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Abstract. In this paper we introduce two algorithms to solve the two-echelon capacitated 

location-routing problem (2E-CLRP). We introduce a branch-and-cut algorithm based on 

the solution of a new two-index vehicle-flow formulation, which is strengthened with the 

use of several families of valid inequalities. We also propose an adaptive large-

neighborhood search (ALNS) method with the objective of finding good quality solutions 

quickly. The computational results on a large set of instances from the literature show that 

the ALNS outperforms existing heuristics. Furthermore, the branch-and-cut method 

provides tight lower bounds and is able to solve small and medium-size instances to 

optimality within reasonable computing times. 
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1 Introduction

The two-echelon capacitated location-routing problem (2E-CLRP) is an important combi-
natorial optimization problem arising in freight distribution. Formally, the problem can be
stated as follows. Given three disjoint sets of nodes, P (the platforms), S (the satellites)
and C (the customers), a planner must decide the location of a subset of platforms P ′ ⊆ P,
the location of a subset of satellites S ′ ⊆ S and to construct vehicle routes to visit each
customer exactly once using a vehicle routed from an open satellite, which is also visited
exactly once using a vehicle route from an open platform, at minimum total cost. To each
platform p ∈ P we associate a fixed cost H1

p and a capacity K1
p . Similarly, to each satel-

lite s ∈ S we associate a fixed cost H2
s and a capacity K2

s . Finally, for each customer
c ∈ C we associate a demand dc. We distinguish two echelons, one containing nodes in
P ∪ S and the other containing nodes in S ∪ C. At the first echelon we consider a graph
G1 = (V 1, E1), with V 1 = P ∪ S and E1 = {{u, v} : u, v ∈ V 1, u and v not both in P}.
Similarly, at the second echelon we consider a graph G2 = (V 2, E2) with V 2 = S ∪ C and
E2 = {{u, v} : u, v ∈ V 2, u and v not both in S}. Two fleets of vehicles are used, one at
each echelon. At each echelon the fleet is supposed to be homogeneous with vehicle capac-
ities Q1 and Q2, respectively. To each edge e ∈ E1 ∪ E2 we associate a routing cost equal
to γe. The problem studied in this paper can also be extended to the more general problem
in which customers and/or satellites can be served by several vehicles, which is known as
multiple-sourcing. To distinguish from the multiple-sourcing case, we refer to the problem
addressed in this paper as the single-sourcing variant. Other generalizations of the problem
studied here include multi-commodity problems in which several different classes of prod-
ucts must be transported to customers, stochastic problems in which certain parameters are
known only in distribution and dynamic problems in which customers demand is not known
in advance but revealed in real time. A classification of the different classes of 2E-CLRP has
been addressed in Boccia et al. [4].

The 2E-CLRP is a generalization of several other logistics problems. The capacitated
location-routing problem (CLRP) is a particular case of the 2E-CLRP in which the location
of a single platform of infinite capacity is known in advance and the costs on the first
echelon can be neglected. The problem is to find the optimal satellite locations and to build
vehicle routes around those satellites to satisfy the demand of the customer set. Recent
algorithms for solving the CLRP include some exact methods [2, 1, 7, 6] and heuristics
[18, 17, 19, 15, 10, 8].

The two-echelon capacitated vehicle routing problem (2E-CVRP) is also a particular
case of the 2E-CLRP in which the location of a single platform is known in advance and
the satellites are uncapacitated with no setup costs. A fleet of trucks is routed from the
depot to the satellites, and then from these satellites smaller trucks are used to deliver the
commodities to the final customers. Several models and algorithms have been designed for
the 2E-CVRP with multiple-sourcing at the first echelon, both exact [14, 13] and heuristics
[9, 10]. Perboli et al. [14] designed a branch-and-cut algorithm based on a three-index
formulation of the problem. A third index is added to the vehicle-flow variables at the second
echelon to specify the satellite serving a node. The formulation is strengthened with the use
of subtour-elimination constraints and some flow-conservation constraints. Their algorithm
is able to solve to optimality instances containing up to 21 customers. Perboli and Tadei
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[13] strengthen the previous formulation with the use of new cuts, including capacity cuts,
which allow their algorithm to scale and solve instances with up to 50 customers. Crainic
et al. [9] developed multi-start heuristics for the solution of the 2E-CVRP. In the heuristics,
an intensification phase in which feasible solutions are improved by local search is followed
by a diversification phase to avoid local optima. Hemmelmayr et al. [10] developed an ALNS
heuristic for the 2E-CVRP and the CLRP which is shown to provide better solutions than
previous approaches. The algorithm is based on the destroy-and-repair principle in which
two sets of operators (destroy operators and repair operators) are alternated. Nguyen et al.
[12] introduced a GRASP complemented with path relinking method to solve the 2E-CVRP
with single-sourcing in both echelons. In their method, a GRASP is used to build a set
of solutions P. Then, for each pair of solutions S, T ∈ P, a path-relinking method tries
to build an alternative better solution by applying different operators on S when trying to
obtain T as a result of these operators. A learning process is used to guide the GRASP
by restricting the opening of satellites to those which seem more promising during the first
iterations. In Nguyen et al. [11] the same authors provide a multi-start iterated local search
with tabu list and path relinking. The new algorithm outperforms their previous approach
and they also report results on the instances by Boccia et al. [3]. In the ILS two search
space are considered: 2E-CVRP solutions and a giant tour covering the main depot and the
customers. A path-relinking procedure is presented that can used for intensification and/or
post-optimization.

The 2E-CLRP has been formally introduced by Boccia et al. [4]. The authors proposed a
two-index and a three-index vehicle-flow formulation as well as a set-partitioning formulation.
While the third model is not included in their experimental experience, the first two models
contain a polynomial number of variables and constraints and are solved using a general-
purpose optimization solver. These models are shown to be effective for dealing with very
small instances with up to 10 customers, 5 satellites and 3 platforms within reasonable
computing times. For larger instances, they report average gaps of above 25%. Due to the
highly combinatorial structure of the problem, a tabu search procedure has been developed
by Boccia et al. [3]. In their algorithm, the 2E-CLRP is decomposed in two CLRP’s. Each
CLRP is then also decomposed into a capacitated facility location-problem (CFLP) and a
multiple depot vehicle routing problem (MDVRP).

To our knowledge, only two articles address the 2E-CLRP with location decisions at both
levels [3, 4]. Moreover, no exact procedure has been previously introduced to effectively
deal with medium and large-size instances. In addition, only a few heuristics have been
introduced in the literature [3, 11]. In this paper, we aim to fill these gaps by introducing an
exact procedure to deal with medium and large-size instances and a new heuristic procedure
to find good solutions of the 2E-CLRP quickly.

The main contributions of this paper can be summarized as follows.

i. To introduce a new two-index vehicle-flow formulation of the 2E-CLRP, which is shown
to provide tight lower bounds, and to develop an efficient branch-and-cut algorithm
based on the formulation which allows the solution of small and medium size instances
containing up to 50 customers and 10 satellites and provides tight gaps for larger
instances.

ii. To introduce a new heuristic solution method which outperforms previously proposed
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heuristic methods from the literature.

The scopes of both approaches introduced in this paper are complementary. While the
exact algorithm can provide insightful information about the structure of the 2E-CLRP
and provide optimal solutions for small to medium size instances, it does not scale for
large instances in which even finding a feasible solution of reasonable quality can be pro-
hibitive. Alternatively, the ALNS proposed in this paper provides good quality solutions
quickly. Moreover, both methods validate each other using the lower bounds obtained with
the branch-and-cut method and the upper bounds obtained with the metaheuristic. The re-
mainder of the paper is organized as follows. Section 2 provides a mathematical formulation
of the 2E-CLRP. The branch-and-cut is described in section 3 and the ALNS in section 4.
Computational results are presented in section 5. Finally, section 6 concludes the paper.

2 Mathematical formulation

We now introduce a new two-index vehicle-flow formulation for the 2E-CLRP which is shown
to provide tighter gaps in much shorter computational times than existing formulations of
the 2E-CLRP [4]. In Boccia et al. [4] the authors introduced a three-index vehicle-flow
formulation with a cubic number of variables. However, that formulation presents lots of
symmetries and provides weak bounds which make it of little use within a branch-and-bound
framework. Also, a two-index formulation is introduced, which produces even weaker bounds
than the three-index one. The goal of introducing a new formulation is to be able to deal with
medium to large-size instances and to obtain tighter bounds within reasonable computing
times.

Let G1, G2 be the graphs at both echelons of the problem. For each platform p ∈ P,
we let wp be a binary variable equal to 1 iff platform p is selected for opening. For each
satellite s ∈ S we let zs be a binary variable equal to 1 iff satellite s is chosen for opening.
For each edge e ∈ E1 we let ue be a binary variable equal to 1 iff edge e is used exactly once,
and ve be a binary variable equal to 1 iff edge e is used twice (for single-customer routes).
Analogously, for each e ∈ E2 we let xe be a binary variable equal to 1 iff edge e is used once,
and ye be a binary variable equal to 1 iff edge e is used twice. Finally, for each satellite s ∈ S
we let gs ≥ 0 be a continuous variable equal to the volume of commodity shipped to/from
satellite s.

