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Abstract. We introduce the Vehicle Routing and Districting Problem with Stochastic 

Customers (VRDPSC). This problem is modeled and solved as a two-stage stochastic 

program during which the districting decisions are made in the first stage and the 

Beardwood-Halton-Hammersley formula is used to approximate the expected routing cost 

of each district in the second stage. District compactness is also considered as part of the 

objective function. We have developed a large neighbourhood search heuristic for 

VRDPSC. The heuristic was tested on modified Solomon instances and on modified 

Gehring and Homberger instances. Extensive computational results confirm the 

effectiveness of the proposed heuristic. 
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1 Introduction

The problem considered in this paper is the Vehicle Routing and Districting Problem with
Stochastic Customers (VRDPSC). It consists of designing the districts for a vehicle routing problem
with stochastic customers with the aim of minimizing the expected cost of the solution. The
problem is defined on an undirected graph G = (V,E), where V = {v0, V , Ṽ } is the vertex set
and E = {(vi, vj) : vi, vj ∈ V, i < j} is the edge set. Vertex v0 is a depot at which are based

several identical vehicles, V is the set of deterministic (regular) customers, and Ṽ is a set of the
stochastic customers whose locations and presence in the solution are uncertain. Thus our setting
differs from those of the Probabilistic Traveling Salesman Problem (Jaillet (1988), Laporte et al.
(1994)) and of the Vehicle Routing Problem with Stochastic Customers (Gendreau et al., 1996) in
which the potential locations of the stochastic customers are known a priori. A symmetric matrix
of Euclidean travel times, equal to travel costs, is defined on E. The VRDPSC consists of designing
several contiguous vehicle districts such that (1) all customers (including regular and stochastic
customers) within the same district are serviced by the same vehicle, (2) each customer vertex is
visited once by one vehicle, (3) a service time s is incurred when visiting a vertex, (4) each vehicle
route has a normal duration limit h, but overtime is paid at rate θ if its duration exceeds h, and
(5) an objective function combining vehicle cost, routing cost and a district compactness measure
is minimized. Because of the presence of stochastic customers, the duration of a route in a district
is a random variable.

The VRDPSC arises in the operations of courier companies such as DHL, FedEx, TNT Express
or UPS. Each driver is assigned a district containing a set of regular customers, but other occasional
customers also arise on a stochastic basis. In such contexts it is desirable to consistently assign the
same sets of customers to drivers, and hence to create stable districts, in order to improve service
(Groër et al., 2009).

The VRDPSC can be modeled and solved as a stochastic mathematical program. The most
common solution methodology for this class of problems is called a priori optimization, a concept
initially proposed by Bertsimas et al. (1990) and applied by several authors to the field of vehicle
routing (e.g. Bertsimas (1992), Gendreau et al. (1996), Laporte et al. (2002), Tan et al. (2007),
Mendoza et al. (2010), Laporte et al. (2010) and Lei et al. (2011)). In a priori optimization, a
first-stage solution consisting of a set of districts is first constructed, and the realizations of the
random variables (presence or absence of stochastic customers) are then revealed. In the second-
stage solution, a vehicle route is constructed in each district to serve all its regular and stochastic
customers. Whenever the maximal duration of a route is exceeded, an overtime cost is incurred.
We therefore solve a stochastic problem with simple recourse.

There exists a rich literature on districting. Most of it deals with deterministic problems.
These include the drawing of political districts (Mehrotra et al. (1992), Bozkaya et al. (2003)),
the design of school districts (Ferland and Guénette (1990)), the construction of police districts
(D’Amico et al. (2002)), districting for home-care services (Blais et al. (2003)), the alignment of
commercial territories (Skiera and Albers (1998), Drexl (1999), Kalcsics et al. (2005), Rı́os-Mercado
and Fernández (2009)), and the solution of location-districting problems (Novaes et al. (2009),
Carlsson (2011a)).

Research on stochastic districting problems has mostly been conducted in the context of vehicle
routing. Haugland et al. (2007) have considered the problem of designing districts for vehicle routing
problems with stochastic demands. The demands are assumed to be uncertain at the time when
the districts were made, and these are revealed only after the districting decisions are determined.
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A tabu search heuristic was provided for the problem. Carlsson and Delage (2011) introduced a
robust framework for distributing the load of a vehicle routing problem over a fleet of vehicles when
the location of demand points and their distribution are not known with certainty. Carlsson (2011b)
has studied an uncapacitated stochastic vehicle routing problem in which vehicle depot locations
are fixed and client locations in a service region are unknown, but are assumed to be independent
and identically distributed samples from a given probability density function.

