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Abstract. The paper introduces a MIP-TS matheuristic for the design-balanced 
capacitated multicommodity network design, one of the premier formulations for the 
service network design problem with asset management concerns increasingly faced by 
carriers within their tactical planning processes. The matheuristic combines a cutting-
plane procedure efficiently computing tight lower bounds and a Tabu Search meta-
heuristic exploiting a new cycle-based neighbourhood satisfying the design-balanced 
requirements. Learning mechanisms embedded into each of these procedures help in 
fixing variables and identifying good starting and intensification solutions. Extensive 
computational experiments show the efficiency of the proposed procedures in obtaining 
high-quality solutions, outperforming the current best methods from the literature. 
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1 Introduction

Network design formulations are used to model a wide variety of problems in several
fields such as transportation, logistics, distribution, production, etc. Surveys on network
design may be found in Magnanti and Wong (1984), Minoux (1989), and Crainic (2000).
We are particularly interested in fixed-cost, multicommodity, capacitated formulations
characterized by a network with link capacities and a set of known demands between
origin-destination nodes. The network design problem then aims to construct a network,
by choosing the arcs to be used, and to satisfy the demand, by determining the flow
distribution on each arc, at minimum cost. In such problem, in addition to the usual
per-unit routing cost, a fixed cost is payed as soon as a link is used.

Service network design belongs to this broad problem class, where links represent “ser-
vices” to operate within a given system. Service network design is particularly used to
address tactical planning issues for consolidation-based transportation carriers (Crainic,
2003; Crainic and Kim, 2007). More precisely, it relates to the decision problem of se-
lecting transportation services to operate over a mid-term planning horizon, together
with their frequencies or schedules as well as the main strategies of moving loads through
the resulting service network, to optimize the economic and service criteria of the car-
rier and achieve an efficient allocation and utilization of its resources, given forecast
origin-to-destination demand. The result of the tactical planning process usually is a
transportation plan and schedule for a given time length, e.g., a day or a week, to be
repeatedly operated over the planning horizon of the “next season” (i.e., from a few
months to a year). One calls such a schedule periodic and circular.

The management of assets, e.g., power units, vehicles, crews, etc., was generally not
detailed in most of the contributions in the literature (Crainic, 2003; Crainic and Kim,
2007), with a few exceptions where the cost of owning and operating particular assets,
planes or ships, for example, was dominating the other cost considerations (e.g. Arma-
cost et al., 2002; Smilowitz et al., 2003; Lai and Lo, 2004). Constraints requiring that
the same number of assets enters and exists each terminal, called design-balanced con-
straints by Pedersen et al. (2009), and ad-hoc solution methods were proposed. Resource-
management considerations in tactical planning processes and models are becoming wide
spread, as so-called full-asset-utilization policies aiming to use assets continuously fol-
lowing circular routes Crainic and Kim (2007); Bektas and Crainic (2008) are being
adopted by carriers of all modes. Andersen et al. (2009b,a) give an up-to-date review of
previous contributions to the field and study formulations for various asset-management
considerations within service network design.

In this paper, we focus on the design-balanced capacitated multicommodity network
design problem (DBCMND), a generic network design problem with design-balanced
requirements formally introduced in Pedersen et al. (2009), together with a Tabu Search
(TS) meta-heuristic. The DBCMND is NP-Hard, as it is a special case of the well-known
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NP-Hard multicommodity fixed charge problem (Magnanti and Wong, 1984) and, thus,
exact methods reach their limits rather rapidly (Andersen et al., 2011). Moreover, as
shown by Pedersen et al. (2009), even feasible solutions are difficult to obtain for the
DBCMND.

Our goal is to address these challenges and propose a methodology to identify good-
quality feasible solutions for realistically-dimensioned instances. We propose a matheuris-
tic combining an exact lower-bound computing method and a Tabu Search meta-heuristic
(Glover, 1986; Glover and Laguna, 1997) searching for good upper-bound solutions. The
former method uses the cutting-plane procedure proposed by Chouman et al. (2009,
2011) for the capacitated multicommodity fixed charge network design problem (CMND)
to compute tight lower bounds in a quick computational time. The proposed Tabu Search
meta-heuristic is based on the exploration of the space of the arc-design variables satis-
fying the design-balanced requirements. The neighbourhood structure is identified using
a new arc-balanced cycle move. To evaluate the performance of the proposed method, a
computational study is performed on a large set of test instances used in the literature.

The contributions of this paper are threefold. First, the introduction of a new design-
balanced neighbourhood and the development of an efficient procedure to explore it.
The procedure, based on tagging and a labeling shortest path algorithm, closes and
opens arcs around cycles in such a way that the resulting neighbours satisfy the arc-
balanced constraints. Second, the paper introduces a MIP-based learning process to
identify good-quality feasible solutions, which may then be improved by the TS method
(or any other method, for this matter). More precisely, it shows how to take advantage
of the time spent computing bounds to compile statistics characterizing attributes of
already-encountered solutions, which are then used to find quickly feasible solutions. Fi-
nally, we introduce a MIP-TS matheuristic integrating these ingredients shown, through
computational experiments on a large set of instances with various characteristics, to
outperform existing solution methods in solution quality and computational effort.

This paper is organized as follows. We recall the problem formulation in the next sec-
tion. Section 3 describes the proposed matheuristic. Computational results are reported
in Section 4. Conclusions and perspectives are given in Section 5.

2 Problem Formulation

Given a directed graph G = (N ,A), where N is the set of nodes and A is the set of arcs,
and a set of commodities (or origin-destination pairs)K to be routed according to a known
demand wk for each commodity k, the problem is to satisfy the demand at minimum cost.
The cost consists of the sum of transportation costs and fixed design costs, the latter
being charged whenever an arc is included in the optimal design. The transportation

2

MIP-Based Tabu Search for Service Network Design with Design-Balanced Requirements

CIRRELT-2011-68



cost per unit of commodity k on arc (i, j) is denoted ckij ≥ 0, while the fixed design cost
for arc (i, j) is denoted fij ≥ 0. A limited capacity, denoted uij, is associated to each
arc (i, j). An origin O(k) and a destination D(k) are associated to each commodity k.
We introduce continuous flow variables xkij, which reflect the amount of flow on each arc
(i, j) for each commodity k, and 0-1 design variables yij, which indicate if arc (i, j) is
used or not. With this notation, the mathematical formulation of the Design-Balanced
Multicommodity Capacitated Fixed Charge Network Design problem becomes

min
x,y

∑
(i,j)∈A

fijyij +
∑
k∈K

∑
(i,j)∈A

ckijx
k
ij, (2.1)

∑
j∈N+

i

xkij −
∑
j∈N−i

xkji = dk, ∀ i ∈ N ,∀ k ∈ K, (2.2)

∑
j∈N+

i

yij −
∑
j∈N−i

yji = 0, ∀i ∈ N , (2.3)

∑
k∈K

xkij ≤ uijyij, ∀ (i, j) ∈ A, (2.4)

xkij ≥ 0, ∀ (i, j) ∈ A, ∀ k ∈ K, (2.5)

yij ∈ {0, 1}, ∀ (i, j) ∈ A, (2.6)

where N−i = {j ∈ N : (j, i) ∈ A}, N+
i = {j ∈ N : (i, j) ∈ A}, and

dk =


wk, if i = O(k),
−wk, if i = D(k),

0, otherwise,

The objective function (2.1) minimizes the total cost computed as the sum of the total
fixed cost for the arcs included in the optimal design (denoted as open) plus the total
commodity transportation cost. Constraints (2.2) correspond to the flow conservation
equations for each node and each commodity, while Constraints (2.3) are the design-
balanced constraints ensuring that the total number of open arcs entering a node is equal
to the total number of open arcs leaving that node. Relations (2.4) represent capacity
constraints for each arc that also link flow and design variables by forbidding any flow to
pass through an arc not already chosen as part of the design.

Note that, the linear relaxation (LP) of this formulation is obtained by replacing the
integrality constraints (2.6) by 0 ≤ yij ≤ 1, ∀(i, j) ∈ A. Note also that, removing con-
straints set (2.3) yields the well known CMND, which is NP-Hard (Magnanti and Wong,
1984; Balakrishnan et al., 1997) and thus makes the DBCMND NP-hard as well. Prac-
tically, considerable algorithmic challenges are imposed when solving realistically-sized
network problem instances. These challenges are due to the large size of real applications,
to the trade-offs to be found between variable and fixed costs, and to the competition
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among commodities due to the limited capacity on the arcs. In addition, the design-
balanced constraints (2.3) link the design choices and thus increase the combinatorial
nature of the problem and add to the algorithmic challenges.

