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Abstract. We improve the mixed-integer programming formulation of the multicommodity 
capacitated fixed-charge network design problem by incorporating valid inequalities into a 
cutting-plane algorithm. We use five classes of valid inequalities: the strong, cover, 
minimum cardinality, flow cover, and flow pack inequalities. The first class is particularly 
useful when a disaggregated representation of the commodities is chosen, while the last 
four are expressed in terms of network cutsets. We develop efficient separation and lifting 
procedures for these classes of inequalities. We present computational results on a large 
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1 Introduction

Network design models are used in many application areas, most notably in transporta-
tion and logistics [19, 45, 49]. These models span the entire spectrum of planning levels.
At the strategic level, typical decisions involve the construction of infrastructures, the
location of facilities and the acquisition of assets, taking into account long-term flows
of products and vehicles in the network; examples can be found in the logistics and
supply chain literature [14, 58]. At the tactical level, decisions are often related to the
selection of service routes by carriers, and the frequencies and schedules of these routes;
such service network design problems arise in maritime [13], rail [15], and intermodal
[24] transportation. At the operational level, service routes must be established on a
short-term horizon, typically one day; examples include express shipment services [4],
adaptive distribution systems, where facilities (typically, parking spaces) are used or not
according to demand fluctuations [31], and applications in city logistics, which involve
network design and vehicle routing decisions [25].

In this paper, we study the multicommodity capacitated fixed-charge network design
problem (MCND), a generic problem that captures many salient features of network
design applications encountered in transportation and logistics. Given a directed graph
G = (N,A), where N is the set of nodes and A is the set of arcs, and a set of commodities
K to be routed according to a known demand dk > 0 flowing from an origin O(k) to a
destination D(k) for each commodity k, the problem is to satisfy the demand at minimum
cost. The objective function consists of the sum of transportation costs and fixed design
costs, the latter being charged whenever an arc is used. The transportation cost on arc
(i, j) is denoted cij ≥ 0, while the fixed design cost for arc (i, j) is denoted fij ≥ 0.
In addition, there is a capacity uij > 0 on the flow of all commodities circulating on
arc (i, j); we assume uij ≤

∑
k∈K d

k for each arc (i, j). The MCND is NP-hard since it
contains as a special case the multicommodity uncapacitated fixed-charge network design
problem (obtained by imposing uij =

∑
k∈K d

k for all (i, j) ∈ A), which is NP-hard as
well [45].

The MCND can be modeled as a mixed-integer program (MIP) by using continuous
flow variables xkij, which reflect the amount of flow on each arc (i, j) for each commodity
k, and 0-1 design variables yij, which indicate if arc (i, j) is used or not:

min
∑
k∈K

∑
(i,j)∈A

cijx
k
ij +

∑
(i,j)∈A

fijyij, (1)

∑
j∈N+

i

xkij −
∑
j∈N−i

xkji =


dk, if i = O(k),
−dk, if i = D(k), i ∈ N, k ∈ K,

0, otherwise,
(2)

∑
k∈K

xkij ≤ uijyij, (i, j) ∈ A, (3)

xkij ≥ 0, (i, j) ∈ A, k ∈ K, (4)
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0 ≤ yij ≤ 1, (i, j) ∈ A, (5)

yij integer (i, j) ∈ A, (6)

where N+
i = {j ∈ N |(i, j) ∈ A}, N−i = {j ∈ N |(j, i) ∈ A}. Constraints (2) correspond to

flow conservation equations for each node and each commodity. Relations (3) represent
capacity constraints for each arc. They also link together flow and design variables by
forbidding any flow to circulate through an arc that is not chosen as part of the design.

Branch-and-bound (B&B) algorithms based on linear programming (LP) relaxations
are the most common methods to solve such models. Here, however, the LP relaxation
generally provides weak lower bounds [20]. Alternative relaxation approaches have been
devised, in particular Benders decomposition [17] and Lagrangian-based procedures [20,
21, 29, 39, 40, 55]. Heuristic methods have also been proposed for computing feasible
solutions [18, 22, 23, 32, 33, 38]. In this paper, we present a cutting-plane method for
improving the LP relaxation lower bounds. Although this methodology has been applied
successfully to other, closely related, network design problems [1, 2, 6, 8, 10, 11, 12, 27, 28,
41, 43, 44, 51, 53], it has not been used to solve the MCND. Our objective is to identify
inequalities that can be useful within a cutting-plane framework by exploiting simple
structures derived from relaxations of the MCND. We aim to perform an extensive
computational study of the impact of these inequalities on improving the lower bounds
for a large set of instances used in prior works on the MCND.

The cutting-plane method we propose is based on five classes of valid inequalities (VI):
the strong, cover, minimum cardinality, flow cover, and flow pack inequalities. These
inequalities are derived from three relaxations of the MCND: the single-arc design
relaxation (for the strong inequalities), the single-cutset relaxation (for the cover and
minimum cardinality inequalities), and the single-cutset flow relaxation (for the flow cover
and flow pack inequalities). These relaxations display well-known problem structures, for
which the VI we use are known to be facet-defining under mild conditions. We recall
these results in Section 2.

A key to the success of these inequalities is the representation of the commodities:
it is well-known in multicommodity network flow problems that commodities that share
the same origin or the same destination can be aggregated into a single commodity. This
transformation provides the same sets of feasible and optimal solutions than the original
commodity representation when there are no commodity-dependent costs or capacities,
which is the case for the MCND. In this paper, we explore the results obtained with
an alternative commodity representation that aggregates all commodities with the same
origin. The original, or disaggregated, commodity representation might have as many as
O(|V |2) commodities, while this alternative, or aggregated, representation is limited to
O(|V |) commodities. In order not to modify the structure of the model, we transform
this aggregated commodity representation with one origin and multiple destinations for
each commodity into an equivalent one where each commodity has a single origin and a
single destination: for each aggregated commodity, we introduce a super-destination that
is linked to each destination by an arc with no costs and a capacity equal to the demand
that must flow between the origin of the aggregated commodity and the destination. In
this aggregated commodity representation, the demand that must circulate between the

2
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origin, say O, and the destination for each aggregated commodity is equal to the sum
of the demands for the original commodities that share O as their origin. Cutting-plane
approaches for related multicommodity network design problems have used either the
aggregated [11, 12, 28, 53] or the disaggregated commodity representation [10, 27, 44].

The main advantage of the aggregated commodity representation is the reduction in
the size of the model: the number of flow variables is reduced by a factor of |V |. The
main advantage of the disaggregated commodity representation is that some VI can be
stronger in that case, because they exploit a finer representation of the flow variables.
For example, the strong inequalities, presented in Section 2.1, make use of upper bounds
on the amount of flow of each commodity circulating on any arc, and the inequalities
are stronger when these bounds are tighter. Hence, the strong inequalities benefit from
a disaggregated commodity representation. The last four classes of inequalities (cover,
minimum cardinality, flow cover, and flow pack) are expressed in terms of network cut-
sets. Cutting-plane algorithms for related multicommodity network design problems have
all used network cutsets to derive classes of VI, but, to the best of our knowledge, there
was no attempt to look at the effect of commodity representation on the strength of the
LP relaxations obtained by adding cutset-based inequalities. In fact, the only known re-
lated theoretical result has been established by Rardin and Wolsey [54], who investigated
the case of single-commodity uncapacitated fixed-charge network design with one origin
and multiple destinations. In that special case of the MCND, one can derive an equiv-
alent multicommodity formulation by associating a commodity to each destination (in
our terminology, this would correspond to the disaggregated commodity representation,
while the original single-commodity model is the aggregated commodity representation).
Rardin and Wolsey [54] show that the multicommodity LP relaxation enriched with
strong inequalities is equivalent to a single-commodity LP relaxation strenghtened with
so-called dicut collection inequalities, a class of VI derived from network cutsets. As
pointed out by these authors, no equivalent result is known for capacitated problems,
even in the single-commodity case.

Our contribution is threefold:

• We develop a cutting-plane algorithm that includes separation and lifting proce-
dures adapted to the MCND. In particular, we present a new separation procedure
for flow cover and flow pack inequalities. We develop procedures for generating net-
work cutsets, including a method inspired by metaheuristics approaches, which can
be adapted to other network design problems.

• We perform an extensive set of computational experiments that show the efficiency
of our separation, lifting and cutset generation methods. In particular, we show
that our cutting-plane algorithm is competitive with that of the state-of-the-art
MIP solver CPLEX (version 12) on our class of problem instances. When em-
bedded in the B&B algorithm of CPLEX, we also show that our cutting-plane
procedure allows to prove optimality for a majority of the instances, while the un-
solved instances show an average optimality gap within 2% when stopped after a
reasonable CPU time limit.

3
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• We compare the relative strength of the different classes of inequalities when using
the aggregated and disaggregated commodity representations. This comparison
is based on computational experiments with our cutting-plane algorithm, which
can be used without any modification for the two commodity representations. We
show that large-scale instances with many commodities (typically, more than 100)
perform best with the disaggregated commodity representation, while small-scale
instances with few commodities (around 10) can benefit from the aggregated com-
modity representation.

The paper is organized as follows. In Section 2, we describe the five classes of valid
inequalities and the relaxations from which they are derived. The separation and lifting
procedures for these inequalities are presented in Section 3. The cutting-plane algorithm,
including the cutset generation procedure, is the topic of Section 4. In Section 5, we report
the results of experiments on a large class of problem instances. We conclude this paper
with a discussion of future research avenues.

2 Relaxations and Valid Inequalities

In this section, we present three relaxations of the MCND, the single-arc design, single-
cutset, and single-cutset flow problems, from which we derive the five classes of valid
inequalities that are used in our cutting-plane algorithm. We will use the following
notation: for any model MOD, its set of feasible solutions will be denoted F (MOD),
while the convex hull of F (MOD) will be denoted conv(F (MOD)).

2.1 Single-Arc Design Relaxation and Strong Inequalities

Suppose we relax the flow conservation equations and replace them by the following
inequalities, which are derived from the observation that any optimal solution is circuit-
free, since all costs are nonnegative:

xkij ≤ dk, ∀(i, j) ∈ A, k ∈ K. (7)

The resulting relaxation decomposes by arc; following the terminology in [43], we call the
resulting problem associated to each arc (i, j) the single-arc design relaxation, SADij.
Its feasible set can be written as follows:

F (SADij) = { (xkij)k∈K , yij |
∑
k∈K

xkij ≤ uijyij, 0 ≤ xkij ≤ dk, k ∈ K, yij ∈ {0, 1} }. (8)

This set also arises when relaxing the demand constraints in the capacitated facility
location problem (CFLP ): an arc in the MCND corresponds to a facility in the CFLP
and a commodity in the MCND corresponds to a customer in the CFLP. The following
strong inequalities (SI) are valid for F (SADij):

xkij ≤ dkyij, ∀k ∈ K. (9)

4
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These inequalities are not only facet-defining for conv(F (SADij)), but together with the
other inequalities, they define the convex hull of solutions (a proof can be found in the
study of Lagrangian relaxations for the CFLP by Cornuéjols et al. [16]):

conv(F (SADij)) = { (xkij)k∈K , yij |
∑
k∈K

xkij ≤ uijyij, 0 ≤ xkij ≤ dkyij, k ∈ K, yij ∈ [0, 1] }.

(10)
Adding the SI for all arcs to the MCND LP relaxation significantly improves the

quality of the lower bound [20, 29]. Although there is a polynomial number of SI (|A||K|),
adding all of them to the LP relaxation yields very large models that frequently exhibit
degeneracy. Only a small number of SI will be added within our cutting-plane algorithm.

