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Abstract. The paper presents an efficient Hybrid Genetic Search with Advanced Diversity 
Control for a large class of time-constrained vehicle routing problems, introducing several 
new features to manage the temporal dimension. New move evaluation techniques are 
proposed, accounting for penalized infeasible solutions with respect to time-window and 
duration constraints, and allowing to evaluate moves from any classical neighbourhood 
based on arc or node exchanges in amortized constant time. Furthermore, geometric and 
structural problem decompositions are developed to address efficiently large problems. 
The proposed algorithm outperforms all current state-of-the-art approaches on classical 
literature benchmark instances for any combination of periodic, multi-depot, site-
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1 Introduction

Vehicle routing problems (VRP) with time constraints and requirements relative to cus-
tomer assignments to vehicle types, depots, or planning periods constitute a class of dif-
ficult optimization problems. These settings are linked with numerous practical applica-
tions including logistics, goods transportation, refuse collection, maintenance operations,
and relief supply (see Golden et al. 2008, for a large variety of application cases). Much
has already been dedicated to specific VRP with additional “attributes” such as time
windows, multiple depots, or delivery-period choices. As illustrated by numerous reviews
(Bräysy and Gendreau 2005b,a, Francis et al. 2008, Gendreau et al. 2008, Gendreau and
Tarantilis 2010, for the most recent), almost every prominent meta-heuristic paradigm,
including evolutionary methods, ant colony optimization, tabu search, simulated anneal-
ing, other improved local search approaches or ruin-and-recreate, has been applied to
at least one of the previous settings. Yet, besides highly problem-tailored methods, the
literature critically lacks good generalist approaches able to efficiently address a wide
range of problem variants, and VRP combining several problem attributes (also called
multi-attribute VRP in Crainic et al. 2009 and rich VRP in Hartl et al. 2006) still consti-
tute major challenges for both research and applications. Within these settings, it is well
known that imposing time-window constraints on customer services (and depot availabil-
ity) raises significant challenges related to the smaller proportion of feasible solutions,
the increased computation burden required to evaluate moves in neighbourhood search,
and the antagonist influence of temporal and spatial characteristics.

This paper introduces a new Hybrid Genetic Search with Advanced Diversity Control
(HGSADC ), that addresses some of these challenges. In particular, it addresses effi-
ciently a wide range of large-scale vehicle routing problems with time windows (VRPTW ),
route-duration constraints, and additional attributes involving requirements for customer
assignments to particular vehicles types, depots or planning periods. The main character-
istic of HGSADC stands in a different approach to population diversity management, the
contribution of a particular individual to the diversity of the population appearing as a
proper objective to be optimized (Vidal et al. 2011b). We also introduce a number of new
algorithmic features targeting specifically the temporal characteristics of the problems.
We thus propose simple move evaluation procedures that accommodate penalized infeasi-
bility with regard to duration and time-window constraints, and work in amortized O(1)
for any neighbourhood based on a bounded number of arc exchanges or node relocations.
We also develop neighbourhood pruning procedures based on the temporal dimension,
and decomposition principles to address efficiently large problem instances involving up
to 1000 customers and 4500 services. The resulting algorithm is simple and efficient,
outperforming all existing approaches on classical benchmarks for the VRPTW, its vari-
ants with multiple depots (MDVRPTW ), multiple periods (PVRPTW ), and vehicle-site
dependencies (SDVRPTW ).

The main contributions of this paper are thus 1) a generalization of the concept
of HGSADC to a large class of VRPTW variants presenting mixed temporal and ge-
ometrical characteristics; 2) new procedures to efficiently search neighbourhoods when
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considering infeasible solutions with regards to duration and time-window constraints;
3) decomposition principles within the genetic framework allowing to address efficiently
large instances; and 4) a state-of-the-art meta-heuristic for four classes of vehicle routing
problems with time windows.

The remainder of this paper is organized as follows: Section 2 states the notation
and formally defines the problems. Summarized elements of the literature are presented
in Section 3. The proposed meta-heuristic is described in Section 4, while extensive
computational experiments are reported in Section 5. Section 6 concludes.

2 Problem Statement

We first formally state the VRPTW. A generalized PVRPTW is then defined and math-
ematically modeled. This problem is shown to generalize other notable variants, such
as the MDVRPTW and the SDVRPTW. Route-duration constraints are included in all
cases but do not appear in the acronyms.

Let G = (V ,A) be a complete directed graph. Vertex v0 ∈ V represents a single
depot, where a fleet of m identical vehicles with capacity Q is located, and a product
to be delivered is kept. Each other vertex vi ∈ V\{v0}, for i ∈ {1, . . . , n}, stands for a
customer to be serviced, characterized by a non-negative demand qi, a service duration
τi, as well as an interval of allowable visit times [ei, li], called time window. By definition,
q0 = τ0 = 0. Arcs (i, j) ∈ A represent the possibility to travel from vi to vj with a
distance cij and a duration δij. A feasible route r is defined as a circuit in G that starts
and ends at v0, such that the total demand of customers in r is smaller than Q. While
performing its route, a vehicle may stop and wait in order to reach the next customer
within its time window, but the route duration, computed as the difference between the
start time and the return time at v0, is limited to D. The VRPTW aims to construct
up to m vehicle routes, to visit each customer vertex once within its time window, while
minimizing the total distance.

In the generalized PVRPTW, route planning is performed for a horizon of t periods.
Distances cijl and durations δijl can be dependent upon the period. Each customer vi is
characterized by a frequency fi, representing the total number of services requested on
the planning horizon, and a list Li of allowable visit combinations, called patterns. The
objective is to select a pattern for each customer, and construct the associated routes to
minimize the total distance over all periods.

A mathematical integer programming formulation of this problem is given in Equa-
tions (1-13). For convenience, the depot node v0 has been modelled by two nodes v0 and
vn+1 representing, respectively, the origin and destination nodes. We also identify the
set of customer vertices as VCST = V\{v0, vn+1}. The model relies on binary constants
apl, equal to 1 if and only if period l belongs to pattern p. Binary decision variables xijkl
take value 1 if and only if vehicle k in period l visits vj immediately after vi. Binary
variables yip take value 1 if and only if customer i is assigned to pattern p. Finally, the
continuous variables tikl stand for the service moment of customer vi, when serviced by
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vehicle k during period l.

Minimize
∑
vi∈V

∑
vj∈V

m∑
k=1

t∑
l=1

cijlxijkl (1)

Subject to:
∑
p∈Li

yip = 1 vi ∈ VCST (2)

∑
vj∈V

m∑
k=1

xijkl −
∑
p∈Li

aplyip = 0 vi ∈ VCST; l = 1 . . . t (3)

∑
vj∈V\{vn+1}

xjikl −
∑

vj∈V\{v0}

xijkl = 0 vi ∈ VCST; k = 1 . . .m; l = 1 . . . t (4)

∑
vj∈V\{v0}

x0jkl = 1 k = 1 . . .m; l = 1 . . . t (5)

∑
vj∈V\{vn+1}

xj,n+1,kl = 1 k = 1 . . .m; l = 1 . . . t (6)

∑
vi∈V

∑
vj∈V

qixijkl ≤ Q k = 1 . . .m; l = 1 . . . t (7)

xijkl(tikl + δijl + τi − tjkl) ≤ 0 (vi, vj) ∈ V2; k = 1 . . .m; l = 1 . . . t (8)

ei ≤ tikl ≤ li vi ∈ V ; k = 1 . . .m; l = 1 . . . t (9)

tn+1,kl − t0kl ≤ D k = 1 . . .m; l = 1 . . . t (10)

xijkl ∈ {0, 1} (vi, vj) ∈ V2; k = 1 . . .m; l = 1 . . . t (11)

yip ∈ {0, 1} vi ∈ V ; p ∈ Li (12)

tikl ∈ <+ vi ∈ V ; k = 1 . . .m; l = 1 . . . t (13)

Three main groups of constraints constitute the building blocks of the model. The
first group, Constraints (2-3), corresponds to the assignment of customers to patterns,
and its impact on routes. The next group of constraints (4-7) presents an underlying
network flow structure to model the route choices, with flow conservation constraints
(4), and capacity restrictions (7). Finally, the last group, Constraints (8-10), models
the service time to customers, and enforces the temporal constraints (duration and time
windows). Under the assumption that the graph does not admit a cycle with null total
travel time, sub-tours are implicitly eliminated by Equations (8). This constraint can
also be linearized using big M values.

We consider two related problem classes. The MDVRPTW involves d > 1 depots. It
is also generally assumed that any route originates and returns to the same depot. This
problem was shown to constitute a special case of the generalized PVRPTW (Cordeau
et al. 1997), where depots are assimilated to periods (t = d), any customer vi ∈ VCST has
a frequency fi = 1 and can be serviced in any period Li = {{1}, . . . , {t}}, and δ0il and
c0il values are set in each period to correctly account for the distance to the assimilated
depots.

3
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The SDVRPTW involves w vehicle types, with compatibility constraints between
customers and vehicles. Each customer vi ∈ VCST can be serviced only by a subset
Ri ∈ {1 . . . w} of vehicle types. As shown in Cordeau and Laporte (2001), this problem
constitutes another particular case of PVRPTW, where each vehicle type is assimilated
to a different period (t = w) and Li = {{k} : k ∈ Ri}.

It was shown in Vidal et al. (2011b), that any VRP with multiple depots and periods
(MDPVRP) can be transformed into an equivalent PVRP, by associating a different
period to each (period, depot) pair from the former problem. In the same spirit, we
can transform a problem combining multi-depot, site-dependent, multi-period, and time-
window characteristics into a PVRPTW, by associating a period for each (depot, period,
vehicle type) in the original problem. This transformation thus enables to address all
the previous VRPTW variants and their combinations by means of a single algorithm for
the PVRPTW. The inherent difficulty related to combined (depot, period, vehicle type)
choices leads to a large number of periods in the new problem. The proposed algorithm
has thus been designed to successfully tackle large PVRPTW instances.

3 Literature Review

We initiate this review surveying proposed meta-heuristics for the VRPTW, which is one
of the most intensively studied NP-hard combinatorial optimization problems in the last
thirty years. Exact methods are still not able to address most large-size applications,
and their performance strongly varies with the time-window characteristics. Heuristic
and meta-heuristic approaches have thus been the methodology of choice (see Bräysy and
Gendreau 2005b,a, Gendreau and Tarantilis 2010, for extensive reviews), and have been
mostly evaluated and compared on standard benchmark instances introduced by Solomon
(1987) and Gehring and Homberger (1999) relative to their computational efficiently and
the quality of the solutions obtained. Most authors have focused on primarily minimizing
fleet size, and then distance, but a few exceptions exist (Alvarenga et al. 2007, Labadi
et al. 2008). As a consequence, state-of-the-art VRPTW heuristics are generally based
on two stages, dedicated respectively to minimizing fleet size and then distance.

Most successful approaches involve local search improvement procedures based on
arc- and node-exchange neighbourhoods, and are coupled with various other concepts
listed in the following:

• Evolution strategies (Alvarenga et al. 2007, Mester and Bräysy 2005, Hashimoto
et al. 2008, Labadi et al. 2008, Repoussis et al. 2009, Nagata et al. 2010);

• Solutions recombinations (Alvarenga et al. 2007, Hashimoto et al. 2008, Labadi
et al. 2008, Repoussis et al. 2009, Nagata et al. 2010);

• Ruin and recreate (Pisinger and Ropke 2007, Prescott-Gagnon et al. 2009, Repoussis
et al. 2009);

• Ejection chains (Lim and Zhang 2007, Nagata and Bräysy 2009, Nagata et al.
2010);
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• Guidance and memories (Mester and Bräysy 2005, Le Bouthillier and Crainic
2005b, Repoussis et al. 2009);

• Parallel and cooperative search (Le Bouthillier and Crainic 2005a,b);

• Mathematical programming hybrids (Prescott-Gagnon et al. 2009).