To our knowledge, this paper is the first to consider stochastic customers in the context of a
joint vehicle routing and districting problem. Instead of explicitly determining the vehicle routes, we
approximate their expected cost by means of the Beardwood-Halton-Hammersley theorem (Beard-
wood et al., 1959). We integrate this approximation within a large neighbourhood search heuristic
for the districting phase.

The remainder of the paper is organized as follows. The mathematical formulation of the prob-
lem is described in Section 2. In Section 3, we provide the detailed description of the approximation
of the expected cost of routing in a district. In Section 4, we define the compactness measure of
a district. A large neighbourhood search metaheuristic for the problem is described in Section 5,
followed by computational experiments in Section 6, and by conclusions in Section 7.

2 Mathematical modeling as a stochastic program

The VRDPSC is modeled as a two-stage stochastic program. The first-stage solution is a
decomposition of V into m districts, V1, ..., Vm. A feasible district plan x = {V1, ..., Vm} must
satisfy three conditions: (1) v0 ∈ Vk(k = 1, ...,m); (2) {V1 \ {v0}, ..., Vm \ {v0}} is a partition of
V ; (3) the district plan must induce a partition of the region into contiguous districts. After the

first-stage solution has been computed, the sets Ṽk of stochastic customers are revealed and, in the
second-stage solution, the cost of a vehicle route on {v0} ∪ V k ∪ Ṽk is computed for each district k,
where V k = Vk \ {v0}. The workload Wk of district k is approximated as the expected length of an

optimal Traveling Salesman Problem (TSP) tour over V k ∪ Ṽk, plus twice the travel time between
v0 and the vertex of V k closest to v0. The number m of districts is a decision variable.

The VRDPSC consists of computing

min
x

F (x) = αmm+ αercFerc + αcompFcomp (1)

such that x = {V1, ..., Vm} is a feasible districting plan. The objective function is a linear combi-
nation of three terms weighted by non-negative user-defined parameters αm, αerc and αcomp. The
first term is the number of vehicles. The second term is the expected routing cost in district k.
The third term is a compactness measure of the districts. The computations of Ferc and Fcomp

are detailed in Section 3 and 4, respectively. Contiguity is enforced through the construction and
search mechanisms described in Section 5.

3 Approximation of the expected routing cost in a district

Computing the expected routing cost of a given district requires the solution of a Traveling
Salesman Problem (TSP) over all deterministic and stochastic customers. We use the Beardwood-
Halton-Hammersley theorem (Beardwood et al., 1959) to approximate this cost.

Districting for Routing with Stochastic Customers
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Theorem 1 Let {X1, ..., Xn}, n ≥ 1, be a set of random variables in Rdim, independently and
identically distributed with compact support. Then the length L∗ of a shortest traveling salesman
tour through the points Xi satisfies

L∗/n(dim−1)/dim → βdim

∫
Rdim

f(x)(dim−1)/dimdx, with probability 1, as n → ∞, (2)

where f(x) is the absolutely continuous part of the distribution of the Xi and βdim is a constant
which depends on dim but not on the distribution.

Since our problem is defined in two dimensions, the optimal tour cost L∗
k for district k is

L∗
k ≈ β2

√
nkAk, (3)

where Ak is the area of district k, nk = nk + ñk is its number of customers, which includes the nk

regular customers and the ñk stochastic customers, and β2 is a constant. The value of β2 is truly
asymptotic. Applegate et al. (2006), who have conducted extensive experiments, conclude that β2

is empirically related to nk, as shown in Table 1.

Table 1: Empirical value of β2 as a function of nk (Applegate et al., 2006)

nk β2

100 0.7764689
200 0.7563542
300 0.7477629
400 0.7428444
500 0.7394544
600 0.7369409
700 0.7349902
800 0.7335751
900 0.7321114
1000 0.7312235
2000 0.7256264

The workload of district k can be calculated as

Wk = 2dk + β2

√
nkAk + snk, (4)

where dk is the shortest driving time between depot and the customer of district k closest to the
depot. The computation of (4) is distribution-dependent. For example, assuming the number ñk of
stochastic customers in district k follows a Poisson(λk) distribution, the expected cost of routing
in district k can be calculated as

E(W+
k ) =

∞∑
i=0

e−λkλi
k

i!
(2dk + β2

√
(nk + i)Ak + s(nk + i))+, (5)

where (•)+ = (•) if (•) ≤ h, (•)+ = h+ θ
(
(•)−h

)
otherwise, and θ is the overtime rate. Therefore,

the expected routing cost of solution x is

Ferc(x) =
m∑

k=1

E(W+
k ). (6)

Districting for Routing with Stochastic Customers
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Note that the application of the Beardwood-Halton-Hammersley formula is particularly well suited
to our problem since it uses no information on the precise location of the stochastic customers. We
only require the distribution of their number to compute the expected routing cost.