2.2 Single-Cutset Relaxation and Knapsack Inequalities

If we let S ⊂ N be any non-empty subset of N and S̄ = N\S its complement, we
denote the corresponding cutsets by (S, S̄) = {(i, j) ∈ A | i ∈ S, j ∈ S̄} and (S̄, S) =
{(i, j) ∈ A | i ∈ S̄, j ∈ S}, and their associated commodity subsets K(S, S̄) = {k ∈
K | O(k) ∈ S, D(k) ∈ S̄} and K(S̄, S) = {k ∈ K | O(k) ∈ S̄, D(k) ∈ S}. For any
L ⊆ K, we also introduce the following notation: xLij =

∑
k∈L x

k
ij for any arc (i, j),

dL
(S,S̄)

=
∑

k∈K(S,S̄)∩L d
k and dL

(S̄,S)
=
∑

k∈K(S̄,S)∩L d
k. By summing the flow conservation

equations (2) for all i ∈ S and k ∈ L, we obtain the following equation:∑
(i,j)∈(S,S̄)

xLij −
∑

(j,i)∈(S̄,S)

xLji = dL(S,S̄) − d
L
(S̄,S). (11)

Replacing L by K(S, S̄) in equation (11) and using the inequalities x
K(S,S̄)
ij ≤ uijyij for

(i, j) ∈ (S, S̄) and x
K(S,S̄)
ji ≥ 0 for (j, i) ∈ (S̄, S), we obtain the single-cutset relaxation,

SCS, whose feasible set is defined as follows, where d(S,S̄) ≡ d
K(S,S̄)

(S,S̄)
(note that d

K(S,S̄)

(S̄,S)
= 0

by definition):

F (SCS) = { (yij)(i,j)∈(S,S̄) |
∑

(i,j)∈(S,S̄)

uijyij ≥ d(S,S̄), yij ∈ {0, 1}, (i, j) ∈ (S, S̄) }. (12)

The single-cutset inequality defining F (SCS) simply states that there should be enough
capacity on the arcs of the cutset (S, S̄) to satisfy the total demand that must flow from
S to S̄.

By complementing the y variables (replacing yij by 1 − yij) in F (CSS), the single-
cutset relaxation reduces to a 0-1 knapsack structure. The well-known cover inequalities
for that structure [9, 37, 59] are based on the following definitions (for the sake of clarity,
we adapt to F (SCS) the terminology related to the 0-1 knapsack structure): C ⊆ (S, S̄)
is a cover if the total capacity of the arcs in (S, S̄)\C does not cover the demand, i.e.,∑

(i,j)∈(S,S̄)\C uij < d(S,S̄); moreover, a cover C ⊆ (S, S̄) is minimal if it is sufficient to

open any arc in C to cover the demand, i.e.,
∑

(i,j)∈(S,S̄)\C uij +upq ≥ d(S,S̄),∀(p, q) ∈ C.

5
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For every cover C ⊆ (S, S̄), the cover inequality (CI)∑
(i,j)∈C

yij ≥ 1 (13)

is valid for F (SCS). This inequality simply states that at least one arc from the cover C
must be opened in order to meet the demand. If C is a minimal cover, we can apply a
lifting procedure to derive a facet of conv(F (CSS)) [9, 59].

In addition to the cover inequalities, we use so-called minimum cardinality inequalities
in our cutting-plane approach. To define these inequalities, we assume the capacities
of the arcs in (S, S̄) are sorted in non-increasing order: ua(t) ≥ ua(t+1), where a(t) ∈
(S, S̄), t = 1, ..., |(S, S̄)| (ua(t+1) = ua(t)). We then define the least number of arcs in
(S, S̄) that must be used in every solution of F (SCS): l(S,S̄) = max {h |

∑
t=1,...,h ua(t) <

d(S,S̄)} + 1. From this number, we derive the minimum cardinality inequality (MCI),
defined as: ∑

(i,j)∈(S,S̄)

yij ≥ l(S,S̄). (14)

This inequality has been used to strengthen relaxation bounds for the 0-1 knapsack
problem [48].

As discussed in Section 3.1, we use the two families of knapsack inequalities, CI
and MCI, in the following context: initially, some y variables are fixed to either 0 or
1 (using the LP relaxation solution), then, a violated inequality is generated for the
resulting restriction of F (SCS), and finally, a lifting procedure is applied to obtain a
valid inequality for F (SCS). Different variable fixing strategies are used for the two
types of inequalities, which yields different restrictions of F (SCS). In this context, it is
possible to obtain an MCI stronger than a CI, even though the MCI is in general weaker
than the facet-defining minimal CI.

2.3 Single-Cutset Flow Relaxation and Flow Cover Inequalities

To derive the single-cutset flow relaxation, we use the same notation as in the previous
section. In addition, for any arc (i, j) and any L ⊆ K, we define bLij = min{uij,

∑
k∈L d

k},
which is an upper bound on the flow of all commodities in L that can circulate on arc
(i, j). Using this bound and relaxing equation (11), we obtain the single-cutset flow
relaxation, SCFL

S , whose feasible set is defined as follows:

F (SCFL
S ) = { (xLij, yij)(i,j)∈(S,S̄)∪(S̄,S) |

∑
(i,j)∈(S,S̄)

xLij −
∑

(j,i)∈(S̄,S)

xLji ≤ dL(S,S̄), (15)

0 ≤ xLij ≤ bLijyij, yij ∈ {0, 1}, (i, j) ∈ (S, S̄) ∪ (S̄, S) }. (16)

This relaxation reduces to the single-node fixed-charge flow problem, introduced in [52],
and since then studied by many authors, since it arises as a natural relaxation for general
MIP models. In particular, two classes of inequalities have been derived for the single-
node fixed-charge flow problem, the flow cover and flow pack inequalities, which we now
describe for F (SCFL

S ).

6
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A flow cover (C1, C2) is defined by two sets C1 ⊆ (S, S̄) and C2 ⊆ (S̄, S) such that
µ =

∑
(i,j)∈C1

bLij −
∑

(j,i)∈C2
bLji − dL

(S,S̄)
> 0. The flow cover inequality (FCI) is then

defined as follows:∑
(i,j)∈C1

(xLij + (bLij − µ)+(1− yij)) ≤
∑

(j,i)∈D2

min{bLji, µ}yji +
∑

(j,i)∈C2

bLji

+dL(S,S̄) +
∑

(j,i)∈(S̄,S)\C2∪D2

xLji, (17)

where a+ = max{0, a} and D2 ⊂ (S̄, S)\C2. This inequality has been studied by several
authors [36, 42, 52, 57] and is implemented in state-of-the-art MIP software tools.

Using the same notation as above, a flow pack (C1, C2) is defined by two sets C1 ⊆
(S, S̄) and C2 ⊆ (S̄, S) such that µ =

∑
(i,j)∈C1

bLij −
∑

(j,i)∈C2
bLji − dL(S,S̄)

< 0. The flow

pack inequality (FPI) is then defined as follows [5, 56]:∑
(i,j)∈C1

xLij +
∑

(i,j)∈D1

(xLij −min{bLij,−µ}yij)) ≤ −
∑

(j,i)∈C2

(bLji + µ)+(1− yji) +

∑
(j,i)∈(S̄,S)\C2

xLji +
∑

(i,j)∈C1

bLij. (18)

whereD1 ⊂ (S, S̄)\C1. The FPI can be viewed as a flow cover inequality for the relaxation
of F (SCFL

S ) defined by the inequality
∑

(j,i)∈(S̄,S) x
L
ji −

∑
(i,j)∈(S,S̄) x

L
ij − tL(S,S̄)

≤ −dL
(S,S̄)

,

where tL
(S,S̄)

is a slack variable. Under mild conditions, both the FCI and FPI can be

lifted to obtain facet-defining inequalities for conv(F (SCFL
S )) [5, 36].

2.4 Other Valid Inequalities

Other classes of valid inequalities can be derived. For instance, instead of using single
cutset structures, one might use collections of cutsets in a single inequality, as in [46, 54].
Another option is to extend the idea of partitioning the set of nodes into two subsets, as
in cutset-based inequalities, to more general k-partitions with k > 2 [3, 12, 28, 43, 44].
Inequalities based on partitioning the set of nodes into two or more subsets can also be
combined together to derive other valid inequalities by applying mixed-integer rounding
[7, 12, 28, 47, 53]. Although some of these ideas for generating other valid inequalities have
proven effective for several related problems, especially those involving general integer
variables, our choice of inequalities is based on the abundant literature that demonstrates
the strength of cover and flow cover inequalities for mixed 0-1 programs and the impact
of cutset-based inequalities for strengthening network design MIP models.

It is interesting to know under which conditions the inequalities we propose are facet-
defining for conv(F (MCND)). We note that additional hypotheses are needed to ensure
that conv(F (MCND)) is a non-empty bounded polyhedron; for instance, we must add
the upper bounds on the flow variables, constraints (7), to the formulation. Obviously,
the strong inequality for arc (i, j) and commodity k can only be a facet if dk < uij,

7
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otherwise it is dominated by the capacity constraint (3) for arc (i, j). More interestingly,
the inequalities based on cutset (S, S̄) can be facet-defining only if subset S induces a
connected subgraph (the subgraph induced by S is formed by the nodes of S and the
arcs linking them), since otherwise these inequalities would be obtained by aggregating
the cutset-based inequalities derived from each connected component of the subgraph
induced by S (similar conditions can be found for related problems; see [12, 44, 53]).
For a single-cutset inequality to yield facet-defining inequalities, the following property
must also hold: for every commodity k ∈ K(S, S̄), there must be a path between O(k)
and D(k) that crosses (S, S̄) only once; otherwise, the right-hand side of the inequality,
d(S,S̄), can be strengthened to obtain a metric inequality that dominates the single-cutset
inequality (see [17] and the discussion in Section 4.1). These comments illustrate the
complexity of examining the polyhedral structure of conv(F (MCND)), which although
interesting and challenging, falls beyond the scope of this computational study.

3 Separation and Lifting Methods

In this section, we present separation and lifting procedures for each class of valid inequal-
ities presented above. We first note that the separation of strong inequalities is trivial,
as it suffices to scan each arc and each commodity to identify all violated inequalities.
For all cutset-based inequalities, we assume a cutset (S, S̄) is given (see Section 4 for a
description of cutset generation procedures). We first present separation and lifting for
the cover and minimum cardinality inequalities, and then we explain how we generate
flow cover and flow pack inequalities using a new separation routine for these classes of
inequalities. In this section and in the remainder of the paper, we use (x̄, ȳ), with the
appropriate indices, to denote the current fractional LP solution.

3.1 Cover and Minimum Cardinality Inequalities

To generate cover and minimum cardinality inequalities, we first determine, a priori, two
subsets C1 (the open arcs) and C0 (the closed arcs) in (S, S̄) that satisfy the condition∑

(i,j)∈(S,S̄)\(C1∪C0)

uij ≥ d(S,S̄) −
∑

(i,j)∈C1

uij > 0.

