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Abstract. In this paper we solve the cell formation problem with three different hybrids of 
metaheuristic methods. The first method is an implementation of the simulated annealing 
method (SA) using different neighborhoods of the current solution. The solution generated 
at each iteration is obtained by using a diversification of the current solution combined with 
an intensification to improve this solution. Different diversification and intensification 
strategies are combined to generate different neighborhoods. The second method is an 
adaptive simulated annealing method (ASA) where the neighborhood used at each 
iteration is selected randomly among the four neighborhood identified above. The 
procedure is adaptive in the sense that the probabilities are updated during the process 
according to the success of using the different neighborhoods. A third set of methods is 
derived by modifying the hybrid method (HM) combining a local search algorithm (LSA) 
with a genetic algorithm (GA) introduced in (Elbenani et al., 2011). All the variants perform 
well to deal with the 35 benchmark cell formation problems commonly used in the 
literature, but the dominating one is a modified HM followed by a SA method afterward. It 
allows improving the best-known solution of 2 of the 35 benchmarked problems used in 
the literature, reaching the best-known solution of 32 others, and missing the best-known 
solution of the other one by a factor of 0.016%. 
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1 INTRODUCTION 

The Group Technology is an approach often used in manufacturing and engineering 

management taking advantage of similarities in production design and processes. In this 

context, the Cellular Manufacturing refers to maximize the overall efficiency of a 

production system by grouping together machines providing service to similar parts into a 

subsystem (denoted cell). The corresponding problem is formulated as a (Machine-Part) 

Cell Formation Problem. As a consequence, the interactions of the machines and the parts 

within a cell are maximized, and those between machines and parts of other cells are 

reduced as much as possible. 

The cell formation problem is a NP hard optimization problem (Dimopoulos and Zalzala, 

2000). For this reason, several heuristic methods have been developed over the last forty 

years to generate good solutions in reasonable computational time. To learn more about the 

different methods, we refer the reader to the survey papers proposed in (Goncalves and 

Resende, 2004), and in (Papaioannou and Wilson, 2010) where the authors survey the 

different techniques classified as follows:  

• Cluster analysis: techniques for recognizing structure in a data set 

• Graph partitioning approaches where a graph or a network representation is used to 

formulate the cell formation problem  

• Mathematical programming methods: the cell formation problem is formulated like 

a non linear or linear integer programming problem 

• Heuristic, metaheuristic and hybrid metaheuristic: The most popular methods are: 

simulated annealing, tabu search, genetic algorithms, colony optimization, particle 

swarm optimization, neural networks and fuzzy theory.  

In (Ghosh et al., 2010), the authors introduce a survey of various genetic algorithms used to 

solve the cell formation problem. The success of genetic algorithms in solving this problem 

induced researchers to consider different variants and hybrids in order to generate very 

robust techniques. 

In this paper, we introduce solution methods hybridizing different approaches. The first 

method is an implementation of the simulated annealing (SA) (Kirkpatrick et al., 1983, 

Cerny,1994) using different neighborhoods of the current solution. The solution selected in 

the neighborhood at each iteration is obtained by applying a diversification strategy to the 

current solution and by using an intensification strategy to improve it. The first 

intensification strategy is an approximation method used in a local search method (LSA) 

introduced in (Elbenani et al., 2011), and the second one relies on the Dinkelbach method 

(Dinkelbach 1967). They are combined with two different diversification strategies to 

generate four different neighborhoods leading to four variants of the simulated annealing 

method. The second method is specified by referring to the Adaptive Large Neighborhood 

Search (ALNS) introduced in (Pisinger and Ropke 2007). It is an adaptive simulated 
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annealing method (ASA) where the neighborhood used at each iteration is selected 

randomly among the four neighborhood identified above. The procedure is adaptive in the 

sense that the probabilities are updated during the process according to the success of using 

the different neighborhoods. A third set of methods are derived by modifying the hybrid 

method (HM)  combining a local search algorithm (LSA) with a genetic algorithm (GA) 

introduced in (Elbenani et al., 2011).  The first modification is to replace the 

approximation method used in LSA by an Exact procedure based on the Dinkelbach method 

to solve fractional programming problem. The second modification is to apply a SA method 

afterward on the solution generated with the HM. 

Numerical results are obtained comparing numerically the efficiency of the variants with 

respect to the best-known solutions of 35 benchmark problems commonly used by authors 

to evaluate their methods. All the variants perform well to deal with the cell formation 

problem, but the dominating one is the modified HM using the Exact procedure followed by 

a SA method afterward. It allows improving the best-known solution of 2 of the 35 

benchmarked problems, reaching the best-known solution of 32 others, and missing the 

best-known solution of the other one by a factor of 0.016%. 

 The cell formation problem is summarized in Section 2. Section 3 is devoted to the 

simulated annealing procedure. We introduce the different diversification and intensification 

strategies to develop the different neighborhoods. The ASA and the modified HM methods 

are summarized in Sections 4 and 5, respectively. The Section 6 includes the numerical 

results. 