4 Compactness measure of a district

As in Bozkaya et al. (2003), we use the following formula to measure the compactness of district:

Fcomp(x) =

∑m
k=1 Bk(x)−B

2Bm
, (7)

where Bk(x) is the perimeter of district k in solution x, and B is the perimeter of the entire region.
This formula computes the average normalized length of the inner boundaries of the districts. It is
simple to implement and yields visually compact districts.

5 Large neighbourhood search heuristic

Since our problem embeds a stochastic TSP and should be solved for relatively large sizes, we
have devised a large neighbourhood search heuristic for it. This type of heuristic was introduced
by Shaw (1997) and has already been successfully applied to several routing problems (e.g. Shaw
(1997), Shaw (1998), Ropke and Pisinger (2006), Pisinger and Ropke (2007), Goel and Gruhn.
(2008), Laporte et al. (2010), Lei et al. (2011), Hong (2012) and Ribeiro and Laporte (2012)). This
metaheuristic must be fine tuned to each application. In this section we describe its application to
the VRDPSC.

We obtain a contiguous initial solution by means of a construction heuristic. At each iteration,
q boundary units are removed from their districts by using one of the three removal operators,
and are reinserted by means of an insertion operator, where q is randomly selected in the interval
[⌈0.1nbou⌉, ⌈0.2nbou⌉] as in Laporte et al. (2010), and nbou is the total number of the boundary basic
units of current solution. The removal operators are randomly selected at each iteration and these
remove-insert operators are combined to efficiently explore the solution space. Contiguity is always
maintained.

5.1 Objective function

The objective function used in the heuristic search is the following:

min
x

F (x) = αmm+ αercFerc + αcompFcomp. (8)

In our implementation, αm is set to 1 and αerc and αcomp are tested with different values.

5.2 Definition of the basic units

In order to operationalize the concept of contiguity, it is necessary to embed the regular cus-
tomers in basic units which partition the region under study. Given a set of regular customer
locations, we construct the basic units as follows. Assume that the location of customer i in
the instance region is described by the coordinates (xi, yi). The region is defined by

[
xmin =

Districting for Routing with Stochastic Customers
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(a) Customers and depot in the plane
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(b) Initial basic units
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(c) Final basic units

Figure 1: Generation of the basic units of instance mS-R-50

mini∈V {xi}, xmax = maxi∈V {xi}
]
and

[
ymin = mini∈V {yi}, ymax = maxi∈V {yi}

]
. It is par-

titioned into nu initial basic units, where nu =
⌈
(xmax − xmin)/d

⌉
×

⌈
(ymax − ymin)/d

⌉
and

d = min
{
mini,j∈V {|xi − xj |},mini,j∈V {|yi − yj |}

}
. Any unit with no regular customer is merged

with the nearest unit having at least one regular customer. Figure 1(a) shows the customers and
depot in the plane on the instance mS-R-50 described in Section 6.1.1. Figure 1(b) presents the
generated initial basic units of instance mS-R-50. Figure 1(c) shows the final basic units of mS-R-50.

Given a set of basic units, which define a partition of the entire region, it is straightforward to
use an adjacency list to indicate whether any two basic units are adjacent. Note that two neighbour
units which only have a finite number of points in common, as opposed to an edge, are considered
to be non-adjacent. To avoid creating the disconnected districts or enclaves, the construction
heuristic as well as the removal and insertion operations comply with the following rules: (1) all
exchange operations are performed on the boundary units of the districts; (2) operations that would
disconnect some units from the remainder of the district are not performed.

Districting for Routing with Stochastic Customers
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5.3 Construction of an initial solution

We have devised the following construction heuristic to generate a good feasible initial solution.
The heuristic first randomly selects a basic unit which includes at least one regular customer as the
seed unit to initialize the first district. The heuristic gradually extends this district by adjoining
to it the adjacent units yielding the least increase in the district workload. The expected workload
of the extended district does not exceed the duration limit h. If adjoining an adjacent unit would
cause the expected workload to exceed h, this unit is not included in the district but serves as a
seed unit for a new district. Any district with only one basic unit is eliminated and merged with
the adjacent district so as to yield the lowest increased workload.

5.4 Removal and insertion operators

We now describe three removal operators and one insertion operator.