For every vertex set U and for each echelon k ∈ {1, 2}, δk(U) ⊆ Ek denotes the edge
subset at echelon k that contains one endpoint in U , (T :k U) denotes, for two disjoint subsets
T and U , the edge subset that contains edges in Ek with one endpoint in T and the other
in U . Ek(U) denotes the subset of edges in Ek with both endpoints in U . For a given edge
set F ⊆ E1 let x(F ) =

∑

e∈F xe, y(F ) =
∑

e∈F ye and similarly for F ⊆ E2 and u(F ), v(F ).
Also, for a given satellite subset S ′ ⊆ S we let g(S ′) =

∑

s∈S′ gs and z(S ′) =
∑

s∈S′ zs. For a

given customer set U ⊆ C, let d(U) =
∑

c∈U dc, r(U) = ⌈d(U)/Q2⌉, U = C \ U , and also for

a given satellite subset S ′ we let S ′ = S \S ′, ρ(U,S ′) = ⌈(d(U)− b(S ′))/Q2⌉. The quantities
r(U) and ρ(U,S ′) represent lower bounds on the number of second echelon vehicles needed
to serve the customer subset U , and on the number of second echelon vehicles needed to
serve U from facilities other than those in S ′. A valid formulation of the 2E-CLRP is the
following:
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min
∑

p∈P

H1
pwp +

∑

s∈S

H2
s zs +

∑

e∈E1

γeue + 2
∑

e∈δ1(P)

γeve +
∑

e∈E2

γexe + 2
∑

e∈δ2(S)

γeye (1)

u(δ1(s)) + 2v(P :1 {s}) = 2zs s ∈ S (2)

x(δ2(c)) + 2y(S :2 {c}) = 2 c ∈ C (3)

u(δ1(T )) + 2v(P :1 T ) ≥ 2

(

g(T )

Q1

)

T ⊆ S, |T | ≥ 2 (4)

x(δ2(U)) + 2y(S :2 U) ≥ 2r(U) U ⊆ C, |U | ≥ 2 (5)

ups + vps ≤ wp s ∈ S, p ∈ P (6)

xsc + ysc ≤ zs s ∈ S, c ∈ C (7)

u(P :1 {s}) + v(P :1 {s}) ≤ zs s ∈ S (8)

x(S :2 {c}) + y(S :2 {c}) ≤ 1 c ∈ C (9)

u((P \ {p}) ∪ T :1 T ) + 2v(P \ {p} :1 T ) ≥ 2

(

g(T )−K1
p

Q1

)

p ∈ P, T ⊆ S (10)

x((S \ {s}) ∪ U :2 U) + 2y(S \ {s} :2 U) ≥ 2

(

d(U)− gs
Q2

)

s ∈ S, U ⊆ C (11)

u(δ1(T )) ≥ 2(u({p} :1 P ′) + u({p′} :1 P \ P ′)) T ⊆ P, |T | ≥ 2

p, p′ ∈ T,P ′ ⊂ P (12)

x(δ2(U)) ≥ 2(x({c} :2 S ′) + x({c′} :2 S \ S ′)) U ⊆ C, |U | ≥ 2

c, c′ ∈ U,S ′ ⊂ S (13)

0 ≤ gs ≤ K2
szs s ∈ S (14)

g(S) = d(C) (15)

wp ∈ {0, 1} p ∈ P (16)

zs ∈ {0, 1} s ∈ S (17)

ue ∈ {0, 1} e ∈ E1 (18)

vps ∈ {0, 1} p ∈ P, s ∈ S (19)

xe ∈ {0, 1} e ∈ E2 (20)

ysc ∈ {0, 1} s ∈ S, c ∈ C (21)

Constraints (2)-(3) are the degree constraints for the satellite nodes and the client nodes
at the first and second echelons, respectively. Constraints (4)-(5) are the capacity constraints
at both echelons that ensure the connectivity for the tours and make sure that the vehicle
capacities are respected. Constraints (6)-(7) ensure that edges incident to a platform (for the
first level) or to a satellite (for the second level) may only be used when the corresponding
facility is opened. Constraints (8)-(9) are the so-called path elimination constraints for single
satellite or single customer routes, respectively. They forbid routes that start at one facility,
visit one customer or satellite and go back to a different facility. Constraints (10)-(11) are the
facility capacity inequalities for the first and second echelon, respectively. Constraints (12)-
(13) are the path elimination constraints that forbid routes that start at one facility and end
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at another facility. These constraints are complementary to constraints (8)-(9). Constraints
(14) ensure that the flow going through satellites does not exceed their capacities. Finally,
constraints (15) ensure that the total volume of commodity going through satellites coincide
with the total demand.

This formulation includes a quadratic number of variables (O(|E2|)) and an exponential
number of constraints. Therefore, a method using it must rely on branch-and-cut techniques.
Note also that the use of flow variables g at constraints (4), (10) and (11) link the use of the
satellites at the two echelons. In the following section we introduce a branch-and-cut method
using formulation (1)-(21). We introduce separation algorithms to dynamically add cuts as
well as new valid inequalities to strengthen the formulation, thus providing tighter lower
bounds. To better evaluate the strength of this formulation, we have also implemented the
three-index formulation introduced by Boccia et al. [4]. In such a formulation, a third index
is added to the vehicle-flow variables to take into account the vehicle performing a trip. This
formulation contains a cubic number of variables and constraints, however it also presents
many symmetries and provides weak bounds, as shown by our computational results.

3 Branch-and-cut method

We have developed a branch-and-cut algorithm based on the previously introduced for-
mulation, which we strengthen with the use of several families of valid inequalities. The
branch-and-cut algorithm is based on a relaxation of the original model in which integrality
is dropped as well as some constraints. The resulting linear problem provides a lower bound
on the optimal solution of the 2E-CLRP, however in rare cases this solution coincides with a
feasible solution of the original problem. Indeed, this case divides in two possible subcases.
Either some constraints of the problem (among the ones that were initially dropped) are
violated, and are dynamically added to it, or the solution is not integer, in which case a
branching method divides the problem in two complementary subproblems and the same
method is applied recursively to both subproblems until one of the following three occurs:
integrality is reached, so a new feasible solution is found; the subproblem is infeasible, and
it can be discarded; or the subproblem provides a lower bound greater than the incumbent
solution, so it can also be discarded for further exploration. Additionally, at each iteration
the constraints which were dropped at the beginning are dynamically added to the problem,
thus improving the resulting lower bound.

The algorithm introduced in this paper is inspired from the branch-and-cut methods
introduced by Belenguer et al. [2] and Contardo et al. [7] for the CLRP. Indeed, the key
observation is that, flow variables (gs)s∈S at the first echelon correspond to satellite demands,
while at the second echelon they correspond to the satellite capacities. Hence, each echelon
can be seen as a CLRP by giving variables (gs)s∈S the proper role. Therefore, we derive
valid inequalities from the CLRP and make use of the separation algorithms described in
the previously mentioned papers. In what follows, we describe the valid inequalities used in
this article, including some derived from the CLRP plus some newly introduced. We also
describe the separation algorithms, the node selection strategy, the branching strategy and
the separation strategy used through the search tree.
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3.1 Valid inequalities

In this section we introduce valid inequalities for the 2E-CLRP. They are subdivided into
those which are specific for the first echelon and those which are specific for the second eche-
lon. We introduce some new families of valid inequalities, and we also derive valid inequalities
from the two-index vehicle-flow formulation of the CLRP, which have been introduced by
Belenguer et al. [2] and Contardo et al. [7]. They include lifted cover inequalities (LCI),
co-circuit constraints (CoCC), flow-assignment inequalities (FAI), y-capacity cuts (y-CC),
strengthened facility capacity inequalities (SFCI), strengthened effective facility capacity in-
equalities (SEFCI), location-routing comb inequalities (LRCI), y-generalized large multistar
inequalities (y-GLM), strengthened comb inequalities (SCI) and framed capacity inequalities
(FrCI). For details on the inequalities as well as the separation algorithms used to identify
violated inequalities we refer to [2, 7].

3.1.1 Inequalities on the first echelon

Note that variables g on this echelon represent the actual satellite demands. Therefore, all
the inequalities valid for the CLRP are also valid for the first echelon of the 2E-CLRP when
taking these quantities as demands. However, many of them become non-linear, such as
those containing expressions combining the rounding operator ⌈·⌉ with the flow variables g,
or those containing products of the demands g with vehicle-flow variables u, v (like several
types of multistar inequalities) and thus cannot be introduced to the problem without losing
linearity. We have then restricted the inclusion of valid inequalities at the first echelon to
LCI, CoCC and FAI, plus the two following families of valid inequalities

u((P \ P ′) ∪ S ′ :1 S ′) + 2v(P \ P ′ :1 S ′) ≥ 2

(

g(S ′)−
∑

p∈P ′ K1
p

Q1

)

S ′ ⊆ S,P ′ ⊂ P (22)

ust ≤ min{zs, zt} s, t ∈ S (23)

We call the first lifted facility capacity inequalities (LFCI) and the second flow-location
inequalities (FLI).

