gap (%) t (s) gap (%) t (s)
ppw-20x5-0a 54793 4.57 0.35 3.74 1.00 4.54 0.83 3.89 0.68
ppw-20x5-0b 39104 0.00 0.02 0.00 0.10 0.00 0.04 0.00 0.14
ppw-20x5-2a 48908 2.71 0.26 2.31 0.59 2.78 0.76 2.35 0.53
ppw-20x5-2b 37542 0.00 0.01 0.00 0.06 0.00 0.02 0.00 0.10
ppw-50x5-0a 90111 10.94 27.10 5.98 100.66 10.89 51.78 5.88 26.38
ppw-50x5-0b 63242 7.50 5.05 6.64 28.54 7.76 14.70 6.67 16.58
ppw-50x5-2a 88298 7.52 5.08 5.81 36.84 7.50 17.22 5.84 11.04
ppw-50x5-2b 67308† 5.63 2.75 5.74 16.20 5.66 12.78 5.72 16.38
ppw-50x5-2a’ 84055 1.95 29.50 1.89 65.33 1.97 125.81 1.93 25.09
ppw-50x5-2b’ 51822 0.86 1.76 0.72 19.48 0.85 3.51 0.82 9.82
ppw-50x5-3a 86203 10.23 14.67 5.15 72.97 10.20 52.76 5.26 25.99
ppw-50x5-3b 61830 6.26 4.38 5.30 23.36 5.84 9.94 5.22 9.67
ppw-100x5-0a 274814 3.56 2509.03 2.82 4955.67 3.59 3117.51 2.86 1218.73
ppw-100x5-0b 214392 3.21 391.48 3.09 5605.32 3.18 1508.11 3.33 10298.00
ppw-100x5-2a 193671 3.77 365.93 2.17 2402.35 3.81 3127.55 2.21 460.93
ppw-100x5-2b 157173 2.34 83.27 1.91 816.75 2.32 613.30 1.96 365.99
ppw-100x5-3a 200079 8.82 108.07 2.23 2331.79 8.81 1664.74 2.39 441.84
ppw-100x5-3b 152441 5.08 27.40 2.62 792.25 5.08 148.33 2.66 163.83
ppw-100x10-0a 289018 7.88 1133.84 5.78 7281.82 7.34 4708.86 4.97 1249.72
ppw-100x10-0b 234641 4.74 147.20 4.53 4060.38 4.78 1235.21 4.45 1638.18
ppw-100x10-2a 243590 4.07 1473.84 3.28 7285.58 4.11 3823.62 3.21 1214.73
ppw-100x10-2b 203988 2.50 90.42 2.48 1928.96 2.46 612.71 2.34 1308.84
ppw-100x10-3a 252421 8.65 740.38 6.17 7228.90 8.72 3433.17 6.28 1188.19
ppw-100x10-3b 204597 5.00 112.22 4.75 4384.28 4.99 1011.74 4.60 857.56

Average 4.91 303.08 3.55 2059.97 4.88 1053.96 3.53 856.21
Average in small instances 4.85 7.58 3.61 30.43 4.83 24.18 3.63 11.87
Average in large instances 4.97 598.59 3.49 4089.50 4.93 2083.74 3.44 1700.55
† New upper bound found.

Table 3: Gaps and CPU times after linear relaxation on instances of set S2

Instance z∗
VFF2 VFF3 CFF2 CFF3

gap (%) t (s) gap (%) t (s) gap (%) t (s) gap (%) t (s)
cr30x5a-1 819.5 3.33 0.89 2.06 3.71 3.29 1.62 2.99 2.09
cr30x5a-2 821.5 5.89 0.41 5.29 2.61 5.90 0.97 4.92 1.67
cr30x5a-3 702.3 0.56 0.71 0.09 2.52 0.73 1.22 0.38 2.66
cr30x5b-1 880.0 7.39 0.52 5.91 3.00 7.35 1.55 5.61 1.35
cr30x5b-2 825.3 3.52 1.31 1.65 3.71 3.62 3.31 1.72 1.54
cr30x5b-3 884.6 3.33 1.09 2.14 4.47 3.25 2.73 2.20 2.01
cr40x5a-1 928.1 8.95 1.32 8.01 9.20 8.96 3.28 7.08 2.01
cr40x5a-2 888.4 8.83 1.04 6.17 9.91 8.92 1.95 6.09 3.63
cr40x5a-3 947.3 7.47 2.48 6.31 9.43 7.45 7.56 5.50 4.91
cr40x5b-1 1052.0 10.26 2.80 6.64 16.68 10.13 6.70 6.52 4.66
cr40x5b-2 981.5 8.57 1.26 3.70 16.18 8.42 4.55 3.79 5.41
cr40x5b-3 964.3 4.51 2.32 2.92 17.40 4.46 8.22 2.94 3.94