The most competitive result are currently offered by the hybrid genetic algorithm of
Nagata et al. (2010). The method combines powerful route minimization procedures, with
a very effective edge assembly crossover, and extremely efficient local search procedures.
The Iterated Local Search (ILS) of Ibaraki et al. (2008), the Adaptive Large Neighbour-
hood Search (ALNS) of Pisinger and Ropke (2007), and the Unified Tabu Search (UTS)
of Cordeau et al. (1997, 2001, 2004) are also worth mentioning. These methods stand
out in terms of simplicity and wider applicability, as both have been extended to address
various VRP variants.

Variants of the VRPTW, combining time windows with multi-period, multi-depot,
or site dependency, arise in many practical applications such as maintenance operations
(Weigel and Cao 1999, Blakeley et al. 2003), refuse collection (Teixeira et al. 2004, Sa-
hoo et al. 2005), or product distribution (Golden and Wasil 1987, Privé et al. 2005,
Jang et al. 2006, Chiu et al. 2006, Parthanadee and Logendran 2006). Although the
interest in these problem settings is growing, a somewhat restricted number of contribu-
tions have been proposed in the literature addressing them. Most of these implemented
some form of neighbourhood-based meta-heuristic search. UTS (Cordeau et al. 2001,
Cordeau and Laporte 2001, Cordeau et al. 2004) is currently the only method address-
ing all variants considered in this paper. UTS exploits long-term memories to penalize
frequently-encountered solution features. A parallel variant of this approach has been
recently proposed by Cordeau and Maischberger (2011).

Specific to the PVRPTW, Pirkwieser and Raidl (2008) propose a Variable Neighbor-
hood Search (VNS), further enhanced by means of multi-start strategies, column gen-
eration hybridizations, or multi-level strategies in (Pirkwieser and Raidl 2009a,b, 2010).
Yu and Yang (2011) propose a coarse-grained parallel Ant Colony Optimization (ACO)
algorithm, and Nguyen et al. (2011) develop a hybrid genetic approach. The latter
method combines the strength of population-based search, and Tabu and VNS improve-
ment methods applied to the offspring. For the MDVRPTW, we report the hybrid Tabu
search and savings approach of Tamashiro et al. (2010), the parallel VNS approaches of
Polacek et al. (2004, 2008), and a genetic algorithm and ACO hybrid by Ostertag (2008).
Noteworthy is also the approach of Chiu et al. (2006), which considers total duty time
minimization (including waiting times). Other than UTS, a single hybrid Tabu search
and VNS approach by Belhaiza (2010) may be reported for the SDVRPTW.

The literature is extremely scarce on VRPTW variants combining multiple features.
We mention the Tabu search of Parthanadee and Logendran (2006) able to address multi-
depot periodic VRPTW (MDPVRPTW). Crainic et al. (2009) introduced the Integrative
Cooperative Search (ICS) framework to target highly complex combinatorial optimization
settings. ICS is a central-memory cooperative multi-search involving problem decompo-
sitions by decision sets, integration of elite partial solutions yielded by the subproblems,
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and adaptive guidance mechanisms. A MDPVRPTW application was presented, but no
definitive results have been published yet.

We conclude this section focusing on the design of efficient local-search methods,
because most methods presented in this section dedicate the greatest part of their com-
putational effort to the serial exploration of neighbourhoods, basically edge exchanges.
Efficient move evaluation procedures are thus determining for both algorithmic speed
and scalability.

Many methods rely on search spaces that include infeasible solutions with respect
to time-window constraints, aiming to explore a wider diversity of structurally different
feasible solutions. Several relaxation alternatives have been proposed in the literature.
Cordeau et al. (2001) and Repoussis et al. (2009), among others, allow penalized late
services to customers, while Ibaraki et al. (2008) also allow penalized early services.
Using such relaxations however leads to less efficient move-evaluation procedures, working
in O(n) or O(log n) (Ibaraki et al. 2008). A different relaxation was recently used by
Hashimoto et al. (2008) and Nagata et al. (2010). An assumption is made that upon
a late arrival, a penalized return in time can be employed to reach the time window.
The authors demonstrated that several classical neighbourhood moves can be evaluated
in amortized O(1) in this relaxation scheme. However, neither intra-route moves, nor
duration constraints are actually managed in O(1).

This review clearly underlines several gaps in the actual state of the art. Thus, for ex-
ample, while population-based methods have shown their worth on the classic VRPTW,
there is a lack of really efficient methods of this type for more complex variants such as
PVRPTW, MDVRPTW, SDVRPTW and their combinations. Also, most current effi-
cient methods for VRPTW are intricate, hard to reproduce, and largely rely on specific
problem-tailored procedures. Hence, there is a need for more general and simple meth-
ods, broadly applicable to a large variety of practical settings with combined features.
Finally, the temporal aspects lead to important challenges regarding infeasible-solution
management and neighbourhood-evaluation procedures, which have a strong impact on
the efficiency and scalability of VRPTW meta-heuristics. The concepts developed in this
paper contribute towards addressing these issues.

4 The HGSADC Methodology

This section describes the proposed Hybrid Genetic Search with Adaptive Diversity Con-
trol algorithm for time window-constrained VRP variants. For matters of presentation
clarity, we describe the approach for the VRPTW and PVRPTW, the latter encompass-
ing the MDVRPTW, SDVRPTW and other problems as special cases.

HGSADC (Vidal et al. 2011b) is a hybrid meta-heuristic combining the exploration ca-
pabilities of genetic algorithms with efficient local search-based improvement procedures
and diversity management mechanisms. In HGSADC, population diversity is considered
as an objective to be optimized along with solution quality through individual evaluations
and selections. The general behavior of HGSADC is sketched in Algorithm 1.

The method evolves feasible and infeasible solutions in two separate subpopulations.

6
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Algorithm 1 HGSADC

1: Initialize population
2: while number of iterations without improvement < ItNI , and

time < Tmax do
3: Select parent solutions P1 and P2

4: Create offspring C from P1 and P2 (crossover)
5: Educate C (local search procedure)
6: if C infeasible then

Insert C into infeasible subpopulation,
Repair with probability Prep

7: if C feasible then
Insert C into feasible subpopulation

8: if maximum subpopulation size reached then
Select survivors

9: if best solution not improved for Itdiv iterations, then
Diversify population

10: Adjust penalty parameters for infeasibility
11: if number of iterations = k × Itdec where k ∈ N∗, then

Decompose the master problem
Use HGSADC on each subproblem
Reconstitute three solutions, and insert them in the population

12: end while
13: Return best feasible solution

Genetic operators are iteratively applied to select two parents from the subpopulations
(Line 3 of Algorithm 1), combine them into an offspring (Line 4), which undergoes a
local search-based Education, is Repaired if infeasible, and is finally inserted into the
suitable subpopulation (Lines 5-7). Each subpopulation is managed separately to trigger
a Survivor Selection phase when a maximum size is reached, adapt infeasibility penalties,
and call a Diversification mechanism whenever the search stagnates (Lines 8-10). In this
application, structural and geometrical decompositions phases are also performed (Line
11) to tackle large problems. Subproblems are addressed by means of recursive calls to
HGSADC.

The main components of the method are described in the following subsections. The
search space is presented in Section 4.1. Sections 4.2-4.4 briefly recall the solution rep-
resentation, individual evaluation, selection, and crossover operators which, as the pop-
ulation management of Section 4.6, remain unchanged from Vidal et al. (2011b). We
then detail, in Section 4.5, the new neighbourhood-based evaluation procedures within
Education and Repair, specifically developed for the temporal characteristics of the prob-
lems. Finally, Section 4.7 presents structural and geometrical problem decompositions
that enable to address efficiently large instances. All these components together lead to
a highly efficient algorithm for VRPTW variants.
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4.1 Search space

The efficient exploitation of penalized infeasible solutions is known to contribute sig-
nificantly to the performance of heuristics (Glover and Hao 2009, Vidal et al. 2011b).
The search space of HGSADC involves infeasible solutions with respect to route con-
straints: load, duration, and time windows. The fleet-size limit is always respected, as
a solution with too many vehicles may require sophisticated and computationally costly
route-reduction methods to be repaired. Time windows are relaxed following the lines of
Nagata (2007). Upon a late arrival to a customer, one pays for a “time warp” to reach
the end of the time window. This choice of relaxation is motivated by the availability of
efficient penalty evaluation procedures within neighbourhood searches (Section 4.5).

Figure 1: Illustration of waiting times and time warps

Figure 1 (inspired by Nagata et al. 2010) illustrates the previous assumptions on a
route with five stops, which are represented from bottom to top with their time windows.
The time dimension corresponds to the horizontal axis, while the vertical axis represents
the progression on the route. A possible schedule is represented in bold line. This
schedule presents some waiting time before service to v2, and a time warp, triggered by
a late arrival to v4. Time warps are in some sense symmetric to waiting times, although
waiting times are not penalized. Let r be a route, which starts from depot v0 (σr0 = 0),
visits nr customers (σr1, . . . , σ

r
nr

) ∈ VCST, and returns to the depot σrnr+1 = 0. Let
tr = (tr0, . . . , t

r
nr+1) be the visit times associated to each stop. On the way from a vertex

σri to σri+1, the incurred time warp is given by twi,i+1 = max{tri + τσr
i

+ δσr
i σ

r
i+1
− tri+1, 0}.

The following quantities characterize route r:

• Load q(r) =
∑

i=1,...,nr

qσr
i
;

• Distance c(r) =
∑

i=0,...,nr−1
cσr

i σ
r
i+1

;

• Time-warp use tw(r) =
∑

i=0,...,nr−1
twi,i+1;

• Duration τ(r) = trnr+1 − tr0 + tw(r)

The penalized cost φ(r) of route r with schedule tr, presented in Equation (14), is
defined as its total distance plus the weighted sum of its excess duration, load, and
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time-warp use.
φ(r) = c(r) + ωD max{0, τ(r)−D)}

+ ωQ max{0, q(r)−Q}+ ωTW × tw(r)
(14)

Finally the penalized cost φ(s) of solution s, involving a set of routes R(s), is given
by the sum of the penalized costs of all its routes.

4.2 Solution representation

The solution representation defined previously in HGSADC (Vidal et al. 2011b) is fairly
general, and can be applied without change in the present context. A solution is rep-
resented as a two-chromosome individual without trip delimiters. The chromosomes ac-
count, respectively, for the visit-period choices for each customer and the sequences of
services for each period. The representation without trip delimiters, introduced in Prins
(2004), allows for simple recombination operators working on sequences, without the need
to explicitly account for the individual routes. Then, to obtain a full solution from an indi-
vidual representation, a polynomial Split algorithm, based on a shortest path procedure,
is applied for each period to optimally partition the sequence of customers into routes. In
our context, we use a Split algorithm that respects the maximum number of routes (Chu
et al. 2006), and includes in the auxiliary graph penalized infeasible routes r regarding
duration, load, and time-window constraints, and such that q(r) ≤ 2Q. Reversely, any
PVRPTW solution, represented by its routes for each period, can be transformed into
an individual by removing visits to the depot.