3.1.2 Inequalities on the second echelon

On the second echelon, satellite capacities are given by the flow variables g. However, for
a given satellite s ∈ S it still holds that no more than K2

s units of flow can be delivered
from it. Therefore, all the inequalities valid for the two-index vehicle-flow formulation of the
CLRP are valid on the second echelon (the one restricted to the variables z, x and y). Note
that when replacing K2

s by gs in those inequalities, many of them become non-linear and
thus can not be added to the problem without losing the linearity of the problem. We then
make use of the following inequalities: y-CC, SFCI, SEFCI, LRCI, y-GLM, CoCC, LCI, SCI,
FAI and FrCI. Additionally, we also add the following family of location-routing generalized
large multistar inequalities (LRGLM). Let U ⊆ C be a customer subset, S ′ ⊆ S be a facility
subset and c ∈ C \U be a customer not in U . Let us define η(S ′, U, c) = 1

2
x(S ′ : {c})+ y(S ′ :
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{c}) + x(U : {c}). The following inequality is valid for the 2E-CLRP:

x((S \ S ′) ∪ U :2 U) + 2y(S \ S ′ :2 U) ≥
2

Q2

(

d(U)− g(S ′) +
∑

c/∈U

dcη(S
′, U, c)

)

. (24)

The validity of these inequalities can be derived from the validity proof of the LRGLM
introduced in Contardo et al. [7], by replacing the satellite capacities (K2

s )s∈S by the tighter
capacities (gs)s∈S . The dominance with respect to the original LRGLM comes from the
inclusion of constraints (14).

3.2 Separation algorithms

For the separation of the inequalities directly translated from the CLRP, we make use of
the separation algorithms introduced in Belenguer et al. [2] and Contardo et al. [7]. As a
remark, note that for a given satellite subset S ′ ⊆ S the degree constraints (2) in the first
echelon imply the following identities

u(δ1(S ′)) + 2v(P :1 S ′) + 2u(E1(S ′)) = 2z(S ′) (25)

which differ from the classical identity of other vehicle routing problems in that the right-hand
side of the expression above is replaced by 2|S ′|. As a consequence, separation algorithms
must be adapted to make use of the right expression when necessary.

For the separation of the LFCI (22) we also make use of the separations algorithms for
the SFCI, by setting the satellite demands to (gs)s∈S .

The FLI (23) are a polynomial number so they are just inspected for violation one by
one at each iteration.

Finally, for the LRGLM (24) we make use of the separation algorithms for the LRGLM
for the CLRP as described in Contardo et al. [7], by replacing the effective satellite capacities
(zsK

2
s )s∈S used in the original inequalities by the stronger ones (gs)s∈S .

3.3 Node selection strategy

As our objective is to obtain the tightest possible lower bound for the problem, we use a
best-bound strategy. After the exploration of the current node and the creation of the two
children subproblems, the next node to explore is the uninspected node with the smallest
lower bound (also known as best bound).

3.4 Branching strategy

The branching strategy we use is a hybrid mixing branching on variables and on cutsets. For
the branching on cutsets, we add additional slack variables to the problem and the y-capacity
cuts on the second echelon are added as identities. We then branch on these slack variables,
similarly as in Belenguer et al. [2], Contardo et al. [7]. The branching is performed in the
following order:

i. location variables w.
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ii. location variables z.

iii. cutsets on the second echelon.

iv. vehicle-flow variables u, v.

v. vehicle-flow variables x, y.

3.5 Separation strategy

In our algorithm, we distinguish between first and second echelon inequalities. Indeed, after
some preliminary computational experiments we decided to separate inequalities on the
second echelon in the first place. If we are unable to identify any violated inequality, then
we run the separation algorithms on the first echelon.

For the separation, we have implemented a dynamic separation strategy as explained in
Contardo et al. [7]. We differentiate between the cuts that are needed to impose feasibility
of integer solutions and those which can be seen as cuts to strengthen the problem. For each
of the latter, we consider a counter representing the number of times that the corresponding
family of cuts has been successfully separated and added to the problem. We keep track of
this counter during the branching tree. At certain depths (as suggested by Contardo et al.
[7] for the CLRP, we first check at depth 10, and then at multiples of 5), we deactivate from
a branch (and thus from all of its children) the cuts for which the counter is zero, and for
the remaining we reset the counter to zero. Using this strategy, we rapidly deactivate cuts
that do not seem promising during certain branches of the tree, but we keep them where
they seem to be useful. As a matter of fact, we have realized that cuts are rarely added after
depth 25 in the branching tree.

4 Adaptive large neighborhood search

ALNS was proposed by Ropke and Pisinger [20] for the pickup and delivery problem. It
extends the large neighborhood search algorithm of Shaw [22] and is also inspired by the
ruin-and-recreate principle [21]. A general ALNS for several classes of routing problems was
developed in Pisinger and Ropke [16], where the authors show that ALNS can outperform
existing solution methods.

In ALNS there are two types of neighborhoods. Destroy neighborhoods that remove a
certain number of customers from a solution and repair neighborhoods that reinsert these
customers in the partial solution. ALNS works with an adaptive weight adjustment, where
each operator is chosen based on its past success.

Our method is based on a previously proposed solution method for the 2E-CVRP and
the CLRP [10]. In our method, destroy and repair operators are applied to customer and
satellite nodes only, in the second echelon. The evaluation of such operators is subject to
the partial re-optimization on the first echelon, which includes opening or closing platforms
and re-assigning vehicle routes.

The main differences to the previously proposed ALNS [10] are the new acceptance
strategy after the satellite configuration is changed, and the re-optimization on the first
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level, both of which are explained below in more detail. Finally, minor modifications were
undertaken in the parameters and operators. These modifications were necessary to better
exploit the structure of the problem, considering the interaction between the two levels.

We introduce a two-stage algorithm that deals with two types of destroy operators.
There are larger operators, DL, that change the current configuration of opened satellites and
smaller operators, DS, that remove only a certain number of customers, but do not explicitly
open or close satellites. The operators from set DL are called every ω iterations without
improvements. For these operators, the algorithm starts from the best found solution. Only
if the incumbent solution is within η % of the best found solution, it can serve as the
new incumbent with a probability of Θ. Moreover, a solution yielded by these operators is
accepted, even if they are not improving. The goal of this procedure is that the algorithm
can explore different configurations of satellites with the smaller operators of set DS. After a
certain number of non-improving iterations, the configuration is changed and the algorithm
starts from either the incumbent or the best found solution.

The customers that were removed by the destroy operators are then inserted by means of
an insertion operator to minimize the objective value. After the destroy and repair operators
have been executed, the first level is improved by recursively calling again the ALNS to solve
the first-level CLRP. For the instances containing only one platform (like those used in
Nguyen et al. [12]), a simplified procedure based on single customer moves and swaps is
executed. In these instances, the first level is not a CLRP and hence it is not necessary to
call the ALNS to solve a CLRP at every iteration.

The destroy and repair operators are selected by a roulette wheel selection mechanism.
Every operator j has a score πj . This score is updated by adding σ, every time that operator
j finds a new global best solution. The probability of being selected in the roulette wheel is
based on πj/

∑p
k=1 πk, where p is the number of operators considered. Algorithm 1 shows a

pseudocode for our ALNS procedure.

4.1 Search space

During the search, we allow the exploration of infeasible solutions. More precisely, violations
of the constraints on vehicle capacity, satellite and platform capacity are penalized by a
weighted penalty function. The objective function is f(s) = c(s) + αd(s) + βe(s), where
c(s) corresponds to the routing cost and the opening cost of satellites and platforms, d(s)
represents violations of the vehicle capacity, and e(s) represents violations of the satellite
and platform capacity. The parameters α and β are the corresponding weights. The weights
are adjusted dynamically during the search. If a violation occurs, the corresponding weight
is multiplied by a factor δ > 1, if the solution is feasible, it is divided by δ. The weights are
restricted to an interval [ι; κ] that guarantees that the search starts with a reasonable high
weight and also prevents the weight from going to infinity.

4.2 Initial solution

For the initial solution, we open the configuration of satellites that yields the lowest cost
and can serve the total customer demand. Then, customers are randomly assigned to a
satellite with a bias towards the shortest distance and vehicle routes are constructed by
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Algorithm 1 Basic steps of the ALNS algorithm

procedure ALNS-2ECLRP

s, s′, s∗ ← InitialSolution, InitializeScores(π)
repeat

if s′ was ω iterations without improvement then
N− ← ChooseDestroyOperator(DL,π)
if f(s′) < (1 + η)f(s∗) then

only update s′ ← s∗ with probability Θ
else

s′ ← s∗

end if

else

N− ← ChooseDestroyOperator(DS,π)
end if

N+ ← ChooseRepairOperator(R,π)
s′ ← DestroyAndRepair(s,N−, N+)
solve the first-level LRP by ALNS-2ECLRP

if s′ was ω iterations without improvement then
s′ ← LocalSearch(s′)
s← s′

else if f(s′) < (1 + θ)f(s∗) then
s′ ← LocalSearch(s′)

end if

if f(s′) < f(s) then
s← s′

end if

if f(s) < f(s∗) then
s∗ ← s

end if

Update scores (π)
until the stopping condition is met
return s∗

end procedure
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means of the Clarke and Wright [5] Savings Algorithm. To construct a first level solution, a
random platform is opened and satellites are assigned to it, no matter if platform capacity
is violated. The vehicle routes at that platform are build with the Clarke and Wright [5]
Savings Algorithm.