To find C1 and C0, we perform procedure OpenCloseArcs, which uses the variables U
and D to represent, respectively, the residual capacity (i.e.,

∑
(i,j)∈(S,S̄)\(C1∪C0) uij), and

the residual demand (i.e., d(S,S̄)−
∑

(i,j)∈C1
uij). The procedure makes use of the current

LP solution ȳ, attempting to close an arc (i, j) with a small value ȳij (as measured by
a threshold ε) and such that the residual capacity after closing arc (i, j) still covers the
residual demand D (i.e., U − uij ≥ D). Similarly, the procedure attempts to open an
arc (i, j) with a large value ȳij (as measured by a threshold 1− ε) and such that there is
still some residual demand to cover after opening arc (i, j) (i.e., D − uij > 0). As in Gu
et al. [34], the sets C1 and C0 can be derived from the variables having integer values at
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the current LP solution, by using ε arbitrarily close to 0. The outline of the procedure is
summarized in Algorithm 1.

Algorithm 1 OpenCloseArcs

1: U ←
∑

(i,j)∈(S,S̄) uij, D ← d(S,S̄)

2: for arc (i, j) ∈ (S, S̄) (in arbitrary order) do
3: if (ȳij ≤ ε) and (U − uij ≥ D) then
4: Add (i, j) to C0

5: Close (i, j) by setting U ← U − uij
6: end if
7: if (ȳij ≥ 1− ε) and (D − uij > 0) then
8: Add (i, j) to C1

9: Open (i, j) by setting D ← D − uij and U ← U − uij
10: end if
11: end for

Once the sets C1 and C0 are obtained, we define the restricted single-cutset inequality
induced by C1 and C0 as ∑

(i,j)∈(S,S̄)\(C1∪C0)

uijyij ≥ d(S,S̄) −
∑

(i,j)∈C1

uij.

To define a cover C for this restricted cutset inequality, we have implemented the
heuristic approach proposed by Gu et al. [34, 35] in their extensive study of cover
inequalities. The basic idea of this heuristic is to try to exclude as much as possible from
the set C the arcs with large ȳij, in order to increase the chance of finding a violated
inequality (i.e.,

∑
(i,j)∈C ȳij < 1). Therefore, the heuristic considers the arcs in non-

decreasing order of ȳij, instead of
ȳij
uij

, as would be performed by the classical greedy

heuristic for the 0-1 knapsack problem. Ties are broken by considering the arcs in non-
increasing order of their capacity. Once a cover is obtained with this heuristic, it is
easy to extract a minimal cover from it, by removing some of the arcs from the cover
until it becomes minimal. Once the cover C is constructed, the induced inequality might
be strengthened by the lifting procedure to be presented next. Note that, even if the
identified cover inequality is not violated, we might find a violated one through the lifting
procedure.

To generate an MCI, it suffices to use a sorting algorithm to compute the least number
of arcs that must be opened in the set (S, S̄)\(C1 ∪ C0). Although the MCI is weak in
general, by deriving it over a restriction of (S, S̄), followed by the application of a lifting
procedure, one can obtain a strengthened valid inequality.

CI and MCI derived from the restricted cutset inequality have the following general
form: ∑

(i,j)∈B

yij ≥ L,
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with L = 1 and B corresponding to a cover, in the case of a cover inequality, while for a
minimum cardinality inequality, B = (S, S̄)\(C1∪C0) and L is equal to the least number
of arcs that must be used in B. Since this inequality is restricted to open arcs in C1 and
closed arcs in C0, lifting (down for the variables in C1 and up for the variables in C0) is
necessary to ensure its validity for F (SCS).

Lifting amounts to determining coefficients γij for all (i, j) ∈ (S, S̄)\B such that∑
(i,j)∈(S,S̄)\B

γijyij +
∑

(i,j)∈B

yij ≥ L +
∑

(i,j)∈(S,S̄)\(B∪C0)

γij

is valid for F (SCS). The lifting procedure is applied sequentially, meaning that the
variables are lifted one after the other in some predetermined order. For each (i, j), it is
well-known that the corresponding lifting coefficient γij can be determined by solving a
0-1 knapsack problem. The quality of the resulting lifted inequality depends on the order
in which the variables are lifted. Note that, lifting down the variables in (S, S̄)\(B ∪C0)
contributes to the violation of the inequality since γijyij ≤ γij. However, lifting up the
variables in C0 has a negative impact on the violation in the sense that an inequality
violated prior to this lifting step might become satisfied after. This might happen if some
variables in C0 have positive values (ȳij > 0) at the current LP solution. We conclude
that lifting down the variables in (S, S̄)\(B ∪C0) must be accomplished before lifting up
the variables in C0. Moreover, when lifting down the variables in (S, S̄)\(B ∪ C0), those
with fractional values are lifted first, in non-decreasing order of their current value. Ties
are broken by considering first the arcs in non-increasing order of their capacity. When
lifting up the variables in C0, we do the exact opposite.

The cover and minimum cardinality inequalities display similar structures and, thus,
the same lifting strategy is used for both. Different values of the parameter ε in procedure
OpenCloseArcs are used to define the restricted sets C0 and C1. For the CI, we set
ε = 0, i.e., all variables with an integer value are fixed to that value, as in [34]. For
the MCI, following preliminary computational experiments, we set ε = 0.5, which is
somewhat intuitive. Indeed, unlike the CI, which is based on a minimal cover, the MCI
by itself is not strong. Therefore, closing and opening as many arcs as possible, as
reflected by the value ε = 0.5, and then lifting the variables that have been fixed, will
lead to a stronger inequality.

3.2 Flow Cover and Flow Pack Inequalities

To generate flow cover and flow pack inequalities, we use two simpler valid inequalities for
F (SCFL

S ). The first one is the single-arc flow pack inequality (SFPI), defined as follows:∑
(i,j)∈C′1

xLij + xLrt ≤ (
∑

(j,i)∈C′2

bLji + dL(S,S̄))yrt +
∑

(j,i)∈(S̄,S)\C′2

xLji + (1− yrt)
∑

(i,j)∈C′1

bLij,(19)

where (r, t) ∈ (S, S̄), C ′1 ⊆ (S, S̄)\{(r, t)} and C ′2 ⊆ (S̄, S). The second valid inequality
is called the single-arc flow cover inequality (SFCI):∑

(i,j)∈C′1

xLij + xLrt ≤ (
∑

(j,i)∈C′2

bLji + dL(S,S̄))(1− yrt) +
∑

(j,i)∈(S̄,S)\C′2

xLji + yrt
∑

(i,j)∈C′1

bLij,(20)
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where (r, t) ∈ (S̄, S), C ′1 ⊆ (S, S̄) and C ′2 ⊆ (S̄, S)\{(r, t)}.
We now show the validity of the SFPI by using a proof based on the validity of the

FPI. This proof provides a condition under which we can identify a violated FPI from a
violated SFPI. We use the definition µ′ =

∑
(i,j)∈C′1

bLij −
∑

(j,i)∈C′2
bLji − dL(S,S̄)

and rewrite

the SFPI as follows:∑
(i,j)∈C′1

xLij + xLrt − (−µ′)yrt ≤
∑

(j,i)∈(S̄,S)\C′2

xLji +
∑

(i,j)∈C′1

bLij. (21)

Proposition 1 The SFPI is valid for F (SCFL
S ).

Proof:
Case 1: µ′ ≥ 0.∑
(i,j)∈C′1

xLij + xLrt ≤
∑

(i,j)∈(S,S̄)

xLij

≤
∑

(j,i)∈(S̄,S)

xLji + dL(S,S̄)

≤ (
∑

(j,i)∈C′2

bLji + dL(S,S̄)) +
∑

(j,i)∈(S̄,S)\C′2

xLji

= (
∑

(j,i)∈C′2

bLji + dL(S,S̄))yrt +
∑

(j,i)∈(S̄,S)\C′2

xLji + (1− yrt)(
∑

(j,i)∈C′2

bLji + dL(S,S̄))

≤ (
∑

(j,i)∈C′2

bLji + dL(S,S̄))yrt +
∑

(j,i)∈(S̄,S)\C′2

xLji + (1− yrt)
∑

(i,j)∈C′1

bLij.

The last inequality follows from the hypothesis µ′ =
∑

(i,j)∈C′1
bLij−

∑
(j,i)∈C′2

bLji−dL(S,S̄)
≥ 0.

Case 2: µ′ < 0.
The FPI with C1 = C ′1, C2 = C ′2 and D1 = {(r, t)} is valid, which implies µ = µ′ and:∑
(i,j)∈C′1

xLij + xLrt − (−µ′)yrt ≤
∑

(i,j)∈C1

xLij + xLrt −min{bLrt,−µ}yrt

=
∑

(i,j)∈C1

xLij +
∑

(i,j)∈D1

(xLij −min{bLij,−µ}yij))

≤ −
∑

(j,i)∈C2

(bLji + µ)+(1− yji) +
∑

(j,i)∈(S̄,S)\C2

xLji +
∑

(i,j)∈C1

bLij

≤
∑

(j,i)∈(S̄,S)\C′2

xLji +
∑

(i,j)∈C′1

bLij.

�

The proof for the case µ′ ≥ 0 shows that the SFPI is valid under this condition even
when yrt assumes a fractional value, as the same argument holds for yrt ∈ [0, 1]. This
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shows that a necessary condition for the SFPI to be violated by (x̄, ȳ) is µ′ < 0. If the
SFPI is violated by the current LP solution, then we must have µ′ < 0 and, furthermore,
we can derive a violated FPI, as stated in the next proposition.

Proposition 2 If the SFPI is violated by (x̄, ȳ), then the FPI defined by C1 = C ′1,
C2 = C ′2 and D1 = {r, t}∪{(i, j) ∈ (S, S̄)\C1 | x̄Lij−min{bLij,−µ}ȳij > 0} is also violated
by (x̄, ȳ).

Proof: Note that µ = µ′; we then have:∑
(i,j)∈C1

x̄Lij +
∑

(i,j)∈D1

(x̄Lij −min{bLij,−µ}ȳij)) ≥
∑

(i,j)∈C1

x̄Lij + x̄Lrt −min{bLrt,−µ}ȳrt

≥
∑

(i,j)∈C′1

x̄Lij + x̄Lrt − (−µ′)ȳrt

>
∑

(j,i)∈(S̄,S)\C′2

x̄Lji +
∑

(i,j)∈C′1

bLij

≥ −
∑

(j,i)∈C2

(bLji + µ)+(1− ȳji) +

∑
(j,i)∈(S̄,S)\C2

x̄Lji +
∑

(i,j)∈C1

bLij.

�
The next proposition shows that, if µ′ + bLrt > 0, we can also derive a violated FCI

from a violated SFPI.

Proposition 3 If the SFPI is violated by (x̄, ȳ) and µ′ + bLrt > 0, then the FCI defined
by C1 = C ′1 ∪ {r, t}, C2 = C ′2 and D2 = {(j, i) ∈ (S̄, S) \ C2 | x̄Lji −min{bLji, µ}ȳji > 0} is
also violated by (x̄, ȳ).
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Proof: Note that µ = µ′ + bLrt > 0; we then have:∑
(i,j)∈C1

(x̄Lij + (bLij − µ)+(1− ȳij)) ≥
∑

(i,j)∈C′1

x̄Lij + (x̄Lrt + (bLrt − µ)+(1− ȳrt))

≥
∑

(i,j)∈C′1

x̄Lij + x̄Lrt + (bLrt − µ)(1− ȳrt)

=
∑

(i,j)∈C′1

x̄Lij + x̄Lrt + (−µ′)(1− ȳrt)

=
∑

(i,j)∈C′1

x̄Lij + x̄Lrt − (−µ′)ȳrt − µ′

>
∑

(j,i)∈(S̄,S)\C′2

x̄Lji +
∑

(i,j)∈C′1

bLij − µ′

=
∑

(j,i)∈(S̄,S)\C2

x̄Lji +
∑

(j,i)∈C2

bLji + dL(S,S̄)

≥
∑

(j,i)∈D2

min{bLji, µ}ȳji +
∑

(j,i)∈C2

bLji + dL(S,S̄) +

∑
(j,i)∈(S̄,S)\C2∪D2

x̄Lji.