3 Methodological Approach

We now present the MIP-TS matheuristic we propose for the DBCMND, motivated es-
sentially by three observations. First, the cutting-plane procedure proposed by Chouman
et al. (2009, 2011) has proved effective in computing tight lower bounds for the CMND in
quick computational time when compared to state-of-the-art software. It is thus natural
to explore the efficiency of the procedure in the context of the DBCMND. Second, various
memories characterizing attributes of LP solutions can be built during the cutting-plane
procedure and may then be used not only to guide the search but also to identify good-
quality feasible solutions. It is noteworthy that this is the first generic procedure provid-
ing the means to obtain efficiently good initial solutions for the DBCMND. Third, Tabu
Search displayed good performance on several hard problem classes, including network
design (Ghamlouche et al., 2003; Pedersen et al., 2009), and it appeared interesting to
investigate the effectiveness of TS in identifying good solutions when the search is guided
by a MIP-based learning process.

Algorithm 1 illustrates the main components of the proposed matheuristic combin-
ing the three algorithmic components. The methods starts, Phase I, by computing lower
bounds on the optimal value of DBCMND using the cutting-plane procedure of Chouman
et al. (2009, 2011) and compiling a number of statistics on solution characteristics. These
memories are used in Phase II to temporarily fix a number of design variables and iden-
tify a first feasible solution by solving the restricted problem using a MIP algorithm
(e.g., the branch-and-cut of a commercial software). Starting from this solution, Phase
III executes the TS meta-heuristic based on a new neighbourhood that preserves the
design-balanced requirements of the problem. Memories characterizing good attributes
of explored solutions are also built while performing the TS procedure, which continues
until no improvement is observed for a given number of iterations. Provided the algo-
rithms is not stopped, Phase IV launches an intensification mechanism by, first, using the
memories built by the TS meta-heuristic to temporarily fix a number of design variables
and, then, identifying a new feasible solution using a MIP method and restarting the
TS procedure. The overall algorithm stops when either the total computational time
exceeds a given time-limit or the number of consecutive times the TS is launched from a
new solution without improving the solution quality reaches a pre-specified number. The
overall MIP-TS matheuristic is detailed in the following four subsections, one for each of
its four phases.
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Algorithm 1 MIP-TS Matheuristic

Phase I: Lower-bound computation (LBC )
Run the cutting-plane algorithm (Algorithm 2) and compile F , L, andR LBC memories

Phase II: First feasible solution
Perform the α0-fixing heuristic (Algorithm 3) based on LBC memories
Solve the resulting reduced DBCMND with a MIP method to obtain a starting feasible
solution
Let Best-Solution and Current-Solution be this solution
Stop and return Best-Solution if running time exceeds TimeLimit

Phase III: Enhance the solution
Improve Best-Solution by performing the cycle-based TS meta-heuristic (Algorithm 4)
starting from the Current-Solution
Compile TS memories while executing the meta-heuristic
if NbProcessWithoutImprov ≥ NbIterProcess or Running time ≥ TimeLimit then

Stop and
return Best-Solution

end if

Phase IV: Intensification and a new feasible solution
Perform α1-fixing heuristic (Algorithm 7) based on TS memories
Solve the resulting reduced DBCMND with a MIP method to obtain a new feasible
solution
Let Current-Solution be this new feasible solution
Go to Phase III

3.1 Lower bound computation

Any valid inequality (VI) that is valid for a relaxation of a problem, is valid for the
problem itself. Therefore, as by dropping constraints (2.3) one obtains a CMND, any
valid inequality for the CMND is valid for the DBCMND. More precisely, the families of
inequalities studied in Chouman et al. (2009) and Chouman et al. (2011) are valid for the
DBCMND and can be used to improve the formulation of the problem and strengthen
the quality of its LP bounds.

The same studies have shown, however, that different VI families display quite differ-
ent behaviours relative to their capability to improve the quality of bounds in reasonable
computation times. Based on those studies and aiming for a combination of VI yielding
a good trade-off between solution quality and time, and, thus, an efficient cutting-plane
method, we consider three families of VIs only: the strong, cover, and flow-pack inequali-
ties. We briefly describe the families. More detailed discussions relative to the associated
separation problems and implementation issues are to be found in the two references
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above.

Strong Inequalities (SI) are defined as

xkij ≤ dkyij, ∀(i, j) ∈ A, k ∈ K. (3.1)

Adding SI to the model significantly improves the quality of the design LP lower
bounds (Crainic et al., 1999; Gendron and Crainic, 1994).

Cover Inequalities (CI) are defined in terms of cutsets of the network. Let S ⊂
N be any non-empty subset of N and S̄ = N\S its complement. We identify the
corresponding cutset by (S, S̄), i.e., the set of arcs that connect a node in S to a node
in S̄. Let d(S,S̄) =

∑
k∈K(S,S̄) d

k where K(S, S̄) ⊆ K, be the set of commodities with

their origin in S and their destination in S̄. d(S,S̄) is then a lower bound on the amount
of flow that must circulate across the cutset in any feasible solution. A set C ⊆ (S, S̄)
is a cover if the total capacity of the arcs in (S, S̄)\C does not cover the demand, i.e.∑

(i,j)∈(S,S̄)\C uij < d(S,S̄). Moreover, the cover C ⊆ (S, S̄) is minimal if it is sufficient to

open any arc in C to cover the demand. For every cover C ⊆ (S, S̄), the cover inequality∑
(i,j)∈C

yij ≥ 1 (3.2)

is valid for the CMND. The basic idea of this inequality is that one has to open at least
one arc from the set C in order to meet the demand. In addition, it has been proven
(Balas, 1975; Wolsey, 1975) that if C is a minimal cover, applying a lifting procedure
yields a stronger inequality.

Flow Pack Inequalities (FPI). For any L ⊆ K and cutset (S, S̄), let

xLij =
∑
k∈L

xkij, bLij = min{uij,
∑
k∈L

dk}, and dL(S,S̄) =
∑

k∈K(S,S̄)∩L

dk.

A flow pack (C1, C2) is defined by two sets C1 ⊆ (S, S̄) and C2 ⊆ (S̄,S) such that
µ =

∑
(i,j)∈C1 b

L
ij−

∑
(j,i)∈C2 b

L
ji−dL(S,S̄)

< 0. Let D1 ⊂ (S, S̄)\C1. The flow pack inequality

is then defined as (Atamturk, 2001; Stallaert, 97)∑
(i,j)∈C1

xLij +
∑

(i,j)∈D1

(xLij −min{bLij,−µ}yij)) ≤ −
∑

(j,i)∈C2

(bLji + µ)+(1− yji) +

∑
(j,i)∈(S̄,S)\C2

xLji +
∑

(i,j)∈C1

bLij. (3.3)

The cutting-plane procedure then mainly iterates on solving the linear relaxation LP
and generating and adding to the LP formulation violated valid inequalities. It terminates
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when either the optimal solution is found, which is unlikely to happen very often, or when
the improvement is smaller than ε. With Z̄ and (x̄, ȳ) standing for the optimal value
and solution vector, respectively, of the LP with the currently generated VIs, Algorithm
2 displays the main steps of the procedure.

Algorithm 2 Lower-bound Computation

ZLast ← 0; F ← 0|A|; L← 0|A|; R← 0|A|

Solve the LP relaxation

while Z̄ − ZLast > ε do
ZLast ← Z̄
if ȳ is integer then

return Z̄ and (x̄, ȳ)
end if
Generate and add violated SI
Generate and add violated CI
Update the L memory
Generate and add violated FPI
if New inequalities are added then

Solve the LP relaxation
Update NbLP
Update the F and R memories

end if
end while
return the lower bound Z̄, the corresponding solution (x̄, ȳ), and the memories F,L,
and R

Three different types of statistics characterizing attributes of LP solutions found while
running the cutting plane algorithm are collected in three particular memories for sub-
sequent utilization:

• F ∈ N|A|, an |A|-dimensional vector of design-variable frequency, representing how
often an arc has been used in previous LP solutions. Set initially to the null vector,
F is updated at each LP solution (x̄, ȳ) by setting

Fij = Fij + 1 if ȳij > β, ∀(i, j) ∈ A,

for a given threshold β indicating the importance of an arc (i, j) in the current LP
solution.

• L ∈ N|A|, an |A|-dimensional vector of violated cover inequality frequency, repre-
senting how often design arcs were included in violated CI generated during the
cutting-plane procedure. Similarly to F , initialized to the null vector, L is updated
at each violated CI found

Lij = Lij + 1, ∀(i, j) ∈ C,

7
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where C ⊆ A is the minimal cover obtained in the CI.

• R ∈ R|A|, an |A|-dimensional vector of accumulated reduced costs. Similarly to the
two previous memories, R is initialized to the null vector and is updated at each
LP solution

Rij = Rij + R̄ij, ∀(i, j) ∈ A,

where R̄ is the reduced cost vector associated to the current LP optimal solution
(x̄, ȳ).