4.3 The diversity and cost objective for evaluating individuals

Any individual P in the population is characterized by its solution cost φ(P ) (Section
4.1), and its diversity contribution ∆(P ) defined as the average distance from P to its
nclose closest neighbours in the subpopulation (Equation 15).

∆(P ) =
1

nclose

∑
P2∈Nclose

δ(P, P2) (15)

For the PVRPTW and SDVRPTW, we rely on a Hamming distance δ measuring
the proportion of customers with identical patterns or vehicle type assignments. For
the VRPTW and MDVRPTW, experiments led to choose the broken pairs distance (see
Prins 2009), which evaluates the amount of common arcs.

The evaluation, biased fitness, BF (P ) of an individual P (Equation 16) is then a “di-
versity and cost objective” that involves both the rank fit(P ) of P in the subpopulation
with regards to solution cost φ(P ), and its rank dc(P ) in terms of diversity contribu-
tion ∆(P ) (Equation 15). BF (P ) depends upon the actual number of individuals in
the subpopulation nbIndiv, and a parameter nbElit ensuring elitism properties during
survivor selection. This trade-off between diversity and elitism is critical for a thorough
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and efficient search.

BF (P ) = fit(P ) +

(
1− nbElit

nbIndiv

)
dc(P ) (16)

4.4 Parent selection and crossover

An iteration of HGSADC corresponds to the generation of a new individual by a suc-
cession of genetic operations. Two parents are first selected by binary tournament in
the union of both feasible and infeasible populations, and used as input to the crossover
operator. The PIX crossover (Vidal et al. 2011b) is used for the PVRPTW. PIX enables
to inherit good sequences of visits from both parents, and also to recombine visit pat-
terns. For the VRPTW, we rely on the simple Ordered Crossover (OX) (see Prins 2004,
for instance). These crossovers allow both small solution refinement and more important
structural changes.

4.5 Neighbourhood search for VRPTW education and repair

An offspring resulting from the crossover operator undergoes the Split procedure to ex-
tract its routes. A neighbourhood search-based improvement operator, called education,
is then systematically applied, followed by a repair phase, called with probability Prep,
when the resulting solution is infeasible. Repair increases the penalty values by a fac-
tor of 10 and calls education, aiming to restore the solution feasibility. This process is
repeated with a penalty increase of 100 if the offspring remains infeasible.

Education and repair are essential for a fast progression toward high-quality solutions.
Yet, these procedures tend inevitably to make for the largest part (90-95%) of the overall
computational effort, such that high computational efficiency is required. Three basic
aspects are decisive for performance: 1) a suitable choice of neighbourhood, restricted
to relevant moves while being large enough to allow some structural solution changes;
2) memory structures to evade redundant move computations; and 3) highly efficient
neighbour cost and feasibility evaluations. We introduce new methodologies to address
these aspects relatively to the specificities of time-constrained VRPs.

4.5.1 Neighbourhood choices and restrictions

Following Vidal et al. (2011b), education is performed by means of two local search-based
procedures. The route improvement procedure (RI ) is dedicated to optimize services
from each period separately, while the pattern improvement procedure (PI ) relies on a
quick and simple move to improve assignment choices. These local searches, called in the
sequence RI,PI,RI, provide the means to address efficiently both service sequencing and
assignment characteristics.

The PI procedure evaluates for each customer in random order the best combination
of re-insertions within periods. Any improving re-insertion is directly performed until
no more improvement can be found. For a customer vi, the number of possible places
of insertion is O(N + m × t), N representing the total number of customer services in
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all periods, and m× t representing the total number of routes, to account for insertions
after the depot. Once insertion costs at all different places are known (and thus also the
best cost insertion for each period), the best visiting period combination is computed for
each customer vi in O(fi|Li|).

The RI procedure explores for each period a neighbourhood based on relocations and
exchanges of customer visit sequences, with eventual inversions. A broader range of moves
than in Vidal et al. (2011b) is exploited to cope with the increased variety of VRPTW
solution structures, along with more advanced neighbourhood pruning procedures. The
following neighbourhoods are evaluated:

• N1 (Swap and relocate) : Swap two disjoint visit sequences (σri , . . . , σ
r
j ) and (σr

′

i′ ,

. . . , σr
′

j′ ), containing between 0 and 2 visits. Combine this with the reversal of one
or both sequences.

• N2 (2-opt*) : Swap two visit sequences (σri , . . . , σ
r
nr

) and (σr
′

i′ , . . . , σ
r′
nr′

), involving
the extremities of two distinct routes.

• N3 (2-opt) : Reverse a visit sequence (σri , . . . , σ
r
j ).

Neighbourhoods N1 and N2 can involve one empty sequence. N1 involves eventually
the same route or different routes. The size of these neighbourhoods is O(n2). One
example of “swap” move from N1 is illustrated in Figure 2. This move exchanges one
visit from a route r with two visits from a distinct route r′.

Figure 2: Example of “swap” move in N1

In the context of time-window constraints, moves in RI are explored in two phases:
first the moves between “new” routes not existing in the parents, and then, the other
moves. Each neighbourhood subset is searched in random order. The best improving
move, when existing, is applied as soon as 5% of the neighbourhood has been explored
since last move acceptance. This strategy is motivated by the need to perform quick
improvements, focus on the new solution elements, and remain close to the characteristics
of the original individuals, but aim for a better performance than that usually offered by
first-improvement heuristics.

To further increase the computational efficiency of education, neighbourhoods are
also pruned by means of customer correlation measures. The set of correlated neigh-
bours is usually defined in the context of traveling salesman and classical vehicle routing
problems in relation to a spatial proximity measure (Johnson and McGeoch 1997, Toth
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and Vigo 2003). Time-constrained VRP involve another dimension, however, related to
time proximity, as well as additional asymmetry issues. Correlation relationships are thus
harder to define (Ibaraki et al. 2005). We define for customer vi a set Γ(vi) of correlated
customers as the |Γ| closest customers vj in relation to the correlation measure γ(vi, vj) of
Equation (17). These customers can be viewed as the most relevant options for a direct
visit from vi, and thus arcs (vi, vj) for vj ∈ Γ(vi) can be seen as a subset of “promising”
arcs.

γ(vi, vj) = cij + γwt max{ej − τi − δij − li, 0}
+ γtw max{ei + τi + δij − lj, 0}

(17)

This correlation measure corresponds to a weighted sum of the distance, the mini-
mum waiting time, and the minimum penalty on a direct service from vi to vj. Values
for the γtw and γwt coefficients, which balance the role of these spatial and temporal
components, are discussed in Section 5.1. Neighbourhoods N1 and N2 are then restricted
to sequences (σri , . . . , σ

r
j ) and (σr

′

i′ , . . . , σ
r′

j′ ) such that σri ∈ Γ(σr
′

i′−1) or σri′ ∈ Γ(σr
′
i−1), while

N3 is restricted to sequences (σri , . . . , σ
r
j ) such that σrj ∈ Γ(σri−1) or σrj+1 ∈ Γ(σri ). This

restriction ensures that at least one “promising” arc is introduced within each move. The
resulting neighbourhood size becomes O(|Γ|n).

4.5.2 Memories

Memories are used in PI to store for each customer vi the minimum cost insertion ψ(i, r, l)
in each route r and each period l. For RI, the cost of the best move is stored for each pair
of customers. These values are valid until the routes under consideration are modified.
These techniques lead to notable reductions in the overall computational effort.

4.5.3 Move evaluations

When infeasible solutions are used, evaluating moves implies to compute the change in
total arc costs, as well as the variation of duration, load, and time-window infeasibility
of the routes. Calculation of cost and load variation is straightforward to perform in
amortized O(1) for moves based on a constant number of arc exchanges (Kindervater
and Savelsbergh 1997). Nagata et al. (2010) also provided the means to compute in-
feasibility in O(1) for some neighbourhoods, including 2-opt*, inter-route swaps, and
inter-route inserts. This method can not address as efficiently intra-route moves or more
complex neighborhoods, however, and does not actually manage duration features. We
thus introduce new procedures to evaluate combined duration and time-window infeasi-
bility in amortized O(1). The proposed approach is widely applicable to any classical
neighbourhood based on a constant number of arc exchanges or sequence relocations.

We first observe that any such move can be viewed as a separation of routes into
subsequences, which are then concatenated into new routes. This simple property is
formalized in Kindervater and Savelsbergh (1997), Irnich (2008), and Vidal et al. (2011a).
In the example of Figure 2, the move produces indeed two new routes, (σr0, . . . , σ

r
i−1) ⊕

(σr
′

i′ , σ
r′

j′ )⊕(σrj+1, . . . , σ
r
nr

) and (σr
′

0 , . . . , σ
r′

i′−1)⊕(σri )⊕(σr
′

j′+1, . . . , σ
r′
nr′

), where ⊕ represents
the concatenation operator. Our move evaluation approach follows from this observation,
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and uses induction on the concatenation operation to develop suitable re-optimization
data on subsequences of consecutive visits in the incumbent solution.

For each such subsequence σ, containing visits to depots or customers, we compute
the minimum duration D(σ), minimum time-warp use TW (σ), earliest E(σ) and latest
visit L(σ) to the first vertex allowing a schedule with minimum duration and minimum
time-warp use, as well as the cumulated distance C(σ) and load Q(σ). This data is
straightforward to compute for a sequence σ0 involving a single vertex vi, as D(σ0) = τi,
TW (σ0) = 0, E(σ0) = ei, L(σ0) = li, C(σ0) = 0 and Q(σ0) = qi. Proposition 1 then
enables to compute the same data on concatenations of sequences. Equations (22 - 23) are
frequently used in the VRP literature to calculate loads and costs. The other statements,
which target the temporal aspects of the problem, are proven in Appendix A.

Proposition 1 (Concatenation of two sequences). Let σ = (σi, . . . , σj) and σ′ = (σ′i′ , . . . , σ
′
j′)

be two subsequences of visits. The concatenated subsequence σ ⊕ σ′ is characterized by
the following data:

D(σ ⊕ σ′) = D(σ) +D(σ′) + δσjσ′
i′

+ ∆WT (18)

TW (σ ⊕ σ′) = TW (σ) + TW (σ′) + ∆TW (19)

E(σ ⊕ σ′) = max{E(σ′)−∆, E(σ)} −∆WT (20)

L(σ ⊕ σ′) = min{L(σ′)−∆, L(σ)}+ ∆TW (21)

C(σ ⊕ σ′) = C(σ) + C(σ′) + cσjσ′
i′

(22)

Q(σ ⊕ σ′) = Q(σ) +Q(σ′) (23)

where ∆ = D(σ) − TW (σ) + δσjσ′
i′

, ∆WT = max{E(σ′) − ∆ − L(σ), 0} and ∆TW =

max{E(σ) + ∆− L(σ′), 0}.

The neighbourhood evaluation procedure we propose relies on Proposition 1 to first
develop data on relevant consecutive visit subsequences (and their reversal) in a prepro-
cessing phase, and then to evaluate the penalties and costs of routes issued from the
moves. Classical neighbourhoods in the literature correspond to a concatenation of less
than five subsequences. Hence, given the data on subsequences, any move evaluation is
performed in constant time. As shown in Vidal et al. (2011a), this property stands for
any move issued from a constant number of arc exchanges or customer visit relocations.

