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Abstract. This article deals with the deployment and redeployment of emergency 

vehicles, which is one of the main problems in Emergency Medical Services (EMS) 

management. Although the deployment of emergency vehicles has been extensively 

addressed in the literature, the originality of this article is that it explicitly considers the 

redeployment of vehicles – in our case, ambulances – based on cyclic changes in service 

demand (e.g., based on population movements during the day from residential areas to 

the workplace and vice-versa). We introduce a multi-period approach to take into account 

such service demand changes. The vehicle deployment plan is chosen to simultaneously 

maximize coverage and minimize vehicle relocation between periods. We propose a 

mathematical model that allows small to medium instances of the problem to be solved. In 

order to tackle large instances corresponding to real-life situations, we propose two 

heuristic approaches. We then evaluate the performance of our heuristics using a set of 

randomly-generated instances. 
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1. Introduction 

From an operational point of view, Emergency Medical Services (EMS) management is a 

series of chronological steps, each of them requiring precise decisions and actions. The 

process starts with a call to an emergency call center (e.g., 911 in North America), where 

an employee handles the call. The incoming call is categorized according to a Medical 

Priority Dispatch System (MPDS), which assigns a medical determinant and a priority to 

the call.  Pre-arrival instructions, which depend on the injury or illness type and severity, 

are given to the caller over the phone.  The incident is geographically located (i.e., geo 

validated) and sent to the queue of the dispatcher responsible for the region from which 

the call originated. According to the priority of the call and the number of emergency 

vehicles available, the dispatcher selects a vehicle and assigns it to the call. If no vehicle 

is available, the dispatcher leaves the call in the queue. 

The emergency vehicle – in our case, the ambulance – travels to the location given by the 

dispatcher. Once it arrives, emergency medical technicians (EMTs) treat the patient and 

prepare him/her to be transferred to the hospital. Depending on the clinical and 

operational criteria, the dispatcher chooses the most appropriate destination hospital for 

the patient. Then, the ambulance leaves the emergency location and transports the patient 

to the hospital. When the ambulance arrives at the hospital, the patient is transferred to 

the emergency room (ER). After the EMTs complete the administrative tasks associated 

with the patient, the ambulance becomes available again. At this point, the ambulance can 

be assigned a new incident, or it can be sent to a stand-by point where it waits for a new 

mission. Although this well-defined process models most EMS operations all over the 

world, the way in which decisions are made, especially the way in which vehicles are 

deployed over the territory, deeply influence the operational performance of this process. 

From a managerial point of view, designing a deployment plan consists of locating a 

number of emergency vehicles to provide an adequate level of service. Three major 

questions need to be answered: How many vehicles are to be deployed? Where to deploy 

them? and What is meant by an "adequate" level of service? 

The answers to the first and second questions greatly depend on the service level required 

by the organization. In fact, given a coverage time target, service managers try to locate 
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their vehicles in order to satisfy one or more criterion, such as minimize the number of 

required vehicles, minimize the average distance between vehicles and demand points, 

and/or maximize the probability of reaching an emergency location within the coverage 

time, among others. For the answer to the third question, the service level in EMS context 

is often measured in terms of the response time, which is the time between receiving the 

call and the moment when an ambulance reaches the emergency location. EMS also use 

the concept of coverage time, which is defined as the maximum acceptable response time. 

Thus, a service demand point is only considered to be covered if a call from this point can 

be served within a predetermined coverage time. It follows that, since EMS operations 

are stochastic in nature, EMS define an "adequate" service level in practice as the 

probability of reaching any emergency location in less than the predetermined coverage 

time. 

This article focuses on the tactical problem of locating emergency vehicles while taking a 

dynamic demand into account.  As the demand changes over time, different location 

plans need to be designed, requiring redeploying the vehicles when passing from one plan 

to another. The originality of this article is that it explicitly considers the redeployment of 

vehicles based on cyclic changes in service demand. For example, the daily population 

movements are characterized by the concentration of the population in urban areas during 

working hours (i.e., morning and early afternoon), while in the evening the population 

returns to their homes in the suburbs or outskirts of the cities. 