4.3 Destroy and repair operators

We use eight destroy operators and four repair operators in our algorithm. Three of the
destroy operators explicitly open or close a satellite. These are Satellite Removal, Satellite
Opening, and Satellite Swap. They are the “larger” neighborhoods of set DL. Satellite

Removal chooses one random satellite. This satellite is closed by removing all the customer
routes originating from it. Furthermore, the satellite is removed from the first level routes.
In the Satellite Opening operator, a random satellite is opened. The q customers that have
the minimum distance to this satellite are removed from their current routes. Satellite

Swap closes one satellite and opens another one. The satellite that will be closed is chosen
randomly and the satellite that will be opened is chosen randomly with a probability that
is inversely proportional to the distance to the closed satellite.

The following destroy operators from the set DS only remove a limited number of cus-
tomers, but do not explicitly change the satellite configuration. However, they can close
satellites if all the customers of a satellite are removed and no customer is inserted at this
satellite anymore. It can also happen that a satellite is opened by the diversification mech-
anism in Route Removal. The operator Random Removal is a very simple operator that
removes q random customers. Worst Removal selects the q “worst” customers. These are
the customers that are in the most expensive insertion positions, i.e., the positions where
the difference between the cost with the customer in the solution compared to the cost with-
out the customer in the solutions is large. We normalize this gain by dividing it by the
average cost of the ingoing arcs. Moreover, a perturbation factor d is added, d ∈ [0.8, 1.2].
In the Related Removal operator, a random seed customer and the q − 1 related customers
are removed. We define “related” by the distance to the seed customer. In Route Removal

one route is removed. All customers that were contained in the removed route are put in
the customer pool. In order to avoid cycling, it is forbidden to open a new route at the
corresponding satellite. Another route is opened at a random satellite. This a mechanism
that prevents the rare cases where all satellites are closed, because all customers are served
by a single route originating from the only open satellite. Moreover, it is important for
diversification. Route Redistribution is the largest destroy operator that removes between 1
and 3 random routes. The routes are selected based on their distance between their current
satellite and any other open satellite. This selection mechanism reflects the idea that cus-
tomers close to several satellites may benefit more from a reassignment than those that are
only close to one satellite. Moreover, a perturbation factor d is added, d ∈ [0.8, 1.2].

Finally, we use four insertion operators. Their goal is to select a satellite among the set
of open satellites, to select a route and to select an insertion position for every customer that
has to be inserted. The opening of a new route is considered too, unless this is forbidden
because the Route Removal operator was applied to the considered satellite in the same
iteration. In Greedy Insertion the customers are inserted in a a random order into the
position that minimizes the total insertion cost over all satellites and routes. There are two
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versions of Greedy Insertion: Greedy Insertion Perturbation uses an additional perturbation
factor d, d ∈ [0.8, 1.2], that provides diversification. In the Greedy Insertion Forbidden

operator, the satellite from which the customer has just been removed, cannot be selected
for insertion in the same iteration. Greedy Insertion Perturbation and Greedy Insertion

Forbidden guarantee that the insertion position is not determined too greedily based on
second-level insertion cost. Regret Insertion uses a more sophisticated insertion scheme.
Customers for which the difference between the best and the k-th best insertion position
is large, are favored for insertion. From the set of untreated customers U , a customer i is
chosen for insertion according to i := argmaxi∈U(

∑k
h=2∆fh

i − ∆f 1
i ). When a customer is

inserted, the insertion positions for the remaining customers have to be recomputed.

4.4 Local search

The goal of local search is to improve the CLRP solution on the second level. It is performed
after the Satellite Removal, Satellite Swap or Satellite Opening operators and for promising
solutions. Promising solutions are solutions for which the objective value is within η % of
the best found solution. The following operators are used within the local search framework:
split, move, swap, 2-opt and 2-opt*. They are performed sequentially, in a first improvement
manner. For more details on each of these operators, we refer to [10].

5 Computational results

Our methods were coded in C++, compiled with the Intel C++ compiler v11.0 and run on
an Intel Xeon E5462, 3.0 Ghz processor with 16GB of memory. For the solution of linear
and integer problems, we use CPLEX 12.2.

5.1 Test instances

We have tested our methods on several sets of standard instances from the literature. Nguyen
et al. [12] introduced two sets of instances that contain only one platform at the first level,
i.e.,|P| = 1. The first set is an extension of the set “Prodhon” from the CLRP and contains
30 instances with 20 to 200 customers and 5 to 10 depots. The second set contains 24 newly
generated instances and is referred to as set “Nguyen”. The number of customers in these
instances ranges from 25 to 200 and the number of satellites from 5 to 10. The last three sets
of instances are instances used by Nguyen et al. [11], generated by Sterle [23] according to the
specifications explained in the paper of Boccia et al. [3] and contain a total of 93 instances.
Note that these sets do not correspond to the instances sets used in Boccia et al. [3] or Boccia
et al. [4] which were not available from the authors but have been regenerated. The three
sets of instances, I1, I2 and I3, differ in the location of the satellites and the platforms. The
number of customers in the instances ranges from 8 to 200, the number of satellites from 3
to 20 and the number of platforms from 2 to 5. In total, our experiments are run on 147
instances.
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5.2 Parameter settings

For the branch-and-cut method, the parameters associated to the separation of each family
of inequalities are set as in Contardo et al. [7] for both echelons.

For the ALNS, the parameters were set according to experimental tests. The parameters
for solution acceptance are set to the following values. The threshold η, which defines that
incumbent solutions that have an objective function value within η % of the best solution
found, can be accepted, is set to 1%. The probability of acceptance, Θ, is set to 0.5. For
the CLRP, values for ω in the range [100; 2000] yielded the best performance. To solve
the 2E-CLRP, ω was set to 1000. The number of customers to remove is a random integer
between ρ and τ . We set ρ to 1 and τ to ⌈0.6|J |⌉. For the weighted penalty function, δ was
set to 1.1, ι to 5 and κ to 10,000. The parameter that is added to the score πj every time
a new best solution is found, σ, is set to 1. As a stopping condition, we choose the number
of iterations. We decided that 500,000 iterations are a good trade-off between runtime and
solution quality. A regret-3 heuristic is used in Regret Insertion and θ, which is the threshold
that identifies promising solutions that are selected for local search, is set to 0.2.

5.3 Numerical Results

Due to the randomness incorporated in the ALNS, we have performed ten runs of our method
on each instance. In Table 1 we compare the ALNS against the methods GRASP+PR [12]
and MS-ILS+PR [11]. In these papers, the authors do not report the average solution quality
of their algorithms, but only the best solutions found after five runs for each instance. To
make a fair comparison to these methods we restrict to our best results. For the sets I1, I2
and I3, Nguyen et al. [11] only report results for the instances with 50 and more customers,
which we also include in our comparison. In this table, headers gapavg and gapmin correspond
to the average and the minimum gaps, respectively, for each algorithm, when available. The
gap between a solution of value z and a best known solution of value z∗ is computed as
(z − z∗)/z∗ × 100. Header tavg stands for the average CPU time spent, in seconds, by each
method (times are not scaled and comparisons based on time should be done with care). As
we can see in the results obtained, our method is robust and clearly outperforms the previous
heuristics of Nguyen et al. [12] and Nguyen et al. [11]. Indeed, our ALNS provides solutions
which are 0.56%, 0.67%, 2.85%, 2.07% and 1.64% better than the best upper bounds on
sets Prodhon, Nguyen, I1, I2 and I3, respectively (1.68% on average among all the instances
included in the comparison). In terms of CPU time, our method is comparable to that of
Nguyen et al. [11].

In Table 2 we report the aggregated results obtained by our branch-and-cut algorithm and
compare against our implementation of the three-index vehicle-flow formulation of Boccia
et al. [4] which has been run on the same machine as our methods. For the computations,
we use as cutoff values the best upper bounds obtained by the ALNS (as reported by Tables
8-10 in the appendix). In this table, header #opt stands for the number of instances that
were solved to optimality. Headers gaplr and tlr correspond to the gap (in %) and the CPU
time (in seconds) spent at the solution of the linear relaxation of the problem. Analogously,
columns gap and t stand for the gap and CPU time spent after a maximum of two hours
of computation. Given a lower bound zlb and an upper bound zub the gap is computed

Lower and Upper Bounds for the Two-Echelon Capacitated Location Routing Problem

CIRRELT-2011-63 13



Set
GRASP+PR MS-ILS+PR ALNS
gapmin tavg gapmin tavg gapavg gapmin tavg

Prodhon 0.36 14.2 0.10 178.3 -0.05 -0.56 465.82
Nguyen 0.80 13.1 0.00 112.20 -0.34 -0.67 191.97

I†1 – – 0.00 917.10 -2.33 -2.85 839.60

I†2 – – 0.00 928.00 -1.49 -2.07 913.70

I†3 – – 0.00 935.10 -1.17 -1.64 909.85
† Restricted to instances containing 50 or more customers.