Experiments showed that, for some problem instances with long routes with more than
50 customers, data preprocessing on all O(n2) subsequences can play a non negligible
role in the overall computation effort. The 1-level or 2-level strategy of Irnich (2008)
can be employed to limit this preprocessing to O(n4/3) or O(n8/7) subsequences, while
maintaining the constant time evaluation of moves. To make it even simpler, we limited
the preprocessing to either “prefix” (respectively, “suffix”) subsequences containing the
first (respectively, the last) customer of a route, and subsequences of size smaller than
20. This data enables to evaluate inter-route moves in constant time, and allows an
evaluation of intra-route moves as a concatenation of less than 7 subsequences for the
instances considered.
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4.6 Population management and search guidance

The main components of HGSADC regarding population management remain unchanged
from Vidal et al. (2011b). The two subpopulations are set up to contain between µ and
µ+ λ individuals. To initialize the populations, 4µ individuals are created by randomly
choosing the patterns and routes, using Education and, when infeasible, Repair. These in-
dividuals are then included in the appropriate subpopulations, which then evolve through
iterative generation, education, and selections of individuals. Any solution produced by
the education and repair operators is transformed into an individual by removing visits
to depots (Section 4.2), and is included in the appropriate subpopulation with respect
to its feasibility. It can thus be selected for mating immediately after education. Any
subpopulation reaching the size µ+λ undergoes a survivor-selection phase, where λ indi-
viduals are discarded. Let a “clone” be an individual with the same solution cost, or null
distance to another with respect to the metric defined in Section 4.3. Survivor selection
removes iteratively λ times the worst clone in terms of biased fitness (Equation 16), or
the worst individual when no clone exists. The use of the biased fitness for survivor
selection promotes both elitism and innovation during the search (Vidal et al. 2011b).

The proportion of feasible solutions following education with regards to duration,
capacity, and time-window constraints is monitored during the search on the last 100
generated individuals. Penalty coefficients ωD, ωQ, and ωTW (Section 4.1) are also ad-
justed each 100 iterations. Let parameter ξREF stand for the target proportion of feasible
individuals. If the proportion of feasible individuals relatively to one type of constraint
(duration, load or time-window) falls below ξREF − 5% (respectively, rises to more than
ξREF + 5%), then the corresponding penalty is increased (respectively, decreased).

A diversification phase finally occurs whenever 0.4ItNI iterations are performed with-
out improving the best solution. Diversification retains the best µ/3 individuals of each
subpopulation, to be completed with 4µ new individuals as in the Initialization phase,
thus introducing new genetic material.

All these components contribute towards a more thorough search, and complement
advantageously the aggressive local improvement abilities of education and repair oper-
ators.

4.7 Decomposition phases

Variants of vehicle routing problems with time windows lend themselves well to various
decomposition approaches, mostly based on geometry (Ostertag 2008, Bent and Van Hen-
tenryck 2010), temporal aspects (Bent and Van Hentenryck 2010), or problem structure
(Crainic et al. 2009), which enable to address large instances more efficiently.

We introduce a simple decomposition framework for population-based methods, which
takes full advantage of their associated pool of solutions. The approach proceeds in four
steps: 1) features from one elite solution are exploited to define subproblems; 2) initial
individuals for the subproblems are created from the genetic material of the complete
problem population; 3) the algorithm, here HGSADC, is called to address these subprob-
lems; 4) a set of complete solutions is finally reconstructed.
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We rely on simple route-based geometrical decompositions in the VRPTW case. For
the PVRPTW, fixing assignments to periods naturally decomposes the problem. It is
worth noticing that the “integration” of partial solutions into solutions of the complete
problem is here straightforward, as it simply involves gathering the routes. Also, any
improvement in any subproblem leads to an improvement of the elite complete solution,
as subproblems are built from the features of this solution.

In the current implementation, decomposition phases occur every Itdec iterations, and
are only used on problems with more than 120 customers. The elite solution is randomly
selected from the 25% best feasible individuals (or infeasible if no feasible solution has
been found). In the VRPTW case, routes from this elite solution are swept circularly
around the depot by polar angle of barycentre, and included in a set Rdec. Each time the
number of customers in routes from Rdec becomes larger than 120, or when all the routes
have been swept, a VRPTW subproblem is created with the customers from Rdec and
the set is emptied. Subproblems of this size can be very efficiently handled by HGSADC.
In the case of the PVRPTW, we fix the periods of service, leading to a subproblem for
each period.

Initial populations of subproblem solutions are created from the complete solutions
population, by retaining from the route chromosomes of complete individuals only the
services that occur in the subproblem at the right period. For the PVRTPW, visits
from solutions with patterns different from those of the elite solution can be missing.
These visits are completed by means of a least cost insertion heuristic. HGSADC is
then run on each of these subproblems until Itdec/2 iterations without improvement are
performed. The first (respectively the second and the third) different best individuals of
each subproblem are then combined into three elite complete individuals, to be added to
the population of the complete problem.

5 Computational Experiments

Extensive computational experiments were performed to analyze the impact of the pa-
rameter settings (Section 5.1), assess HGSADC performance when compared to state-
of-the-art methods for each problem (Section 5.2), and evaluate the role of the new
decomposition phases (Section 5.3). The algorithm is coded in C++, compiled with
“g++ -O3”, and run on a Intel Xeon 2.93 Ghz processor.

We rely on a variety of classical benchmark instance sets: Solomon and Desrosiers
(1988) and Gehring and Homberger (1999) VRPTW instances, Cordeau et al. (2001)
and Cordeau and Laporte (2001) instances for PVRPTW, MDVRPTW, SDVRPTW
with duration constraints and the PVRPTW instances of Pirkwieser and Raidl (2009b)
without duration constraints. These instances involve from 48 to 1008 customers, up to 9
depots, 10 periods, and 6 vehicle types. It should be noted that the distances of Pirkwieser
and Raidl (2009b) instances have been truncated to the first digit by previous authors.
We used this convention exclusively in this case to perform a fair comparison. We also
introduce new larger-dimension instances for PVRPTW, MDVRPTW, and SDVRPTW,
involving 360 to 960 customers, and up to 4608 total services, following the generation
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procedure of Cordeau et al. (1997, 2001). These instances are available upon request.
Finally, the traditional objective for VRPTW is fleet minimization in priority, and

then route length minimization. To apply HGSADC with this objective, we first constrain
the fleet size to a large value of 100, and iteratively interrupt the run and reduce the
fleet size whenever a feasible solution is found. As soon as HGSADC fails to find a
feasible solution, we return to the last feasible fleet value and perform a final run. It is
noteworthy that both objectives are here addressed in single-stage-single-algorithm mode
contrasting with current state-of-the-art VRPTW methods, which generally rely on two
distinct procedures and concepts.

5.1 Parameter calibration

The parameter values from Vidal et al. (2011b) were shown to perform well on a large
range of VRP variants. In order to study the applicability and generality of the HGSADC
framework with limited changes, we voluntarily limited the role of parameter tuning, to
focus exclusively on the new ones, related to the neighbourhood evaluation procedures
(γwt, γtw), and the decomposition phases. The remaining parameter values are imported
from Vidal et al. (2011b): nbElit = 8 and nclose = 3 (Section 4.3); Prep = 0.5 and
|Γ| = 40 (Section 4.5); µ = 25, λ = 40 and ξREF = 0.2 (Section 4.6). The termination
criteria ItNI = 5000 is used to compare with other authors in similar run times. Finally,
Itdec = 2000 to balance the computation time dedicated to decomposition phases and
the regular run.

The nature of VRPTW solutions tends to strongly vary in relation to the distribu-
tion and tightness of time windows. For some problems, high-quality solutions involve
some long arcs and relatively small waiting times, while for less tightly constrained prob-
lems, closer to the classical VRP, long arcs become very unlikely. The parameters γTW

and γWT , balancing the role of geometrical and temporal aspects during neighbourhood
pruning, are thus critical, and need to be calibrated relatively to the instances at hand.
To that extent, we selected 10 problems with various structures (R1-2, R1-4, R2-1, R2-
3, RC1-1, RC1-2, RC2-3, RC2-4, C1-2, and C2-4) from the 200-customer instances of
Gehring and Homberger (1999). 20 runs were performed for each instance and each of
the 36 combinations of parameters (γTW , γWT ) ∈ {0; 0.2; 0.5; 1; 2; 5}2. To reduce com-
putation time and amplify the impact of good move choices, we also reduced |Γ| to 20,
ItNI = 2000, and turned off the decomposition phases. The minimum number of vehicles
has been reached on all runs but five out of 20× 36 = 720 total experiments. These five
marginal results have been discarded in order to simply compare on the basis of distance.
Table 1 presents the gap of HGSADC to the best known solution (BKS) in the literature
for each parameter setting, averaged on the 20 (19 in some cases) experiments and 10
instances. The line and column indicated in boldface corresponds to the best mean for
each parameter taken independently.

HGSADC performance appears to increase with parameter values close to (γTW , γWT ) =
(1.0, 0.2). To state the statistical significance of these observations, we analyzed the dis-
tribution of the average deviation to BKS among the 20× 36 experiments. The Shapiro-
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Table 1: Performance of HGSADC on a selection of 200-customer VRPTW instances for
various γTW and γWT settings

γTW
γWT

0.0 0.2 0.5 1.0 2.0 5.0

0.0 0.70 0.64 0.69 0.72 0.71 0.82
0.2 0.59 0.59 0.65 0.57 0.71 0.72
0.5 0.63 0.53 0.56 0.63 0.65 0.67
1.0 0.63 0.59 0.51 0.59 0.59 0.63
2.0 0.60 0.51 0.61 0.63 0.62 0.61
5.0 0.56 0.56 0.57 0.56 0.70 0.61

Wilk test rejects the distribution normality assumption with high confidence (p = 0.000).
Noteworthy is the fact that Levene’s test also rejects (p = 0.011) the equality of variances
among the 36 groups of experiments, hence these parameters affect both the algorithm
performance and stability.

Following these observations, a classic ANOVA is not relevant. We thus compared
the settings (γTW , γWT ) = (0, 0) and (γTW , γWT ) = (1.0, 0.2) on 50 new runs, using
new random number generator seeds. Average deviations of +0.68% and +0.53% were
respectively retrieved. A Wilcoxon test on these paired samples yields p = 0.000, thus
rejecting with very high confidence the null hypothesis that “both parameter settings lead
to the same solution quality”. The new setting (1.0, 0.2), which accounts for the temporal
aspect in neighbourhood pruning, leads to a significant increase in quality when compared
to (0, 0), which corresponds to the classic distance-driven granular search policy.

5.2 Comparison of performances

We compare HGSADC with state-of-the art methods for the PVRPTW in Tables 2 and
5, for the MDVRPTW in Table 3, for the SDVRPTW in Table 4, and for the VRPTW
in Tables 6-7. We also report the performance of HGSADC on the new large scale
instances in Table 8. The first group of columns displays the instance identifier, number
of customers n, maximum fleet size m, number of periods t, depots d, and vehicle types
w when applicable. The next group of columns compares the average and best results, as
well as the average run time of HGSADC with state-of-the-art methods for each problem:

• PisR: ALNS of Pisinger and Ropke (2007)

• LZ: Two-phase ejections chains and iterated local search of Lim and Zhang (2007)

• PDR: Branch-and-price based LNS of Prescott-Gagnon et al. (2009)

• RTI: Arc-guided evolutionary algorithm of Repoussis et al. (2009)

• NB-100 and NB-f(n): Hybrid GA based on EAX crossover of Nagata et al. (2010)
with a population size of 100 and f(n) = n/20000.