In general, the average demand during the night is lower than other time periods during 

the day. Thus, since the fleet must be positioned in terms of the demand, the vehicle 

location in the morning, in the evening or at night may be different. In addition, the 

location plan must be designed in a way that minimizes the redeployments or transitions 

between the various plans. The redeployment of empty vehicles is almost unavoidable but 

should be minimized. 

This article presents a mathematical model of the problem with dynamic, cyclical 

demands. In addition, two heuristic approaches are proposed, and their solutions are 

compared to those of the mathematical model. These approaches were tested on 

randomly-generated instances that reflect real-life conditions. 

Dynamic Management of an Emergency Vehicle Fleet: Deployment and Redeployment of Ambulances

2 CIRRELT-2011-48



The paper is organized as follows. The next section provides a brief review of the 

literature. Sections 3 and 4 introduce the mathematical model and our two heuristic 

respectively, while section 5 reports the results of our numerical experiments. Finally, 

section 6 presents our conclusions. 

2. Literature review 

Although different EMS operate in relatively similar contexts, the rules and processes 

used can vary from one city to another and from one country to another. However, by 

analyzing different contexts, it is possible to identify some common features of their 

management processes. For example, in most cases, the territory to be served is divided 

into sub-areas. Some form of coordination between different sub-area operations is 

usually observed. Several types of EMS vehicles can be used to respond to service 

requests: Basic Life Support vehicle (BLS), Advanced Life Support vehicles (ALS), and 

Ambulance for Obese Patients (AOP). New technologies, including geographic 

information systems (GIS), are increasingly adopted, bringing with them new 

management opportunities. Finally, the emergency transport and the inter-hospital 

transport are managed separately in some cases and, in other cases, together. 

The problem of ambulance deployment is often reduced to the Covering Location 

Problem (CLP). The CLP tries to locate a number of vehicles in a given space to cover a 

given demand. Brotcorne et al. (2003) and ReVelle and Eiselt (2005) review the literature 

related to the location and management of emergency vehicles. The literature identifies 

three main versions of the problem according to the nature of demand: the location of 

emergency vehicles in a purely deterministic context, in a probabilistic context, and in a 

dynamic deterministic context. 

 Most of the research in the literature belongs to the first category. Thus, the seminal 

research of Torregas et al. (1971) and Church and ReVelle (1974) has led to numerous 

extensions, including the work of Schilling et al. (1979), Hogan and ReVelle (1986) and 

Gendreau et al. (1997). However, in these models, the coverage of the population can 

become insufficient if one or more vehicles are occupied. A possible way to mitigate this 

drawback consists of adding a probabilistic component to measure the probability that a 

vehicle is occupied. 
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Daskin (1983) was the first to formulate and solve the probabilistic version of the 

problem: the MEXCLP (Maximum EXpected Coverage Location Problem). Several 

extensions have been proposed by Batta et al. (1989), Marianov and ReVelle (1994) and 

Ball and Lin (1993), among others. These models have different assumptions in terms of 

the travelling time, different definitions of the time slots for which vehicles are occupied, 

and different coverage requirements. 

The planning horizon of all the models mentioned above is limited to a single period. 

However, ambulances can be relocated whenever the demand changes, which improves 

the service levels. In their study of the EMS at Louisville, Kentucky (USA), Repede and 

Bernardo (1994) proposed what appears to be the first multi-period model for ambulance 

deployment and redeployment, named the Maximal EXpected Coverage Location 

Problem with TIme variation (TIMEXCLP), which extends Daskin's work (1982, 1983). 