�
We now show the validity of the SFCI. We give a proof based on the validity of the

FCI. This proof makes use of the following equivalent way of writing the SFCI:∑
(i,j)∈C′1

xLij ≤ −xLrt + µ′yrt +
∑

(j,i)∈C′2

bLji + dL(S,S̄) +
∑

(j,i)∈(S̄,S)\C′2

xLji. (22)

Proposition 4 The SFCI is valid for F (SCFL
S ).

Proof:
Case 1: µ′ ≤ 0. By definition of (r, t) and C ′2, we have (r, t) ∈ (S̄, S) \ C ′2.∑

(i,j)∈C′1

xLij + xLrt ≤
∑

(i,j)∈C′1

bLij +
∑

(j,i)∈(S̄,S)\C′2

xLji

= (
∑

(i,j)∈C′1

bLij)(1− yrt) +
∑

(j,i)∈(S̄,S)\C′2

xLji + (
∑

(i,j)∈C′1

bLij)yrt

≤ (
∑

(j,i)∈C′2

bLji + dL(S,S̄))(1− yrt) +
∑

(j,i)∈(S̄,S)\C′2

xLji + (
∑

(i,j)∈C′1

bLij)yrt.

The last inequality follows from the hypothesis µ′ =
∑

(i,j)∈C′1
bLij−

∑
(j,i)∈C′2

bLji−dL(S,S̄)
≤ 0.

Case 2: µ′ > 0.

13

Commodity Representations and Cutset-Based Inequalities for Multicommodity Capacitated Fixed-Charge Network Design

CIRRELT-2011-56



The FCI with C1 = C ′1, C2 = C ′2 and D2 = {(r, t)} is valid, which implies µ = µ′ and:∑
(i,j)∈C′1

xLij ≤
∑

(i,j)∈C1

(xLij + (bLij − µ)+(1− yij))

≤
∑

(j,i)∈D2

min{bLji, µ}yji +
∑

(j,i)∈C2

bLji + dL(S,S̄) +
∑

(j,i)∈(S̄,S)\C2∪D2

xLji

=
∑

(j,i)∈D2

(−xLji + min{bLji, µ}yji) +
∑

(j,i)∈C2

bLji + dL(S,S̄) +
∑

(j,i)∈(S̄,S)\C2

xLji

= −xLrt + min{bLrt, µ′}yrt +
∑

(j,i)∈C′2

bLji + dL(S,S̄) +
∑

(j,i)∈(S̄,S)\C′2

xLji

≤ −xLrt + µ′yrt +
∑

(j,i)∈C′2

bLji + dL(S,S̄) +
∑

(j,i)∈(S̄,S)\C′2

xLji.

�

This proof shows that µ′ > 0 is a necessary condition for the SFCI to be violated by
(x̄, ȳ). Similar to the situation with the SFPI, we can easily show how to derive, from
a single SFPI, one violated FCI and one violated FPI, when µ′ − bLrt < 0 (we omit the
proofs, since they can be easily derived in a similar way as for Propositions 2 and 3).

Proposition 5 If the SFCI is violated by (x̄, ȳ), then the FCI defined by C1 = C ′1,
C2 = C ′2 and D2 = {r, t} ∪ {(j, i) ∈ (S̄, S) \C2 | x̄Lji −min{bLji, µ}ȳji > 0} is also violated
by (x̄, ȳ).

Proposition 6 If the SFCI is violated by (x̄, ȳ) and µ′ − bLrt < 0, then the FPI defined
by C1 = C ′1, C2 = C ′2 ∪{(r, t)} and D1 = {(i, j) ∈ (S, S̄) \C1 | x̄Lij −min{bLij,−µ}ȳij > 0}
is also violated by (x̄, ȳ).

The interest of these single-arc inequalities is that their separation problems are sim-
ple, in contrast with the FCI and the FPI, which are hard to separate. Indeed, given
(x̄, ȳ) the current LP solution and an arc (r, t) ∈ (S, S̄), separating the SFPI consists in
setting

C ′1 = {(i, j) ∈ (S, S̄)\{(r, t)}|x̄Lij > (1− ȳrt)bLij},

C ′2 = {(j, i) ∈ (S̄, S)|bLjiȳrt < x̄Lji}.

For each subset S generated by the cutting-plane algorithm, the separation procedure
thus scans each arc in (S, S̄), trying to find a violated SFPI associated to this arc. If S
consists of a singleton containing the origin of commodity k, we set L = {k} and C ′2 = ∅,
since in this case there is no flow of commodity k coming into r. Otherwise, we set
L = {k ∈ K|x̄krt > 0}, in order to maximize the left-hand side of (19) and increase the
chance of a violation. The separation procedure for the SFCI is derived in a similar way.

Once a violated SFPI is obtained, we lift the inequality to obtain a FPI. First, we set
C1 = C ′1, C2 = C ′2 and µ = µ′. Then, we initialize D1 = {(r, t)} and add to D1 each arc
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(i, j) ∈ (S, S̄)\C1 such that x̄Lij −min{bLij,−µ}ȳij > 0. Finally, we lift the resulting FPI
inequality by applying the lifting function proposed by Atamtürk [5]: we lift all variables
in C1 and the variables in (S̄, S)\C2 such that ȳij = 0. In addition, if µ′ + bLrt > 0, we
lift the violated SFPI to generate a violated FCI. We first add (r, t) to C ′1 to obtain C1,
set C2 = C ′2 and compute µ = µ′ + bLrt. Then, for each arc (i, j) ∈ C1 such that bLij > µ,
we add to the left hand side of the inequality the term (bLij − µ)(1 − yij). We then set
D2 = {(j, i) ∈ (S̄, S)\C2 | x̄Lji > min{bLji, µ}ȳji}. Finally, we lift the resulting FCI by
applying the lifting function proposed by Atamtürk [5]: we lift all variables in C2 and
the variables in (S, S̄)\C1 such that ȳij = 0.

We proceed similarly when a violated SFCI is generated. First, we lift the inequality
to derive a violated FCI. To this end, we set C1 = C ′1, C2 = C ′2 and µ = µ′, and then
proceed as above (when deriving an FCI from a violated SFPI) to obtain a lifted FCI. If
µ′ − bLrt < 0, we also lift the violated SFCI to generate a violated FPI. In this case, set
C1 = C ′1, add (r, t) to C ′2 to obtain C2 and compute µ = µ′ − bLrt; then, we proceed as
above (when deriving an FPI from a violated SFPI) to generate a lifted FPI.

To summarize, for each cutset identified by the cutting-plane algorithm, the sep-
aration procedure first identifies violated SFPI and SFCI. For each of these violated
inequalities, lifting is applied to generate a FCI or a FPI, or both. Our approach to
generate FCI and FPI contrasts significantly with the standard separation procedure,
which uses a relaxation involving only the 0-1 variables, thus allowing to derive FCI and
FPI from simple covers [50]. Here, we use a relaxation that involves both the 0-1 and
the continuous variables, allowing us to derive FCI and FPI from single-arc structures.

4 Cutting-Plane Algorithm

The cutting-plane algorithm starts by solving the LP relaxation of formulation (1)-(7),
the so-called weak relaxation of the problem. Subsequently, it alternates between the
generation of cuts and the solution of the current LP relaxation (with the addition of all
cuts generated so far). The generation of cuts is controlled by parameters that determine
whether or not the separation and lifting procedures for each class of valid inequalities
should be activated. If the generation of any one of the cutset-based inequalities (i.e.,
LCI, LMCI, FCI, FPI) is activated, the generation of cuts starts by identifying a fam-
ily of cutsets. For each cutset in this family, the corresponding violated cutset-based
inequalities are generated.

The cutting-plane algorithm follows two phases. In Phase I, the family of cutsets
is based on singletons, i.e., for each cutset (S, S̄), S is an origin or S̄ is a destination
for at least one commodity. Phase I iterates over this family of cutsets until no further
significant improvement in the lower bound, z, is observed. In Phase II, more complex
families of cutsets are generated, using one of the three approaches described in the
remainder of this section. At the end of Phase II, if the bound has improved from the first
to the second phase, Phase I is launched all over again. To limit the total computational
effort, we use three parameters (the setting of these parameters is discussed in Section
5.4):
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• δ, the minimum bound improvement required to continue the procedure (in Phase
I, we compute the improvement between two consecutive LPs; in Phase II, we
compare the lower bounds at the beginning and at the end of the phase);

• Tmax, which limits T , the number of calls to Phase II;

• Mmax, which is an upper bound on the cardinality of the subsets S generated in
Phase II.

Algorithm 2 CuttingPlane

1: Solve the weak relaxation; let z, optimal value, and ȳ, design solution
2: if ȳ is integral then
3: stop
4: end if
5: zlast ← z and T ← 0
6: Phase I: Generate cuts, using the family of cutsets based on all singletons
7: if some cuts were found then
8: Solve the LP relaxation; let z, optimal value, and ȳ, design solution
9: if ȳ is integral or z − zlast ≤ δ then

10: stop
11: end if
12: zlast ← z and go to 6
13: end if
14: Phase II:
15: if T < Tmax then
16: zlast ← z and T ← T + 1
17: for M = 2 to Mmax do
18: Generate a family of cutsets based on subsets of N of cardinality M
19: Generate cuts, using the current family of cutsets
20: if some cuts were found then
21: Solve the LP relaxation; let z, optimal value, and ȳ, design solution
22: if ȳ is integral then
23: stop
24: end if
25: end if
26: end for
27: if z − zlast > δ then
28: go to 6
29: end if
30: end if

We now describe the approaches used to generate families of cutsets in Phase II (Step
18 of the procedure). The first approach, called Enumeration, consists in generating all
possible subsets of N of cardinality M. Clearly, Mmax should then be kept at a relatively
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small value, otherwise the number of cutsets is prohibitively large. In Section 5.4, the
Enumeration approach will be compared with the two other approaches, which generate
only some of the subsets of N of cardinality M.

4.1 Articulation Sets and Metric Inequalities

The second approach uses the notion of articulation set, which is a set S ⊂ N such
that the removal of S disconnects, for at least one commodity k, its origin O(k) from
its destination D(k). Note that if k ∈ K(S, S̄), i.e., O(k) ∈ S and D(k) ∈ S̄, S is by
definition an articulation set for k, but there might be other articulation sets such that
O(k) ∈ S̄. To identify all articulation sets of cardinality M, we consider every subset S
of cardinality M and solve shortest path problems for every commodity k with all arc
lengths equal to 0, except those of the arcs in (S, S̄), which are set to 1. If the shortest
path length for commodity k is greater than 0, S is identified as an articulation set.
In addition, if the shortest path length for commodity k is greater than 1, this means
that every path between O(k) and D(k) must cross (S, S̄) more than once. Under this
condition, the single-cutset inequality∑

(i,j)∈(S,S̄)

uijyij ≥
∑

k∈K(S,S̄)

dk (23)

is dominated by a metric inequality, whose general form is:∑
(i,j)∈(S,S̄)

uijyij ≥
∑
k∈K

πk
(S,S̄)d

k, (24)

where πk
(S,S̄)

is the length of the shortest path between O(k) and D(k) with arc lengths

equal to 1 in (S, S̄) and 0 everywhere else. Indeed, when S is an articulation set only for
the commodities in K(S, S̄) and every path between O(k) and D(k) crosses (S, S̄) only
once, for each commodity k ∈ K(S, S̄), then the single-cutset inequality (23) reduces to
(24); otherwise, (23) is dominated by (24). The validity of (24) is easy to prove by using
LP duality (see [17] for a complete discussion).