3.2 First feasible solution

Contrary to the CMND, it is not obvious to find a feasible initial solution for the
DBCMND. The classical approach of first solving a linear relaxation and then rounding-
up all design variables corresponding to used arcs in the LP solution (often used for
the CMND) is not appropriate for the DBCMND. Indeed, except for some special cases,
the integral solution obtained does not satisfy the design-balanced constrains. Figure 1
illustrates the infeasibility of such a rounding-up method for a small graph consisting
of four nodes and five arcs. Notice that the LP solution satisfies the design-balanced
requirements while the round-up solution does not (for nodes 3 and 4).

LP Solution Round-up Solution

y13 = 0.5 y13 = 1
y23 = 0.5 y23 = 1

y34 = 1
Round Up

=⇒ y34 = 1
y41 = 0.5 y41 = 1
y42 = 0.5 y42 = 1

Figure 1: Infeasibility of rounding-up LP solutions

To obtain a starting feasible solution, we propose to first reduce the size of the
DBCMND, by closing a suitable subset of arcs, called Ã and, then, solve the result-
ing reduced DBCMND problem using any available exact MIP code. The challenge is

8
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in selecting the suitable subset of arcs to close. On the one hand, one desires to close
a sufficiently high number to yield a reduced design problem “easy” to address with a
good MIP code. On the other hand, closing too many arcs may yield an easily addressed
problem but a network too small to carry all the demand and, thus, inappropriate for
the task at hand.

To efficiently address this challenge, we propose the α0-fixing heuristic, which deter-
mines the suitable set Ã using the compiled memories F,L, and R, introduced in Section
3.1. As illustrated in Algorithm 3, the heuristic starts with an empty set, and gradually
adds arcs that are attractive given the information gathered while executing the cutting-
plane algorithm, and that provide sufficient connectivity and capacity to the resulting
network.

Algorithm 3 α0-Fixing Heuristic

Require: F,L,R as given by the cutting-plane Algorithm 2
Ã = ∅

Selection step based on F
Add to Ã all arcs with frequency ≥ α0NbLP

Connectivity step based on F + L
Add arcs to Ã to ensure each transshipment node has at least one incoming and

one outgoing arc

Feasibility step based on R
Add arcs to Ã to provide sufficient capacity for flows out and into demand and

supply nodes, respectively.

Arcs are added in three consecutive steps. The selection step aims to select attractive
arcs as defined by the frequency F of utilization in cutting-plane LP solutions. The idea
is that arcs which are repeatedly used in optimal LP solutions are most likely to also
be part of good, hopefully optimal, feasible solutions. Thus, given a threshold α0, arc
(i, j) is added to Ã if Fij ≥ α0NbLP , where NbLP is the number of LPs solved by the
cutting-plane.

The connectivity step aims to provide the means for commodities to pass through
each selected transshipment node in the network. This means that each transshipment
node already in Ã, i.e., with at least an incoming/outgoing arc open, must have at least

an outgoing/incoming arc open. Because the choice has to be made among arcs in A\Ã,
which did not appeared often in cutting-plane LP solutions, we combine the measures of
frequency F and the CI-frequency L. In fact, a frequent appearance of an arc in minimal
covers of violated CIs means the arc has a good chance to be open and used in feasible
solutions, and it is therefore a good candidate for the fixing heuristic. Consequently, for
each node i ∈ N with at least one

• Incoming arc,
∑

j∈Ñ−i
yji ≥ 1, and no outgoing arc,

∑
j∈Ñ+

i
yij = 0, add to Ã the

9
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arc such that argmaxj∈N+
i \Ñ

+
i

(Fij + Lij);

• Outgoing arc,
∑

j∈Ñ+
i
yij ≥ 1, and no incoming arc,

∑
j∈Ñ−i

yji = 0, add to Ã the

arc such that argmaxj∈N−i \Ñ
−
i

(Fji + Lji).

Finally, the feasibility step opens enough arcs at origins and destinations to provide
sufficient capacity to satisfy the demand requirements. Because the previous step used
the L memory, we aim for a certain degree of diversification in our selection and, thus,
we use information based on the reduced costs R in this step. Therefore, for any supply
or demand node such that∑

j∈Ñ+
i

uij < wk, i = O(k), ∀k ∈ K ⇒ Add the arc such that argminj∈N+
i \Ñ

+
i

(Rij)

∑
j∈Ñ−i

uji < wk, i = D(k), ∀k ∈ K ⇒ Add the arc such that argminj∈N−i \Ñ
−
i

(Rji)

Once the set Ã is determined using the α0-fixing heuristic, we consider the restriction
DBCMNDÃ where all arcs in Ã are free and all arcs in A\Ã are closed. DBCMNDÃ is
then solved using a MIP code until optimality or a time or node limit is reached, the
latter limits aiming to achieve the goal of as good a feasible solution as possible in a
quick time. If the reduced problem is feasible, we proceed with the tabu search starting
from this initial feasible solution. Otherwise, we decrease the value of α0 and repeat the
α0-fixing heuristic to find a new and larger set Ã. We iterate on decreasing the value of
α0 and on performing α0-fixing heuristic until a feasible solution is found.

According to our computational results, this heuristic has proved effective in identi-
fying rapidly high-quality feasible solutions already competitive with those found by the
best heuristic approaches available in the literature.

3.3 Cycle-based Tabu Search

The local search component of TS is used to explore the feasible design-variable search
space of the DBCMND problem, starting from the feasible solution produced by the
cutting plane and the α0-fixing heuristic. The procedure follows the standard tabu-
search template as shown in Algorithm 4. It is based on a large neighbourhood defined
by closing and opening sets of arcs along cycles corresponding to arcs open in the current
solution that are candidates to be closed. The neighbourhood and the corresponding
Arc-Balanced Cycle procedure, preserving the feasibility of the solutions, are detailed in
Section 3.3.1.

10
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Algorithm 4 TS Local Search Heuristic:

Require: Best-Solution and Current-Solution
Initialization
Set BestTS-Solution and Current-Design to the Current-Solution
F ts = 0 and Nbts = 0

Neighbourhood Exploration
Set up the candidate list of non-tabu arcs to drop
Determine the neighbour list by performing the Arc-Balanced Cycle procedure (Algo-
rithm 5) for each candidate in the candidate list
for each neighbour in the neighbour list do

Solve the associated CMCF
If the CMCF is not feasible eliminate the neighbour and continue

end for
Select and move to the best neighbour
Update the tabu list, Nbts, Current-Design, Best-Solution, and BestTS-Solution, as
well as the frequency memory F ts with respect to Current-Design
if Computational time > TimeLimit or BestTS-Solution did not improve for NbIterTS
iterations then

return Best-Solution
else

Continue Neighbourhood Exploration
end if

Neighbours are evaluated by solving CMCFỹ, the minimum cost network flow problem
associated to the design vector ỹ of the current DBCMND feasible solution:

min
x

∑
k∈K

∑
(i,j)∈Ã

ckijx
k
ij∑

j∈Ñ+
i

xkij −
∑
j∈Ñ−i

xkji = dk ∀ i ∈ N , ∀ k ∈ K,

∑
k∈K

xkij ≤ uij, ∀ (i, j) ∈ Ã,

xkij ≥ 0, ∀ (i, j) ∈ Ã, ∀ k ∈ K,

where Ã = {(i, j) : ỹij = 1}, Ñ−i = {j ∈ N−i : (j, i) ∈ Ã}, and Ñ+
i = {j ∈ N+

i : (i, j) ∈
Ã}. As CMCFỹ is a continuous linear problem, it can be solved using any commercial
LP software. If CMCFỹ is infeasible, i.e., the current balanced design is not able to route
all commodities, the current neighbour is eliminated and the search proceeds with the
next one. The best neighbour is chosen to be the next incumbent.

To avoid cycling, recent moves are included in the tabu list, with a random number of
iterations forbidding a closed arc to be included in any move. Besides the tabu list and
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the total number of TS solutions computed in Nbts, a memory, F ts of |A| dimension,
is updated at each iteration to record the frequency of a design arc being open in the
Current-Design TS solutions. F ts thus indicates the potential of arcs as experienced
in explored ts feasible solutions and is used to identify new feasible solutions in the
intensification phase (Section 3.4).

The heuristic stops when no improvement in the best solution is observed for a pre-
specified number of iterations or the overall computational time exceeds a time limit.

3.3.1 Neighbourhood Exploration

Adding or dropping arcs is the most common idea for defining moves for arc-based net-
work formulations. Single-arc moves are simple to define and identify but do not perform
very well on capacitated multicommodity network design. Multiple-arcs add/drop moves,
modifying the status of several arcs simultaneously, proved significantly more effective,
particularly when the corresponding arcs belonged to a network structure, such as a path
or a cycle (e.g., Crainic et al., 2000; Ghamlouche et al., 2003; Hewitt et al.; Pedersen
et al., 2009).

We therefore introduce a neighbourhood defined by a new arc-balanced cycle move
that, while inspired by the cycle-based move of Ghamlouche et al. (2003), preserves
the feasibility of the design formulation with respect to the design-balanced constraint.
This property makes the move appropriate not only for the problem at hand but, more
generally, for path or cycle-based formulations.