TIMEXCLP continuously seeks to maximize the expected coverage, but unlike the 

previous models, it considers the variation of the demand, the number of vehicles to be 

located, and some other parameters at each time period. However, TIMEXCLP does not 

explicitly consider the costs associated with vehicle redeployment between periods. It 

also assumes that there is no limit on the number of vehicles used.  

The DDSMt (Dynamic Dual Standard Model at time t) proposed by Gendreau et al. 

(2001) is, to the best of our knowledge, the only study dealing with the problem of 

relocating an ambulance fleet while seeking a compromise between the quality of 

redeployments and the cost of these redeployments.  

More recently, Rajagopalan et al. (2008) proposed a multi-period Dynamic Available 

Coverage Location (DACL) model, which seeks to minimize the number of vehicles to 

be located in such a way that each demand zone will be covered with a certain probability 

over several time periods. However, this model does not account for vehicle 

redeployment between periods and the resulting cost of this redeployment. A Reactive 

Tabu Search algorithm was proposed by these authors (2008), and it was applied to solve 

an 8-period real-life problem (Mecklenburg County, North Carolina, USA). They solved 

the problem in only few minutes. 
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Despite its relevance, not enough research deals with multi-period situations. In addition, 

to the best of our knowledge, none of the studies explicitly considers the cost of 

redeploying the vehicles between periods. Redeployment is not an easy task; in practice, 

it provokes high levels of annoyance for employees and increases the cost of operating 

the fleet. The goal of this article is to solve the multi-period ambulance deployment and 

redeployment problem while maximizing the service levels and minimizing the travel 

distances caused by redeploying the vehicles between periods. In the following sections, 

we propose a mathematical model (section 3). Then, to overcome its limited capability to 

solve medium and large instances, we also propose two heuristic approaches (section 4).  

3. Problem formulation 

In this section, we propose a mathematical model for the multi-period emergency vehicle 

location and relocation problem. The objective is to simultaneously minimize (1) the 

distances between demand points and the location of the vehicles covering them, and (2) 

the redeployment distance traveled by vehicles between periods. 

In the context of medical emergencies, each individual house or building can be seen as a 

potential demand point. However, a common practice in modeling such problems is to 

aggregate the demand points into regions or zones. For example, in North America, these 

points are grouped in areas sharing the same first three or four characters of the zip code 

or postal code. The location of an aggregated zone is represented by the zone's 

geographical center, and the corresponding demand is the sum of the expected demand of 

the aggregated zone. We implicitly assume that all service requests within a zone are 

“covered” if the zone’s geographical center is within the vehicle's travel distance. 

Without loss of generality, let us assume that a workday is divided into t = {1,…, T} 

periods, and that the demand for each of these periods is known and remains the same 

from one day to another. Let i = {1,…, I} and j = {0,…, J} be, respectively, the indexes 

for demand zones and potential vehicle sites. The index j=0 indicates the garage or the 

vehicle depot. Let us also assume that, at most, one ambulance can be located in a given 

point (except the depot) and that a vehicle can cover, at most, K demand zones. 

The distance between each demand zone i and each potential vehicle location j is denoted 

by dij, and the travel cost per distance unit is denoted by c. A demand zone i is considered 
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to be covered by a vehicle located at site j if dij is less than or equal a predetermined 

distance, denoted r. The set of location sites that can cover demand zone i is given by Ni 

= {jJ | dij ≤ r}. In addition, let l = {1,…, p} be the set of available vehicles, and pt be the 

number of vehicles available at period t. We assume that all vehicles are identical and, for 

each period, the number of available vehicles is at least equal to pmin, the minimum 

number of vehicles necessary to cover all the demand points. 

The average number of requests originating in a zone i during period t (i.e., the demand 

of zone i) is denoted ait. Based on ait, managers set a parameter fit, which gives the 

minimal number of vehicles that should be assigned to cover zone i in order to insure an 

adequate service during period t. Let us also define the following decision binary 

variables: 

xijt = 1  if demand zone i is to be covered by a vehicle located at site j during period t; 

zjlt = 1 if vehicle l is located at site j during period t; 

yjklt = 1 if vehicle l is redeployed from site j to site k (j≠k) at the beginning of period t. 