Average 6.05 1.35 4.24 8.23 6.04 3.64 4.14 2.99

Table 4: Gaps and CPU times after linear relaxation on instances of set S3
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Instance z∗
VFF2 VFF3 CFF2 CFF3

gap (%) t (s) gap (%) t (s) gap (%) t (s) gap (%) t (s)
P111112 1467.69 12.64 16.31 7.94 2180.38 12.60 119.93 6.91 313.17
P111212 1394.8 15.92 41.04 11.37 1763.18 15.91 214.59 9.09 451.88
P112112 1167.16 11.69 42.24 3.69 3245.86 11.91 339.71 3.72 547.29
P112212 791.66 19.99 53.95 2.97 1021.34 20.01 111.13 2.94 274.73
P113112 1245.45 19.27 31.51 7.84 4987.70 19.51 130.71 7.74 637.84
P113212 902.26 16.49 83.95 1.82 4383.76 16.90 774.21 1.96 1601.76

Average 16.00 44.83 5.94 2930.37 16.14 281.71 5.39 637.78

Table 5: Gaps and CPU times after linear relaxation on instances of set S4

A Computational Comparison of Flow Formulations for the Capacitated Location-Routing Problem
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Family # instances
BBPPW VFF2

# solved avg. gap # solved avg. gap
S1 small 10 8 0.00 10 0.00†

S1 large 7 0 2.84 1 1.63†

S2 small 12 6 0.70 6 0.55
S2 large‡ 12 0 – 1 1.89
S3 all 12 12 0.00 12 0.00
S4 all‡ 6 0 – 2 1.63

Total 59 26 32
† Including only instances reported also in Belenguer et al. [6].

‡ Instances not reported in Belenguer et al. [6].

Table 14: Overall results comparison on branch-and-cut algorithms

Family # instances
BMW FF

# solved # solved
S1 small 10 10 10
S1 large 7 5 1
S2 small 12 12 8
S2 large 12 6 1
S3 all 12 12 12
S4 all 6 5 2

Total 59 50 34

Table 15: Overall results comparison against method of Baldacci et al. [4]
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A Proofs of lemmas and propositions

Proof of Proposition 2.1 It is direct to check that inequalities (24)-(25) imply the follow-
ing inequalities

Qwji ≤ (Q− dj)(wij + wji) {i, j} ∈ E (63)

Qwij ≥ dj(wij + wji) {i, j} ∈ E. (64)
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By adding identities (19) for customers j ∈ S and after reducing we obtain

w(δ−(S)) + 2
∑

j∈S

djy(I : {j}) = w(δ+(S)) + 2d(S)

By adding w(δ+(S)) at both sides of the identity above and after using identities (22) we
obtain at the left-hand side Qx(δ(S)) + 2

∑
j∈S djy(I : {j}). The desired right-hand side is

obtained after using constraint (64) for w(δ+(S)).

Proof of Proposition 2.2 It is easy to see that the (DFI) imply the following inequalities

Qwi
jh ≤ (Q− dj)(w

i
hj + wi

jh) i ∈ I, {h, j} ∈ E (65)

Qwi
hj ≥ dj(w

i
hj + wi

jh) i ∈ I, {h, j} ∈ E (66)

By adding the flow conservation equations (27) for customers j ∈ S and facilities i ∈ I\H
we obtain

wI\H(δ−(S)) + 2
∑

j∈S

djy(I \H : {j}) = wI\H(δ+(S)) + 2
∑

i∈I\H

∑

j∈S

djuij

By adding wI\H(δ+(S)) at both sides of the above identity its left-hand turns to be equal
to QxI\H(δ(S)) + 2

∑
j∈S djy(I \ H : {j}). For the right-hand size, we make use of the

inequalities (65)-(66) in order to get wI\H(δ+(S)) ≥
∑

h∈S
j /∈S

djx
I\H
hj .

Proof of Proposition 3.1 if xi(F ) < |F | then the constraint is trivially satisfied. If
xi(F ) = |F |, then all the edges of F are used by vehicles linked to facility i. Since |F |
is odd, it follows that at least one edge, also linked to facility i, must be used in δ(S)\F .