• CLM: UTS of Cordeau et al. (2004)

• PR08: VNS of Pirkwieser and Raidl (2008)
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• CM-8P and CM-64: Parallel iterative UTS of Cordeau and Maischberger (2011) on
8 and 64 processors respectively

• NCT: GA+VNS+Tabu of Nguyen et al. (2011)

• PR09: Multiple VNS+ILP (15,10) of Pirkwieser and Raidl (2009b)

• PR10: VNS+ILP of Pirkwieser and Raidl (2010)

• PBDH: Cooperative VNS of Polacek et al. (2008)

• B: Hybrid VNS and Tabu of Belhaiza (2010)

Table 2: Results on Cordeau et al. (2001) PVRPTW instances

Inst n m t CLM PR08 CM-8P CM-64P HGSADC prev BKS HGSADC
1 run Best X Avg 10 Avg 5 Avg 10 Best 10 T(min) — All exp.

p01a 48 3 4 2915.58 2909.02 2909.02 2909.02 2909.05 2909.02 1.13 2909.02 2909.02
p02a 96 6 4 5094.39 5036.27 5046.78 5037.60 5031.50 5026.57 3.28 5026.57 5026.57
p03a 144 9 4 7284.32 7138.70 7134.11 7097.55 7091.51 7050.72 8.11 7062.00 7023.90
p04a 192 12 4 8087.06 7882.06 7923.48 7857.08 7818.75 7791.93 17.93 7807.32 7755.77
p05a 240 15 4 8752.72 8492.45 8518.20 8434.02 8368.98 8341.93 31.03 8358.96 8311.17
p06a 288 18 4 10961.78 10713.75 10756.53 10664.56 10595.85 10477.01 65.36 10542.10 10473.24
p07a 72 5 6 6891.76 6787.72 6799.12 6799.73 6788.67 6783.23 3.76 6782.68 6783.23
p08a 144 10 6 9990.46 9721.25 9729.13 9684.86 9623.72 9593.43 17.00 9603.92 9574.80
p09a 216 15 6 13796.75 13463.96 13459.28 13371.16 13285.89 13247.38 45.94 13299.80 13201.06
p10a 288 20 6 18135.6 17650.89 17503.69 17365.50 17058.89 16999.88 95.96 17261.30 16920.96
p01b 48 3 4 2297.21 2277.44 2278.41 2277.44 2277.44 2277.44 0.83 2277.44 2277.44
p02b 96 6 4 4335.11 4137.45 4200.75 4139.10 4130.64 4122.03 4.88 4124.76 4121.50
p03b 144 9 4 5699.78 5575.27 5601.34 5571.88 5555.77 5521.71 8.44 5489.84 5489.33
p04b 192 12 4 6619.56 6476.67 6482.60 6433.16 6400.55 6352.28 27.80 6383.28 6347.77
p05b 240 15 4 7138.28 6970.33 6902.39 6846.96 6838.54 6790.44 47.47 6800.45 6777.54
p06b 288 18 4 9039.29 8819.32 8760.22 8695.84 8647.15 8595.10 77.48 8659.44 8582.72
p07b 72 5 6 5580.22 5504.67 5514.35 5494.67 5491.08 5481.61 3.64 5481.61 5481.61
p08b 144 10 6 7914.39 7729.32 7772.38 7726.38 7665.10 7619.95 16.75 7656.13 7599.01
p09b 216 15 6 11269.13 10885.93 10871.81 10750.42 10653.60 10589.68 68.10 10579.50 10532.51
p10b 288 20 6 14145.37 13943.61 13778.33 13576.78 13502.65 13442.57 109.98 13490.80 13406.89
Avg Gap to BKS +3.54% +1.28% +1.31% +0.64% +0.17% -0.24% —
Avg Time (min) 16.0 NC 8 × 7.6 64 × 11.32 32.74 10 × 32.74 —

Processor P4-2G Opt-2.2G Xe-2.93G Xe-2.93G Xe-2.93G

We indicate in boldface for each problem instance the best performing method. In
the last two columns are given for each instance the previous best-known solution (BKS)
ever reported in the literature, and the best solution obtained by HGSADC during all
our experiments. New BKS produced by HGSADC are underlined. Finally, the last
three lines provide average measures over all instances: the percentage of error relative
to the previous BKS, the computation time, and the type of processor used by each
author. For concision matters, we report only average results by group of instances
for the PVRPTW instances of Pirkwieser and Raidl (2009b), the VRPTW instances of
Solomon and Desrosiers (1988) and Gehring and Homberger (1999). Calculation of the
average deviation to BKS is also based on groups. Detailed results are available upon
request. Finally, notice that results are presented in the format “Fleet Size|Distance” for
VRPTW benchmarks.
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Table 3: Results on Cordeau et al. (2001) MDVRPTW instances

Inst n m d CLM PBDH CM-8P CM-64P HGSADC prev BKS HGSADC
1 run Best X Avg 10 Avg 5 Avg 10 Best 10 T(min) — All exp.

p01a 48 2 4 1074.12 1074.12 1074.12 1074.12 1074.12 1074.12 0.31 1074.12 1074.12
p02a 96 3 4 1766.94 1763.66 1762.80 1762.21 1762.61 1762.21 1.15 1762.21 1762.61
p03a 144 4 4 2420.89 2388.73 2394.77 2380.24 2374.27 2373.65 1.75 2373.65 2373.65
p04a 192 5 4 2868.64 2847.56 2841.51 2822.80 2817.39 2815.75 5.89 2815.48 2815.11
p05a 240 6 4 3059.40 3015.27 3007.80 2987.01 2968.71 2964.65 8.68 2965.18 2962.25
p06a 288 7 4 3701.08 3674.60 3638.40 3616.69 3598.77 3588.78 13.43 3590.58 3588.78
p07a 72 2 6 1425.87 1418.22 1418.22 1418.22 1418.22 1418.22 0.51 1418.22 1418.22
p08a 144 3 6 2118.50 2103.21 2111.16 2101.50 2097.35 2096.73 2.39 2096.73 2096.73
p09a 216 4 6 2777.91 2753.61 2739.40 2723.81 2716.15 2712.56 5.20 2717.69 2712.56
p10a 288 5 6 3546.24 3541.01 3505.30 3481.58 3477.56 3465.92 15.22 3469.29 3464.65
p01b 48 2 4 1025.14 1011.65 1005.73 1005.73 1005.73 1005.73 0.51 1005.73 1005.73
p02b 96 3 4 1486.26 1488.32 1473.65 1468.30 1466.49 1464.50 1.68 1464.50 1464.50
p03b 144 4 4 2033.75 2012.37 2004.69 2001.83 2001.82 2001.81 2.94 2001.81 2001.81
p04b 192 5 4 2228.64 2239.02 2212.38 2199.70 2197.41 2195.33 6.55 2195.33 2195.33
p05b 240 6 4 2555.95 2498.85 2476.87 2443.94 2454.28 2433.15 12.56 2434.94 2433.15
p06b 288 7 4 2978.60 2909.45 2875.70 2862.38 2844.06 2836.67 15.97 2852.25 2836.67
p07b 72 2 6 1250.18 1247.51 1238.51 1237.00 1237.78 1236.24 1.05 1236.24 1236.24
p08b 144 3 6 1870.34 1809.25 1793.90 1790.44 1789.76 1788.18 3.30 1788.18 1788.18
p09b 216 4 6 2338.74 2294.19 2283.35 2276.32 2264.56 2261.08 8.59 2263.74 2257.13
p10b 288 5 6 3147.79 3093.51 3060.46 3016.73 3006.18 2993.31 22.18 2995.08 2984.01
Avg Gap to BKS +2.32% +1.28% +0.74% +0.27% +0.10% -0.06% —
Avg Time (min) 14.9 146.94 8 × 4.15 64 × 6.57 6.49 10 × 6.49 —

Processor P4-2G P4-3.6G Xe-2.93G Xe-2.93G Xe-2.93G

HGSADC appears to be highly competitive in terms of solution quality for all the
problem settings considered. The average computation time remains short, similar to
other methods, and suitable for many operational decisions. The proposed approach
outperforms all other algorithms in the literature for the PVRPTW, MDVRPTW, and
SDVRPTW, including the parallel iterative UTS of Cordeau and Maischberger (2011),
which requires a large overall computational effort distributed on 64 processors. For the
VRPTW, HGSADC is comparable to the hybrid genetic algorithm of Nagata et al. (2010)
in terms of solution quality, is less computationally efficient, but relies on less problem-
tailored components, and does not necessitate dedicated route minimization procedures.

The average standard deviation, measured on the instances of Cordeau et al. (2001),
ranges between 0.17% for the MDVRPTW and 0.27% for the PVRPTW, thus illustrating
the good stability of the algorithm. HGSADC performance appears to be higher on
problems with tight time windows and short routes. This observation goes in accordance
with Bent and Van Hentenryck (2010), which showed that geometrical decomposition
tends to perform better for this kind of instances.

These experiments retrieved or improved 105/109 BKS for the PVRPTW, MD-
VRPTW, and SDVRPTW, and 75/109 of those have been strictly improved. For the
VRPTW, HGSADC retrieved or improved 292/356 BKS, and strictly improved 158/356.
Five new BKS with one less vehicle have been produced on the large scale VRPTW
instances. In particular, on the VRPTW instances of Solomon and Desrosiers (1988),
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Table 4: Results on Cordeau and Laporte (2001) SDVRPTW instances

Inst n m w CLM B CM-8P CM-64P HGSADC prev BKS HGSADC
1 run Best X Avg 10 Avg 5 Avg 10 Best 10 T(min) — All exp.

p01a 48 2 4 1666.47 1655.42 1655.42 1655.42 1655.42 1655.42 0.23 1655.42 1655.42
p02a 96 3 4 2915.55 2938.37 2904.13 2904.13 2904.13 2904.13 0.70 2904.13 2904.13
p03a 144 4 4 3406.21 3338.58 3322.38 3317.25 3320.44 3304.13 1.60 3304.13 3304.13
p04a 192 5 4 4532.58 4560.96 4486.13 4448.48 4437.19 4427.25 5.85 4438.97 4427.25
p05a 240 6 4 5859.03 5908.41 5722.89 5666.23 5681.48 5647.76 11.64 5620.56 5626.42
p06a 288 7 4 5773.24 5966.33 5767.97 5710.96 5666.20 5637.48 12.68 5670.66 5627.82
p07a 72 2 6 2181.77 2169.06 2168.88 2166.88 2166.88 2166.88 0.42 2166.88 2166.88
p08a 144 3 6 3983.08 3944.33 3908.93 3885.31 3880.58 3873.40 2.35 3874.32 3873.40
p09a 216 4 6 5008.54 4985.19 4854.70 4838.82 4797.72 4777.61 5.60 4801.47 4772.55
p10a 288 5 6 6171.16 6118.20 5935.56 5881.95 5876.38 5858.82 11.58 5868.03 5817.28
p11a 1008 27 4 — 16784.67 — — 15198.10 15080.68 120.46 16418.21 14982.35
p12a 720 14 6 — 12485.43 — — 11475.15 11402.01 112.06 12106.20 11330.23
p01b 48 2 4 1433.24 1429.37 1429.35 1429.35 1429.35 1429.35 0.22 1429.35 1429.35
p02b 96 3 4 2516.83 2494.34 2489.83 2482.48 2479.56 2479.56 0.99 2479.56 2479.56
p03b 144 4 4 2814.61 2801.51 2785.84 2780.40 2779.09 2775.61 2.28 2775.61 2774.30
p04b 192 5 4 3762.38 3746.99 3695.27 3673.01 3660.66 3649.72 6.57 3655.48 3649.72
p05b 240 6 4 4955.04 4730.63 4678.58 4654.10 4625.79 4611.16 8.06 4613.09 4609.20
p06b 288 7 4 5008.27 5019.64 4823.92 4777.44 4755.59 4729.96 15.29 4752.04 4716.36
p07b 72 2 6 1864.11 1837.94 1839.08 1837.94 1837.94 1837.94 0.51 1837.94 1837.94
p08b 144 3 6 3215.06 3163.99 3161.03 3149.49 3152.69 3149.77 2.15 3144.91 3144.91
p09b 216 4 6 4033.63 4033.21 3959.74 3940.15 3894.67 3883.94 8.90 3894.64 3883.94
p10b 288 5 6 5158.89 5114.38 5014.48 5009.00 4962.62 4932.40 12.03 4967.59 4927.95
p11b 1008 27 4 — 14655.00 — — 13226.60 13067.52 120.32 14015.50 12998.63
p12b 720 14 6 — 10864.70 — — 9857.89 9777.44 120.17 10267.50 9708.45

Gap p01-10 +2.76% +2.23% +0.82% +0.39% +0.12% -0.13%
Gap p11-12 — +3.94% — — -5.57% -6.38%

T. (min) p01-10 13.3 2.94 8 × 4.53 64 × 5.60 5.48 10 × 5.48
T. (min) p11-12 — 45.73 — — 118.25 10 × 118.25

Processor P4-2G Qd-2.66G Xe-2.93G Xe-2.93G Xe-2.93G

A limit of 2 hours has been set for HGSADC runs. The average gaps and time are reported separately for instances sets
p01-10 and p11-12, which are of very different sizes.