Thus, the proposed mathematical model M1 of our problem is as follows: 

Minimize 
     


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jklt
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 11  jltkltjklt zzy      | , 2,..., , ,k J j k t T j l     (8) 

 111  jlskljkl zzy    | , ,k J j k j l      (9) 

 
 , , 0,1ijt jklt jltx y z         (10) 

The objective of this model is to minimize the sum of average covering costs and 

redeployment costs. Average covering costs are calculated using the cost per distance unit 

multiplied by the sum of distances between each demand zone i and the location of 

vehicles that have been assigned to cover it, multiplied by the ratio between the expected 

demand of the zone i and the number of ambulances required to cover it. Redeployment 

cost is calculated using the distance travelled by empty ambulances between two 

consecutive periods multiplied by the cost per unit of distance. The cost of moving 

vehicles from the depot to their location and back to the depot is also included. 

Constraints (2) insure full coverage for every demand zone for every period. Constraints 

(3) and (4) respectively require that a maximum of one vehicle can be assigned to a site at 

each period, and that each vehicle is assigned to either a potential site or the garage. 

Constraints (5) require that exactly pt vehicles be deployed at each period t. Constraints 

(6) require that, to cover a demand zone, a vehicle must be located at a site j within the 

predetermined coverage distance r. In the case in which a vehicle is located at site j, not 

all the points within the coverage distance of this site are necessarily covered by it. The 

model explicitly indicates the vehicles assigned to each zone by fixing the value of the 

binary decision variables xijt. Constraints (7) state that a vehicle cannot cover more than K 

demand zones. Constraints (8) determine the vehicles to be redeployed between two 

consecutive periods, while constraints (9) determine the redeployment of vehicles 

between the last and the first period, assuming a cyclic schedule. Finally, constraints (10) 

indicate the binary nature of decision variables. 

One important feature of this model is that it limits the number of demand zones covered 

by each vehicle and assigns vehicles to demand zones. For example, although a demand 

zone needs the service of two vehicles but is within the covering distance of 4 vehicles, 

only two of these vehicles are assigned to cover this demand zone. In addition, if K=3 and 

a vehicle is within a covering distance to 5 demand zones, the model assigns the vehicle 
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to only three of them. The model is unfeasible if, for any zone i and at any period t, |Ni| 

<fit. Thus, we assume that vehicle location sites were chosen so that |Ni| ≥ fit for all 

demand zones i and all periods t. 

Finally, assuming that we consider all demand zones as potential sites to locate vehicles 

(or that the number of potential sites is close to the number of demand zones), the size of 

the model becomes numerically intractable for instances with 30 or more demand zones. 

For such large instances, we needed to design efficient heuristics. The following section 

presents the two heuristic approaches that we designed to solve large instances drawn 

from real life. 

4. Heuristic approaches  

Empirical observations have shown that the computation time required by commercial 

Mixed Integer Programming (MIP) codes is too large when considering more than 30 

demand points and 30 sites. In order to find a good compromise between the quality of 

the solutions and time required to obtain them, we propose the following decomposition 

method, which exploits the periodical nature of the problem. The problem is divided into 

T periods, in which the initial vehicle locations for period t are those for the end of period 

t-1, unless it is decided to relocate some of the vehicles. The heuristic determines those 

vehicles to be relocated and their new location. 

Once the set of T individual periods has been solved, the decomposition method iterates 

(i.e., repeats the calculation from the first period), taking the location of the final period 

as the starting location for the first period until the locations obtained remain stable from 

one iteration to the next. We propose two ways to solve each of the T single-period 

problems: H1, a heuristic based on the mathematical model presented in the previous 

section, and H2, a heuristic composed of a construction heuristic and a local search 

improvement heuristic. 