Table 1: Aggregated results of the ALNS

Set
B&C 3-index model†

#opt gaplr tlr gap t #opt gap t
Prodhon 8/30 7.26 981.01 3.58 5671.41 0/30 21.83 7200
Nguyen 11/24 8.94 516.68 3.05 4170.71 0/24 23.45 7200
I1 17/31 11.33 584.37 2.96 3378.64 6/31 19.24 5905.62
I2 19/31 8.41 177.17 2.48 3002.14 6/31 17.55 5629.40
I3 20/31 9.29 84.06 1.85 2664.55 6/31 17.05 5639.27
† Instances with 150 or more customers could not be loaded into memory

Table 2: Aggregated results of the B&C algorithm

as (zub − zlb)/zub × 100. As shown in Table 2 our algorithm can solve more and larger
instances than the previous three-index formulation of Boccia et al. [4]. For the instances that
remain unsolved, our branch-and-cut method provides much tighter gaps in lower computing
times. Also, it is possible to establish a comparison between our ALNS and the branch-and-
cut. Indeed, if we consider the upper bounds provided by the ALNS and the lower bounds
obtained with the branch-and-cut method, they are at an average distance of 2.77%, which
leaves little space for further improvements and also validates both algorithms introduced in
this paper.

6 Conclusion

In this paper we have presented lower and upper bounds for the 2E-CLRP. We have in-
troduced a compact two-index vehicle-flow formulation, proposed several families of valid
inequalities and embedded it into a branch-and-cut solver. To the best of our knowledge,
this is the first time that an exact method has been proposed for this problem class. The
method is able to solve to optimality small and medium size instances containing up to 50
customers, and still provides tight lower bounds for the instances that cannot be solved.
We have also introduced an adaptive large neighborhood search (ALNS) method capable of
providing good lower bounds in short computing times. The ALNS outperforms previous
heuristics for the 2E-CVRP with single-sourcing constraints in terms of upper bound quality
and also provides good quality upper bounds for the instances of 2E-CLRP. Moreover, our
ALNS was able to improve the best known solutions on 134 instances out of 147. When
comparing our methods, we observe that the lower bounds obtained by the branch-and-
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cut method lie no further than 2.77% on average below the best solutions found by the
ALNS, which validates the robustness of both approaches. As an avenue of future research,
we believe that exploring other heuristic approaches like matheuristics combining integer-
programming methods with pure metaheuristics could lead to better upper bounds. On the
other hand, we believe that embedding the inequalities used in this paper into a branch-and-
cut-and-price solver could result in a more robust exact method being able to scale better on
large instances. Also, the methodologies used in this paper can still be used to solve some
related problems combining location with routing decisions.
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Appendix

In this appendix we provide detailed results for both algorithms introduced in this paper
and provide a brief discussion on our results.

In Tables 3-7, we report detailed results obtained by our ALNS. In these tables, header
z∗BKS stands for the best known solution found by the methods of Nguyen et al. [12] and
Nguyen et al. [11]. Header z∗avg stands for the average solution value found by our method.
Header gapavg stands for gap between our average values and the best known solution. It
is computed as (z∗avg − z∗BKS)/z

∗
BKS × 100. Header z∗min stands for the best solution found

in the 10 runs. Header gapmin stands for the gap between the best known solution and our
best solution, which is computed as (z∗min − z∗BKS)/z

∗
BKS × 100.

In Tables 8-10 we report the best solutions found by our ALNS, including the parameter
calibration phase, and compare against the previous upper bounds when possible. As shown
in these tables, our ALNS was able to improve the upper bound in a total of 41 instances
out of 54 for sets Prodhon and Nguyen, and in all instances for sets I1, I2 and I3. Solutions
for which optimality was proven by the branch-and-cut method are marked with an asterisk.
Moreover, according to our results, our ALNS was always able to improve the previous upper
bounds or at least find the same value. In these tables, the legend z∗BKS stands for the best
known solutions, z∗ALNS stands for the best solutions found by our ALNS and gap stands for
the gap between both solutions, computed as (z∗ALNS − z∗NPP )/z

∗
NPP × 100.

In Tables 11-15 we report detailed results of our branch-and-cut method. In these tables,
columns labeled zUB stands for the upper bound value. Columns labeled zlr stand for the
lower bound at the linear relaxation. Columns labeled gaplr stand for the gap at the linear
relaxation, computed as (zUB− zlr)/zUB × 100. Columns labeled tlr represent the CPU time
(in seconds) spent for solving the linear relaxation. Analogously, columns labeled z, gap and
t represent the final lower bound, the final gap and the total CPU time (in seconds) after
a maximum time of two hours. Finally, columns labeled #nodes stand for the number of
nodes inspected by the branch-and-cut algorithm. In bold characters we highlight instances
on which we were able to prove optimality. Our branch-and-cut method is able to solve to
optimality small and medium size instances with up to 50 customers and 10 satellites. In
total, we proved optimality for 75 out of the 147 instances considered in our study.
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Instance z∗BKS z∗avg gapavg z∗min gapmin tavg t∗min

20-5-1 89075 89075.0 0.00 89075 0.00 26.3 2.8
20-5-1b 61863 61863.0 0.00 61863 0.00 26.1 0.2
20-5-2 85290 84478.0 -0.95 84478 -0.95 28.9 2.8
20-5-2b 60838 60838.0 0.00 60838 0.00 29.1 0
50-5-1 134855 131036.6 -2.83 130843 -2.98 96.9 8.2
50-5-1b 101530 101530.0 0.00 101530 0.00 94.2 8.7
50-5-2 132159 131878.3 -0.21 131825 -0.25 130.6 37.2
50-5-2b 110547 110332.0 -0.19 110332 -0.19 160.7 21.1
50-5-2BIS 122654 122626.5 -0.02 122599 -0.04 121.2 43.2
50-5-2bBIS 105776 105719.9 -0.05 105696 -0.08 131.6 57.4
50-5-3 128379 128379.0 0.00 128379 0.00 88.4 17.8
50-5-3b 104006 104006.0 0.00 104006 0.00 114.9 14.2
100-5-1 320130 320511.2 0.12 319137 -0.31 646.9 445
100-5-1b 258205 258540.8 0.13 257349 -0.33 1179.9 607.9
100-5-2 234179 231305.0 -1.23 231305 -1.23 316 43.7
100-5-2b 195426 194771.0 -0.34 194729 -0.36 1641 602.4
100-5-3 245944 244418.0 -0.62 244194 -0.71 375.5 167.9
100-5-3b 195254 194239.4 -0.52 194110 -0.59 377 210.9
100-10-1 358939 365036.1 1.70 358068 -0.24 158.9 65.6
100-10-1b 302584 303089.8 0.17 297167 -1.79 155.2 118.7
100-10-2 306303 307762.9 0.48 305402 -0.29 270 163
100-10-2b 264389 266642.1 0.85 265138 0.28 348.2 225.9
100-10-3 313249 318499.8 1.68 313517 0.09 215.7 106
100-10-3b 266383 270326.5 1.48 264096 -0.86 256.9 181.6
200-10-1 554598 559774.8 0.93 552816 -0.32 1039.2 648.7
200-10-1b 452286 459033.1 1.49 448236 -0.90 1811.9 927.6
200-10-2 502173 498659.4 -0.70 498199 -0.79 576.4 339.3
200-10-2b 425311 423517.6 -0.42 423048 -0.53 1723.8 1161.5
200-10-3 533732 535823.8 0.39 534569 0.16 741.3 285.2
200-10-3b 418800 407070.2 -2.80 404284 -3.47 1091.9 439.1
Average -0.05 -0.56 465.82 231.79

Table 3: Results of the ALNS on the instances of set Prodhon
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Instance z∗BKS z∗avg gapavg z∗min gapmin tavg t∗min

25-5N 80370 80370 0.00 80370 0.00 38 0.1
25-5Nb 64562 64562 0.00 64562 0.00 36.4 0
25-5MN 78947 78947 0.00 78947 0.00 50.6 0.5
25-5MNb 64438 64438 0.00 64438 0.00 30.6 0
50-5N 138126 138093.2 -0.02 137815 -0.23 74.2 33.9
50-5Nb 111062 110094 -0.87 110094 -0.87 113.8 32.3
50-5MN 123484 123484 0.00 123484 0.00 105.2 13.1
50-5MNb 105401 105401 0.00 105401 0.00 77.5 23.1
50-10N 116132 115843 -0.25 115725 -0.35 90.3 21.3
50-10Nb 87315 87315 0.00 87315 0.00 102 20.7
50-10MN 135748 135556.6 -0.14 135519 -0.17 76.3 39
50-10MNb 110613 110636.1 0.02 110613 0.00 49.2 19.1
100-5N 196910 194012.3 -1.47 193228 -1.87 224.5 154.3
100-5Nb 159086 159029.9 -0.04 158927 -0.10 234.9 133
100-5MN 207119 204819.6 -1.11 204682 -1.18 271.2 135.7
100-5MNb 166115 165863.1 -0.15 165744 -0.22 220.9 112.9
100-10N 215792 216285.5 0.23 212847 -1.36 150.8 70.8
100-10Nb 156401 156261.6 -0.09 155489 -0.58 177.2 70.3
100-10MN 205964 202491.9 -1.69 201275 -2.28 155.4 104.7
100-10MNb 170706 170985.4 0.16 170625 -0.05 178.7 114.2
200-10N 353685 351770 -0.54 347395 -1.78 420.5 237.2
200-10Nb 262072 258397 -1.40 256171 -2.25 492.4 340.8
200-10MN 332345 329913.7 -0.73 326454 -1.77 547.3 354.7
200-10MNb 292523 292357.6 -0.06 289742 -0.95 689.5 481.7
Average -0.34 -0.67 191.97 104.72