Proof of Proposition 3.2 if
∑

j∈S uij = t, then exactly t customers in S are served from
facility i. For those customers, say S ′, given that d(S ′) ≤ Q, and given that the triangular
inequality holds between distances, then the customers in S ′ must be served all by the same
vehicle. Indeed, if more than one vehicle serves S ′, then it is always possible to serve them
at lower cost by a single vehicle.

Proof of Proposition 3.3 If y(I \ I ′ : S ′) = y(I \ I ′ : S ′′) = |S ′′| then x((I \ I ′) ∪ S : S) =
x((I \ I ′) ∪ (S \ S ′′) : S \ S ′′), and then

x((I \ I ′) ∪ S : S) + 2y(I \ I ′ : S \ S ′) = x((I \ I ′) ∪ (S \ S ′′) : S \ S ′′) + 2y(I \ I ′ : S \ S ′′)

≥ r(S \ S ′′, I ′)

≥ r(S \ S ′, I ′)

= r(S, I ′).
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Proof of Proposition 3.4 Let S ′′ ⊆ S ′ such that y(I \ I ′ : S ′) = y(I \ I ′ : S ′′) = |S ′′|. This
means that customer set S ′′ is served by single vehicles from I \ I ′. Thus, x((I \ I ′) ∪ S :
S) = x((I \ I ′) ∪ (S \ S ′′) : S \ S ′′) so

x((I \ I ′) ∪ S : S)+2y(I \ I ′ : S \ S ′) = x((I \ I ′) ∪ (S \ S ′′) : S \ S ′′) + 2y(I \ I ′ : S \ S ′′)

≥ 2r(S \ S ′′, I ′ \ {i}) + 2zi(r(S \ S
′′, I ′)− r(S \ S ′′, I ′ \ {i}))

≥ 2r(S \ S ′, I ′ \ {i}) + 2zi(r(S \ S
′, I ′)− r(S \ S ′, I ′ \ {i}))

= 2r(S, I ′ \ {i}) + 2zi(r(S, I
′)− r(S, I ′ \ {i})).

Proof of Proposition 3.5 Let us consider the SFCI and ESFCI in their weaker version
that does not consider the subsets S ′. These constraints can be written using the degree
constraints as x(E(S))+ 1

2
x(I ′ : S)+ y(I ′ : S) ≤ |S| − r(S, I ′) (for the SFCI) and x(E(S))+

1
2
x(I ′ : S) + y(I ′ : S) ≤ |S| − r(S, I ′ \ {i}) + zi(r(S, I

′ \ {i})− r(S, I ′)) (for the ESFCI). We
have

2αx ≤
∑

u∈H

x(δ(u)) +
2∑

k=1

sk∑

j=1

(x(E(T k
j )) + x(E(T k

j \H)) + x(E(T k
j ∩H)))

≤ 2|H|+
2∑

k=1

sk∑

j=1

(x(E(T k
j )) + x(E(T k

j \H)) + x(E(T k
j ∩H))).

We now use the ESFCI in their inner form for 1 ≤ j ≤ s′1:

x(E(T 1
j )) ≤

1

2
x(Ij : S

1
j ) + y(Ij : S

1
j ) + |S

1
j | − r(S1

j , Ij \ {ij})

+ zij (r(S
1
j , Ij \ {ij})− r(S1

j , Ij))

≤
1

2
x(Ij : J) + y(Ij : J) + |S

1
j | − r(S1

j , Ij \ {ij})

+ zij (r(S
1
j , Ij \ {ij})− r(S1

j , Ij))

x(E(T 1
j \H)) ≤

1

2
x(Ij : S

1
j \H) + y(Ij : S

1
j \H) + |S1

j \H| − r(S1
j \H, Ij \ {ij})

+ zij (r(S
1
j \H, Ij \ {ij})− r(S1

j \H, Ij))

≤
1

2
x(Ij : J) + y(Ij : J) + |S

1
j \H| − r(S1

j \H, Ij \ {ij})

+ zij (r(S
1
j \H, Ij \ {ij})− r(S1

j \H, Ij))

x(E(T 1
j ∩H)) ≤|S1

j ∩H| − r(S1
j ∩H)

and then

x(E(T 1
j ))+x(E(T 1

j \H))+x(E(T 1
j ∩H)) ≤ x(Ij : J)+2y(Ij : J)+2|S1

j |+zijΛ(H, T 1
j )−r̂(H, T 1

j ).