Table 5: Summarized results on Pirkwieser and Raidl (2009b) PVRPTW instances with-
out duration constraints, distances truncated to the first digit

Inst n t PR09 PR10 NCT HGSADC
Avg 30 Avg 30 Avg 10 Avg 10 Best 10 T(min)

R4 100 4 3454.50 3467.08 3441.86 3441.34 3434.18 3.03
C4 100 4 2787.14 2828.83 2778.19 2768.76 2766.22 2.68

RC4 100 4 3641.61 3659.66 3628.41 3630.81 3620.70 3.92
R6 100 6 4475.85 4474.04 4445.81 4443.48 4428.88 4.52
C6 100 6 3777.97 3807.68 3742.74 3728.94 3723.20 3.96

RC6 100 6 5030.33 5021.79 4967.34 4971.14 4952.94 4.85
R8 100 8 — 5526.47 5443.08 5456.67 5428.80 5.08
C8 100 8 — 4971.18 4860.52 4827.88 4809.46 4.23

RC8 100 8 — 5994.37 5902.67 5876.73 5840.84 5.88
Avg Gap to BKS NC +1.75% +0.38% +0.19% -0.09%
Avg Time (min) 0.86 0.61 97.51 4.24 10 × 4.24

Processor Qd-2.83G Qd-2.83G C2-2.4G Xe-2.93G
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Table 6: Results on Gehring and Homberger (1999) large-scale VRPTW instances

Inst n LZ PDR RTI NB-100 NB-f(n) HGSADC
1 run Best 5 Best 3 1 run Best 5 Avg 5 Best 5

R1 200 18.2 | 3639.60 18.2 | 3615.69 18.2 | 3640.11 18.2 | 3615.15 18.2 | 3612.36 18.20 | 3621.72 18.2 | 3613.16
R2 200 4.0 | 2950.09 4.0 | 2937.67 4.0 | 2941.99 4.0 | 2930.04 4.0 | 2929.41 4.00 | 2933.19 4.0 | 2929.41
C1 200 18.9 | 2726.11 18.9 | 2718.77 18.9 | 2721.90 18.9 | 2718.44 18.9 | 2718.41 18.90 | 2720.13 18.9 | 2718.41
C2 200 6.0 | 1834.24 6.0 | 1831.59 6.0 | 1833.36 6.0 | 1831.64 6.0 | 1831.64 6.00 | 1832.08 6.0 | 1831.59

RC1 200 18.0 | 3205.51 18.0 | 3192.56 18.0 | 3224.63 18.0 | 3182.48 18.0 | 3178.68 18.00 | 3195.26 18.0 | 3180.48
RC2 200 4.3 | 2574.10 4.3 | 2559.32 4.3 | 2554.33 4.3 | 2536.54 4.3 | 2536.22 4.30 | 2538.29 4.3 | 2536.20

CNV 694 694 694 694 694 694 694
CTD 169 296 168 556 169 163 168 143 168 067 168 407 168 092
Time 93.2 min 5 × 53 min 90 min 4.7 min 5 × 4.1 min 8.40 min 5 × 8.40 min

R1 400 36.4 | 8489.53 36.4 | 8420.52 36.4 | 8514.11 36.4 | 8413.23 36.4 | 8403.24 36.40 | 8423.07 36.4 | 8402.57
R2 400 8.0 | 6271.57 8.0 | 6213.48 8.0 | 6258.82 8.0 | 6149.49 8.0 | 6148.57 8.00 | 6168.98 8.0 | 6152.92
C1 400 37.6 | 7229.04 37.6 | 7182.75 37.6 | 7273.90 37.6 | 7179.71 37.6 | 7175.72 37.60 | 7184.65 37.6 | 7170.47
C2 400 11.7 | 3942.93 11.9 | 3874.58 11.7 | 3941.70 11.7 | 3898.02 11.7 | 3899.00 11.68 | 3916.83 11.6 | 3952.95

RC1 400 36.0 | 8005.25 36.0 | 7940.65 36.0 | 8088.46 36.0 | 7931.66 36.0 | 7922.23 36.00 | 7942.81 36.0 | 7907.14
RC2 400 8.5 | 5431.15 8.6 | 5269.09 8.4 | 5516.59 8.4 | 5293.74 8.4 | 5297.86 8.52 | 5233.33 8.5 | 5215.21

CNV 1382 1385 1381 1381 1381 1382 1381
CTD 393 695 389 011 395 936 388 548 388 466 388 697 388 013
Time 295.9 min 5 × 89 min 180 min 34.0 min 5 × 16.2 min 34.1 min 5 × 34.1 min

R1 600 54.5 | 18381.28 54.5 | 18252.13 54.5 | 18781.79 54.5 | 18194.38 54.5 | 18186.24 54.50 | 18111.58 54.5 | 18023.18
R2 600 11.0 | 12847.31 11.0 | 12808.59 11.0 | 12804.60 11.0 | 12319.75 11.0 | 12330.49 11.00 | 12385.20 11.0 | 12352.38
C1 600 57.4 | 14103.61 57.4 | 14106.03 57.3 | 14236.86 57.4 | 14054.70 57.4 | 14067.34 57.40 | 14078.12 57.4 | 14058.46
C2 600 17.4 | 7725.86 17.5 | 7632.37 17.4 | 7729.80 17.4 | 7601.94 17.4 | 7605.07 17.40 | 7635.68 17.4 | 7594.41

RC1 600 55.0 | 16274.17 55.0 | 16266.14 55.0 | 16767.72 55.0 | 16179.39 55.0 | 16183.95 55.00 | 16156.47 55.0 | 16097.05
RC2 600 11.5 | 10935.91 11.7 | 10990.85 11.4 | 11311.81 11.4 | 10591.87 11.4 | 10586.14 11.50 | 10568.26 11.5 | 10511.86

CNV 2068 2071 2066 2067 2067 2068 2068
CTD 802 681 800 797 816 326 789 420 789 592 789 353 786 373
Time 646.9 min 5 × 105 min 270 min 80.4 min 5 × 25.3 min 99.4 min 5 × 99.4 min

R1 800 72.8 | 31755.57 72.8 | 31797.42 72.8 | 32734.57 72.8 | 31486.74 72.8 | 31492.81 72.80 | 31385.55 72.8 | 31311.38
R2 800 15.0 | 20601.22 15.0 | 20651.81 15.0 | 20618.21 15.0 | 19873.04 15.0 | 19914.97 15.00 | 19995.82 15.0 | 19933.39
C1 800 75.4 | 25026.42 75.4 | 25093.38 75.2 | 25911.44 75.3 | 24990.42 75.2 | 25151.83 75.50 | 24898.96 75.4 | 24876.38
C2 800 23.4 | 11598.81 23.5 | 11569.39 23.4 | 11835.72 23.4 | 11438.52 23.4 | 11447.27 23.38 | 11474.16 23.3 | 11475.05

RC1 800 72.0 | 31267.84 72.0 | 33170.01 72.0 | 33795.61 72.0 | 31020.22 72.0 | 31278.28 72.0 | 29655.52 72.0 | 29404.32
RC2 800 15.6 | 16992.79 15.8 | 16852.38 15.5 | 17536.54 15.4 | 16438.90 15.4 | 16484.31 15.50 | 16513.49 15.4 | 16495.82

CNV 2742 2745 2739 2739 2738 2741.8 2739
CTD 1 372 427 1 391 344 1 424 321 1 352 478 1 357 695 1 339 235 1 334 963
Time 1269.4 min 5 × 129 min 360 min 126.8 min 5 × 27.6 min 215 min 5 × 215 min

R1 1000 91.9 | 48827.23 91.9 | 49702.32 91.9 | 51414.26 91.9 | 48287.98 91.9 | 48369.71 91.90 | 47928.13 91.9 | 47759.66
R2 1000 19.0 | 30164.60 19.0 | 30495.26 19.0 | 30804.79 19.0 | 28913.40 19.0 | 29003.42 19.00 | 29159.07 19.0 | 29076.45
C1 1000 94.4 | 41699.32 94.3 | 41783.27 94.2 | 43111.60 94.1 | 41683.29 94.1 | 41748.60 94.42 | 41550.55 94.1 | 41572.86
C2 1000 29.3 | 16589.74 29.5 | 16657.06 29.3 | 16810.22 29.1 | 16498.61 29.1 | 16534.36 28.90 | 16723.59 28.8 | 16796.45

RC1 1000 90.0 | 44818.54 90.0 | 45574.11 90.0 | 46753.61 90.0 | 44743.18 90.0 | 44860.60 90.00 | 44448.97 90.0 | 44333.40
RC2 1000 18.3 | 25064.88 18.5 | 25470.33 18.4 | 25588.52 18.3 | 23939.62 18.3 | 24055.31 18.24 | 24209.03 18.2 | 24131.13

CNV 3429 3432 3428 3424 3424 3424.6 3420
CTD 2 071 643 2 096 823 2 144 830 2 040 661 2 045 720 2 040 193 2 036 700
Time 1865.4 min 5 × 162 min 450 min 186.4 min 5 × 35.3 min 349 min 5 × 349 min

Processor P4-3G P4-2.8G Opt-2.3G P4-3G Opt-2.4G Xe-2.93G

HGSADC found the same best solutions as Nagata et al. (2010). The new BKS on
the instances of Pirkwieser and Raidl (2009b) and Gehring and Homberger (1999) are
presented in Appendix B.
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Table 7: Summarized results on Solomon and Desrosiers (1988) VRPTW instances

Inst n PisR PDR RTI NB-100 NB-f(n) HGSADC
Best 10 Best 5 Best 3 1 run Best 5 Avg 5 Best 5

R1 100 11.92 | 1212.39 11.92 | 1210.34 11.92 | 1210.82 11.92 | 1210.34 11.92 | 1210.34 11.92 | 1211.49 11.92 | 1210.69
R2 100 2.73 | 957.72 2.73 | 955.74 2.73 | 952.67 2.73 | 952.08 2.73 | 951.03 2.73 | 952.05 2.73 | 951.51
C1 100 10.0 | 828.38 10.0 | 828.38 10.0 | 828.38 10.0 | 828.38 10.0 | 828.38 10.0 | 828.38 10.0 | 828.38
C2 100 3.0 | 589.86 3.0 | 589.86 3.0 | 589.86 3.0 | 589.86 3.0 | 589.86 3.0 | 589.86 3.0 | 589.86