In the so-called Articulation approach, we thus generate all cutsets (S, S̄) where S is
an articulation set of cardinality M. The articulation sets for cardinality M are generated
only once, before the first execution of the for loop at Step 17, and the corresponding
cutsets are stored in memory for subsequent calls to Phase II (this is also how the
Enumeration approach is implemented). When violations of the cutset-based inequalities
are examined, the constant term dL

(S,S̄)
is replaced by

∑
k∈L π

k
(S,S̄)

dk, since the shortest

path lengths have already been computed.

4.2 Metaheuristics-Based Cutset Generation

In this third approach, the generation of the corresponding families of cutsets is dynamic,
as it depends on the current solution to the LP relaxation. In this Heuristic approach,
new families of cutsets are obtained by partitioning the set of nodes N into L subsets
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Sl, l = 1, ..., L, such that Sl ∩ Sk = ∅, for all l 6= k, and ∪l=1,...,LSl = N . Then, each
subset Sl, l = 1, ..., L, induces two cutsets (Sl, S̄l) and (S̄l, Sl), and the corresponding
partition of N determines a family of cutsets available for the generation of violated
valid inequalities.

This approach is inspired by principles derived from metaheuristics. First, it calls
a construction procedure to provide an initial partition of N into subsets of cardinality
M. Cuts are generated on this initial family of cutsets. Then, a fixed number, Imax,
of iterations of a local search procedure is performed to derive new partitions of N
into subsets of cardinality M. Each new partition is obtained by simply moving nodes
among subsets around a cycle, thus preserving the subset cardinality from the initial
partition to the new one. For each partition thus obtained, cuts are generated for the
corresponding family of cutsets. To summarize, in the Heuristic approach, the family
of cutsets generated at Step 18 is the union of the families of cutsets obtained by the
construction procedure and the Imax calls to the local search procedure.

The initial partition of N into subsets of cardinality M is obtained by the construc-
tion procedure called GenerateMultiSet(M). Since all types of cutset-based inequalities
have a higher chance of being violated when the arcs in (Sl, S̄l) display small fractional
values ȳij, the procedure attempts to construct the sets Sl with the objective of minimiz-
ing

∑
(i,j)∈(Sl,S̄l)

ȳij and
∑

(j,i)∈(S̄l,Sl)
ȳji. At any step of the procedure, let Sl be a subset

of N of cardinality smaller than M. Initially, the family contains one subset, S1, having
a single element (arbitrarily chosen). We denote free node, a node that is not included
in any subset, and N̄ , the set of all free nodes. Also, for each free node j, let

wj = max{max
i∈Sl

ȳij,max
i∈Sl

ȳji}.

To achieve our objective, we identify the free node n such that n = argmaxj∈N̄ {wj}. If n
exists, then we add it to Sl and move to the next step: continue with the construction of
Sl, if |Sl| < M or, otherwise, proceed to the construction of Sl+1 (by selecting arbitrarily
some free node and then repeating the process). If, however, no free node is connected
by an arc to at least one node in Sl, we choose n arbitrarily among the free nodes. The
procedure stops when there are no more free nodes. The outline of the procedure is
summarized in Algorithm 3.

Note that the procedure attempts to first include in Sl a free node that is connected
by an arc to at least one node in Sl to avoid generating valid inequalities that are
aggregations of previously generated valid inequalities. Indeed, as discussed in Section
2.4, sets Sl must be connected, otherwise the corresponding cutset-based inequalities will
be dominated by others. Our construction procedure is similar to the heuristic methods
used in [11, 28, 51, 53], in that these approaches also build a subset S by starting from
a single node and by gradually enlarging it through the addition of neighboring nodes
that are connected by an arc to at least one node in S. The difference lies in the criteria
being used to add a neighboring node; [51] use the same criterion as ours, but also other
criteria, while [11, 28, 53] use the sum of the slack and the value of the dual variable in
the capacity constraint. The local search procedure, that we now present, has no analog
in the literature, to the best of our knowledge.
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Algorithm 3 GenerateMultiSet(M)

1: N̄ ← N , l← 1
2: if N̄ = ∅ then
3: stop
4: end if
5: Select (arbitrarily) a node m ∈ N̄
6: Add m to Sl and remove it from N̄
7: if |Sl| ≥ M then
8: l← l + 1 and go to 2
9: end if

10: n← argmaxj∈N̄ {wj}
11: if n exists then
12: m← n and go to 7
13: end if
14: Go to 2

The local search procedure identifies new families of cutsets by performing exchanges
of nodes among subsets of the current family. The basic idea behind these exchanges is to
obtain a new subset Sl′ from a subset Sl by moving a node n from some set Sk, Sk ⊂ S̄l, to
Sl. These exchanges are performed by the procedure MultiExchange((Sl)l=1,...,L,W,WN).
The sets W and WN contain, respectively, the indices l of all subsets Sl and the nodes
n ∈ N involved in some exchanges at previous calls to the procedure. These sets are
used to ensure that the exchanges reach different subsets and involve different nodes,
thus creating new cutsets at each iteration. The procedure considers at each step a set
Sl and aims to identify and move to Sl the node n such that

n = argmaxj∈(N\WN )∩(∪k/∈W,Sk⊂S̄l
Sk){wj}.

Note that n ∈ N\WN is chosen among the set of nodes connected by an arc to at least
one node in Sl. Again, this strategy attempts to avoid generating valid inequalities that
are aggregations of previously generated ones. Once n is identified, we move it from some
set Sk to Sl. Then, the procedure repeats the process by considering subset Sk at the
next iteration. The procedure starts with a set Sl not involved in previous exchanges
(i.e., l /∈ W ). The procedure also stores in set V the indices of the subsets Sl considered
at each iteration and stops whenever it finds a couple of subsets (Sl, Sk) involved in an
exchange such that k ∈ V . This strategy identifies a cycle on which the nodes are moved
around. By doing so, all subsets have the same cardinality as before the exchanges. The
outline of this procedure is presented in Algorithm 4.
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Algorithm 4 MultiExchange((Sl)l=1,...,L,W,WN)

1: V ← ∅
2: if W = {1, ..., L} then
3: W ← ∅
4: end if
5: Let l /∈ W correspond to some set not involved in previous exchanges
6: n← argmaxj∈(N\WN )∩(∪k/∈W,Sk⊂S̄l

Sk){wj}
7: if (∪k/∈W,Sk⊂S̄l

Sk) = ∅ then
8: W ← ∅ and go to 5
9: end if

10: if n does not exist then
11: WN ← ∅ and go to 5
12: end if
13: Let Sk ⊂ S̄l such that n ∈ Sk

14: Move n from Sk to Sl

15: WN ← WN ∪ {n}
16: W ← W ∪ {l}
17: if V = ∅ then
18: l0 ← l
19: end if
20: V ← V ∪ {l}
21: if k ∈ V then
22: if k 6= l0 then
23: n← argmaxi∈Sl0

(maxj∈Sk
ȳij,maxj∈Sk

ȳji)

24: Move n from Sl0 to Sk (to complete the cycle)
25: end if
26: Stop
27: end if
28: l← k and go to 6
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5 Computational Results

Computational experiments were performed with four objectives in mind:

• Verify that our implementation of separation and lifting procedures for cover and
flow cover inequalities is competitive with that of a general-purpose state-of-the-art
MIP solver (we use CPLEX, version 12).

• Compare the relative performance of the different classes of valid inequalities.

• Test the performance of the cutset generation procedures.

• Evaluate the quality of the formulations obtained from different variants of the
cutting-plane algorithm, by performing a state-of-the-art B&B algorithm (again,
we use CPLEX, version 12) on each of these formulations.

Following a preliminary section that describes the data instances and the performance
measures used in the experiments, we present and analyze the results in the four subse-
quent subsections, each dedicated to one of the objectives stated above.

5.1 Data Instances and Performance Measures

Computational experiments were conducted on a publicly available set of 196 instances
(the so-called “Canad” instances, see [26]) used in several papers on the MCND (for
instance [32, 38, 40]) and described in detail by Crainic et al. [21]. These problem
instances consist of general transshipment networks with one commodity per origin-
destination and no parallel arcs. Associated to each arc are three positive quantities: the
capacity, the fixed charge, and the transportation cost. These instances are characterized
by various degrees of capacity tightness, with regard to the total demand, and importance
of fixed design cost, with respect to the transportation cost.

The instances are divided into three classes. Class I (the “C” instances in [26]) consists
of 31 problem instances with many commodities compared to the number of nodes, while
Class II (the “C+” instances in [26]) contains 12 problem instances with few commodities
compared to the number of nodes. Class III (the “R” instances in [26]) is divided into
two categories, A and B, each containing nine sets of nine problem instances each. Each
set is characterized by the numbers of nodes, arcs, and commodities, which are the same
for the nine instances, and by instance-specific levels of fixed cost and capacity tightness.
Class III-A (instances “R01” to “R09”) contains 72 small size problem instances with 10
nodes (nine infeasible instances have been discarded), while Class III-B (instances “R10”
to “R18”) contains 81 medium to large size instances with 20 nodes.

To evaluate the performance of the different formulations and variants of the cutting-
plane algorithm, we use three measures:

• The computing time, t, where all experiments are performed on a network of Dual-
Core AMD Opteron (using a single thread) with 8 Gigabytes of RAM operating
under SunOS 5.10. The procedures are coded in C++. To solve the LP relaxations,
we use the dual simplex implementation of CPLEX, version 12.
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Weak LP Weak LP
Description Nb ∆z∗ t(Dis) t(Agg) Description Nb ∆z∗ t(Dis) t(Agg)

Class I Class II
20,230,40 (3) 7.70% 0.1 0.1 25,100,10 (3) 29.02% 0.0 0.0
20,230,200 (4) 26.50% 1.1 0.9 25,100,30 (3) 24.44% 0.1 0.1
20,300,40 (4) 9.74% 0.1 0.1 100,400,10 (3) 37.25% 0.6 0.9
20,300,200 (4) 21.01% 1.6 1.1 100,400,30 (3) 34.01% 1.7 2.6
30,520,100 (4) 19.51% 0.8 0.9
30,520,400 (4) 15.32% 6.5 7.9
30,700,100 (4) 17.72% 0.7 0.9
30,700,400 (4) 17.67% 7.8 7.3
Average (31) 17.19% 2.4 2.5 Average (12) 31.18% 0.6 0.9

Class III-A Class III-B
10,35,10 (6) 12.61% 0.0 0.0 20,120,40 (9) 21.93% 0.1 0.1
10,35,25 (6) 17.96% 0.0 0.0 20,120,100 (9) 19.56% 0.6 0.5
10,35,50 (6) 14.34% 0.0 0.0 20,120,200 (9) 16.68% 2.3 0.8
10,60,10 (9) 20.26% 0.0 0.0 20,220,40 (9) 29.91% 0.2 0.2
10,60,25 (9) 16.06% 0.0 0.0 20,220,100 (9) 26.84% 0.6 0.6
10,60,50 (9) 18.67% 0.0 0.0 20,220,200 (9) 23.87% 4.4 1.1
10,85,10 (9) 17.25% 0.0 0.0 20,320,40 (9) 32.30% 0.2 0.2
10,85,25 (9) 18.69% 0.0 0.0 20,320,100 (9) 30.27% 0.7 0.8
10,85,50 (9) 21.54% 0.0 0.0 20,320,200 (9) 27.70% 5.1 1.4
Average (72) 17.80% 0.0 0.0 Average (81) 25.45% 1.6 0.6

Table 1: Classes and Problem Dimensions

• The gap between the lower bound and the value of a reference solution. For the weak
relaxation, we use as reference solution the best known feasible solution of value z∗,
which corresponds to the best (often optimal) solution obtained by using the B&B
algorithm of CPLEX (version 12) for a limit of 10 hours on several formulations
derived from the cutting-plane algorithm (see Section 5.5 for a description of these
formulations). For the weak relaxation lower bound zw, we thus report the following
gap measure:

∆z∗ =
100(z∗ − zw)

z∗
.