5.4.1 Long removal operator

This operator concentrates on those districts with longer perimeters and are less likely to be
compact.

Step 0. Set ϑ = 0 and k = 1.
Step 1. Sort the districts in non-increasing order of the values of their perimeter.
Step 2. If the number m(x) of districts of the current solution x is larger than q, randomly

remove a boundary basic unit from each of the first q districts without disconnecting them, and
stop.

Step 3. Randomly remove a boundary basic unit from district k without disconnecting it.
Step 4. Set ϑ = ϑ + 1 and k = k + 1. If k > m(x), set k = 1. If ϑ = q, stop; otherwise go to

Step 3.

5.4.2 Large removal operator

This operator focuses on the districts with larger number of regular customers which are likely
to have a larger workload.

Step 0. Set ϑ = 0 and k = 1.
Step 1. Sort the districts in non-increasing order of their number of regular customers.
Step 2. If m(x) > q, remove the boundary basic unit with the largest number of regular

customers from each of the first q districts without disconnecting them, and stop.
Step 3. Remove the boundary basic unit with the largest number of regular customers from

district k without disconnecting it.
Step 4. Set ϑ = ϑ + 1 and k = k + 1. If k > m(x), set k = 1. If ϑ = q, stop; otherwise go to

Step 3.
When each basic unit includes the same number of regular customers, the removed basic unit

is randomly chosen from the boundary units with regular customers, without disconnecting the
district.

5.4.3 Random removal operator

The operator randomly selects q boundary basic units and removes them from their district
without disconnecting it.

Districting for Routing with Stochastic Customers
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5.4.4 Insertion operator

This operator reinserts the removed units into the adjacent districts with the lowest increase in
the objective function value.

Step 0. Set l = 1.
Step 1. Select a unit ul from the removed units, and compute the increase in the objective

function values when the selected unit is reinserted in the adjacent districts.
Step 2. Choose a adjacent district with the lowest increase in the objective function value as the

best district, respecting the tabu tenure described in Section 5.5. If no feasible insertion district is
found, go to Step 4.

Step 3. Insert the unit ul into the best district. If l = q, stop; otherwise set l = l + 1 and go to
Step 1.

Step 4. Use ul to initialize a new district. Set m(x) = m(x) + 1. If l = q, stop; otherwise set
l = l + 1 and go to Step 1.

5.5 Recency-based memory and tabu tenure

As in Bozkaya et al. (2003), we use recency-based memory and tabu tenure to avoid cycling. Any
move that reinserts the basic unit i back into its previous district is declared tabu for ϕ iterations.
As recommended by Haugland et al. (2007), ϕ is set equal to the number of districts in the initial
solution. As usual, tabu move may be still performed if it yields a new incumbent solution.

5.6 Acceptance and stopping criteria

We use the record-to-record travel (RRT) algorithm introduced by Dueck (1993) to define the
acceptance criterion for a new solution. Assume f∗ is the value of the best current solution, called
a record. The unique and positive parameter δ of the RRT algorithm is called a deviation. Let x
be a solution, x′ a neighbour of x, and fx′ the objective value of solution x′. Solution x′ is accepted
if fx′ < f∗ + δ, and f∗ is updated if fx′ < f∗. We set δ = 0.1f∗. The search stops if solution
quality has not improved for a given number of iterations or if a preset number of iterations have
been executed. We set these values as 300 and 1000 respectively in our implementation.

5.7 Summary of the large neighbourhood search heuristic

Our implementation of the large neighbourhood search heuristic can be summarized as follows.
Step 1. Initialize the parameters, and use the construction heuristic to generate an initial

solution. Set the objective value of the initial solution as the record and the best cost, compute the
deviation. Set the initial solution as the best solution and define it as the current solution.

Step 2. Randomly select a removal operator from the three removal operators to remove q
boundary units from the current solution without disconnecting the districts. Then apply the
insertion operator to repair the solution and to generate a new solution, respecting the recency-
based memory and tabu tenure.

Step 3. If the objective value of the new solution is smaller than the best cost, set the new
solution as the best solution and set its objective value as the best cost. If the new solution is
accepted using the RRT criterion, set it as the current solution. If the objective value of the new
solution is smaller than the record, update the record and the deviation.

Districting for Routing with Stochastic Customers
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Step 4. Update the total number of the boundary units of current solution, and update the
value of q.

Step 5. If the stopping criterion is met, output the best solution and the best cost. Otherwise
go to Step 2.

6 Computational experiments

The algorithm described in Section 5 was coded using Matlab 7.0.4 and run on a laptop with
2 GHz dual processor and 2 GB RAM. We now describe the results of extensive computational
experiments.