Table 4: Results of the ALNS on the instances of set Nguyen

Lower and Upper Bounds for the Two-Echelon Capacitated Location Routing Problem
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Instance z∗BKS z∗avg gapavg z∗min gapmin tavg t∗min

2-3-8 575.70 575.70 15.3 0.2
2-4-8 549.34 549.34 18.0 0.2
2-3-9 878.69 878.69 36.4 0.0
2-4-10 806.72 806.72 30.1 0.0
3-5-10 696.94 696.94 22.8 0.0
3-8-10 596.56 596.56 40.4 4.2
2-10-15 732.48 732.48 48.6 2.4
3-10-15 686.71 686.71 49.0 1.7
2-4-15 1064.52 1064.52 47.5 0.3
3-5-15 933.75 933.75 49.1 0.2
3-8-15 730.36 730.36 55.7 0.9
2-10-20 937.40 937.40 62.1 10.3
3-10-20 761.29 761.29 65.5 0.9
4-10-20 1149.72 1149.72 66.6 5.9
2-8-20 1029.59 1029.59 67.0 6.3
3-8-20 848.31 848.31 64.8 1.7
2-10-25 1030.40 1030.40 74.9 6.7
3-10-25 1062.30 1062.30 75.1 2.8
4-10-25 1607.94 1607.94 76.3 12.3
2-8-25 950.87 950.87 71.8 2.7
3-8-25 870.69 870.69 76.4 0.1
5-10-50 1207.31 1133.74 -6.09 1132.63 -6.19 341.8 178.8
5-8-50 1171.69 1163.45 -0.70 1162.44 -0.79 321.5 119.6
5-10-75 1561.5 1540.91 -1.32 1540.23 -1.36 507.2 219.9
5-15-75 1700.32 1700.38 0.00 1686.21 -0.83 527.3 247.6
5-10-100 2192.14 2136.82 -2.52 2124.09 -3.10 659.9 499.5
5-20-100 1989.48 1983.05 -0.32 1973.08 -0.82 705.2 605.2
5-10-150 1953.55 1893.92 -3.05 1883.44 -3.59 1187.8 718.9
5-20-150 1905.81 1889.07 -0.88 1869.53 -1.90 1203.1 901.5
5-10-200 2601.33 2461.77 -5.36 2443.80 -6.06 1431.0 1135.6
5-20-200 2307.53 2238.06 -3.01 2219.54 -3.81 1511.5 1073.8
Restricted average -2.33 -2.85 839.6 570.0
Total average 306.76 185.81

Table 5: Results of the ALNS on the instances of set I1

Lower and Upper Bounds for the Two-Echelon Capacitated Location Routing Problem
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Instance z∗BKS z∗avg gapavg z∗min gapmin tavg t∗min

2-3-8 575.7 575.7 15.9 0.0
2-4-8 604.13 604.13 24.5 0.0
2-3-9 386.15 386.15 17.5 0.0
2-4-10 629.38 629.38 18.4 0.0
3-5-10 551.45 551.45 27.3 0.0
3-8-10 504.2 504.2 39.6 0.0
2-10-15 709.1 709.1 53.7 1.0
3-10-15 777.49 777.49 56.5 0.5
2-4-15 827.81 827.81 45.3 0.4
3-5-15 1075.22 1075.22 56.1 0.0
3-8-15 652.58 652.58 49.5 1.9
2-10-20 766.24 766.24 62.3 2.3
3-10-20 744.27 744.27 62.0 3.0
4-10-20 793 793 68.5 0.6
2-8-20 772.29 772.29 65.5 14.2
3-8-20 758.06 758.06 65.6 1.4
2-10-25 961.59 961.59 81.5 3.7
3-10-25 987.57 987.57 79.6 0.8
4-10-25 1125.56 1125.56 79.0 4.0
2-8-25 912.02 912.02 77.9 9.3
3-8-25 979.62 979.62 77.9 0.0
5-10-50 1265.73 1256.44 -0.73 1256.44 -0.73 410.8 96.5
5-8-50 1123.42 1121.13 -0.20 1121.13 -0.20 386.6 51.5
5-10-75 1718.25 1691.15 -1.58 1691.15 -1.58 638.7 208.6
5-15-75 1751.14 1748.62 -1.58 1742.25 -1.58 670.1 446.6
5-10-100 2290.64 2242.28 -2.11 2231.21 -2.59 870.9 535.5
5-20-100 2039.25 2018.74 -1.01 1996.34 -2.10 872.0 592.8
5-10-150 1768.79 1734.64 -1.93 1728.05 -2.30 1004.6 683.8
5-20-150 1664.2 1654.83 -0.56 1630.29 -2.04 1070.3 832.3
5-10-200 2292.47 2158.24 -5.86 2147.51 -6.32 1477.2 1002.8
5-20-200 2097.74 2081.58 -0.77 2049.01 -2.32 1736.0 1369.6
Restricted average -1.49 -2.07 913.7 582.0
Total average 331.01 189.13

Table 6: Results of the ALNS on the instances of set I2

Lower and Upper Bounds for the Two-Echelon Capacitated Location Routing Problem
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Instance z∗BKS z∗avg gapavg z∗min gapmin tavg t∗min

2-3-8 578.33 578.33 15.3 0.1
2-4-8 450.71 450.71 17.2 0.0
2-3-9 454.63 454.63 15.6 0.0
2-4-10 540.61 540.61 20.3 0.0
3-5-10 745.48 745.48 30.5 0.1
3-8-10 412.91 412.91 20.4 0.0
2-10-15 605.11 605.11 48.6 0.0
3-10-15 546.61 546.61 53.0 2.8
2-4-15 688.87 688.87 45.1 0.3
3-5-15 1005.02 1001.28 50.5 2.7
3-8-15 578.23 578.23 50.8 2.3
2-10-20 744.82 744.82 62.7 2.8
3-10-20 728.17 728.17 65.0 8.2
4-10-20 1190.95 1190.95 63.1 5.6
2-8-20 846.07 846.07 68.0 7.0
3-8-20 643.89 643.89 63.9 6.5
2-10-25 834.34 834.23 75.0 24.3
3-10-25 820.12 820.12 75.3 2.9
4-10-25 1057.63 1057.63 74.3 7.9
2-8-25 951.59 951.56 74.0 40.1
3-8-25 774.36 774.36 73.7 5.4
5-10-50 1208.43 1207.31 -0.09 1207.31 -0.09 341.2 36.9
5-8-50 1171.35 1164.64 -0.57 1162.44 -0.76 353.2 107.6
5-10-75 1732.33 1723.41 -0.51 1721.47 -0.63 691.0 406.3
5-15-75 1491.31 1483.42 -0.53 1483.14 -0.55 634.7 392.6
5-10-100 2238.7 2183.31 -2.47 2178.35 -2.70 922.4 584.5
5-20-100 2053.12 2048.35 -0.23 2035.37 -0.86 755.1 585.1
5-10-150 1307.19 1282.13 -1.92 1274.44 -2.51 1040.0 710.1
5-20-150 1266.83 1254.38 -0.98 1235.86 -2.44 1062.9 829.4
5-10-200 1822.5 1776.47 -2.53 1766.46 -3.07 1690.0 1079.6
5-20-200 2604.56 2557.05 -1.82 2531.21 -2.82 1608.0 1157.7
Restricted average -1.17 -1.64 909.85 588.98
Total average 327.77 193.83

Table 7: Results of the ALNS on the instances of set I3

Lower and Upper Bounds for the Two-Echelon Capacitated Location Routing Problem

22 CIRRELT-2011-63



Instance zBKS zALNS gap
20-5-1 89075 89075 0.00
20-5-1b 61863 61863 0.00
20-5-2 85290 84478 -0.95
20-5-2b 60838 60838 0.00
50-5-1 134855 130843 -2.98
50-5-1b 101530 101530 0.00
50-5-2 132159 131825 -0.25
50-5-2b 110547 110332 -0.19
50-5-2BIS 122654 122599 -0.04
50-5-2bBIS 105776 105696 -0.08
50-5-3 128379 128379 0.00
50-5-3b 104006 104006 0.00
100-5-1 320130 318761 -0.43
100-5-1b 258205 256878 -0.51
100-5-2 234179 231305 -1.23
100-5-2b 195426 194729 -0.36
100-5-3 245944 244194 -0.71
100-5-3b 195254 194110 -0.59
100-10-1 358939 353133 -1.62
100-10-1b 302584 297167 -1.79
100-10-2 306303 305154 -0.38
100-10-2b 264389 263876 -0.19
100-10-3 313249 310200 -0.97
100-10-3b 266383 261796 -1.72
200-10-1 554598 549718 -0.88
200-10-1b 452286 445802 -1.43
200-10-2 502173 498199 -0.79
200-10-2b 425311 423031 -0.54
200-10-3 533732 531548 -0.41
200-10-3b 418800 402130 -3.98
Average -0.77