For any lower bound z computed by the cutting-plane procedure, the reference is
the weak relaxation bound, and we use the following gap measure:

∆zw =
100(z − zw)

zw
.

• The number of cuts generated by the cutting-plane algorithm.

Table 1 gives the classification of the instances among the classes with respect to prob-
lem dimension. Columns “Description” and “Nb” show the dimension of the instances,
characterized by the numbers of nodes, arcs, and commodities, and the number of in-
stances with these dimensions, respectively. The average gap between the bounds of the
weak relaxation and the best known feasible solution is given under column ∆z∗, while
the average times required to solve the weak relaxation for the disaggregated and aggre-
gated formulations are given in columns t(Dis) and t(Agg), respectively. The “Average”
line shows the gap average over all instances in each class along with the average times
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required to compute the bounds. The results in column ∆z∗ confirm the poor quality of
the lower bounds generated by the weak relaxation. Obviously, the disaggregated and
aggregated formulations provide the same lower bound, and they do so with a similar
(and negligible) computational effort.

5.2 Comparison with CPLEX Cuts

Table 2 displays the per-class average results obtained by the cutting-plane method im-
plemented in CPLEX (version 12) and those of our cutting-plane algorithm, using the
disaggregated and aggregated commodity representations. We aim especially to compare
the CPLEX implementation of CI and FCI with our own implementation for the same
classes of valid inequalities. To make a fair comparison, single-node cutset structures
have been added to the formulations given to CPLEX. These special structures are re-
dundant in the formulation but allow CPLEX to identify violated cover inequalities. The
columns “CI ” and “FCI ” display, respectively, the average results obtained by using CI
alone and FCI alone, while the columns “All” and “Enum1 ” show the average results
obtained by using all classes of valid inequalities in both methods, “CPLEX ” and our
“Cutting-Plane” algorithm. Note that “Enum1 ” denotes the variant of our cutting-plane
algorithm that performs only Phase I, i.e., all classes of valid inequalities are used, but
only single-node cutsets are used in the cutset generation procedure.

We recall that the main objective of these experiments is to verify that our imple-
mentation of separation and lifting procedures for well-known classes of VI is competitive
with that of a general-purpose state-of-the-art MIP solver. Indeed, this is the case. When
generating cover inequalities, we observe better gap improvements with our implementa-
tion on the disaggregated models and the opposite on the aggregated models; in all cases,
the differences both in terms of gap improvement, time and number of cuts are relatively
minor. When generating flow cover inequalities, our implementation provides better gap
improvements on average, in much less time for the disaggregated models and in slightly
more time for the aggregated models. This shows that our new separation method for
flow cover inequalities provides effective results for our MCND instances; it would be
interesting to evaluate the performance of this separation method on general MIPs.

We have added the results with all classes of cuts implemented in CPLEX and in our
algorithm to show that, even in that case, our results remain competitive. For the disag-
gregated models, the gap improvements are better on average, but these improvements
are obtained with much less computational effort; for the aggregated models, the gap im-
provements are also better on average, but the computing times are slightly higher. We
note, however, that the number of cuts generated by our implementation is significantly
larger than the number of cuts generated by CPLEX. This is certainly a concern when
implementing our cutting-plane method within a B&B framework, but only moderately
so, since procedures to remove inactive cuts can be easily added to ensure the size of the
formulations remains tractable.

These results also suggest the following observations, which we will confirm with
further experiments:
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• Cover inequalities are significantly dominated by flow cover inequalities, and this
is true not only for our algorithm, but also for CPLEX. Given the fact that CI is
derived from the single-cutset relaxation, which is itself a relaxation of the single-
cutset flow structure, from which we obtain FCI, the dominance of FCI over CI
was expected, but not the extent by which FCI dominates CI.

• Flow cover inequalities capture most of the lower bound improvement coming from
all types of cuts; this is true for our cutting-plane algorithm, but also for CPLEX.
These results confirm the literature on fixed-charge network design that identifies
FCI as strong valid inequalities for such problems.

• The disaggregated commodity representation provides better lower bound improve-
ments than the aggregated one, at the expense of higher computing times; again,
this is true for our cutting-plane algorithm and for CPLEX. The two algorithms
differ significantly, however, in their respective computational effort to handle the
disaggregated commodity representation, our implementation being an order of
magnitude faster on average.

5.3 Comparison Among Classes of Valid Inequalities

In this section, we present the results of computational experiments performed to compare
the relative performance of the five classes of valid inequalities. As in the previous section,
only Phase I of the cutting-plane algorithm was performed. We first present average
results over all classes of instances and then, we analyze the results for the different
classes of instances.

Table 3 shows, for the disaggregated and aggregated commodity representations, the
improvement gap, ∆zw, and the computing time, t, averaged over the 196 instances. In
column “None+” we show the results obtained by using each individual class alone, while
in column “All-” we display the results obtained by using all classes of valid inequalities,
except the one identifying the respective row. These results show the superiority of the
inequalities based on continuous and 0-1 variables, i.e., SI, FCI, and FPI, over those
based only on 0-1 variables, i.e., CI and MCI. They also show that the disaggregated
commodity representation provides tighter formulations than the aggregated commodity
representation. In particular, by adding only the SI to the disaggregated model, we obtain
better lower bounds on average than by adding all the cuts to the aggregated model, in
about the same computational effort. It is interesting to note that, for both commodity
representations, the FPI is the most effective individual class of inequalities for improving
the bound, but at the expense of a significant computational effort. In particular, the
SI class is almost as effective as the FPI class for the disaggregated representation, but
adding SI requires much less computing time. In fact, the SI are essential for obtaining
good performance: removing them leads to significant increase in computing time.

Table 4 analyzes, for each class of instances, the effect of activating each individual
class of inequalities, for the disaggregated and aggregated commodity representations.
Results are reported only for the inequalities that involve continuous and 0-1 variables,
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CPLEX (Disaggregated)
Classes CI FCI All

Nb ∆zw t Cuts ∆zw t Cuts ∆zw t Cuts
Class I (31) 0.48% 10.1 7 17.95% 1606.8 662 18.75% 993.1 696
Class II (12) 23.26% 0.1 18 38.19% 0.8 110 47.53% 4.7 151
Class III-A (72) 5.39% 0.0 5 17.71% 0.1 72 21.00% 0.1 82
Class III-B (81) 4.59% 2.4 13 27.87% 101.8 333 31.23% 104.1 384
Average (196) 5.37% 2.6 9 23.20% 296.3 276 26.49% 200.4 308

Cutting-Plane (Disaggregated)
Classes CI FCI Enum1

Nb ∆zw t Cuts ∆zw t Cuts ∆zw t Cuts
Class I (31) 1.00% 2.5 21 17.32% 158.2 1288 19.21% 95.5 3123
Class II (12) 24.38% 0.7 28 50.66% 10.1 725 52.70% 5.3 1402
Class III-A (72) 8.78% 0.0 16 20.35% 0.1 165 21.25% 0.1 363
Class III-B (81) 8.86% 2.9 38 31.34% 63.4 1125 33.71% 21.5 2343
Average (196) 8.54% 1.6 27 26.27% 51.9 774 28.00% 24.3 1682

CPLEX (Aggregated)
Classes CI FCI All

Nb ∆zw t Cuts ∆zw t Cuts ∆zw t Cuts
Class I (31) 0.12% 1.3 7 13.83% 26.6 584 16.28% 28.8 463
Class II (12) 16.57% 0.1 18 38.24% 0.6 109 46.12% 4.3 147
Class III-A (72) 5.63% 0.0 6 16.89% 0.0 57 19.93% 0.0 68
Class III-B (81) 2.68% 0.2 14 24.02% 2.8 238 25.92% 6.4 264
Average (196) 4.21% 0.3 10 20.66% 5.4 218 23.43% 7.5 216

Cutting-Plane (Aggregated)
Classes CI FCI Enum1

Nb ∆zw t Cuts ∆zw t Cuts ∆zw t Cuts
Class I (31) 0.12% 2.2 2 13.30% 43.0 2572 14.09% 51.9 4825
Class II (12) 9.80% 0.9 7 49.31% 11.7 754 51.40% 7.6 1469
Class III-A (72) 2.33% 0.0 2 18.55% 0.1 184 19.36% 0.1 363
Class III-B (81) 1.85% 0.6 4 26.32% 11.3 1240 27.87% 19.5 2486
Average (196) 2.24% 0.7 3 22.81% 12.2 1033 24.01% 16.8 2014

Table 2: CPLEX Cuts Versus Cutting-Plane Algorithm

Disaggregated Aggregated
None+ All- None+ All-

∆zw t ∆zw t ∆zw t ∆zw t
∅ 0% 1.1 28.00% 24.3 0% 0.7 24.01% 16.7
SI 26.53% 17.8 27.12% 48.1 11.73% 0.8 24.01% 21.5
CI 8.54% 1.6 27.96% 25.3 2.24% 0.7 24.02% 15.8

MCI 8.00% 1.5 28.00% 24.4 2.09% 0.7 24.03% 14.9
FCI 26.27% 51.9 28.01% 26.5 22.81% 12.2 23.99% 11.3
FPI 26.89% 51.2 27.94% 21.0 23.95% 17.6 22.87% 9.3

Table 3: Comparison of Valid Inequalities for All Instances
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i.e., SI, FPI, and FCI, which have already been shown to be much stronger than the
other classes of inequalities.

Disaggregated
Classes SI FCI FPI

Nb ∆zw t Cuts ∆zw t Cuts ∆zw t Cuts
Class I (31) 19.06% 80.1 870 17.32% 158.2 1288 17.89% 139.1 1941
Class II (12) 44.83% 2.2 208 50.66% 10.1 725 52.15% 14.9 852
Class III-A (72) 19.52% 0.0 76 20.35% 0.1 165 20.75% 0.1 227
Class III-B (81) 32.92% 12.1 685 31.34% 63.4 1125 32.06% 68.3 1692
Average (196) 26.53% 17.8 462 26.27% 51.9 774 26.89% 51.2 1142

Aggregated
Classes SI FCI FPI

Nb ∆zw t Cuts ∆zw t Cuts ∆zw t Cuts
Class I (31) 2.22% 2.3 58 13.30% 43.0 2572 14.05% 40.9 2925
Class II (12) 41.18% 2.7 179 49.31% 11.7 754 51.08% 10.4 857
Class III-A (72) 9.04% 0.0 24 18.55% 0.0 184 19.30% 0.1 222
Class III-B (81) 13.39% 0.7 119 26.32% 11.3 1240 27.84% 25.4 1706
Average (196) 11.73% 0.8 78 22.81% 12.2 1033 23.95% 17.6 1302

Table 4: Comparison of Valid Inequalities by Classes of Instances

These results emphasize the differences between the aggregated and disaggregated
commodity representations. Not only the SI is significantly more effective in improving
the lower bound within the disaggregated representation, as expected, but also the FCI
and FPI reduce the lower bound gap more significantly within the disaggregated rep-
resentation, and by generating less cuts. We note that the differences between the two
commodity representations are less pronounced for Class II and, to a certain extent, for
Class III-A. This is not surprising, as instances in Classes II and III-A are characterized
by a small number of commodities, and disaggregation has less impact on such instances.
With the disaggregated commodity representation, SI shows the best overall performance
regarding the lower bound improvement and the computational effort needed. For in-
stances in Classes II and III-A, however, FPI obtains the best average gap improvement,
but at the expense of increasing the computing time. When the number of commodities
is significantly larger than the number of nodes, as for most instances in Classes I and
III-B, SI outperforms FPI and FCI. Not only the identification of violated valid inequal-
ities is easier with SI, but also the number of cuts generated by SI is significantly less
than with FCI and FPI.