We assume that all stochastic customers are Poisson distributed and the mean number λk of
stochastic customers of each district is equal to the number nk of regular customers of the same
district.

6.1 Experiments on the modified Solomon instances

We now describe a first set of experiments performed on the modified Solomon instances.

6.1.1 Experimental design

We have generated test instances derived from those of Solomon (1987). The coordinates of the
regular customers are the same as in the Solomon instances, while the demands and time windows
are not used. We consider six classes of instances: R1, R2, C1, C2, RC1 and RC2. The coordinates
of R1 and R2 are the same, and so are those of RC1 and RC2. However, the coordinates of C1 and
C2 are not identical. Hence we consider four types of instances: R, C1, C2, and RC. We respectively
choose the first 50, 75 and 100 customer vertices as the regular customers in the tests. The service
times of customers are equal to 10, and h is set to 480.

Because there are no comparative data and no competing heuristic exist for our problem, com-
parisons with best known solutions are not possible. However, we can compare the initial solutions
generated by our construction heuristic of Section 5.3 with the solutions obtained by our heuristic
of Section 5. The detailed information of the modified Solomon instances tested is shown in Table
2.

6.1.2 Computational results

Table 3 presents computational results for the modified Solomon instances with αm = 1, αecr = 1
and αcomp = 1. The column “Construction heuristic” summarizes the results obtained from the
construction heuristic of Section 5.3. The column “LNS heuristic” summarizes the results obtained
by applying the heuristic of Section 5. The column “m” gives the number of districts of the solutions.
The column “Fecr” presents the expected routing cost of the solutions, computed by Formula (6).
The column “Fcomp” shows the compactness measure cost of the solutions, computed by Formula
(7). The column “F” is the total expected cost of the solutions, computed by Formula (8). We
also report the total CPU time in seconds in the “Seconds” column for “LNS heuristic”. The
“Imp(%)”column shows the percentage improvement in “Total cost” obtained by “LNS heuristic”,
compared with “Construction heuristic”.

Districting for Routing with Stochastic Customers
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Table 2: Modified Solomon instances

Instance Type |V | E[|Ṽ |] s

mS-C1-50 C1 50 50 10
mS-C2-50 C2 50 50 10
mS-R-50 R 50 50 10
mS-RC-50 RC 50 50 10
mS-C1-75 C1 75 75 10
mS-C2-75 C2 75 75 10
mS-R-75 R 75 75 10
mS-RC-75 RC 75 75 10
mS-C1-100 C1 100 100 10
mS-C2-100 C2 100 100 10
mS-R-100 R 100 100 10
mS-RC-100 RC 100 100 10

Table 3: Computational results on the modified Solomon instances

Construction heuristic LNS heuristic

Instance m Fecr Fcomp F m Fecr Fcomp F Seconds Imp(%)

mS-C1-50 4 1536.43 0.25 1540.68 4 1480.61 0.34 1484.95 87.08 3.62
mS-C2-50 4 1685.23 0.25 1689.48 4 1579.45 0.35 1583.80 102.80 6.26
mS-R-50 6 1782.45 0.21 1788.66 4 1567.53 0.34 1571.87 136.86 12.12
mS-RC-50 6 2139.12 0.18 2145.30 4 1961.18 0.30 1965.48 161.33 8.38

50-average 5 1785.80 0.22 1791.02 4 1647.19 0.33 1651.52 122.02 7.59

mS-C1-75 6 2674.04 0.21 2680.25 6 2437.72 0.26 2443.98 297.00 8.82
mS-C2-75 6 2523.72 0.21 2529.93 6 2453.91 0.25 2460.16 169.31 2.76
mS-R-75 10 2537.26 0.17 2547.43 6 2273.95 0.27 2280.22 229.22 10.49
mS-RC-75 7 2745.37 0.18 2752.55 6 2560.07 0.30 2566.37 186.81 6.76

75-average 7.25 2620.20 0.19 2627.54 6 2431.42 0.27 2437.69 220.59 7.21

mS-C1-100 8 3366.82 0.19 3375.01 7 3216.03 0.23 3223.26 346.58 4.50
mS-C2-100 10 3559.60 0.18 3569.78 7 3240.70 0.30 3248.00 347.95 9.01
mS-R-100 10 3217.65 0.18 3227.83 7 2895.51 0.26 2902.77 546.67 10.07
mS-RC-100 12 3624.82 0.15 3636.97 7 3228.23 0.26 3235.49 330.38 11.04