Figure 2: Add-drop move maintaining the design-balanced requirements

To define the new algorithm to generate arc-balanced cycle moves, observe that clos-
ing a given arc (r, t) introduces design unbalances at the origin and destination nodes
of that arc. To maintain the design balance, it is necessary to introduce another path
linking r and t. In general, the move involves closing a sub-path containing the arc (r, t)
and opening a sub-path linking the two nodes so that the design-balanced constraints
are maintained. Figure 2 illustrates this idea, where solid and dashed arcs are opened
and closed, respectively. Closing arc (3, 4) creates unbalances at nodes 3 and 4. Several
possibilities exist to maintain the design-balanced requirements, e.g., (3, 4) may be re-
placed by the sub-path {(3, 7), (7, 4)}, or the sub-path {(2, 3), (3, 4), (4, 5)}, containing
(3, 4), may be replaced by the sub-path {(2, 7), (7, 5)}. Notice that such a move does not
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account for the flow-distribution feasibility and the new design might not have sufficient
capacity. Verifying this condition requires to solve the minimum cost network flow prob-
lem, which is performed in any case to evaluate the move. We therefore prefer to do it
once and eliminate infeasible neighbours at the moment the potential move is evaluated.

c1 c2

2C1C

O

r t

Figure 3: Special form of the arc-balanced cycle

Observe that any cycle composed of in and out sub-paths containing the arc to close
so that, once the move is performed, the resulting design satisfies the design-balanced
requirements, must satisfy what we call the three-phase property, that is, it must be
composed of three sub-paths (C1, {(r, t)},C2,O), illustrated in Figure 3, such that

C1 ⊆ Ã is a sub-path of open arcs between a given node c1 and r;

C2 ⊆ Ã is a sub-path of open arcs between t and a given node c2;

O ⊆ A\Ã is a sub-path of closed arcs between c1 and c2.

The move is then performed by closing all arcs in C1 ∪ {(r, t)} ∪ C2 and opening
the arcs in O. To increase the chance to identify flow-feasible arc-balanced cycles, we
concentrate the search for C1 and C2 on arcs carrying the same subset of commodities as
those moving on the arc to close (r, t). Such a selection of arcs also enables the generation
of neighbours that are not too close to the current solution. Algorithm 5 describes the
procedure identifying such an arc-balanced cycle move.

The algorithm proceeds in several steps. It first determines the subset of opened arcs
that could be used in a cycle involving the arc to close a, by a labelling procedure starting
from r and t and going backward and forward, respectively. The next step identifies the
auxiliary network used to find the cycle for the possible move by 1) reversing all selected
opened arcs and associating to them their negative fixed cost; and 2) adding all the
closed arcs with their associated fixed cost. It is on the graph Ḡa that an appropriate
shortest path from r to t is computed next, by a label-correcting procedure illustrated in
Algorithm 6.
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Algorithm 5 Arc-Balanced Cycle: Identify a cycle passing through arc a = (r, t) and
return subsets of arcs to drop and add while maintaining the design-balanced require-
ments

Require: G̃ = (Ã, Ñ ), the graph associated to the Current-Design ỹ
Require: x̃, the current flow associated to Current-Design
Require: Ka = {k ∈ K|x̃ka > 0}, the set of commodities moving on a at Current-Design

Initialization: ArcsToDrop ← ∅, ArcsToAdd ← ∅

{Determine the graph associated to arc a}
while not all O(k), ∀k ∈ Ka, are marked do

Mark all nodes and arcs starting from r and going backward
end while
while not all D(k), ∀k ∈ Ka, are marked do

Mark all nodes and arcs starting from t and going forward
end while
Ga = (Aa,Na) = the graph that includes all marked arcs and nodes
for each arc a′ ∈ Ga such that x̃ka′ > 0,∀k ∈ Ka do

Add its inverse to Ḡa with fixed cost −fa′
end for
Remove from Ḡa all arcs and nodes that are not connected to r or to t
Add to Ḡa all arcs in A\Ã touching nodes in Ḡa, with their original fixed cost f

Compute shortest path from r to t in Ḡa by applying Algorithm 6
if no-path between r and t then

STOP
else
Ca is the cycle obtained by the shortest path and arc a
ArcsToDrop ← {Ca ∩ Ã}
ArcsToAdd ← {Ca ∩ A\Ã}
Return ArcsToDrop, ArcsToAdd

end if
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The goal of Algorithm 6 is to find a shortest path such that the induced cycle satisfies
the three-phase property while avoiding negative cycles. A list of marked nodes is there-
fore built to avoid visiting a node more than once, and node labels (with values from 1 to
3) are used to track the status of the cycle and thus prohibit the generation of a negative
one. The algorithm returns the value of the shortest path, Dist[t], or indicates that such
a path does not exist (distance equals ∞), in which case the arc (r, t) cannot be closed
at that moment.

Algorithm 6 ThreePhasesSP: Compute shortest path from r to t such that the three-
phase property is satisfied

Initialization
MarkedList ← {r}
Dist[r] = 0, Label[r] = 1

Dist[i] =∞, Label[i] = 0, ∀i ∈ Ñ\r

while MarkedList 6= ∅ do
n← argmini∈MarkedListDist[i], remove n from MarkedList
if n = t then

Return Dist[t]
else

for ∀i ∈ Ñ+
n such that Label[n] < 4 and f̄ni ≤ 0 do

if (Dist[n] + f̄ni < Dist[i]) then
Update Dist[i]
Add i to MarkedList

If (Label[n] = 1) and (f̄ni < 0 ⇒ Label[i] = 1
If (Label[n] = 1) and (f̄ni ≥ 0) ⇒ Label[i] = 2
If (Label[n] = 2) and (f̄ni ≥ 0) ⇒ Label[i] = 2
If (Label[n] = 2) and (f̄ni < 0) ⇒ Label[i] = 3
If (Label[n] = 3) and (f̄ni < 0) ⇒ Label[i] = 3

end if
end for

end if
end while

Figure 4 illustrates the arc-balanced cycle algorithm. The current solution appears in
Part a), solid and dashed lines standing for open and closed arcs, respectively. Arc (4, 6),
moving flow for commodities (O1, D1) and (O2, D2), is to be removed. Part b) shows the
intermediate network obtained at the end of Step 2 and containing the opened arcs that
could be included in paths passing through (4, 6). Part c) shows the network obtained at
the end of Step 3 indicating (solid lines), in opposite direction with negative fixed cost,
the currently open arcs carrying the same subset of commodities as (4, 6). Dashed lines
represent closed arcs with their fixed costs. Part d)displays the neighbour design after
the path {(2, 4), (4, 6)} has been replaced by the path {(2, 3), (3, 6)}, both obtained using
Algorithm 6 on the network of Part c). The design illustrated in Part d) satisfies the
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design-balanced requirements.

3.3.2 Candidate List

The neighbourhood introduced above may be very large, dimensions increasing rapidly
with the size of the network. On one hand, the number of open arcs, possible candidates
to be closed, could be large and, on the other hand, for each such arc, the number of
possible cycles may be large as well. Moreover, a CMCF problem is solved to evaluate
each contemplated neighbour and verify its flow-distribution feasibility. Exploring the
entire neighbourhood could therefore rapidly become prohibitive.

We therefore select a restricted set of ν1+ν2+ν3 promising candidates, i.e.,“expensive”
arcs in terms of the quantity of flow moved relative to the cost of including and using
the arc in the design. The set is built applying sequentially the following criteria:

• Fixed cost. We aim for a good balance between the fixed cost of the arc and the
amount of flow it carries and define the |A|-dimensional vector

ξ1
ij =

{
fij∑
k x̃k

ij
, if

∑
k x̃

k
ij > 0

0, otherwise.

A large ξ1 value indicates a low usage of the arc given the fixed cost paid. We
therefore sort the arcs in descending order of ξ1 and add the first ν1 to the candidate
list.

• Capacity. We desire a good level of used capacity with respect to the flow moving
on the arc, and define the |A|-dimensional vector

ξ2
ij =

{ ∑
k x̃k

ij

uij
, if

∑
k x̃

k
ij > 0

0, otherwise.

The most promising candidates are those showing small ξ2 values indicating that
little of the arc capacity is used. Thus, we sort arcs in ascending order of ξ2 and
select the first ν2 arcs.

• Unit price. We aim for a low level of effective unit price for the flows on the arcs,
given the fixed cost of the arcs. Define the |A|-dimensional vector

ξ3
ij =

{
fij+

∑
k ckij x̃

k
ij

uij
, if

∑
k x̃

k
ij > 0

0, otherwise.