5.4 Evaluation of Cutset Generation Procedures

In this section, we assess the cutset generation approaches presented in Section 4. More
precisely, the following variants of the cutting-plane algorithm were implemented and
tested (all classes of valid inequalities were used):

• Enum1 : This variant consists in performing only Phase I, i.e., only single-node
cutset structures are considered.

• Enumj, j ≥ 2: These variants are obtained by using the Enumeration approach
in Phase II, i.e., all subsets of N of cardinality j are generated. We report the
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results for two values of j: 2 and 3. As we will see below, the bound improvement
from Enum2 to Enum3 is minor, in spite of a significantly increased computational
effort. Testing higher values of j is therefore not necessary.

• Artic: This is the Articulation approach with Mmax = 2, i.e., we generate all
cutsets (S, S̄), where S is an articulation set of cardinality 2.

• Heur : This is the Heuristic approach based on the construction and local search
procedures, GenerateMultiSet and MultiExchange, presented in Section 4.2.
The parameters of the procedures were calibrated and the following values were
used: δ = 0.1, Tmax = 5, Mmax =

⌈
N
3

⌉
, and Imax = 20.

• ArticHeur : This variant combines the last two methods. More specifically, articu-
lation sets of cardinality 2 are stored in memory, and when Phase II is launched to
generate cutsets corresponding to subsets of cardinality 2, these articulation sets
are first considered before the Heuristic approach is performed.

Disaggregated
Classes Enum1 Enum2 Enum3

Nb ∆zw t Cuts ∆zw t Cuts ∆zw t Cuts
Class I (31) 19.21% 95.5 3123 19.22% 94.7 3137 19.22% 130.8 3152
Class II (12) 52.70% 5.3 1402 54.65% 22.9 1684 55.41% 219.2 2304
Class III-A (72) 21.25% 0.1 363 21.53% 0.1 389 21.64% 0.2 410
Class III-B (81) 33.71% 21.5 2343 33.78% 22.9 2375 33.81% 25.9 2407
Average (196) 28.00% 24.3 1682 28.26% 25.9 1723 28.36% 44.9 1785

Classes Artic Heur ArticHeur
Nb ∆zw t Cuts ∆zw t Cuts ∆zw t Cuts

Class I (31) 19.22% 107.8 3138 19.22% 106.5 3137 19.23% 101.5 3149
Class II (12) 54.36% 16.9 1580 55.15% 18.1 1735 55.36% 24.7 1769
Class III-A (72) 21.53% 0.1 386 21.52% 0.2 382 21.56% 0.2 389
Class III-B (81) 33.78% 21.0 2373 33.81% 26.6 2376 33.81% 22.6 2384
Average (196) 28.24% 26.8 1716 28.29% 29.0 1725 28.32% 27.0 1734

Aggregated
Classes Enum1 Enum2 Enum3

Nb ∆zw t Cuts ∆zw t Cuts ∆zw t Cuts
Class I (31) 14.09% 51.86 4825 15.27% 156.1 5514 15.96% 555.5 6418
Class II (12) 51.40% 7.63 1469 53.95% 33.9 1737 55.13% 634.4 2448
Class III-A (72) 19.36% 0.1 363 20.65% 0.2 438 21.08% 0.9 511
Class III-B (81) 27.87% 19.5 2486 29.15% 45.1 2857 29.86% 125.9 3291
Average (196) 24.01% 16.7 2014 25.35% 45.5 2320 25.98% 179.0 2713

Classes Artic Heur ArticHeur
Nb ∆zw t Cuts ∆zw t Cuts ∆zw t Cuts

Class I (31) 15.19% 149.0 5462 15.40% 165.2 5423 15.71% 208.3 5672
Class II (12) 53.63% 24.3 1682 54.69% 32.1 1860 54.72% 38.6 1863
Class III-A (72) 20.50% 0.2 433 20.87% 0.3 430 21.00% 0.4 464
Class III-B (81) 29.02% 39.9 2827 29.48% 55.0 2830 29.70% 64.2 2958
Average (196) 25.21% 41.6 2294 25.63% 50.9 2299 25.82% 62.0 2404

Table 5: Evaluation of Cutset Generation Procedures

Even though the disaggregated representation was shown superior to the aggregated
one in the previous section, this was only for single-node cutset structures. The situation
might change if we allow cutsets based on node subsets of higher cardinality; hence, we
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report results for the two commodity representations. Table 5 displays the average results
obtained by the different cutset generation methods. Methods Enum2 and Enum3 are
used as a basis of comparison for the Articulation and Heuristic approaches. Since Artic
builds a partial list of cutsets based on node subsets of cardinality 2, its lower bound
should be less than the one obtained with Enum2, which performs complete enumeration
of subsets of cardinality 2. As we can see for both commodity representations, the lower
bounds obtained by Artic are very close to those computed with Enum2, with a compa-
rable computational effort. Concerning the performance of the Heuristic approach, we
note that this method generates cutsets based on node subsets of cardinality 2 or more;
hence, Enum3 can be used as a basis of comparison for Heur and ArticHeur. We can see
that these two methods obtain lower bounds that are extremely close to those generated
by Enum3 and in less computing time (sometimes significantly so, see for instance the
results for Class II instances, which have more nodes than the other instances). These
results demonstrate the effectiveness, as well as the computational efficiency, of the Ar-
ticulation and Heuristic approaches for generating cutset-based inequalities from node
subsets of cardinality 2 or more. In spite of this, including such inequalities provides very
little bound improvement on average: less than 2% for the aggregated models and as lit-
tle as 0.4% for the disaggregated ones. We note, however, that some instances in Class
II show more significant bound improvement. These results also confirm the superiority
of the disaggregated commodity representation: the lower bounds are not only better,
but they are also obtained in much less computing time and by generating less cuts.

5.5 Evaluation of Cutting-Plane Formulations

To evaluate more precisely the models obtained by different variants of our cutting-plane
algorithm, we perform the B&B algorithm of CPLEX (version 12) with default options,
except for a time limit of 2 hours (note that CPLEX will then generate its own cuts,
according to the default options). For each instance, the best known feasible solution
(which is often optimal) is provided as the initial incumbent. This way, our experiments
focus only on the quality of the lower bounds in terms of their ability to prune the
search tree. We perform experiments with the disaggregated and aggregated commodity
representations for the following formulations:

• Weak: Model (1)-(7).

• Strong: Model (1)-(7) plus the SI identified by our cutting-plane algorithm.

• Enum1: Model (1)-(7) plus all the VI identified by our cutting-plane algorithm,
using SI and cutset-based inequalities derived only from single-node subsets.

• ArticHeur: Model (1)-(7) plus all the VI identified by our cutting-plane algorithm,
using SI and cutset-based inequalities derived from the ArticHeur method.

Following the experiments with the resulting eight formulations, we classify the in-
stances into three classes:
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• Easy: Instances that are solved to optimality by CPLEX for the eight models.

• Difficult: Instances that cannot be solved by CPLEX (within the time limit of 2
hours) for any of the eight formulations.

• Medium: Instances that are solved by CPLEX for at least one of the eight formu-
lations.

The results for the 123 Easy instances are provided in Table 6, which gives the
number of instances in each class, “Nb”, and for each tested model, the average number of
nodes generated in the B&B tree, “Nodes”, and the average computing time, “t”. These
results show that weak and strong aggregated models perform better for solving the easy
instances in Classes III-A and III-B, with very close results for the disaggregated strong
formulation, which generates less B&B nodes, but in slightly more computing time. For
the easy instances in Class II, the aggregated model obtained from “Enum1” performs
best, with the disaggregated strong formulation a solid second in terms of computing
time (although the number of nodes is significantly larger). For Class I instances, the
disaggregated models perform much better than the aggregated ones, the disaggregated
formulation obtained from “Enum1” performing slightly better than the strong model.

Disaggregated
Classes Weak Strong Enum1 ArticHeur

Nb Nodes t Nodes t Nodes t Nodes t
Class I (7) 355 6.1 231 2.7 181 2.6 223 4.1
Class II (9) 14667 417.8 15405 349.1 8070 369.1 5025 691.9
Class III-A (72) 238 3.5 248 2.9 202 4.3 189 5.1
Class III-B (35) 2174 446.7 2087 264.6 1500 329.7 1361 323.3

Aggregated
Classes Weak Strong Enum1 ArticHeur

Nb Nodes t Nodes t Nodes t Nodes t
Class I (7) 914 33.7 909 33.1 1228 63.6 448 24.9
Class II (9) 17863 390.7 24300 509.7 6926 345.4 5615 353.4
Class III-A (72) 346 2.0 372 2.2 361 4.7 325 5.25
Class III-B (35) 4147 219.9 3935 214.8 4836 674.6 5335 714.8

Table 6: CPLEX B&B, 2 hours CPU Time Limit, Easy Instances

The results for the 52 Difficult instances are provided in Table 7, which gives the
number of instances in each class, “Nb”, and for each tested model, the average number
of nodes generated in the B&B tree, “Nodes”, and the average final gap between the
best lower and upper bounds, “∆z∗”. These results show the superiority of the disaggre-
gated commodity representation for difficult instances. Indeed, the final gap is generally
smaller after 2 hours of computing time, even though the number of generated nodes is
significantly smaller with the disaggregated models, which can be explained by the larger
size of the disaggregated LP relaxations solved at every node of the B&B tree. The
disaggregated strong model gives the best results for the difficult instances in Classes I
and III-B, which are characterized by few nodes (less than 30) and many commodities
(more than 100). The “ArticHeur” and “Enum1” variants perform best for the difficult
instances in Class II, which have many nodes (100) and few commodities (30). Even for
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these instances, the final gap obtained by the disaggregated strong formulation is close
to the best final gap computed with the “ArticHeur” and “Enum1” approaches.