100-average 10 3442.22 0.17 3452.39 7 3155.69 0.26 3162.95 398.97 8.36

Average 7.42 2616.04 0.19 2623.65 5.67 2411.43 0.29 2417.39 247.19 7.72

Districting for Routing with Stochastic Customers
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Table 3 clearly shows that the solutions of “LNS heuristic” are better than those of “Construction
heuristic”. The average improvement percentage in the total cost F is 7.72%. The average number
of districts of the solutions of “LNS heuristic” is less than that of “Construction heuristic”, and
so is the average expected routing cost. However, the average compactness cost of the solutions of
“LNS heuristic” is more than that of “Construction heuristic”. The average CPU time for “LNS
heuristic” is 247.19s.

6.2 Experiments on the modified Gehring and Homberger instances

We next present a second set of experiments performed on the modified Gehring and Homberger
instances.

6.2.1 Experimental design

We have also generated test instances derived from those of Gehring and Homberger (1999).
Like the modified Solomon instances, the coordinates of the Gehring and Homberger instances are
used as the coordinates of the regular customers of the tested instances, and the demands, time
windows and service times are not used. We consider six classes of instances: R1, R2, C1, C2,
RC1 and RC2. And in the Gehring and Homberger instances, the coordinates of RC1 and RC2 are
the same, but the coordinates of C1 and C2 are not identical and neither are those of R1 and R2.
Hence we consider five types of instances: R1, R2, C1, C2, and RC. We respectively choose the 150,
200, 300 and 400 customer vertices as the regular customers in the tests, and the regular customers
of the instances with 150 regular customers are chosen from the first 150 customer vertices of the
instances with 200 customers. The values of the service times of customers and the duration h of
each district are the same as those of the modified Solomon instances. The detailed information of
the modified Gehring and Homberger instances tested is shown in Table 4.

6.2.2 Computational results

Table 5 shows the computational results for the modified Gehring and Homberger instances
with αm = 1, αecr = 1 and αcomp = 1. It indicates that the solutions of “LNS heuristic” are better
than those of “Construction heuristic”. The average improvement percentage is 9.46%. Similar to
the results on the modified Solomon instances, the average number of districts of the solutions of
“LNS heuristic” is less than that of “Construction heuristic”, and so is the average expected routing
cost, but the average compactness cost of the solutions of “LNS heuristic” is more than that of
“Construction heuristic”. The average CPU time for “LNS heuristic” is 3023.61s.

6.3 Experiments with different parameters

We have performed tests with different parameters by successively varying the multiplier αcomp

of Fcomp and the multiplier αerc of Ferc in the objective function. Table 6 provides the solution
values obtained with αcomp = 1, αcomp = 50 and αcomp = 100, leaving the other multipliers
unchanged. As expected, when the value of αcomp becomes larger, the average value of Fcomp

becomes smaller. In contrast, the average values of m and Ferc become larger. Figures 2, 3 and 4
show the districts of the final best solution of the instance mS-R-50 when αcomp = 1, αcomp = 50
and αcomp = 100, respectively. We can see that when the value of αcomp increases, the districts of
the final best solution become more compact. Table 7 provides the comparison of the computational
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Table 4: Modified Gehring and Homberger instances

Instance Type |V | E[|Ṽ |] s

mGH-C1-150 C1 150 150 10
mGH-C2-150 C2 150 150 10
mGH-R1-150 R1 150 150 10
mGH-R2-150 R2 150 150 10
mGH-RC-150 RC 150 150 10
mGH-C1-200 C1 200 200 10
mGH-C2-200 C2 200 200 10
mGH-R1-200 R1 200 200 10
mGH-R2-200 R2 200 200 10
mGH-RC-200 RC 200 200 10
mGH-C1-300 C1 300 300 10
mGH-C2-300 C2 300 300 10
mGH-R1-300 R1 300 300 10
mGH-R2-300 R2 300 300 10
mGH-RC-300 RC 300 300 10
mGH-C1-400 C1 400 400 10
mGH-C2-400 C2 400 400 10
mGH-R1-400 R1 400 400 10
mGH-R2-400 R2 400 400 10
mGH-RC-400 RC 400 400 10

solutions with αecr = 0.01, αecr = 0.1 and αecr = 1, leaving the other multipliers unchanged. Like
in Table 6, increasing αecr means that the average value of Ferc becomes smaller, and the average
values of m and Fcomp become larger.