Similarly to the first criterion, large ξ3 values indicate arcs where we pay a high total
cost for the flow moved relative to their capacity. We thus sort arcs in descending
order of ξ3 and select the first ν3 arcs.
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Figure 4: Illustration of a cycle move identification

17

MIP-Based Tabu Search for Service Network Design with Design-Balanced Requirements

CIRRELT-2011-68



3.4 TS intensification - New feasible solution

The definition of the intensification phase of the TS algorithm is also motivated by the
idea of combining exact and heuristic methods. We desire to intensify the search around
a set of good attributes identified during the previous neighbourhood-exploration phase,
reflected in the frequency memory F ts compiled by Algorithm 4, as well as during the
initial lower-bound computation by the cutting-plane Algorithm 2.

This set is used to reduce the size of the CMND problem, which is then solved by using
a MIP exact algorithm. The reduction is obtained by fixing to 1 (opening) a number of
arcs in the current network displaying the good attributes, and keeping all the remaining
arcs free for the MIP method. The solution of the reduced CMND becomes then the
starting point of the next neighbourhood-exploration phase.

Algorithm 7 illustrates the main steps of this α1-Fixing heuristic. The procedure is
similar to the α0-fixing heuristic of Section 3.2, except for the utilization of the frequency
memory F ts instead of F .

Algorithm 7 α1-Fixing Heuristic

Require: L,R compiled by the cutting-plane Algorithm 2
Require: F ts compiled by the TS Algorithm 4
1: Ã = ∅

2: Selection step based on F ts

3: Add to Ã all arcs with frequency ≥ α1Nbts

4: Connectivity step based on F ts + L
5: Add arcs to Ã to ensure each transshipment node has at least one incoming and

one outgoing arc

6: Feasibility step based on R
7: Add arcs to Ã to provide sufficient capacity for flows out and into demand and

supply nodes, respectively.

4 Computational results

The objectives of the computational experiments are threefold: 1) to test the effectiveness
of the cutting-plane procedure, developed originally for the general network design prob-
lem, in the context of DBCMND; 2) to evaluate the quality of the initial feasible solutions
obtained by the α0-fixing heuristic; and 3) to evaluate the performance of the MIP-TS
matheuristic and its capability to identify high-quality feasible solutions compared to the
best existing solution methods. We actually compare our results with those obtained by
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the meta-heuristic of Pedersen et al. (2009), as well as to the best solution obtained by
the Branch-and-Cut method (B&C) of CPLEX (version 12). A computational time limit
of one hour was imposed to all methods.

The procedures were coded in C++. The LP relaxations within the cutting-plane
procedure were solved to optimality using the option Dualopt of CPLEX (version 12).
All the restrictions DBCMNDÃ were solved using the B&C of CPLEX with a time limit
of one hour and a node limit of 100. Experiments were performed on a network of
Dual-Core AMD Opteron (using a single thread) workstations with 8 Gigabytes of RAM
operating under SunOS 5.1.

The performance of the proposed matheuristic is evaluated on a set of network design
instances with various characteristics used in several papers (Ghamlouche et al., 2003;
Pedersen et al., 2009; Chouman et al., 2011) and described in Crainic et al. (2001).
These problem instances, identified as Sets C and R, consist of general transshipment
networks with one commodity per origin-destination pair and no parallel arcs. Positive
transportation cost, fixed cost, and capacity are associated with each arc. Note that the
transportation costs on any given arc are the same for all commodities.

Set C consists of 43 instances characterized by their number of nodes, arcs, and
commodities, noted |N |, |A|, and |K|, respectively. Two additional letters are used to
characterize the fixed cost level, “F” for high and “V” for low, relatively to the trans-
portation cost, and the capacity level, “T” for tight and “L” for loose, compared to the
total demand. The set of instances R consists of 81 problems, nine sets of nine instances
each. Each set is characterized by the same number of nodes, arcs, and commodities,
instances displaying various levels of fixed cost and capacity ratios. Thus, “F01” for low,
“F05” for medium, and “F10” for high, are used to qualify the importance of the fixed
cost with respect to the transportation cost, while “C1” for loose, “C2” for medium, and
“C8” for tight, to qualify the tightness of the capacity compared to the total demand.
To facilitate comparisons, we present the results for the 24 C instances and the 54 R
instances used in Pedersen et al. (2009). These are medium to large-size instances with
various levels of cost and capacity ratios.

Our primary measure of performance is the gap between the reference solution z∗,
which is either the overall best feasible solution or the initial solution obtained by the
α0-Fixing procedure, and a given solution z computed as:

∆z∗/z =
100(z∗ − z)

z∗
(4.1)

In order not to overload the paper, we report average results over the C and R instances.
Detailed results for each instance are included in the Appendix. The next subsection
addresses the first two objectives stated above, while the following subsection is dedicated
to the third.
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4.1 Evaluation of the lower bound and first feasible solution
procedures

The scope of this section is to analyze the performance of the cutting-plane method in
the context of the DBCMND. We aim to examine, in particular, the effectiveness of this
algorithm in improving the lower bound of the DBCMND while compiling characteristics
and attributes of good solutions. We also aim to evaluate the performance of the α0-fixing
in identifying high-quality initial feasible solutions based on the informations compiled
during the computations of the cutting-plane algorithm.

Table 1 shows the results obtained by the cutting-plane algorithm for the C and R
sets averaged according to the problem dimensions in terms of numbers of nodes, arcs,
and commodities. For each such group of instances (Column Description), the table
indicates the number of instances in the group (Column Nb), the gap between the lower
bound obtained by the cutting-plane and the first LP bound (Column GapLP), the total
number of cuts generated in the cutting-plane (Column Cuts), and the total number of
LP solved (Column NbLP).

Set C
Description Nb GapLP Cuts NbLP

20,230,200 (4) 30.85% 3148 20
20,300,200 (4) 21.59% 2370 22
30,520,100 (4) 21.10% 2003 23
30,520,400 (4) 16.18% 3596 13
30,700,100 (4) 18.99% 1770 30
30,700,400 (4) 18.70% 3953 12
Average (24) 21.23% 2806 20

Set R
Description Nb GapLP Cuts NbLP

20,220,40 (9) 38.87% 1107 25
20,220,100 (9) 33.60% 1693 29
20,220,200 (9) 28.87% 2072 24
20,320,40 (9) 45.04% 1888 33
20,320,100 (9) 39.62% 2616 21
20,320,200 (9) 34.66% 3287 19
Average (54) 36.78% 2111 25

Table 1: Evaluation of the Cutting-Plane Algorithm

The results show clearly the effectiveness of the cutting-plane algorithm in improving
the quality of the LP bounds. The overall averaged gap improvement for the C instances
reaches 21.23%, while it is 36.78% for the R instance set. Although the average numbers
of cuts generated and LP solved may seem relatively high, the associated computational
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effort is low. We actually observe that very short solving times for the first LP, with
averages of 5.75 and 2.45 CPU seconds on average for the C and R sets, respectively.
We also observe that the time required for the cut generations is almost negligible, while
solving the LP relaxation after each round of cut generation is more efficient than for the
first LP, because it consists in re-optimizing from a previous optimal basis (the simplex
method of CPLEX is applied with the Dualopt option).

These results support our claim that the cutting-plane algorithm is effective in improv-
ing the bounds within a short computing effort, even when repetitively solving different
and LP models: 20 and 25 on average for the C and R instance sets, respectively. As
discussed in Section 3.2, these multiple solutions of LP models provide the means to
compile the memories that are then used in the α0-fixing heuristic to guide the search
towards good initial feasible solutions.

The value of the parameters in the implementation of the α0-fixing procedure are
α0 = 0.45 and β = 0.3. These values were selected based on computational experiments
where, with the objective of including a suitable number of arcs in the network, the
median values of the F and L memories were first computed, then several values around
these medians were tested.

Table 2 displays the results for all C and R instances averaged according to problem
dimensions. In addition to the Description and Nb columns, Columns FS/TS and
FS/CPLEX display the gaps between the initial feasible solution, FS, found by the α0-
fixing heuristic and the solutions obtained by the Tabu Search of Pedersen et al. (2009)
and CPLEX, respectively. Columns FS/LB CPLEX and FS/LB indicate the gap of the
initial solution FS with respect to the best lower bound found by the B&C of CPLEX
and the lower bound found by the cutting-plane, respectively.

The negative values in the FS/TS column indicate that the α0-fixing heuristic outper-
forms the current best heuristic for the the DBCMND, namely the Tabu Search method
of Pedersen et al. (2009). The results also show that the improvement is more impor-
tant for difficult problems characterized by large number of commodities. Moreover, the
proposed heuristic is also competitive in solution quality with the best feasible solution
found by CPLEX after one hour of CPU time, with overall differences as low as 0.33%
and 0.54% for the C and R sets, respectively.