4.1 Heuristic H1: solving single-period sub-problems using a single-period 

version of M1 

Heuristic H1 solves a given problem by dividing it into several single-period sub-

problems and solving each sub-problem using a single-period version of model M1, 
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named model M2. To this end, the heuristic needs to take into account explicitly the 

importance of potential vehicle redeployments between periods. M2 is composed of 

equations (1) to (7) and (10) of M1. The period index t is no longer needed. However, the 

following constraints must be added: 

jkl jl kly b z   ,j l et k j        (11) 

These constraints use a parameter bjl that takes the value 1 if vehicle l was located at site j 

at the end of the previous period. Thus, constraints (11) replace constraints (8) and (9) to 

model vehicle relocation decisions. 

Heuristic H1 consists of the following 4 steps:  

1. Solve the first period of the problem (t=1) by solving M2, where the objective 

function contains only the first term (i.e., the covering costs). Constraints (11) are 

ignored. 

2. Solve the model M2 sequentially for the other periods (t=2…T) after setting the 

values of parameter bij to indicate the vehicle locations as obtained for the 

previous period t-1. 

3. To comply with the cyclical nature of demand, solve the first period again, but 

this time taking into account the vehicle locations obtained for the last period T. 

4. Repeat steps 2 and 3 until convergence (i.e., until vehicle locations for all periods 

remain the same and do not change after a complete iteration). In cases for which 

the heuristic does not converge after a predetermined number of iterations, stop 

the heuristic and retain the best solution found. 

Numerical experiments have shown that this heuristic is able to solve instances with up to 

200 demand points and 200 potential sites. If a larger problem needs to be dealt with, the 

easiest approach is to divide the considered region into several sub-regions, and then to 

apply H1 to each of them. Another possible approach is to reduce the set of potential 

vehicle location sites. Otherwise, the heuristic H2 can be used to solve these large 

instances. 

Dynamic Management of an Emergency Vehicle Fleet: Deployment and Redeployment of Ambulances

CIRRELT-2011-48 9



4.2 Heuristic H2: solving single-period problems using a two-phase heuristic   

Heuristic H2 is an iterative two-phase heuristic in which a construction phase is followed 

by a local search improvement phase. The same decomposition strategy used in H1 is 

used in H2. The problem is divided into T single-period sub-problems, and each sub-

problem is solved using the final vehicle locations of the previous period as initial 

locations for the next period. 

Heuristic H2 consists of the following steps:  

1. For each period t = 1,…,T, apply the construction heuristic and then the local 

search heuristic. 

2. Repeat step 1 until convergence (i.e., until vehicle locations for all periods remain 

the same and do not change after a complete iteration). 

3. In cases for which the heuristic does not converge after a predetermined number 

of iterations, stop the heuristic and retain the best solution found. 

Let us now present both the construction heuristic and the local search heuristic used in 

heuristic H2. 

The construction heuristic  

The construction heuristic is composed of the following steps: 

1. For each demand zone i, determine Ni, the set of potential sites within the 

covering distance r from i. 

2. For each potential location j, determine Mj (the set of demand points covered by j) 

and Mjd  (the average distance between j and the demand zones in Mj), 

where 



jMi

ij
j

Mj d
M

d
||

1 . 

3. For a demand zone i, if |Ni| < fi , there is no feasible solution; stop the construction 

heuristic. 

4. For each demand zone i where |Ni| = fi, assign a vehicle to each location site j in 

the set Ni. 

5. If the total number of located vehicles exceeds the number of available vehicles, 

there is no feasible solution; stop the construction heuristic. 
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6. For each located vehicle, if |Mj| ≤ K, assign j to cover each demand zone in Mj. 

Otherwise, assign j to cover the K demand zones in Mj with the lowest value of 

the ratio (|Ni|* fi)/(ai*fri), where fri is the additional number of vehicles required by 

demand zone i to reach fi.. 