RC1 100 11.5 | 1385.78 11.5 | 1384.16 11.50 | 1384.30 11.50 | 1384.72 11.5 | 1384.16 11.5 | 1384.81 11.5 | 1384.17
RC2 100 3.25 | 1123.49 3.25 | 1119.44 3.25 | 1119.72 3.25 | 1119.45 3.25 | 1119.24 3.25 | 1119.40 3.25 | 1119.24

CNV 405 405 405 405 405 405 405
CTD 57 332 57 240 57 216 57 205 57 187 57 218 57 196

T(min) 10 × 2.5 min 5 × 30 min 3 × 17.9 min 3.2 min 5 × 5.0 min 2.68 min 5 × 2.68 min
Processor P4-3G Opt-2.3G P4-3G Opt-2.4G Opt-2.4G Xe-2.93G

Table 8: Results on new large-scale PVRPTW, MDVRPTW, and SDVRPTW instances

Inst n m t PVRPTW MDVRPTW SDVRPTW
P MD SD Avg 5 T(min) Best 5 Avg 5 T(min) Best 5 Avg 5 T(min) Best 5

pr11a 360 24 10 11 4 21120,94 61,74 20937,29 6772,00 16,81 6720,71 9958,05 13,91 9924,11
pr12a 480 30 13 14 4 26677,56 192,16 26483,68 8259,57 30,00 8179,80 12371,95 30,44 12251,66
pr13a 600 38 16 17 4 31909,12 297,03 31808,00 9751,22 54,85 9667,20 14562,53 44,93 14491,25
pr14a 720 44 19 21 4 37066,65 302,25 36954,39 11235,13 65,65 11124,01 16620,70 70,12 16547,86
pr15a 840 50 22 25 4 41847,30 301,05 41699,07 13078,26 132,44 13013,97 19283,90 111,09 19090,19
pr16a 960 58 26 29 4 48855,14 307,29 48375,16 14415,89 133,63 14299,87 21803,57 176,25 21413,65
pr17a 360 22 7 8 6 28889,82 65,28 28818,04 6340,66 17,23 6304,30 10581,02 12,20 10547,07
pr18a 520 30 10 12 6 37491,40 263,63 37385,82 8381,71 44,25 8308,32 14009,53 21,56 13963,49
pr19a 700 38 13 16 6 49103,78 300,39 48993,72 10734,60 74,42 10677,61 18998,48 95,29 18855,51
pr20a 880 48 16 20 6 60474,34 302,59 60144,66 12142,60 107,37 11963,91 22655,72 150,56 22513,44
pr21a 420 22 4 6 12 54562,68 213,11 54257,26 6321,20 28,00 6260,53 13775,90 16,22 13758,32
pr22a 600 30 6 8 12 73226,99 297,44 72978,33 8047,87 76,05 7985,37 17661,05 45,00 17572,09
pr23a 780 38 8 10 12 91424,98 300,02 90951,34 9984,75 137,72 9937,43 21974,90 97,06 21793,32
pr24a 960 48 10 12 12 114892,01 308,38 114712,30 11971,74 197,17 11923,72 26875,82 148,26 26775,76
pr11b 360 18 8 9 4 16102,27 86,18 15992,20 4852,67 18,04 4839,44 8011,50 15,89 7962,22
pr12b 480 24 11 11 4 20822,71 177,36 20753,17 6084,33 29,09 6063,26 9566,13 33,45 9508,68
pr13b 600 30 14 14 4 25050,30 291,83 24972,94 7282,25 70,99 7254,17 11609,39 74,81 11562,67
pr14b 720 36 17 17 4 29976,52 301,40 29790,14 8796,77 98,92 8732,29 13693,79 157,09 13623,28
pr15b 840 48 20 20 4 41715,58 300,02 41609,04 10496,39 129,48 10439,72 15589,83 191,21 15437,52
pr16b 960 56 23 23 4 49558,36 306,31 49470,50 11565,39 170,31 11483,22 17920,79 252,35 17834,61
pr17b 360 18 6 6 6 23138,63 94,09 22989,05 4847,58 15,78 4806,01 8629,90 13,20 8562,99
pr18b 520 24 9 9 6 32201,55 274,33 32093,04 6555,95 39,45 6526,72 11525,05 53,61 11477,72
pr19b 700 32 12 12 6 42467,74 300,53 42332,28 8295,30 80,55 8227,25 14918,54 92,15 14894,65
pr20b 880 42 15 15 6 53119,63 302,15 52863,23 10378,54 150,74 10325,80 18666,10 228,78 18566,66
pr21b 420 18 4 4 12 43195,88 261,51 43098,26 4887,57 36,75 4866,57 11309,41 27,17 11246,57
pr22b 600 24 6 6 12 58942,49 303,13 58814,76 6537,15 73,28 6488,50 14354,29 57,21 14288,26
pr23b 780 30 7 8 12 74755,07 302,99 74357,84 8603,85 163,99 8523,41 17635,56 125,08 17576,39
pr24b 960 40 8 10 12 94551,24 303,18 94395,56 10997,66 298,51 10890,08 23420,33 227,26 23176,90

Avg. Gap & T(min) +0.42% 254.19 +0.00% +0.71% 88.98 +0.00% +0.60 % 92.22 +0.00%
Processor Xe-2.93G Xe-2.93G Xe-2.93G

To save computation time, the termination criterion was reduced to ItNI = 2500 iterations without improvement, and a
time limit of 5h is imposed. On the PVRPTW instances, which are very large, the population size was divided by two to

speed up the convergence.
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5.3 Sensitivity analysis on method components

Addressing large-scale time-constrained VRP with the HGSADC methodology led to
several challenges, which were answered in this paper by means of new procedures for
neighbourhood evaluation and pruning, and problem decompositions. This section analy-
ses the role of several of these components. We measure the impact of the decomposition
phases, the contribution of infeasible solutions to the search, which required new move
evaluation procedures, and the diversity and cost objective.

Three versions of the algorithm were thus derived by removing in turn a different
element from the method. The first does not rely on infeasible solutions with respect
to time windows, setting high penalties to time-window violations, and relies on the
“feasible” subpopulation only. The second does not apply decomposition phases. The
last one uses a “traditional” evaluation of individuals driven exclusively by solution cost.
Table 9 compares the average results on 5 runs, as an average deviation to the BKS,
of these derived methods on various benchmark instances studied in this paper. The
objective of fleet minimization being not straightforward to tackle without relying on
TW-infeasible solutions, some instances were not considered in this case.

Table 9: Sensitivity analysis on the role of diversity and cost objective, time window-
infeasible solutions, and decomposition phases

Benchmark No Diversity objective No TW infeasibility No Decomposition HGSADC
Fleet Dist T(min) Fleet Dist T(min) Fleet Dist T(min) Fleet Dist T(min)

PVRPTW — +1.23% 17.6 — +0.59% 26.0 — +0.21% 22.56 — +0.17% 33.2
MDVRPTW — +1.24% 4.73 — +0.80% 5.79 — +0.11% 5.29 — +0.10% 6.49
SDVRPTW — +1.33% 3.59 — +0.67% 4.84 — +0.10% 4.06 — +0.12% 5.48

PVRPTW new — +1.68% 232 — +0.97% 252 — +1.45% 238 — +0.42% 254
MDVRPTW new — +3.91% 62.9 — +1.83% 85.9 — +0.52% 78.3 — +0.60% 92.2
SDVRPTW new — +2.91% 44.3 — +1.56% 74.2 — +0.65% 99.6 — +0.71% 89.9
VRPTW n = 200 +0.00% +0.55% 5.93 — — — +0.00% +0.21% 6.21 +0.00% +0.18% 8.40
VRPTW n = 400 +0.48% +0.53% 27.9 — — — +0.32% +0.22% 29.1 +0.22% +0.15% 34.1

These experiments confirm the pertinence of the HGSADC framework for this class
of problems, as the diversity and cost objective contributes largely to the performance of
the proposed method. They also underline the major role of the time window-infeasible
solutions, thus giving full meaning to the new move evaluation procedures.

Decomposition phases contribute significantly to the search performance on large
PVRPTW instances, for which subproblems can involve up to 560 customers. This
impact is less substantial on MDVRPTW and SDVRPTW instances, which present few
customer visits (between 90 and 240) per resource (depot or vehicle type), and generate
only small- or medium-size VRPTW sub-problems. In this latter case, VRPTW routes
were already efficiently optimized by the algorithm, without the need for decomposition,
solution improvements being more likely to come from combined route and assignment
optimizations.
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6 Conclusions

We presented a new Hybrid Genetic Search with Advanced Diversity Control to effi-
ciently address a large class of VRPTW variants, including MDVRPTW, PVRPTW,
and SDVRPTW. Several new features were introduced to efficiently evaluate and prune
neighbourhoods, and decompose large instances. Their important contribution to the
performance of the algorithm in terms of solution quality and computing efficiency, as
well as that of the HGSADC methodology combining cost and contribution-to-diversity
factors in evaluating and selecting individuals, has been demonstrated by extensive sen-
sitivity analysis.

Comprehensive computational experiments and comparisons to state-of-the-art meth-
ods showed that the proposed algorithm performs impressively, in terms of both solution
quality and computational efficiency, outperforming all current state-of-the-art meth-
ods for the considered problems, and producing numerous new best known solutions on
classical literature benchmark instances.

Among the future developments we intend to undertake, there is the development
of more advanced mixed structural and spatial decompositions, in order to decompose
a PVRPTW into smaller PVRPTW subproblems thus providing the means to keep on
working on service assignments during the decomposition phases. We also plan to keep
on generalizing the method, progressing towards VRP variants with even more attributes
and “rich” settings.
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ment of Economics and Business Administration, Molde University College, Norway, M.
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A Proof of Proposition 1: Minimum duration, time-

warp use, and concatenation of sequences

When the starting date of a visit sequence is set, an optimal policy for minimizing
duration and time-window infeasibility on the remaining vertices involves to service each
customer as early as possible, and use time warp only upon a late arrival to reach the end
of a customer’s time window. To demonstrate Proposition 1, we prove by induction on
the concatenation operator the stronger Proposition 2, which characterizes the minimum
duration and time-warp use to service a sequence σ of visits, as a function of the service
date t of the first sequence’s vertex (i.e., the departure date when the first vertex is a
depot). This proposition also provides the means to calculate the characteristic functions
of the concatenation of two sequences from the functions of the separate sequences.

Proposition 2. There exists a set of starting dates t that minimize both the time-warp
use and the duration to service a sequence σ. This set is a segment, notated T min(σ) =
[E(σ), L(σ)]. The minimum duration D(σ)(t) and time-warp use TW (σ)(t) as a function
of t can be expressed as follows, where D(σ) and TW (σ) represent the minimum duration
and time-warp use, respectively:

D(σ)(t) = D(σ) + (E(σ)− t)+ (24)

TW (σ)(t) = TW (σ) + (t− L(σ))+ (25)

Furthermore, let σ = (σi, . . . , σj) and σ′ = (σ′i′ , . . . , σ
′
j′) be two visit sequences, then the

sequence σ ⊕ σ′ is characterized by the following data:

D(σ ⊕ σ′) = D(σ) +D(σ′) + δσjσ′
i′

+ ∆WT (26)

TW (σ ⊕ σ′) = TW (σ) + TW (σ′) + ∆TW (27)

E(σ ⊕ σ′) = max{E(σ′)−∆, E(σ)} −∆WT (28)

L(σ ⊕ σ′) = min{L(σ′)−∆, L(σ)}+ ∆TW (29)

where ∆ = D(σ) − TW (σ) + δσjσ′
i′

, ∆WT = max{E(σ′) − ∆ − L(σ), 0} and ∆TW =

max{E(σ) + ∆− L(σ′), 0}.