To sum up these comparative results, the proposed α0-fixing heuristic yields initial
feasible solutions that improve over the solutions obtained by the Tabu Search procedure
of Pedersen et al. (2009) and the state-of-the-art B&C of CPLEX for 22 and 8 of the 24
instances of Set C, respectively. The figures for the 54 instances of Set R are 46 and
11, respectively. This performance appears even more remarkable when comparing the
computing efforts (one hour was given to CPLEX).
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Set C
Description Nb FS/TS FS/CPLEX FS/LB CPLEX FS/LB

20,230,200 (4) -4.08% 0.66% 4.80% 5.12%
20,300,200 (4) -3.37% 1.58% 4.19% 4.57%
30,520,100 (4) 0.00% 2.87% 6.05% 6.20%
30,520,400 (4) -4.01% -0.11% 2.52% 1.98%
30,700,100 (4) -1.66% 1.29% 2.96% 3.25%
30,700,400 (4) -7.32% -1.11% 2.63% 2.60%
Average (24) -3.27% 0.33% 5.13% 5.51%

Set R
Description Nb FS/TS FS/CPLEX FS/LB CPLEX FS/LB

20,220,40 (9) -1.32% 3.19% 4.25% 7.27%
20,220,100 (9) -3.26% 1.22% 4.82% 5.51%
20,220,200 (9) -5.51% -0.37% 2.70% 2.91%
20,320,40 (9) -1.37% 3.98% 6.69% 8.45%
20,320,100 (9) -3.00% 1.61% 6.91% 7.36%
20,320,200 (9) -4.87% -6.40% 4.73% 4.34%
Average (54) -3.22% 0.54% 5.02% 5.97%

Table 2: Initial solution comparisons

4.2 Evaluation of the MIP-TS matheuristic

We present comparative results for the MIP-TS matheuristic, the Tabu Search meta-
heuristic of Pedersen et al. (2009), and the B&C of CPLEX, version 12.

The value of the parameters used in the implementation of the proposed MIP-TS
matheiristic are α1 = 0.85, NbIterTS = 10, NbIterProcess = 10, and ν1 = ν2 = ν3 =
7. The α1 value was selected with the goal of fixing about a third of the arcs in the α1-
fixing heuristic. A preliminary computational study targeted ν1, ν2, and ν3, and several
values and combinations thereof, ranging from 0 to 20, were examined. Several value
combinations performed equally well, the value 7 being representative of this lot.

A random factor is associated to the tabu tenure of closed arcs in the TS meta-
heuristic (Algorithm 4), generated between [1, 5] using the srand() function of C++. To
account for this randomness and its impact on the stability of the proposed matheuristic,
we run five repetitions for each instance (detailed results are presented in the Appendix).
We observe a very high consistency of results and stability of the algorithm. The average
standard deviation for the C instances is 0.03%, 18 instances out of the 24 displaying
a standard deviation equal to 0. The figures for the instances of Set R are 0.04% and
32 out of 54, respectively. Based on this consistency and accuracy, we use the average
solution, noted BS, in all the tables and comparisons that follow.
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Obviously, we are expecting that the proposed MIP-TS algorithm outperforms the
TS of Pedersen et al. (2009) and the B&C of CPLEX because of the performance of
the initial feasible solution discussed in the previous subsection. Consequently, the aim
here is to evaluate the performance of the other components of the method, namely its
neighbourhood exploration and intensification phases, given the same time limit as the
other two methods.

Table 3 displays the results for the C and R instances averaged according to problem
dimensions. Columns Description and Nb have the same meaning as in previous ta-
bles. Columns BS/TS, BS/CPLEX, and BS/FS display the gaps between the average
solution BS found by the proposed matheuristic and the solution obtained by Pedersen
et al. (2009), CPLEX solution, and the initial-solution procedure, respectively. Columns
BS/LB CPLEX and BS/LB indicate the gaps BS with respect to the lower bound of
the B&C of CPLEX after one hour of CPU time and the lower bound of the cutting-plane
procedure, respectively.

Set C
Description Nb BS/TS BS/CPLEX BS/FS BS/LB CPLEX BS/LB

20,230,200 (4) -4.82% -0.06% -0.72% 4.11% 4.44%
20,300,200 (4) -4.02% 0.97% -0.63% 3.60% 3.97%
30,520,100 (4) -1.80% 1.14% -1.82% 4.40% 4.55%
30,520,400 (4) -4.01% -0.11% 0.00% 2.52% 1.98%
30,700,100 (4) -2.33% 0.64% -0.66% 2.33% 2.62%
30,700,400 (4) -7.32% -1.11% 0.00% 2.63% 2.60%
Average (24) -4.13% -0.56% -0.87% 4.34% 4.73%

Set R
Description Nb BS/TS BS/CPLEX BS/FS BS/LB CPLEX BS/LB

20,220,40 (9) -2.85% 1.71% -1.56% 2.80% 5.90%
20,220,100 (9) -3.46% 1.03% -0.19% 4.65% 5.33%
20,220,200 (9) -5.59% -0.45% -0.08% 2.62% 2.83%
20,320,40 (9) -3.46% 1.96% -2.23% 4.70% 6.49%
20,320,100 (9) -3.86% 0.81% -0.82% 6.16% 6.61%
20,320,200 (9) -4.97% -6.49% -0.10% 4.64% 4.24%
Average (54) -4.03% -0.24% -0.83% 4.26% 5.23%

Table 3: Comparative results aggregated with respect to problem dimension

The results indicate clearly the superiority of the proposed MIP-TS matheuristic,
relative to all the other solutions, in identifying high-quality feasible solutions. It signif-
icantly outperforms the meta-heuristic of Pedersen et al. (2009), improving the results
for all C instances and for 50 out of the 54 R instances. Moreover, the improvement gap
increases for difficult problems characterized by large number of commodities.

The proposed method also compares very well with B&C of CPLEX. It identifies
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better solutions for 9 of the 24 C instances and for 14 of the 54 R instances. It is
very competitive for instances characterized by small to medium number of commodi-
ties, while outperforming CPLEX when the number of commodities increases. Indeed,
CPLEX cannot find feasible solutions for 4 out of the 8 instances with 400 commodities,
while the method we propose provides solutions with gaps ranging from 2.28% to 4.02%.
Notice that only instances fro which CPLEX found a feasible solution are included in
the figures of Column BS/CPLEX, which underestimates the performance of the pro-
posed matheuristic. We therefore expect this new method to be the best when addressing
real-world problems (within the dimensions experimented with, of course).

The importance of the neighbourhood exploration and intensification phases is re-
flected in the negative figures of Column BS/FS indicating the improvement these two
phases brought to BS over the initial solution FS. More in detail, the initial solution is
improved for 11 out of the 24 C instances, where 8 were identified by the intensification
phase and 3 through the exploration phase. For the 54 R instances, initial solutions
were improved for 31 instances, 16 achieved by the intensification phase and 15 through
the exploration phase. Notice that the 0% improvement for the instances with 400 com-
modities is due to the limited time remaining, if any, for these phase after running the
α0-fixing heuristic.

Set C
Description Nb BS/TS BS/CPLEX BS/FS BS/LB CPLEX BS/LB
V L (6) -3.17% 0.18% -0.63% 2.58% 2.91%
V T (6) -3.03% 0.15% -0.30% 1.49% 1.73%
F L (6) -6.16% 1.09% -0.83% 5.14% 4.90%
F T (6) -3.82% 0.49% -0.79% 3.84% 3.90%

Average (24) -4.13% -0.56% -0.87% 4.34% 4.73%

Set R
Description Nb BS/TS BS/CPLEX BS/FS BS/LB CPLEX BS/LB

C1 (6) -1.36% 0.48% -0.09% 0.79% 1.37%
F01 C2 (6) -1.95% 0.53% -1.94% 0.99% 1.59%

C8 (6) -2.61% 0.01% -0.49% 1.61% 2.62%

C1 (6) -1.84% 0.73% -2.36% 5.81% 7.39%
F05 C2 (6) -3.80% -1.53% -0.38% 4.69% 6.14%

C8 (6) -6.30% -0.64% -0.20% 3.15% 3.88%

C1 (6) -2.91% 0.63% -0.63% 8.99% 10.61%
F10 C2 (6) -5.93% -1.68% -0.79% 7.13% 7.98%

C8 (6) -9.55% -0.69% -0.60% 5.20% 5.51%
Average (54) -4.03% -0.24% -0.83% 4.26% 5.23%

Table 4: Comparative results aggregated with respect to fixed cost and capacity ratios
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Table 4 displays the same results averaged according to the different levels of fixed cost
and capacity ratios. These figures indicate that the performance of the proposed MIP-
TS method increases with the problem difficulty. Indeed, he gaps of the best solution
computed with respect to the lower bounds provided by CPLEX and the cutting-plane
procedure (last two columns) are smaller when, for the same level of cost ratio, the level
of the capacity ratios increases from loose (C1) to tight (C8). We take these results to
support the claim that the proposed MIP-TS matheuristic is suitable for hard real-world
problems characterized by large size and limited resources.