7. Update fri, Ni and |Ni|.  

8. For every potential location where no vehicle has been located yet, update Mj and 

Mjd .  

9. Sort the demand zones that have fri > 0 (i.e., the demand zones not yet fully 

covered) in ascending order of the ratio (|Ni| * fi)/(ai * fri). 

10. Select the first demand zone in this ordered list and place a vehicle to the location 

jNi where (a) no vehicle is yet located and (b) a vehicle was located in the 

previous period. If there are several such locations or if the first period is being 

considered, place a vehicle in the location jNi with the largest |Mj| that does not 

have a vehicle yet. To break a tie, choose the location with the lowest Mjd . 

11. Repeat steps 5-10 until all vehicles have been located. 

The local search heuristic 

The local search heuristic changes the location of a vehicle to another empty location to 

test if doing so improves the solution. In order to limit the set of potential locations to 

search, only neighbor locations within a predetermined search distance s are considered. 

The value of the search distance s is set by the user and can be modified while the 

heuristic is running. If a vehicle is located in the same location as the previous period, a 

smaller search distance s is used in order to minimize potential redeployment cost. The 

vehicle location is changed if this reduces the covering costs (i.e., the weighted sum of 

the distances between each demand zone and the vehicles that cover it). However, once 

the position of a vehicle is changed, the whole assignment of vehicles to demand zones 

must be updated. 

To speed up the execution of such a complex re-assignment, the following procedure is 

used: 
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1. For every demand zone i, assign the fit nearest vehicles to i, provided that they are 

within the cover distance r. 

2. Identify the set O, which contains vehicles that have been assigned to cover more 

than K demand zones.  

3. For each location jO, transfer the excess vehicle assignments to another vehicle 

as follows: among all the demand zones assigned to j, select the one with the 

shortest distance to another location j’ O  and reassign  j’ to i. Repeat until O is 

empty. 

If all the potential relocations of all the vehicles have been tested and none of them led to 

an improved solution, double exchanges are considered. A double exchange consists of 

simultaneously moving two vehicles from their current locations to two empty locations 

within their respective search distances. The reassignment process is then applied to 

every potential double exchange move. 

In general, relocating a vehicle may make it impossible to find a feasible reassignment of 

vehicles to demand zones. In this case, the relocation is discarded. Although the above 

procedure leads to a plan for reassigning vehicles to demand zones that may not be 

optimal, it gives a rapid and good approximation. 

5. Computational experiments 

The goal of this section is to assess the performance of our heuristic approaches, in terms 

of solution quality and computational time, by comparing them to exact values obtained 

by solving the model M1. 

5.1 Test instances  

All the instances we used consisted of three periods. In order to be able to compare the 

results of our heuristics to the optimal solution, small instances containing I = {20, 25, 

30, 35 and 40} demand zones were used. For each value of I, 10 instances were 

generated. The location of demand zones was generated randomly within a square of 100 

x 100 units. The covering distance r ranges from 30 to 40, while the parameter K varies 

between 5 and 10. Travel cost per distance unit was set to $ 1. 
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Without loss of generality, we assumed that vehicles may be located at any demand zone. 

The average number of requests of each demand zone (ait) was draw from a uniform 

discrete distribution between 1 and 10. The number of vehicles needed to cover a demand 

zone (fit) was set to 1 if ait ≤ 8; otherwise, it was set to 2. The number of vehicles to be 

located was equal to the minimum necessary to fully cover all the demand points. This 

minimum was found a priori using the location set covering formulation proposed by 

Toregas et al. (1971).  In the cases for which H2 was unable to produce a feasible 

solution with this number of vehicles, we added as many vehicles as necessary in order to 

reach a feasible solution. 