For s′1 < j ≤ s1 we do a similar development obtaining

x(E(T 1
j )) + x(E(T 1

j \H)) + x(E(T 1
j ∩H)) ≤ x(Ij : J) + 2y(Ij : J) + 2|S1

j | − r̂(H, T 1
j ).

A Computational Comparison of Flow Formulations for the Capacitated Location-Routing Problem

40 CIRRELT-2011-47



For the remaining teeth we have

x(E(T 2
j )) + x(E(T 2

j \H)) + x(E(T 2
j ∩H)) ≤ 2|S2

j | − r̂(H, T 2
j ).

Then, adding all these terms and bounding we obtain

2αx ≤ 2|H|+
∑

1≤j≤s1

(x(Ij : J) + 2y(Ij : J))+
∑

1≤j≤s′
1

zijΛ(H, T 1
j )+2

∑

k=1,2

∑

1≤j≤sk

|Sk
j |− r̂(H,Π).

As x(Ij : J) + 2y(Ij : J) is even for 1 ≤ j ≤ s1, Λ(H, T 1
j ) is even for 1 ≤ j ≤ s′1 and

r̂(H,Π) is odd, after dividing by 2 and rounding the result follows.

Proof of Lemma 3.6 If S ⊆ WI′ then d(S ∪ T ) ≤ b(I ′) and the result is implied by the
SFCI. If S ⊆W I′ then x(E(S)) + 1

2
x(I ′ : S) + y(I ′ : S) ≤ |S| − 1

Q
d(S) ≤ |S| − 1

Q
(d(S ∪ T )−

b(I ′)). If S = S1 ∪ S2, S1 = S ∩WI′, S2 = S ∩W I′, then x(E(S)) + x(I ′ : S) + y(I ′ : S) =∑
i=1,2 x(E(Si)) +

1
2
x(I ′ : Si) + y(I ′ : Si) ≤ |S1|+ |S2| −

1
Q
(d(S1 ∪ T )− b(I ′) + d(S2)).

Proof of Proposition 3.7 First, note that constraint (57) can be written, using the degree
constraints, in the following equivalent form:

x(E(S)) + 1
2
x(I ′ : S) + y(I ′ : S) + 1

Q

∑

j /∈S

djη(I
′, S, j) ≤ |S| − 1

Q
(d(S)− b(I ′)). (67)

Let us decompose the set S into three subsets S0 = {j ∈ S : η(I ′, S, j) = 0}, S1/2 = {j ∈
S : η(I ′, S, j) = 1/2} and S1+ = {j ∈ S : η(I ′, S, j) ≥ 1}. Using this for the summation in
the left-hand side of the equation (67) we have

∑

j /∈S

djη(I
′, S, j) =

1

2
d(S1/2) +

∑

j∈S1+

djη(I
′, S, j). (68)

But now, the second term of this last expression can be decomposed and bounded above
as follows:

∑

j∈S1+

djη(I
′, S, j) =

∑

j∈S1+

(dj −Q)η(I ′, S, j) +Q
∑

j∈S1+

η(I ′, S, j)

≤ d(S1+)−Q|S1+|+Q
∑

j∈S1+

η(I ′, S, j).

Thus, the left-hand side of constraint (67) can be bounded above by

x(E(S)) + 1
2
x(I ′, S) + y(I ′, S) + 1

2Q
d(S1/2) +

1
Q
d(S1+)− |S1+|+

∑

j∈S1+

η(I ′, S, j). (69)

But now, we have

x(E(S))+1
2
x(I ′, S)+y(I ′, S)+

∑

j∈S1+

η(I ′, S, j) ≤ x(E(S∪S1+))+
1
2
x(I ′, S∪S1+)+y(I ′, S∪S1+).
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Using this, (69) can be bounded above by

x(E(S ∪ S1+)) +
1
2
x(I ′, S ∪ S1+) + y(I ′, S ∪ S1+) +

1
2Q

d(S1/2) +
1
Q
d(S1+)− |S1+|.

Now, as S1/2 ⊆ WI′ we can apply the lemma and thus this last expression can be bounded
above by

|S ∪ S1+| −
1
Q
(d(S ∪ S1+ ∪ S1/2)− b(I ′)) + 1

2Q
d(S1/2) +

1
Q
d(S1+)− |S1+|

≤ |S| − 1
Q
(d(S)− b(I ′)).