5 Conclusions and Perspectives

We introduced a new MIP-TS matheuristic for the design-balanced capacitated mul-
ticommodity network design, one of the premier formulations for the service network
design problem with asset management concerns increasingly faced by carriers within
their tactical planning processesd.

The matheuristic combines a cutting-plane procedure efficiently computing tight lower
bounds and a Tabu Search meta-heuristic exploiting a new cycle-based neighbourhood
satisfying the design-balanced requirements. Learning mechanisms embedded into each of
these procedures help in fixing variables and identifying good starting and intensification
solutions.

An extensive computational study first showed that the cutting-plane procedure, ini-
tially proposed for the fixed-charge, multicommodity capacitated network design problem
is also very efficient for the special structure of DBCMND, cutset-based inequalities in
particular.

This cutting-plane procedure, together with appropriate learning mechanisms and
variable-fixing techniques, was also shown to yield an efficient algorithm to identify high-
quality feasible solutions, which may then serve as the starting point for improvement
meta-heuristics. This capability of the proposed method is by itself remarkable as iden-
tifying feasible solutions to the DBCMND was shown previously to be NP-Hard.

Numerical experiments also shown the efficiency of the proposed design-balanced cycle
neighbourhood exploration and the intensification mechanisms in improving already good
initial feasible solutions. These combined features provided the means for the proposed
MIP-TS matheuristic to outperform existing solution methods in solution quality and
computational effort. It currently stands as the best heuristic for the DBCMND.

The fundamental ideas on which the new matheuristic is built are general in nature
and open interesting research perspectives in hybridizing mathematical programming and
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meta-heuristics for network design problems. We are currently following some of these
avenues, including adapting these ideas for other hard transportation planning problems,
such as the management of power-unit fleets (e.g., locomotives in rail transportation).
We plan to report on these developments in the near future.
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Appendix

Tables 5 and 6 display the detailed results for the instance of sets C and R, respectively.
For each instance, the respective table gives its description, the best feasible solution
obtained by the Tabu Search of Pedersen et al. (2009) (Column TS), the best feasible
solution and the lower bound obtained by the B&C of CPLEX (Columns CPLEX and
LB CPLEX, respectively), the initial feasible solution obtained by the α0-fixing heuristic
(Column FS), the lower bound and the number of cuts generated by the cutting-plane
algorithm (Columns LOB and Cuts, respectively), as well as, for the five repetitions
of the proposed MIP-TS matheuristic, the average solution, best solution, and standard
deviation (Columns AverBS, BestBS, and StdBS, respectively).

Instance TS CPLEX MIP-TS
CPLEX LB CPLEX FS LB Cuts AverBS BestBS StdBS

C20,230,200,V,L 102919 98512 94305 98421 93774 3261 98421 98421 0
C20,230,200,F,L 150764 140843 134258 141744 134043 3476 141744 141744 0
C20,230,200,V,T 103371 101089 98754 103103 98383 2756 101258 101244 23
C20,230,200,F,T 149942 142452 134792 142638 134420 3098 141130 141130 0
C20,300,200,V,L 82533 77570 75583 80831 75267 2226 78953 78576 299
C20,300,200,F,L 128757 119945 115391 121302 114762 2816 121106 121106 0
C20,300,200,V,T 78571 76350 75832 76545 75507 2090 76545 76545 0
C20,300,200,F,T 116338 112358 108338 113412 108154 2348 113412 113412 0
C30,520,100,V,L 55981 54810 54096 55894 53909 1553 55268 55159 75
C30,520,100,F,L 104533 99717 93542 106078 93620 3181 101603 101129 265
C30,520,100,V,T 54493 53034 52734 53224 52493 1048 53224 53224 0
C30,520,100,F,T 105167 102919 97576 106324 97684 2231 104491 104426 89
C30,520,400,V,L 119735 115487 113313 115477 113295 3259 115477 115477 0
C30,520,400,F,L 162360 na 146508 153943 149754 4199 153943 153943 0
C30,520,400,V,T 120421 117214 115741 116959 115738 2909 116959 116959 0
C30,520,400,F,T 161978 na 152245 155863 152317 4016 155863 155863 0
C30,700,100,V,L 49429 48693 48538 49268 48187 1428 49139 49139 0
C30,700,100,F,L 63889 61430 59512 62267 59442 2523 62000 62000 0
C30,700,100,V,T 48202 46750 46224 46878 46101 1450 46875 46865 6
C30,700,100,F,T 58204 56337 55085 57701 55035 1677 56599 56599 0
C30,700,400,V,L 103932 101866 97809 99588 97814 4148 99588 99588 0
C30,700,400,F,L 157043 na 133424 139088 133503 4856 139088 139088 0
C30,700,400,V,T 103085 97838 95784 97901 95807 3152 97901 97901 0
C30,700,400,F,T 141917 na 129688 132999 129717 3654 132999 132999 0

Table 5: Results for the 24 instances of Set C
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Instance TS CPLEX MIP-TS
CPLEX LB CPLEX FS LB Cuts AverBS BestBS StdBS

r13,F01,C1 147837 147349 147349 148494 147089 641 148494 148494 0
r13,F05,C1 281668 277944 273851 298494 260671 1838 282843 281087 1603
r13,F10,C1 404434 385396 385358 417877 358674 2368 403596 403596 0
r13,F01,C2 159852 155887 155881 155887 154156 642 155887 155887 0
r13,F05,C2 311209 295180 295152 303859 280920 1172 302536 301729 737
r13,F10,C2 470034 434383 413509 454625 397156 1573 442505 442410 130
r13,F01,C8 225339 218787 218765 224632 213542 292 221344 219975 1254
r13,F05,C8 512027 491804 481358 497877 471641 603 497435 497325 247
r13,F10,C8 875984 782049 770345 798947 749648 835 796903 792096 2891
r14,F01,C1 431562 422709 422667 423538 418358 1313 423538 423538 0
r14,F05,C1 811102 790716 754449 808897 744067 2727 801872 797767 2295
r14,F10,C1 1193950 1145783 1043786 1210290 1032480 3514 1207090 1207090 0
r14,F01,C2 465762 452591 452546 455054 449318 1036 455054 455054 0
r14,F05,C2 942678 884673 851889 890673 845183 1734 890673 890673 0
r14,F10,C2 1401880 1317261 1228554 1308890 1234430 2312 1308890 1308890 0
r14,F01,C8 720882 702781 698606 706661 692517 572 706661 706661 0
r14,F05,C8 1795650 1695949 1642525 1708510 1628010 1044 1708510 1708510 0
r14,F10,C8 2997290 2787042 2636190 2824950 2630360 982 2807808 2804980 6324
r15,F01,C1 1039440 1017740 1016255 1020910 1008050 1778 1020910 1020910 0
r15,F05,C1 2170310 2024138 1946953 2028140 1943490 3644 2023750 2023750 0
r15,F10,C1 3194270 3028908 2826043 3003990 2819330 4427 3003990 3003990 0
r15,F01,C2 1205790 1176047 1167059 1182430 1163080 1455 1177802 1176990 1047
r15,F05,C2 2698680 2681189 2467568 2581910 2476600 2497 2581910 2581910 0
r15,F10,C2 4447950 4125923 3816835 4126150 3840130 2700 4121320 4121320 0
r15,F01,C8 2472860 2401176 2391424 2404240 2379310 567 2403970 2403970 0
r15,F05,C8 6067350 5795320 5794821 5797170 5767040 780 5797170 5797170 0
r15,F10,C8 10263600 9105014 9104291 9115830 9082920 804 9115830 9115830 0
r16,F01,C1 142692 140082 140077 141172 139829 1039 141095 140787 172
r16,F05,C1 261775 251554 244299 277712 237076 3110 261049 261049 0
r16,F10,C1 374819 348805 325972 349476 320035 3712 349476 349476 0
r16,F01,C2 145266 142381 142367 159168 141588 1001 143840 143689 161
r16,F05,C2 277307 259639 255356 278575 246361 2355 274751 271795 1747
r16,F10,C2 391386 368753 347346 380062 338684 2648 378268 376019 1257
r16,F01,C8 187176 180132 178560 183475 174549 520 181756 181216 305
r16,F05,C8 423320 387580 376726 393541 369985 1236 393000 392189 741
r16,F10,C8 649121 599513 572014 610267 563050 1371 610267 610267 0
r17,F01,C1 374016 364784 364750 368841 361737 2014 368280 367439 768
r17,F05,C1 718135 693562 637970 717089 635288 4181 709084 707822 1729
r17,F10,C1 1041450 1006780 875442 1045940 872746 5351 1045940 1045940 0
r17,F01,C2 393608 382593 382555 388625 379451 1589 386383 385807 322
r17,F05,C2 786198 739859 706943 744146 702961 3179 740928 740928 0
r17,F10,C2 1162290 1138826 1002412 1126380 999737 3509 1110792 1105240 3104
r17,F01,C8 539817 530029 520755 535474 518847 792 535474 535474 0
r17,F05,C8 1348750 1229810 1188594 1241990 1185210 1381 1230106 1229770 307
r17,F10,C8 2227780 2024019 1902855 2094330 1895210 1544 2038944 2036760 2089
r18,F01,C1 864425 846152 831956 848636 828063 2922 845748 845748 0
r18,F05,C1 1640200 1689474 1526694 1615730 1523250 5930 1615730 1615730 0
r18,F10,C1 2399230 2484100 2123023 2280820 2122420 6570 2280820 2280820 0
r18,F01,C2 962402 942674 924095 947608 923085 2410 947447 947131 227
r18,F05,C2 1958160 2178442 1809148 1909340 1812830 3939 1909340 1909340 0
r18,F10,C2 2986000 3123686 2676729 2810300 2678790 3955 2810300 2810300 0
r18,F01,C8 1617320 1593899 1501925 1545030 1504650 1153 1537320 1537320 0
r18,F05,C8 4268580 4243216 3792924 3961280 3829060 1377 3961280 3961280 0
r18,F10,C8 7440780 7238683 6043152 6618400 6243990 1329 6618400 6618400 0