5.2 Comparing heuristic and optimal results 

Computational results are shown in Table 1, 2 & 3. Table 4 provides a summary of these 

results. All these tables present the results obtained by the mathematical model M1 and 

heuristics H1 and H2 to 10 different instances with 20, 30, or 40 demand zones, 

respectively. The M1 model and the heuristic H1 were solved with CPLEX 10.0. All the 

experiments were run on an IBM computer with a Xeon processor 3.60 GHz and a 

maximum computational time of 72 000 seconds was allotted to each instance. 

Columns r and pmax indicate the coverage distance and the maximum number of vehicles 

used, respectively. Columns BInt and Dev, respectively, report the value of the best 

integer solution produced by CPLEX for M1 within the allotted computational time, if 

optimality was not proven, and its gap with respect to the best lower bound. For the 

heuristics, column Dev reports the gap between the solutions produced with respect to the 

best integer solution produced by M1 within the allotted computational time. Column t 

reports the computational time. 

Table 1 reports the results for the smallest instances (20 demand zones). For such small 

instances, M1 is very efficient, producing optimal solutions for all the instances in less 

than 1 000 seconds of computational time. However, H1 gives a very good performance, 

producing close to optimal results (i.e., average deviation of 0.40%) in less than 3 

seconds. H2 also performs efficiently, but, on average, it requires more computational 

time and generally produces lower quality solutions than H1. 
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M1 H1 H2 

# r pmax BInt t Dev t Dev t 

1 25 8 2 722.96 1 131.86 0.06% 0.80 0.24% 13.91 

2 30 7 3 973.94 20.94 0.44% 0.29 1.04% 4.05 

3 30 7 4 466.22 87.80 0.39% 0.79 0.35% 2.99 

4 30 7 2 999.88 41.89 0.03% 0.63 3.96% 2.03 

5 35 7 5 080.12 927.72 0.39% 0.51 0.56% 11.17 

6 35 6 4 785.27 169.58 0.22% 2.36 2.64% 1.72 

7 35 6 3 390.32 192.36 0.36% 3.00 14.24% 1.59 

8 40 5 4 330.08 22.16 0.66% 0.58 0.48% 1.59 

9 40 6 4 740.26 319.38 0.22% 2.81 7.77% 2.05 

10 50 3 6 836.87 2.51 1.27% 0.48 0.04% 1.24 

   
Average 291.62 0.40% 1.23 3.13% 4.23 

Table 1: Results for instances with 20 demand zones 

Table 2 reports the results for instances having 30 demand zones. As these results show, 

it becomes harder for CPLEX to reach optimality as problem size increases. In fact, for 

two of the ten considered instances, CPLEX did not succeed closing the optimality gap.  

At the same time, the performance of H1 remains excellent. For 8 of the 10 instances, the 

results obtained by H1 are within 1% of the best integer solutions produced by M1 in the 

allotted time, and for one instance (instance 8), it produces the optimal solution. 

However, in general, H2 seems to be slightly dominated by H1, although H2 has found 

the optimum for two instances (instances 1 and 9). 

   
M1 H1 H2 

# r pmax BInt Dev t Dev t Dev t 

1 25 10 5 367.15   6 954.92 1.88% 1.23 0.00% 15.38 

2 25 8 4 563.52   30 083.48 0.26% 1.78 2.29% 17.77 

3 30 10 5 762.75 0.26% 72 000.00 0.46% 1.88 0.10% 15.98 

4 30 5 3 966.02 1.22% 72 000.00 0.64% 1.42 2.58% 15.25 

5 30 10 5 517.01 1.37% 72 000.00 1.57% 1.78 1.34% 11.27 

6 35 8 6 720.30   2 903.14 0.84% 1.61 0.61% 26.31 

7 35 10 8 013.21   2 48.11 0.40% 0.69 0.33% 2.66 

8 35 8 6 447.55   1 896.13 0.00% 0.98 1.79% 3.72 

9 35 12 6 938.59   93.94 0.74% 1.74 0.00% 2.59 

10 40 10 8 035.75   270.03 0.22% 2.11 2.48% 3.13 

   
Average 0.29% 25 844.98 0.70% 1.52 1.15% 11.41 

Table 2: Results for instances with 30 demand zones 
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Table 3 reports the results for instances having 40 demand zones. CPLEX was able to 

produce optimal solutions for only 2 out of 10 instances; its average gap with respect to 

the best lower bound was 2.13%. H1 performs extremely well, producing solutions of 

better or equal quality than M1 (in bold) produced for half of the tested instances. 