Table 8: Best known results for the set Prodhon

Lower and Upper Bounds for the Two-Echelon Capacitated Location Routing Problem
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Instance zBKS zALNS gap
25-5N 80370 80370 0.00
25-5Nb 64562 64562 0.00
25-5MN 78947 78947 0.00
25-5MNb 64438 64438 0.00
50-5N 138126 137815 -0.23
50-5Nb 111062 110094 -0.87
50-5MN 123484 123484 0.00
50-5MNb 105401 105401 0.00
50-10N 116132 115725 -0.35
50-10Nb 87315 87315 0.00
50-10MN 135748 135519 -0.17
50-10MNb 110613 110613 0.00
100-5N 196910 193228 -1.87
100-5Nb 159086 158927 -0.10
100-5MN 207119 204682 -1.18
100-5MNb 166115 165744 -0.22
100-10N 215792 210449 -2.48
100-10Nb 156401 155489 -0.58
100-10MN 205964 201275 -2.28
100-10MNb 170706 170625 -0.05
200-10N 353685 347395 -1.78
200-10Nb 262072 256171 -2.25
200-10MN 332345 324006 -2.51
200-10MNb 292523 287076 -1.86
Average -0.78

Table 9: Best known results for the set Nguyen

Lower and Upper Bounds for the Two-Echelon Capacitated Location Routing Problem
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Instance
I1 I2 I3

zBKS zALNS zBKS zALNS zBKS zALNS

8x3x2 575.70 575.70 578.33

8x4x2 549.34 604.13 450.71

9x3x2 878.69 386.15 454.63

10x4x2 806.72 629.38 540.61

10x5x3 696.94 551.45 745.48

10x8x3 596.56 504.20 412.91

15x10x2 732.48 709.10 605.11

15x10x3 686.71 777.49 546.61

15x4x2 1064.52 827.81 688.87

15x5x3 933.75 1075.22 1001.28

15x8x3 730.36 652.58 578.23

20x10x2 937.40 766.24 744.82

20x10x3 761.28 744.26 728.17

20x10x4 1149.72 793.00 1190.95

20x8x2 1029.59 772.29 846.07

20x8x3 848.31 758.06 643.89

25x10x2 1030.40 961.59 834.23

25x10x3 1062.30 987.57 820.12

25x10x4 1607.94 1125.56 1057.63

25x8x2 950.87 912.02 951.56

25x8x3 870.69 979.62 774.36

50x10x5 1207.31 1132.63 1265.73 1256.44 1208.43 1207.31

50x8x5 1171.69 1162.44 1123.42 1121.13 1171.35 1162.44

75x10x5 1561.5 1540.23 1718.25 1691.15 1732.33 1721.47

75x15x5 1700.32 1686.21 1751.14 1742.25 1491.31 1483.14

100x10x5 2192.14 2124.9 2290.64 2231.21 2238.7 2178.35

100x20x5 1989.48 1973.08 2039.25 1996.34 2053.12 2035.37

150x10x5 1953.55 1883.44 1768.79 1728.05 1307.19 1274.44

150x20x5 1905.81 1869.53 1664.2 1630.29 1266.83 1235.86

200x10x5 2601.33 2443.80 2292.47 2147.51 1822.5 1766.46

200x20x5 2307.53 2219.54 2097.74 2049 2604.56 2531.21

Table 10: Best known results for the sets I1, I2 and I3

Lower and Upper Bounds for the Two-Echelon Capacitated Location Routing Problem
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Instance zUB zlr gaplr tlr z gap t #nodes
ppw-20x5-1a 89075 82642.7 7.22 0.26 89075 0.00 2.94 219
ppw-20x5-1b 61863 61793.2 0.11 0.19 61863 0.00 0.24 4
ppw-20x5-2a 84478 79253.1 6.18 0.23 84478 0.00 4.91 350
ppw-20x5-2b 60838 58355.9 4.08 0.23 60838 0.00 0.34 4
ppw-50x5-1a 130843 116292 11.12 18.51 129072 1.35 7328.87 5258
ppw-50x5-1b 101530 94577 6.85 2.24 101530 0.00 5692.59 10952
ppw-50x5-2a 131825 123481 6.33 5.76 131825 0.00 2746.50 9442
ppw-50x5-2b 110332 104488 5.30 2.14 110332 0.00 71.93 713
ppw-50x5-2Bis 122599 117815 3.90 22.69 122014 0.48 7269.58 8202
ppw-50x5-2bBis 105696 88717.5 16.06 3.11 90158.5 14.70 7352.63 7338
ppw-50x5-3a 128379 119734 6.73 8.14 127291 0.85 7293.22 5121
ppw-50x5-3b 104006 101702 2.22 2.23 104006 0.00 41.26 499
ppw-100x5-1a 318761 301246 5.49 755.63 311157 2.39 7349.25 502
ppw-100x5-1b 256878 241311 6.06 256.24 251659 2.03 7434.04 129
ppw-100x5-2a 231305 221840 4.09 191.68 228183 1.35 7390.39 750
ppw-100x5-2b 194729 189324 2.78 34.27 193423 0.67 7442.73 976
ppw-100x5-3a 244194 220717 9.61 60.55 240846 1.37 7332.84 1190
ppw-100x5-3b 194110 183744 5.34 26.52 192562 0.80 7344.08 400
ppw-100x10-1a 353133 306764 13.13 277.90 325239 7.90 7444.96 98
ppw-100x10-1b 297167 261305 12.07 80.44 274956 7.47 7349.33 134
ppw-100x10-2a 305154 272802 10.60 329.10 283189 7.20 7415.92 596
ppw-100x10-2b 263876 239525 9.23 34.70 247256 6.30 7340.13 2903
ppw-100x10-3a 310200 270110 12.92 352.98 286702 7.58 7411.82 113
ppw-100x10-3b 261796 235570 10.02 45.30 244278 6.69 7421.63 523
ppw-200x10-1a 549718 484092 11.94 5029.15 484095 11.94 7219.28 1
ppw-200x10-1b 445802 402796 9.65 1675.14 409852 8.06 7397.27 4
ppw-200x10-2a 498199 479140 3.83 7211.65 479140 3.83 7211.65 1
ppw-200x10-2b 423031 409460 3.21 1449.60 411263 2.78 7366.31 2
ppw-200x10-3a 531548 487204 8.34 7211.77 487204 8.34 7211.77 1
ppw-200x10-3b 402130 389009 3.26 4342.03 389011 3.26 7253.99 1
Average 7.26 981.01 3.58 5671.41

Table 11: Results of the B&C algorithm on the set Prodhon

Lower and Upper Bounds for the Two-Echelon Capacitated Location Routing Problem
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Instance zUB zlr gaplr tlr z gap t #nodes
25-5N 80370 75556.1 5.99 0.33 80370 0.00 0.63 2
25-5Nb 64562 63587.4 1.51 0.17 64562 0.00 0.28 1
25-5MN 78947 72134.2 8.63 0.18 78947 0.00 0.75 18
25-5MNb 64438 63820.3 0.96 0.34 64438 0.00 0.60 2
50-5N 137815 132439.0 3.90 2.38 137815 0.00 1127.68 5474
50-5Nb 110094 98365.0 10.65 2.03 110094 0.00 867.85 2941
50-5MN 123484 110213.0 10.75 4.95 123484 0.00 48.97 195
50-5MNb 105401 101104.0 4.08 3.09 105401 0.00 48.67 290
50-10N 115725 101855.0 11.99 3.50 115236 0.42 7292.11 13875
50-10Nb 87315 81064.3 7.16 2.96 87315 0.00 1494.72 11278
50-10MN 135519 122272.0 9.78 3.78 135519 0.00 57.77 258
50-10MNb 110613 102301.0 7.51 2.76 110613 0.00 24.10 113
100-5N 193228 174730.0 9.57 150.00 183459 5.06 7373.66 944
100-5Nb 158927 145960.0 8.16 20.84 154192 2.98 7446.73 2090
100-5MN 204682 176807.0 13.62 65.74 194800 4.83 7465.38 708
100-5MNb 165744 153433.0 7.43 18.18 160204 3.34 7417.81 1000
100-10N 210449 178551.0 15.16 148.71 194243 7.70 7471.49 294
100-10Nb 155489 143996.0 7.39 44.02 152090 2.19 7552.96 1061
100-10MN 201275 174709.0 13.20 55.40 192092 4.56 7480.88 1028
100-10MNb 170625 151322.0 11.31 31.09 166106 2.65 7428.34 1243
200-10N 347395 303348.0 12.68 6558.92 303348 12.68 7227.58 1
200-10Nb 256171 231196.0 9.75 1385.73 235194 8.19 7471.48 11
200-10MN 324006 290368.0 10.38 2583.05 294937 8.97 7356.50 7
200-10MNb 287076 249830.0 12.97 1312.18 259423 9.63 7440.13 10
Average 8.94 516.68 3.05 4170.71