Table 6: Results for the 54 instances of Set R
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Tables 7 and 8 display the detailed comparative results for instances in sets C and R,
respectively. Columns BS/TS, BS/CPLEX, and BS/FS correspond to the improvement
gaps of the average solution, noted BS, with respect to the Tabu Search of Pedersen et al.
(2009), CPLEX, and the initial solution provided by the cutting-plane-based procedure
we proposed, respectively (computed relative to BS). The last two columns display the
gaps between BS and the lower bounds computed by CPLEX and the cutting-plane
procedure, respectively.

Instance BS/TS BS/CPLEX BS/FS BS/LB CPLEX BS/LB
C20,230,200,V,L -4.57% -0.09% 0.00% 4.18% 4.72%
C20,230,200,F,L -6.36% 0.64% 0.00% 5.28% 5.43%
C20,230,200,V,T -2.09% 0.17% -1.82% 2.47% 2.84%
C20,230,200,F,T -6.24% -0.94% -1.07% 4.49% 4.75%
C20,300,200,V,L -4.53% 1.75% -2.38% 4.27% 4.67%
C20,300,200,F,L -6.32% 0.96% -0.16% 4.72% 5.24%
C20,300,200,V,T -2.65% 0.26% 0.00% 0.93% 1.36%
C20,300,200,F,T -2.58% 0.93% 0.00% 4.47% 4.64%
C30,520,100,V,L -1.29% 0.83% -1.13% 2.12% 2.46%
C30,520,100,F,L -2.88% 1.86% -4.40% 7.93% 7.86%
C30,520,100,V,T -2.38% 0.36% 0.00% 0.92% 1.37%
C30,520,100,F,T -0.65% 1.50% -1.75% 6.62% 6.51%
C30,520,400,V,L -3.69% -0.01% 0.00% 1.87% 1.89%
C30,520,400,F,L -5.47% na 0.00% 4.83% 2.72%
C30,520,400,V,T -2.96% -0.22% 0.00% 1.04% 1.04%
C30,520,400,F,T -3.92% na 0.00% 2.32% 2.28%
C30,700,100,V,L -0.59% 0.91% -0.26% 1.22% 1.94%
C30,700,100,F,L -3.05% 0.92% -0.43% 4.01% 4.13%
C30,700,100,V,T -2.83% 0.27% -0.01% 1.39% 1.65%
C30,700,100,F,T -2.84% 0.46% -1.95% 2.67% 2.76%
C30,700,400,V,L -4.36% -2.29% 0.00% 1.79% 1.78%
C30,700,400,F,L -12.91% na 0.00% 4.07% 4.02%
C30,700,400,V,T -5.30% 0.06% 0.00% 2.16% 2.14%
C30,700,400,F,T -6.71% na 0.00% 2.49% 2.47%

Average -4.13% -0.56% -0.87% 4.34% 4.73%

Table 7: Improvement with respect to other solutions, C instances
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Instance BS/TS BS/CPLEX BS/FS BS/LB CPLEX BS/LB
r13,F01,C1 0.44% 0.77% 0.00% 0.77% 0.95%
r13,F05,C1 0.42% 1.73% -5.53% 3.18% 7.84%
r13,F10,C1 -0.21% 4.51% -3.54% 4.52% 11.13%
r13,F01,C2 -2.54% 0.00% 0.00% 0.00% 1.11%
r13,F05,C2 -2.87% 2.43% -0.44% 2.44% 7.14%
r13,F10,C2 -6.22% 1.84% -2.74% 6.55% 10.25%
r13,F01,C8 -1.80% 1.16% -1.49% 1.17% 3.53%
r13,F05,C8 -2.93% 1.13% -0.09% 3.23% 5.19%
r13,F10,C8 -9.92% 1.86% -0.26% 3.33% 5.93%
r14,F01,C1 -1.89% 0.20% 0.00% 0.21% 1.22%
r14,F05,C1 -1.15% 1.39% -0.88% 5.91% 7.21%
r14,F10,C1 1.09% 5.08% -0.27% 13.53% 14.47%
r14,F01,C2 -2.35% 0.54% 0.00% 0.55% 1.26%
r14,F05,C2 -5.84% 0.67% 0.00% 4.35% 5.11%
r14,F10,C2 -7.10% -0.64% 0.00% 6.14% 5.69%
r14,F01,C8 -2.01% 0.55% 0.00% 1.14% 2.00%
r14,F05,C8 -5.10% 0.74% 0.00% 3.86% 4.71%
r14,F10,C8 -6.75% 0.74% -0.61% 6.11% 6.32%
r15,F01,C1 -1.82% 0.31% 0.00% 0.46% 1.26%
r15,F05,C1 -7.24% -0.02% -0.22% 3.79% 3.97%
r15,F10,C1 -6.33% -0.83% 0.00% 5.92% 6.15%
r15,F01,C2 -2.38% 0.15% -0.39% 0.91% 1.25%
r15,F05,C2 -4.52% -3.85% 0.00% 4.43% 4.08%
r15,F10,C2 -7.93% -0.11% -0.12% 7.39% 6.82%
r15,F01,C8 -2.87% 0.12% -0.01% 0.52% 1.03%
r15,F05,C8 -4.66% 0.03% 0.00% 0.04% 0.52%
r15,F10,C8 -12.59% 0.12% 0.00% 0.13% 0.36%
r16,F01,C1 -1.13% 0.72% -0.05% 0.72% 0.90%
r16,F05,C1 -0.28% 3.64% -6.38% 6.42% 9.18%
r16,F10,C1 -7.25% 0.19% 0.00% 6.73% 8.42%
r16,F01,C2 -0.99% 1.01% -10.66% 1.02% 1.57%
r16,F05,C2 -0.93% 5.50% -1.39% 7.06% 10.33%
r16,F10,C2 -3.47% 2.52% -0.47% 8.17% 10.46%
r16,F01,C8 -2.98% 0.89% -0.95% 1.76% 3.97%
r16,F05,C8 -7.71% 1.38% -0.14% 4.14% 5.86%
r16,F10,C8 -6.37% 1.76% 0.00% 6.27% 7.74%
r17,F01,C1 -1.56% 0.95% -0.15% 0.96% 1.78%
r17,F05,C1 -1.28% 2.19% -1.13% 10.03% 10.41%
r17,F10,C1 0.43% 3.74% 0.00% 16.30% 16.56%
r17,F01,C2 -1.87% 0.98% -0.58% 0.99% 1.79%
r17,F05,C2 -6.11% 0.14% -0.43% 4.59% 5.12%
r17,F10,C2 -4.64% -2.52% -1.40% 9.76% 10.00%
r17,F01,C8 -0.81% 1.02% 0.00% 2.75% 3.11%
r17,F05,C8 -9.65% 0.02% -0.97% 3.37% 3.65%
r17,F10,C8 -9.26% 0.73% -2.72% 6.67% 7.05%
r18,F01,C1 -2.21% -0.05% -0.34% 1.63% 2.09%
r18,F05,C1 -1.51% -4.56% 0.00% 5.51% 5.72%
r18,F10,C1 -5.19% -8.91% 0.00% 6.92% 6.94%
r18,F01,C2 -1.58% 0.50% -0.02% 2.46% 2.57%
r18,F05,C2 -2.56% -14.09% 0.00% 5.25% 5.05%
r18,F10,C2 -6.25% -11.15% 0.00% 4.75% 4.68%
r18,F01,C8 -5.20% -3.68% -0.50% 2.30% 2.13%
r18,F05,C8 -7.76% -7.12% 0.00% 4.25% 3.34%
r18,F10,C8 -12.43% -9.37% 0.00% 8.69% 5.66%

Average -4.03% -0.24% -0.83% 4.26% 5.23%

Table 8: Improvement with respect to other solutions, R instances
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