Moreover, these results confirm that H1 dominates H2 since H1 produced better results 

for all instances. 

   
M1 H1 H2 

# r pmax BInt Dev T Dev t Dev t 

1 25 12 6 823.23 3.13% 26 793.19 -0.02% 4.94 9.36% 39.41 

2 30 8 7 053.60  27 899.75 0.00% 0.97 0.77% 7.41 

3 30 13 5 819.36 6.00% 3 600.00 0.38% 2.26 10.50% 21.86 

4 30 10 5 548.31 2.14% 27 015.26 0.00% 0.86 7.18% 15.30 

5 35 7 8 228.06  1 049.75 0.07% 0.86 9.49% 7.47 

6 35 8 8 500.26 1.69% 72 000.00 -0.05% 0.81 1.94% 21.85 

7 35 10 8 370.70 3.11% 72 000.00 -0.43% 6.74 3.48% 11.92 

8 40 7 7 936.85 0.33% 72 000.00 0.44% 1.01 7.79% 10.46 

9 40 10 5 519.45 2.62% 72 000.00 0.51% 1.92 18.91% 14.14 

10 40 7 8 508.12 2.29% 26 103.83 0.35% 8.08 12.80% 12.84 

   
Average 2.13% 40 046.18 0.13% 2.85 8.22% 16.27 

Table 3: Results for instances with 40 demand zones 

Table 4 summarizes the results reported in Tables 1, 2 and 3. It includes also aggregated 

results for two groups of ten instances with 25 and 35 demand zones, respectively. 

Column I gives the number of demand zones, while column # reports the number of 

times, out of 10, that the approach attains the best known solution. Columns ADev report 

for each group of instances, the average gap between the best solutions found by the 

method and the best lower bound produced by CPLEX. These results show that the 

efficiency of M1 drops as the size of the problems increases.  

 M1 H1 H2 

I # ADev t # ADev t # ADev t 

20 10  0.00% 291.62   0.40% 1.22   3.13% 4.23 

25 8 0.46% 17 518.06 2 0.41% 1.32   3.92% 6.29 

30 7 0.29% 25 844.98 1 0.70% 1.52 2 1.15% 11.41 

35 7 1.55% 20 576.56 2 0.03% 2.65   5.39% 7.83 

40 2 2.13% 40 046.18 5 0.13% 2.85   8.22% 16.27 

Table 4: Aggregated results 
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These results also confirm the excellent performance of H1, which is a very interesting 

element to implement in commercial decision support systems. 

6. Conclusion 

The deployment and redeployment of vehicles is one of the most important problems in 

EMS (Emergency Medical Services) management. A good deployment plan can increase 

the level of service to the population and reduce the number of vehicles required. 

However, since demand pattern evolves over the day, a deployment plan may be optimal 

to one of the day’s periods, but not so favorable for other periods, leading to the need for 

vehicle redeployment. This paper proposes a mathematical model that explicitly 

considers the dynamic nature of the demand and the need for a fleet redeployment. In 

addition, it proposes two heuristic approaches, H1 and H2, to solve large instances. The 

numerical results obtained prove the ability of these heuristics, especially heuristic H1, to 

produce near-to-optimal solutions in very short computation times, confirming the 

potential application of such approaches within an EMS system to manage a fleet of 

emergency vehicles in real-time. 
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