7 Conclusions

We have introduced, modeled and solved a combined vehicle routing and districting problem
with stochastic customers. The problem was solved by means of a two-stage program. In the first
stage, the districting decision is made. The second stage expected routing cost of each district is
approximated by the Beardwood-Halton-Hammersley formula. We have developed a large neigh-
bourhood search heuristic for the problem. Modified Solomon instances and modified Gehring and
Homberger instances were used to assess the quality of the proposed heuristic. The computational
results confirm the effectiveness of our approach.
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Table 5: Computational results on the modified Gehring and Homberger instances

Construction heuristic LNS heuristic

Instance m Fecr Fcomp F m Fecr Fcomp F Seconds Imp(%)

mGH-C1-150 17 6322.66 0.15 6339.81 14 5816.51 0.20 5830.71 819.81 8.03
mGH-C2-150 16 6148.09 0.15 6164.24 12 5617.07 0.21 5629.28 790.77 8.68
mGH-R1-150 17 6465.75 0.15 6482.90 13 5908.93 0.19 5922.12 838.50 8.65
mGH-R2-150 16 6302.94 0.17 6319.11 13 5807.17 0.20 5820.37 795.20 7.89
mGH-RC-150 15 6248.89 0.15 6264.04 13 5815.67 0.20 5828.87 798.55 6.95

150-average 16.20 6297.66 0.15 6314.01 13 5793.07 0.20 5806.27 808.57 8.04

mGH-C1-200 20 8138.64 0.15 8158.79 17 7582.57 0.18 7599.75 1338.98 6.85
mGH-C2-200 21 7961.85 0.13 7982.98 16 7178.10 0.18 7194.28 1389.89 9.88
mGH-R1-200 23 8446.55 0.14 8469.69 17 7371.73 0.17 7388.90 1550.95 12.76
mGH-R2-200 23 8300.51 0.13 8323.64 16 7329.83 0.20 7346.03 1743.02 11.74
mGH-RC-200 26 8659.73 0.11 8685.84 16 7547.65 0.18 7563.83 1409.05 12.92

200-average 22.60 8301.46 0.13 8324.19 16.40 7401.98 0.18 7418.56 1486.38 10.83

mGH-C1-300 40 15612.43 0.10 15652.53 28 13550.48 0.14 13578.62 3805.09 13.25
mGH-C2-300 33 13564.15 0.12 13597.27 27 12406.86 0.15 12434.01 3462.64 8.56
mGH-R1-300 37 14900.03 0.11 14937.14 28 13120.54 0.15 13148.69 3685.58 11.97
mGH-R2-300 37 14623.46 0.11 14660.57 29 13028.82 0.15 13057.97 3507.06 10.93
mGH-RC-300 33 14502.79 0.11 14535.90 30 13494.62 0.14 13524.76 3420.94 6.96

300-average 36 14640.57 0.11 14676.68 28.40 13120.26 0.15 13148.81 3576.26 10.33

mGH-C1-400 50 19740.44 0.09 19790.53 37 17994.84 0.12 18030.96 6507.61 8.89
mGH-C2-400 45 17506.35 0.09 17551.44 32 15791.24 0.14 15823.38 6638.89 9.85
mGH-R1-400 49 18824.63 0.10 18873.73 36 16886.36 0.14 16922.50 6363.39 10.34
mGH-R2-400 45 18151.06 0.11 18196.17 39 16805.59 0.14 16844.73 5969.23 7.43
mGH-RC-400 46 18602.25 0.10 18648.35 40 17358.87 0.12 17397.99 5637.13 6.70

400-average 47 18564.95 0.10 18612.04 36.80 16967.38 0.13 17003.91 6223.25 8.64

Average 30.45 11951.16 0.12 11981.73 23.65 10820.67 0.17 10844.39 3023.61 9.46

Table 6: Computational results on the modified Solomon instances with different value of αcomp