Proof of Lemma 4.1 Let h, j ∈ JS be such that ω∗
hj ≥ 1 or [φ∗

ih ≥ 1 and φ∗
ij ≥ 1]. Let

S ⊆ JS be a customer set crossing {h, j}, i.e., S∩{h, j}, S\{h, j} and {h, j}\S 6= ∅. Without
loss of generality we suppose that j ∈ S, h /∈ S. We will show that T = S ∪ {h} produces a
violation of value at least that of S. Let us define σi(T ) = ω∗((I\{i})∪T : T )+2φ∗(I\{i} : T ).
Because r(S, {i}) ≤ r(T, {i}) it suffices to show that σi(T ) ≤ σi(S). In fact

σi(T )− σi(S) =[ω∗(δ(T )) + 2φ∗(I : T )]− [ω∗(δ(S)) + 2φ∗(I : S)]

+ [ω∗(i : S)− ω∗(i : T )] + 2[φ∗(i : S)− φ(i : T )]

=[ω∗(δ(T )) + 2φ∗(I : T )]− [ω∗(δ(S)) + 2φ∗(I : S)]− [ω∗
ih + 2φ∗

ih].

The submodularity of the cut function implies

[ω∗(δ(T )) + 2φ∗(I : T )]− [ω∗(δ(S)) + 2φ∗(I : S)] ≤

[ω∗(δ({h, j})) + 2φ∗(I : {h, j})]− [ω∗(δ(j)) + 2φ∗(I : j)]

and then

σi(T )− σi(S) ≤ ω∗(δ(h)) + 2φ∗(I : h)− 2ω∗
hj − (ω∗

ih + 2φ∗
ih)

≤ 2− 2ω∗
hj − (ω∗

ih + 2φ∗
ih).

The result follows by applying the shrinking hypothesis.

Proof of Lemma 4.2 Let T ⊆ JS and h ∈ T be such that φ∗
ih = 1, d∗h ≤ Q. Let us

denote S = T \ {h}. Because h is linked only to facility i, we have ω∗((I \ {l}) ∪ S : S) =
ω∗((I \ {l}) ∪ T : T ). We also have φ∗(I \ {l} : S) = φ∗(I \ {l} : T ) − 1. It follows that
ω∗((I \ {l})∪S : S) + 2φ∗(I \ {l} : S) = ω∗((I \ {l})∪ T : T ) + 2φ∗(I \ {l} : T )− 2. If T and
k violate a BFCI then ω∗((I \ {l})∪ T : T ) + 2φ∗(I \ {l} : T ) < 2r(T, {l}) ≤ 2(r(S, {l}) + 1)
and the result follows.

Proof of Lemma 4.4 S1, S2 are not connected between them nor with facility i, i.e., x∗(S1 :
S2) = x∗(i : S2) = y∗(i : S2) = 0. Suppose that (i, S) defines a violated BFCI, i.e.,

x∗((I \ {i} : S : S) + 2y∗(I \ {i} : S) < 2r(S, {i}).
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But given that S1 and S2 lie in different connected components we have

x∗((I \ {i} : S : S) + 2y∗(I \ {i} : S) = x∗(δ(S2)) + 2y∗(I : S2)

+ x∗((I \ {i}) ∪ S1 : S1) + 2y∗(I \ {i} : S1).

Joining both relationships and taking into account that S2 satisfies the CC we have

x∗((I \ {i}) ∪ S1 : S1) + 2y∗(I \ {i} : S1) < 2r(S, {i})− [x∗(δ(S2)) + 2y∗(I : S2)]

≤ 2r(S, {i})− 2r(S2)

≤ 2r(S1, {i})

and the result follows.

Proof of Proposition 4.5 Let S ⊆ JS be a customer set in the shrunk graph crossing the
set {u, v}, i.e., S ∩ {u, v}, S \ {u, v}, {u, v} \ S 6= ∅. Without loss of generality, we suppose
that u ∈ S, v /∈ S. We will show that the set T = S ∪ {v} induces a violation of value at
least the same as that induced by S. First note that if u or v take the role of nodes h or j in
inequality (6) then it will not be violated. As a consequence of this, nodes that can take the
place of h or j are among those that have not been shrunk. Let us compute the left-hand
side of inequality (6) for S and T , that we denote as α(S) and α(T ), respectively, and see
that they satisfy the following relationship:

α(T ) = α(S) + ω∗(δ(v))− 2ω∗(v : S)

≤ α(S).

As the right hand side of the inequality is the same for both S and T , the violation
incurred by set T is bigger than that of S and the result follows.
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