Disaggregated
Classes Weak Strong Enum1 ArticHeur

Nb Nodes ∆z∗ Nodes ∆z∗ Nodes ∆z∗ Nodes ∆z∗

Class I (21) 3741 1.66% 4563 1.54% 3332 1.56% 2511 1.56%
Class II (3) 25121 5.40% 23108 4.35% 7062 3.98% 2462 3.92%
Class III-B (28) 5930 2.35% 6924 2.22% 3094 2.30% 2536 2.41%

Aggregated
Classes Weak Strong Enum1 ArticHeur

Nb Nodes ∆z∗ Nodes ∆z∗ Nodes ∆z∗ Nodes ∆z∗

Class I (21) 9172 2.63% 10143 2.59% 2973 3.41% 2458 3.31%
Class II (3) 27207 6.14% 23748 4.67% 5804 4.17% 3067 4.20%
Class III-B (28) 25256 3.62% 25125 3.44% 12562 4.26% 10579 4.19%

Table 7: CPLEX B&B, 2 hours CPU Time Limit, Difficult Instances

The results for the 21 Medium instances are provided in Table 8, which gives the num-
ber of instances in each class, “Nb”, and for each tested model, the number of instances
solved by CPLEX within the time limit of 2 hours, “Sol”, the average time necessary
to solve these instances, “t(Sol)”, and the average final gap for the instances that could
not be solved by CPLEX within 2 hours, “∆z∗”. The results show the superiority of the
disaggregated strong model for solving these instances: the three instances in Class I are
solved (with “Enum1” also, but in more computing time), while 13 of the 18 instances in
Class III-B are solved to optimality. The disaggregated weak and the aggregated strong
formulations also solve 13 instances in Class III-B, but in more computing time. In ad-
dition, the final gap for the remaining unsolved instances is smaller for the disaggregated
strong model.

Disaggregated
Classes Weak Strong Enum1 ArticHeur

Nb Sol t(Sol) ∆z∗ Sol t(Sol) ∆z∗ Sol t(Sol) ∆z∗ Sol t(Sol) ∆z∗

Class I (3) 2 2354.5 0.08% 3 2361.3 - 3 3934.3 - 1 60 0.07%
Class III-B (18) 13 2308.5 0.74% 13 1871.8 0.58% 10 2841.3 0.67% 9 3067.4 0.66%

Aggregated
Classes Weak Strong Enum1 ArticHeur

Nb Sol t(Sol) ∆z∗ Sol t(Sol) ∆z∗ Sol t(Sol) ∆z∗ Sol t(Sol) ∆z∗

Class I (3) 0 - 0.70% 1 6913.0 0.84% 0 - 1.56% 0 - 1.33%
Class III-B (18) 11 2391.5 1.01% 13 3198.3 0.71% 4 3930.5 1.89% 2 1206.0 1.56%

Table 8: CPLEX B&B, 2 hours CPU Time Limit, Medium Instances

Over all classes of instances, the disaggregated strong model emerges as the most effec-
tive one. It solves 139 instances in the smallest average computing time among the eight
modeling options, while the remaining 57 unsolved instances display an average optimal-
ity gap of 1.93%. In general, adding cutset-based inequalities yields LP relaxations that
are too large, which generally translates into prohibitive computational effort, although
some instances in Class II can be solved more efficiently with the introduction of flow
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pack inequalities. The aggregated commodity representation is generally outperformed
by the disaggregated one, except for the easiest instances; even for these instances, the
disaggregated models perform well.

6 Conclusions

In this paper, we have presented a cutting-plane algorithm for the multicommodity ca-
pacitated fixed-charge network design problem. We have described five families of valid
inequalities: the strong, cover, minimum cardinality, flow cover, and flow pack inequal-
ities. We have developed efficient separation and lifting procedures, as well as a cutset
generation algorithm based on metaheuristics principles. Finally, we have presented com-
putational results conducted on a large set of instances. Our computational experiments
have focused on two key modeling aspects: the representation of the commodities, either
aggregated or disaggregated, and the impact of the cutset-based inequalities.

Our computational study shows the strength of the disaggregated commodity repre-
sentation, when combined with dynamic generation of strong inequalities. It also suggests
that cutset-based inequalities are interesting only for problems with many nodes and few
commodities. Although we have tested our cutting-plane algorithm within the enumer-
ative framework implemented in CPLEX, the procedure can be included into a more
promising custom-made branch-and-cut algorithm. Finally, it would be interesting to
investigate the usefulness of the proposed separation and cutset generation methods to
improve the formulations of other network design formulations.
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[12] D. Bienstock and O. Günlük. Capacitated network design-polyhedral structure and
computation. INFORMS Journal on Computing, 8:243–259, 1996.

[13] M. Christiansen, K. Fagerholt, B. Nygreen, and D. Ronen. Maritime transportation.
In C. Barnhart and G. Laporte, editors, Transportation: Handbooks of Transporta-
tion and Management Science, volume 14, pages 189–284. North-Holland, 2007.

[14] J.-F. Cordeau, F. Pasin, and M. Solomon. An integrated model for logistics network
design. Annals of Operations Research, 144:59–82, 2006.

[15] J.-F. Cordeau, P. Toth, and D. Vigo. A survey of optimization models for train
routing and scheduling. Transportation Science, 32:380–404, 1998.

[16] G. Cornuéjols, R. Sridharan, and J.M. Thizy. A comparison of heuristics and relax-
ations for the capacitated plant location problem. European Journal of Operational
Research, 50:280–297, 1991.

32

Commodity Representations and Cutset-Based Inequalities for Multicommodity Capacitated Fixed-Charge Network Design

CIRRELT-2011-56



[17] A.M. Costa, J.F. Cordeau, and B. Gendron. Benders, metric and cutset inequalities
for multicommodity capacitated network design. Computational Optimization and
Applications, 42:371–392, 2009.

[18] T. G. Crainic, M. Gendreau, and J.M. Farvolden. A simplex-based tabu search
method for capacitated network design. INFORMS Journal on Computing, 12:223–
236, 2000.

[19] T.G. Crainic. Service network design in freight transportation. European Journal of
Operational Research, 122:272–288, 2000.

[20] T.G. Crainic, A. Frangioni, and B. Gendron. Multicommodity capacitated network
design. In P. Soriano and B. Sanso, editors, Telecommunications Network Planning,
pages 1–19. Kluwer Academics Publisher, 1999.

[21] T.G. Crainic, A. Frangioni, and B. Gendron. Bundle-based relaxation methods for
multicommodity capacitated fixed charge network design. Discrete Applied Mathe-
matics, 112:73–99, 2001.

[22] T.G. Crainic and M. Gendreau. Cooperative parallel tabu search for capacitated
network design. Journal of Heuristics, 8:601–627, 2002.

[23] T.G. Crainic, B. Gendron, and G. Hernu. A slope scaling/Lagrangean perturba-
tion heuristic with long-term memory for multicommodity capacitated fixed-charge
network design. Journal of Heuristics, 10:525–545, 2004.

[24] T.G. Crainic and K.H. Kim. Intermodal transportation. In C. Barnhart and G. La-
porte, editors, Transportation: Handbooks of Transportation and Management Sci-
ence, volume 14, pages 467–537. North-Holland, 2007.

[25] T.G. Crainic, N. Ricciardi, and G. Storchi. Models for evaluating and planning city
logistics systems. Transportation Science, 43:432–454, 2009.

[26] A. Frangioni. http://www.di.unipi.it/optimize/Data/MMCF.html, June 2011.

[27] V. Gabrel, A. Knippel, and M. Minoux. Exact solution of multicommodity network
optimization problems with general step cost functions. Operations Research Letters,
25:15–23, 1999.
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[30] B. Gendron and T.G. Crainic. Bounding procedures for multicommodity capaci-
tated fixed charge network design problem. Technical Report CRT-96-06, Center for
research on transportation, 1996.

33

Commodity Representations and Cutset-Based Inequalities for Multicommodity Capacitated Fixed-Charge Network Design

CIRRELT-2011-56



[31] B. Gendron and F. Semet. Formulations and relaxations for a multi-echelon capaci-
tated location-distribution problem. Computers and Operations Research, 36:1335–
1355, 2009.

[32] I. Ghamlouche, T.G. Crainic, and M. Gendreau. Cycle-based neighbourhoods for
fixed charge capacitated multicommodity network design. Operations Research,
51:655–667, 2003.

[33] I. Ghamlouche, T.G. Crainic, and M. Gendreau. Path relinking, cycle-based neigh-
bourhoods and capacitated multicommodity network design. Annals of Operations
Research, 131:109–133, 2004.

[34] Z. Gu, G.L. Nemhauser, and M.W.P. Savelsbergh. Lifted cover inequalities for 0-
1 integer programs: computation. INFORMS Journal on Computing, 10:427–437,
1998.

[35] Z. Gu, G.L. Nemhauser, and M.W.P. Savelsbergh. Lifted cover inequalities for 0-1
integer programs: complexity. INFORMS Journal on Computing, 11:117–123, 1999.

[36] Z. Gu, G.L. Nemhauser, and M.W.P. Savelsbergh. Lifted flow cover inequalities for
mixed 0-1 integer programs. Mathematical Programming, 85:439–467, 1999.

[37] P.L. Hammer, E.L. Johnson, and U.N. Peled. Facets of regular 0-1 polytopes. Math-
ematical Programming, 8:179–206, 1975.

[38] M. Hewitt, G.L. Nemhauser, and M.W.P. Savelsbergh. Combining exact and heuris-
tic approches for the capacitated fixed-charge network flow problem. INFORMS
Journal on Computing, 22:314–325, 2010.

[39] K. Holmberg and D. Yuan. A Lagrangian heuristic based branch-and-bound ap-
proach for the capacitated network design problem. Operations Research, 48:461–
481, 2000.

[40] G. Kliewer and L. Timajev. Relax-and-cut for capacitated network design. In Pro-
ceedings of Algorithms-ESA 2005: 13th Annual European Symposium on Algorithms,
pages 47–58. Lecture Notes in Computer Science 3369, 2005.

[41] J.M.Y. Leung and T.L. Magnanti. Valid inequalities and facets of the capacitated
plant location problems. Mathematical Programming, 44:271–291, 1989.

[42] Q. Louveaux and L.A. Wolsey. Lifting, superaddititvity, mixed integer rounding and
single node flow sets revisited. Annals of Operations Research, 153:47–77, 2007.

[43] T.L. Magnanti, P.B. Mirchandani, and R. Vachani. The convex hull of two core
capacitated network design problems. Mathematical Programming, 60:233–250, 1993.

[44] T.L. Magnanti, P.B. Mirchandani, and R. Vachani. Modeling and solving the two-
facility capacitated network loading problem. Operations Research, 43:142–157,
1995.

34

Commodity Representations and Cutset-Based Inequalities for Multicommodity Capacitated Fixed-Charge Network Design

CIRRELT-2011-56



[45] T.L. Magnanti and R.T. Wong. Network design and transportation planning: models
and algorithms. Transportation Science, 18:1–55, 1984.

[46] H. Marchand, A. Martin, R. Weismantel, and L.A. Wolsey. Cutting planes in integer
and mixed integer programming. Discrete Applied Mathematics, 123:397–446, 2002.

[47] H. Marchand and L.A. Wolsey. Aggregation and mixed-integer rounding to solve
MIPs. Operations Research, 49:363–371, 2001.

[48] S. Martello and P. Toth. Upper bounds and algorithms for hard 0-1 knapsack
problems. Operations Research, 45:768–778, 1997.

[49] M. Minoux. Network synthesis and optimum network design problems: models,
solution methods and applications. Networks, 19:313–360, 1989.

[50] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley-
Interscience, New York, 1998.

[51] F. Ortega and L.A. Wolsey. A branch-and-cut algorithm for the single commodity
uncapacitated fixed charge network flow problem. Networks, 41:143–158, 2003.

[52] M.W. Padberg, T.J. Van Roy, and L.A. Wolsey. Valid linear inequalities for fixed
charge problems. Operations Research, 33:842–861, 1985.

[53] C. Raack, A.M.C.A. Koster, S. Orlowski, and R. Wessäly. On cut-based inequalities
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