Proof For a sequence σ0 with a single service to vi, D(σ0) = τi, TW (σ0) = 0, E(σ0) =
ei, L(σ0) = li. A schedule starting at t means to wait if t ≤ ei or use a time warp if
t ≥ li, and then perform the service. Starting at t, the minimum duration is D(σ)(t) =
τi + (ei− t)+, while the minimum time-warp use is TW (σ)(t) = (t− li)+, thus satisfying
the statements of Proposition 2.

Let σ and σ′ be two visit sequences with their characteristic functions D(σ)(t),
TW (σ)(t), D(σ′)(t) and TW (σ′)(t). The minimum duration of a schedule starting at
t for σ ⊕ σ′ is the sum of the duration to process the sequence σ at t, reach the first
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customer of σ′ at time t+D(σ)(t)− TW (σ)(t) + δσjσ′
i′
, and perform the service of σ′:

D(σ ⊕ σ′)(t) = D(σ)(t) + δσjσ′
i′

+D(σ′)(t+D(σ)(t)− TW (σ)(t) + δσjσ′
i′

)

= D(σ) + max{E(σ)− t, 0}+ δσjσ′
i′

+D(σ′)

+ max{E(σ′)− t−∆ + max{t− L(σ), 0} −max{E(σ)− t, 0}, 0}
= D(σ) + δσjσ′

i′
+D(σ′) + max{E(σ′)−∆− L(σ), 0, E(σ′)−∆− t, E(σ)− t}

= D(σ) + δσjσ′
i′

+D(σ′) + max{δWT ,max{E(σ′)−∆, E(σ)} − t}

= D(σ) + δσjσ′
i′

+D(σ′) + δWT + max{0,max{E(σ′)−∆, E(σ)} − δWT − t}

= D(σ ⊕ σ′) + max{0, E(σ ⊕ σ′)− t}

(30)

The function profile of Proposition (2) and the values of D(σ ⊕ σ′) and E(σ ⊕ σ′)
are thus respected. The minimum time-warp use of a schedule starting at t can be also
calculated in a similar manner as follows:

TW (σ ⊕ σ′)(t) = TW (σ)(t) + TW (σ′)(t+D(σ)(t)− TW (σ)(t) + δσjσ′
i′

)

= TW (σ) + max{t− L(σ), 0}+ TW (σ′)

+ max{t+ ∆− L(σ′) + max{E(σ)− t, 0} −max{t− L(σ), 0}, 0}
= TW (σ) + TW (σ′) + max{E(σ) + ∆− L(σ′), 0, t+ ∆− L(σ′), t− L(σ)}
= TW (σ) + TW (σ′) + max{δTW , t+ max{∆− L(σ′),−L(σ)}}
= TW (σ) + TW (σ′) + δTW + max{0, t− (min{L(σ′)−∆, L(σ)}+ δTW )}
= TW (σ ⊕ σ′) + max{0, t− L(σ ⊕ σ′)}

(31)

Again, the profile of TW (σ ⊕ σ′)(t), and the values of TW (σ ⊕ σ′) and L(σ ⊕ σ′) of
Proposition (2) are correct. It only remains to show that E(σ ⊕ σ′) ≤ L(σ ⊕ σ′), which
is equivalent to Equation 32:

L(σ ⊕ σ′)− E(σ ⊕ σ′) = min{L(σ′)−∆, L(σ)} −max{E(σ′)−∆, E(σ)}
+ max{E(σ′)−∆− L(σ), 0}+ max{E(σ) + ∆− L(σ′), 0} ≥ 0

(32)

If δWT = 0, then L(σ ⊕ σ′) − E(σ ⊕ σ′) ≥ min{L(σ′) − ∆, L(σ)} − min{L(σ′) −
∆, L(σ)} ≥ 0.

Otherwise, if δTW = 0, then L(σ ⊕ σ′) − E(σ ⊕ σ′) ≥ min{L(σ′) − ∆, L(σ)} −
min{E(σ′)−∆, L(σ′)−∆} ≥ 0.

Finally, if δWT = δTW = 0, then min{L(σ′)−∆, L(σ)} −min{E(σ′)−∆, E(σ)} ≥ 0,
as L(σ′) − ∆ ≥ E(σ′) − ∆; L(σ) ≥ E(σ); L(σ′) − ∆ ≥ E(σ) because of δTW = 0; and
L(σ) ≥ E(σ′)−∆ following from δWT = 0.

All the statements of Proposition 2 are thus proven by induction on the concatenation
operation, and Proposition 1 follows. �
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B Best solutions found on VRPTW and PVRPTW

instances

Tables 10 and 11 present the best solutions found by HGSADC during all the experiments
on the PVRPTW instances of Pirkwieser and Raidl (2009b), and the VRPTW instances
of Gehring and Homberger (1999). New best known solutions are indicated in boldface.

Table 10: HGSADC best solutions on Pirkwieser and Raidl (2009b) PVRPTW instances.
Distances truncated to the first digit.

# T4-R1 T4-C1 T4-RC1 T6-R1 T6-C1 T6-RC1 T8-R1 T8-C1 T8-RC1
1 4082.0 2907.4 3956.4 5376.1 3981.2 5781.5 6471.3 4679.1 6847.2
2 3724.3 2882.9 3755.7 5201.6 3841.7 5333.3 6097.9 4933.3 5763.3
3 3153.1 2734.5 3449.9 3940.5 3523.6 4273.1 4687.0 4664.0 5424.9
4 2566.0 2419.0 2991.5 3335.8 3206.3 4062.0 4355.8 4591.6 4929.5
5 3638.9 2884.1 3932.6 4272.9 4052.1 5227.1 5476.5 5134.2 6203.4
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Table 11: HGSADC best solutions on Gehring and Homberger (1999) large-scale
VRPTW instances.

n # R1 R2 C1 C2 RC1 RC2
200 1 20 4784.11 4 4483.16 20 2704.57 6 1931.44 18 3602.80 6 3099.53

2 18 4040.60 4 3621.20 18 2917.89 6 1863.16 18 3249.05 5 2825.24
3 18 3381.96 4 2880.62 18 2707.35 6 1775.08 18 3008.33 4 2601.88
4 18 3057.81 4 1981.30 18 2643.31 6 1703.43 18 2851.68 4 2038.56
5 18 4107.86 4 3366.79 20 2702.05 6 1878.85 18 3371.00 4 2911.46
6 18 3583.14 4 2913.03 20 2701.04 6 1857.35 18 3324.80 4 2873.12
7 18 3150.11 4 2451.14 20 2701.04 6 1849.46 18 3189.32 4 2525.83
8 18 2951.99 4 1849.87 19 2775.48 6 1820.53 18 3083.93 4 2292.53
9 18 3760.58 4 3092.04 18 2687.83 6 1830.05 18 3081.13 4 2175.04
10 18 3301.18 4 2654.97 18 2643.55 6 1806.58 18 3000.30 4 2015.61

400 1 40 10372.31 8 9210.15 40 7152.06 12 4116.14 36 8576.97 11 6682.37
2 36 8926.70 8 7606.75 36 7686.38 12 3930.05 36 7905.66 9 6191.24
3 36 7821.95 8 5911.07 36 7060.67 11 4018.02 36 7540.59 8 4930.84
4 36 7282.78 8 4241.47 36 6803.24 11 3702.49 36 7310.35 8 3631.01
5 36 9246.63 8 7132.14 40 7152.06 12 3938.69 36 8185.21 9 5893.84
6 36 8387.62 8 6125.82 40 7153.45 12 3875.94 36 8177.80 8 5766.61
7 36 7641.22 8 5018.53 39 7417.92 12 3894.16 36 7957.64 8 5360.34
8 36 7275.13 8 4018.01 37 7349.01 11 4303.69 36 7797.02 8 4799.02
9 36 8719.19 8 6400.10 36 7043.74 12 3865.65 36 7752.77 8 4551.81
10 36 8113.93 8 5805.87 36 6860.63 11 3827.15 36 7609.21 8 4278.61

600 1 59 21408.13 11 18206.80 60 14095.64 18 7774.16 55 17118.70 14 13368.77
2 54 18863.43 11 14807.67 56 14163.31 17 8273.78 55 16044.93 12 11555.51
3 54 17040.40 11 11200.10 56 13778.75 17 7523.12 55 15273.98 11 9444.99
4 54 15819.62 11 8029.37 56 13563.17 17 6911.35 55 14839.61 11 7076.49
5 54 19771.90 11 15098.49 60 14085.72 18 7575.20 55 16693.26 11 13138.99
6 54 18041.87 11 12506.57 60 14089.66 18 7471.17 55 16632.03 11 11977.46
7 54 16615.13 11 10066.34 58 14848.38 18 7512.07 55 16145.64 11 10779.24
8 54 15696.58 11 7609.96 56 14429.48 17 7547.67 55 15978.70 11 10009.46
9 54 18708.67 11 13483.92 56 13693.42 17 8015.73 55 15922.60 11 9583.65
10 54 17801.43 11 12279.01 56 13637.34 17 7255.69 55 15740.26 11 9078.64

800 1 80 36860.69 15 28117.94 80 25184.39 24 11662.08 72 31710.68 18 21014.85
2 72 32598.51 15 22811.82 74 25430.07 23 12378.53 72 29034.99 16 18197.14
3 72 29506.45 15 17741.68 72 24278.18 23 11410.69 72 27905.64 15 14467.00
4 72 27931.57 15 13219.06 72 23841.11 22 11154.40 72 26875.90 15 11006.56
5 72 33861.43 15 24350.52 80 25166.28 24 11425.23 72 30277.12 15 19147.21
6 72 31154.87 15 20480.79 80 25160.85 24 11347.35 72 30262.33 15 18160.91
7 72 29010.78 15 16697.82 78 25845.05 24 11370.84 72 29862.44 15 16852.17
8 72 27766.11 15 12748.16 74 25293.09 23 11292.10 72 29194.16 15 15808.99
9 72 32629.99 15 22423.76 72 24389.50 23 11645.22 72 28978.35 15 15390.38
10 72 31187.35 15 20459.29 72 24090.10 23 10981.00 72 28797.79 15 14454.62

1000 1 100 53657.99 19 42317.54 100 42478.95 30 16879.24 90 46272.07 20 30343.11
2 91 49105.21 19 33567.91 90 42300.76 29 17130.76 90 44129.42 18 26327.92
3 91 45237.29 19 25053.80 90 40239.23 28 16886.80 90 42487.54 18 20053.78
4 91 42845.99 19 18039.77 90 39501.23 28 15656.75 90 41613.58 18 15747.13
5 91 51869.67 19 36446.65 100 42469.18 30 16561.29 90 45564.81 18 27237.68
6 91 47849.05 19 30223.14 100 42471.28 29 16951.39 90 45303.67 18 26986.30
7 91 44525.53 19 23452.85 98 42873.78 29 18162.46 90 44903.80 18 25295.67
8 91 42597.89 19 17602.31 93 42220.24 28 16577.32 90 44366.01 18 23787.26
9 91 50490.49 19 33231.28 90 40570.60 29 16432.53 90 44280.84 18 23116.15
10 91 48578.49 19 30598.69 90 39933.06 28 15944.72 90 43896.78 18 22076.90
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