Table 12: Results of the B&C algorithm on the set Nguyen

Lower and Upper Bounds for the Two-Echelon Capacitated Location Routing Problem
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Instance zUB zlr gaplr tlr z gap t #nodes
8x3x2 575.70 575.70 0.00 0.01 575.70 0.00 0.01 1
8x4x2 549.34 534.25 2.75 0.01 549.34 0.00 0.04 2
9x3x2 878.69 874.49 0.48 0.02 878.69 0.00 0.05 1
10x4x2 806.72 752.79 6.69 0.03 806.72 0.00 0.05 1
10x5x3 696.94 660.28 5.26 0.07 696.94 0.00 0.12 3
10x8x3 596.56 538.62 9.71 0.18 596.56 0.00 0.35 14
15x10x2 732.48 673.23 8.09 0.52 732.48 0.00 1.46 43
15x10x3 686.71 601.28 12.44 0.30 686.71 0.00 1.04 49
15x4x2 1064.52 928.80 12.75 0.21 1064.52 0.00 0.55 44
15x5x3 933.75 829.52 11.16 0.14 933.75 0.00 0.39 23
15x8x3 730.36 667.28 8.64 0.21 730.36 0.00 0.64 31
20x10x2 937.40 817.63 12.78 0.45 937.40 0.00 322.33 12179
20x10x3 761.28 689.74 9.40 0.81 761.28 0.00 2.06 26
20x10x4 1149.72 967.72 15.83 0.51 1149.72 0.00 97.17 5783
20x8x2 1029.59 874.65 15.05 1.45 1014.98 1.42 7306.54 34299
20x8x3 848.31 787.66 7.15 0.29 848.31 0.00 817.87 20863
25x10x2 1030.40 855.45 16.98 1.96 1029.18 0.12 7267.93 55055
25x10x3 1062.30 931.48 12.31 1.25 1049.72 1.18 7265.92 30758
25x10x4 1607.94 1347.46 16.20 1.56 1535.34 4.52 7299.10 20642
25x8x2 950.87 871.45 8.35 0.65 950.87 0.00 151.67 5547
25x8x3 870.69 775.09 10.98 1.03 870.69 0.00 370.89 9450
50x10x5 1132.63 935.55 17.40 51.01 1104.62 2.47 7404.23 4849
50x8x5 1162.44 991.17 14.73 29.29 1146.03 1.41 7388.90 5653
75x10x5 1540.23 1340.44 12.97 137.40 1433.71 6.92 7453.14 1575
75x15x5 1686.21 1427.27 15.36 141.51 1582.25 6.17 7499.81 577
100x10x5 2124.90 1855.10 12.70 942.70 1954.54 8.02 7417.19 55
100x20x5 1973.08 1692.66 14.21 580.55 1820.06 7.76 7437.94 179
150x10x5 1883.44 1594.70 15.33 2070.76 1709.42 9.24 7436.38 13
150x20x5 1869.53 1523.69 18.50 1850.22 1576.52 15.67 7335.10 10
200x10x5 2443.80 2188.41 10.45 5095.85 2190.91 10.35 7254.42 3
200x20x5 2219.54 1852.28 16.55 7204.66 1852.28 16.55 7204.66 1
Average 11.33 584.37 2.96 3378.64

Table 13: Results of the B&C algorithm on the set I1

Lower and Upper Bounds for the Two-Echelon Capacitated Location Routing Problem
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Instance zUB zlr gaplr tlr z gap t #nodes
8x3x2 575.70 575.70 0.00 0.01 575.70 0.00 0.02 1
8x4x2 604.13 596.68 1.23 0.01 604.13 0.00 0.02 4
9x3x2 386.15 386.15 0.00 0.00 386.15 0.00 0.01 1
10x4x2 629.38 602.86 4.21 0.06 629.38 0.00 0.09 2
10x5x3 551.45 551.45 0.00 0.02 551.45 0.00 0.02 1
10x8x3 504.20 503.16 0.21 0.09 504.20 0.00 0.10 1
15x10x2 709.10 651.21 8.16 0.26 709.10 0.00 1.39 156
15x10x3 777.49 702.15 9.69 0.29 777.49 0.00 1.54 84
15x4x2 827.81 799.99 3.36 0.11 827.81 0.00 0.23 6
15x5x3 1075.22 1048.49 2.49 0.18 1075.22 0.00 0.36 8
15x8x3 652.58 591.31 9.39 0.28 652.58 0.00 1.49 208
20x10x2 766.24 684.32 10.69 0.48 766.24 0.00 3.78 237
20x10x3 744.26 688.77 7.46 0.38 744.26 0.00 1.48 54
20x10x4 793.00 735.41 7.26 0.40 793.00 0.00 1.05 22
20x8x2 772.29 698.42 9.57 0.37 772.29 0.00 5.64 549
20x8x3 758.06 679.75 10.33 0.29 758.06 0.00 6.00 833
25x10x2 961.59 857.44 10.83 1.67 952.83 0.91 7299.78 23112
25x10x3 987.57 847.05 14.23 1.26 930.24 5.81 7257.52 28573
25x10x4 1125.56 948.37 15.74 1.18 1125.56 0.00 2716.10 39282
25x8x2 912.02 838.39 8.07 0.84 912.02 0.00 1272.05 36427
25x8x3 979.62 908.74 7.24 0.69 979.62 0.00 8.30 708
50x10x5 1256.44 1117.50 11.06 11.11 1222.26 2.72 7442.70 4325
50x8x5 1121.13 990.18 11.68 7.01 1098.02 2.06 7376.86 7657
75x10x5 1691.15 1520.07 10.12 58.28 1597.48 5.54 7393.84 3343
75x15x5 1742.25 1476.73 15.24 84.91 1661.72 4.62 7516.68 487
100x10x5 2231.21 2020.79 9.43 771.23 2073.51 7.07 7451.59 241
100x20x5 1996.34 1778.54 10.91 222.12 1849.18 7.37 7583.58 234
150x10x5 1728.05 1463.90 15.29 475.29 1554.46 10.05 7530.95 51
150x20x5 1630.29 1423.06 12.71 578.49 1489.41 8.64 7486.50 76
200x10x5 2147.51 1912.21 10.96 1976.60 1931.23 10.07 7286.86 13
200x20x5 2049.01 1780.40 13.11 1298.32 1803.03 12.00 7419.87 17
Average 8.41 177.17 2.48 3002.14

Table 14: Results of the B&C algorithm on the set I2

Lower and Upper Bounds for the Two-Echelon Capacitated Location Routing Problem
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Instance zUB zlr gaplr tlr z gap t #nodes
8x3x2 578.33 539.21 6.76 0.02 578.33 0.00 0.04 2
8x4x2 450.71 422.33 6.30 0.02 450.71 0.00 0.05 1
9x3x2 454.63 454.63 0.00 0.00 454.63 0.00 0.01 1
10x4x2 540.61 525.79 2.74 0.03 540.61 0.00 0.07 6
10x5x3 745.48 681.84 8.54 0.05 745.48 0.00 0.13 15
10x8x3 412.91 412.91 0.00 0.02 412.91 0.00 0.03 1
15x10x2 605.11 539.45 10.85 0.41 605.11 0.00 1.25 67
15x10x3 546.61 495.00 9.44 0.46 546.61 0.00 1.64 175
15x4x2 688.87 636.63 7.58 0.05 688.87 0.00 0.27 59
15x5x3 1001.28 897.66 10.35 0.26 1001.28 0.00 1.06 86
15x8x3 578.23 520.34 10.01 0.34 578.23 0.00 0.86 34
20x10x2 744.82 692.91 6.97 0.53 744.82 0.00 6.34 536
20x10x3 728.17 648.27 10.97 0.41 728.17 0.00 4.18 231
20x10x4 1190.95 1004.67 15.64 0.80 1190.95 0.00 334.74 9796
20x8x2 846.07 776.12 8.27 0.66 846.07 0.00 37.17 2153
20x8x3 643.89 593.91 7.76 0.45 643.89 0.00 1.63 71
25x10x2 834.23 768.96 7.82 1.31 834.23 0.00 35.81 2082
25x10x3 820.12 760.13 7.32 1.24 820.12 0.00 2.79 37
25x10x4 1057.63 873.48 17.41 0.44 1057.63 0.00 14.25 389
25x8x2 951.56 799.63 15.97 2.67 910.69 4.30 7314.28 22280
25x8x3 774.36 711.47 8.12 0.95 774.36 0.00 105.28 4559
50x10x5 1207.31 1062.64 11.98 16.52 1178.74 2.37 7477.56 3751
50x8x5 1162.44 991.17 14.73 29.21 1146.05 1.41 7391.33 5686
75x10x5 1721.47 1528.73 11.20 44.68 1638.52 4.82 7394.76 2406
75x15x5 1483.14 1310.67 11.63 48.08 1411.48 4.83 7628.68 541
100x10x5 2178.35 1984.72 8.89 291.52 2057.97 5.53 7505.30 220
100x20x5 2035.37 1827.62 10.21 171.99 1889.20 7.18 7553.46 331
150x10x5 1274.44 1149.28 9.82 169.20 1198.72 5.94 7463.36 149
150x20x5 1235.86 1102.28 10.81 329.76 1162.03 5.97 7497.05 110
200x10x5 1766.46 1593.59 9.79 539.10 1659.98 6.03 7409.29 54
200x20x5 2531.21 2273.59 10.18 954.70 2304.54 8.96 7418.42 71
Average 9.29 84.06 1.85 2664.55

Table 15: Results of the B&C algorithm on the set I3
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