αcomp = 1 αcomp = 50 αcomp = 200

Instance m Fecr Fcomp F m Fecr Fcomp F m Fecr Fcomp F

mS-C1-50 4 1480.61 0.34 1484.95 4 1485.20 0.33 1505.70 4 1491.60 0.23 1541.10
mS-C2-50 4 1579.45 0.35 1583.80 4 1571.71 0.30 1590.78 4 1606.85 0.24 1659.49
mS-R-50 4 1567.53 0.34 1571.87 4 1571.02 0.27 1588.30 4 1573.18 0.22 1620.20
mS-RC-50 4 1961.18 0.30 1965.48 4 1959.47 0.27 1977.15 4 1954.15 0.27 2011.43
mS-C1-75 6 2437.72 0.26 2443.98 5 2503.03 0.26 2520.81 5 2479.31 0.26 2537.00
mS-C2-75 6 2453.91 0.25 2460.16 6 2491.32 0.24 2509.23 6 2472.39 0.28 2534.29
mS-R-75 6 2273.95 0.27 2280.22 6 2253.35 0.26 2272.30 6 2256.69 0.30 2321.92
mS-RC-75 6 2560.07 0.30 2566.37 6 2567.33 0.26 2586.45 6 2562.24 0.22 2611.48
mS-C1-100 7 3216.03 0.23 3223.26 8 3203.15 0.25 3223.75 8 3172.95 0.21 3222.74
mS-C2-100 7 3240.70 0.30 3248.00 7 3184.94 0.27 3205.45 9 3259.26 0.20 3308.83
mS-R-100 7 2895.51 0.26 2902.77 7 2910.06 0.31 2932.37 7 2910.46 0.25 2968.33
mS-RC-100 7 3228.23 0.26 3235.49 8 3228.71 0.24 3248.88 7 3232.38 0.31 3301.21

Average 5.67 2407.91 0.29 2413.87 5.75 2410.77 0.27 2430.10 5.83 2414.29 0.25 2469.84
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Figure 2: Solution for instance mS-R-50 with αcomp = 1
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Figure 3: Solution for instance mS-R-50 with αcomp = 50
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Figure 4: Solution for instance mS-R-50 with αcomp = 200

Table 7: Computational results on the modified Solomon instances with different value of αerc

αerc = 0.01 αerc = 0.1 αerc = 1

Instance m Fecr Fcomp F m Fecr Fcomp F m Fecr Fcomp F

mS-C1-50 3 1511.60 0.25 18.36 4 1486.01 0.33 152.93 4 1480.61 0.34 1484.95
mS-C2-50 4 1586.70 0.28 20.15 4 1582.41 0.33 162.57 4 1579.45 0.35 1583.80
mS-R-50 4 1569.68 0.25 19.95 4 1636.59 0.25 167.91 4 1567.53 0.34 1571.87
mS-RC-50 4 1975.59 0.28 24.04 4 1953.89 0.27 199.66 4 1961.18 0.30 1965.48
mS-C1-75 5 2540.38 0.24 30.64 6 2465.22 0.23 252.75 6 2437.72 0.26 2443.98
mS-C2-75 5 2485.32 0.31 30.16 6 2449.61 0.28 251.24 6 2453.91 0.25 2460.16
mS-R-75 5 2263.35 0.25 27.89 5 2285.50 0.33 233.88 6 2273.95 0.27 2280.22
mS-RC-75 5 2596.50 0.28 31.25 5 2574.01 0.25 262.66 6 2560.07 0.30 2566.37
mS-C1-100 7 3200.60 0.25 39.26 7 3196.75 0.24 326.91 7 3216.03 0.23 3223.26
mS-C2-100 7 3261.55 0.26 39.88 7 3206.39 0.25 327.89 7 3240.70 0.30 3248.00
mS-R-100 6 2992.81 0.26 36.19 7 2899.58 0.27 297.23 7 2895.51 0.26 2902.77
mS-RC-100 7 3231.04 0.28 39.59 7 3251.33 0.28 332.41 7 3228.23 0.26 3235.49

Average 5.17 2434.59 0.27 29.78 5.50 2415.61 0.28 247.34 5.67 2407.91 0.29 2413.87
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Applegate, D. L., R. E. Bixby, V. Chvátal, W. J. Cook. 2006. The Travelling Salesman Problem:
A Computational Study. Princeton University Press.

Beardwood, J., J.H. Halton, J.M. Hammersley. 1959. The shortest path through many points.
Mathematical Proceedings of the Cambridge Philosophical Society 55(4). Cambridge University
Press, 299–327.

Bertsimas, D.J. 1992. A vehicle routing problem with stochastic demand. Operations Research 40(3)
574–585.

Bertsimas, D.J., P. Jaillet, A.R. Odoni. 1990. A priori optimization. Operations Research 38(6)
1019–1033.

Blais, M., S.D. Lapierre, G. Laporte. 2003. Solving a home care districting problem in an urban
setting. Journal of the Operational Research Society 54(11) 1141–1147.

Bozkaya, B., E. Erkut, G. Laporte. 2003. A tabu search heuristic and adaptive memory procedure
for political districting. European Journal of Operational Research 144(1) 12–26.

Carlsson, J.G. 2011a. Dividing a territory among several facilities. INFORMS Journal of Computing,
to appear.

Carlsson, J.G. 2011b. Equitable partitioning for multi-depot vehicle routing. INFORMS Journal of
Computing, to appear.
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