 

2 PROBLEM FORMULATION 

 

To formulate the cell formation problem, consider the following two sets  

        
 set of  machines: 1, ,

set of  parts: 1, , .

I m i m

J n j n

= =
= =

…

…
 

The production incidence matrix 
ijA a =    indicates the interactions between the machines 

and the parts: 

1 if machine  process part 

0 otherwise.
ij

i j
a


= 


 

Furthermore, a part j may be processed by several machines. A production cell k 

( )1, ,k K= …  includes a subset (group) of machines kC I⊂  and a subset (family) of parts 

kF J⊂ . The problem is to determine a solution including K production cells 

( ) ( ) ( ){ }1 1, = , , , ,K KC F C F C F… as autonomous as possible. Note that the K production 

cells induce partitions of the machines set and of the parts set: 

{ }

1 2 1 2

1 1

1 2

and

and for all pairs of different cell indices  and 1, ,

and    .

K K

k k k k

C C I F F J

k k K

C C F Fφ φ

= =

∈

= =

∪…∪ ∪…∪

…

∩ ∩

 

To illustrate the production cells concept, consider a machine-part incidence matrix in Table 
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1. Table 2 illustrates a partition into 3 different cells illustrated in the gray zones. The 

solution includes the 3 machine groups {(1,4,6), (3,5), (2)} and the 3 part families {(2,4,6,8), 

(1,7), (3,5)}.  
Parts 1 2 3 4 5 6 7 8 

1 0 1 0 1 1 1 0 1 

2 1 0 1 0 1 0 0 0 

3 1 0 1 0 0 0 1 0 

4 0 1 0 1 0 1 0 1 

5 1 0 0 0 0 0 1 1 

 
 

 
 

M
ac

h
in

e
s 

6 1 1 0 0 0 1 1 1 

Table 1. Incidence matrix 

 

 

 
Parts 2 4 6 8 1 7 3 5 

1 1 1 1 1 0 0 0 1 

4 1 1 1 1 0 0 0 0 

6 1 0 1 1 1 1 0 0 

3 0 0 0 0 1 1 1 0 

5 0 0 0 1 1 1 0 0 

M
ac

h
in

es
 

2 0 0 0 0 1 0 1 1 

Table 2. Matrix solution 

The exceptional elements (1,5), (6,1), (6,7), (3,3), (5,8) and (2,1) correspond to entries 

having a value 1 that lay outside of the gray diagonal blocks. 

 

Sarker and Khan (2001) carry out a comparative study of different autonomy measures for 

the solution of a cell formation problem. In this paper we consider the grouping efficacy Eff  

(Kumar and Chandrasekharan 1990) that is mostly used: 

 

                       1 1

0 0

Out In

In In

a a a
Eff

a a a a

−
= =

+ +
                  (1) 

where 
1 1

m n

ij

i j

a a
= =

=∑∑ denotes the total number of entries equal to 1 in the matrix A, 1

Outa  

denotes the number of exceptional elements, and 1 0and In Ina a are the numbers of one and of 

zero entries in the gray diagonal blocks, respectively. The objective function of the problem 

is maximizing Eff . 

 

To formulate the mathematical formulation of the problem, we introduce the following 

binary variables: 
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{

{

for each pair 1, , ; 1, ,

1      if machine  belongs to cell 

0      otherwise

for each pair 1, , ; 1, ,

1      if part  belongs to cell 

0      otherwise.

ik

jk

i m k K

i k
x

j n k K

j k
y

= =

=

= =

=

… …

… …
 

To evaluate the objective function Eff, it is easy to verify that  

( )

1

1 1 1

0

1 1 1

1 .

K m n
out

ij ik jk

k i j

K m n
In

ij ik jk

k i j

a a a x y

a a x y

= = =

= = =

= −

= −

∑∑∑

∑∑∑
 

 

 

In this paper we are considering the following model M(x,y) of the cell partitioning 

problem: 

 

( )
( )

( )

( )

( )

( )

( )

1 1 1

1 1 1

1

1

1

1

,           Max  

1

              Subject to 1 1, , 2

1 1, , 3

1 1, , 4

1 1, , 5

0 or 1 1, , ; 1, , 6

K m n

ij ik jk

k i j

K m n

ij ik jk

k i j

K

ik

k

K

jk

k

m

ik

i

n

jk

j

ik

j

a x y

M x y Eff

a a x y

x i m

y j n

x k K

y k K

x i m k K

y

= = =

= = =

=

=

=

=

=

+ −

= =

= =

≥ =

≥ =

= = =

∑∑∑

∑∑∑

∑

∑

∑

∑

…

…

…

…

… …

( )0 or 1 1, , ; 1, , 7k j n k K= = =… …

 

 

The constraints (2) and (3) ensure that each machine and each part is assigned to exactly 

one cell, respectively. The constraints (4) and (5) ensure that each cell includes at least one 

machine and one part (no empty cell allowed). Finally, the variables are binary in (6) and 

(7). In our numerical experimentation we fix the number K of cells for each problem to its 

value in the best-known solution reported in the literature, and constraints (4) and (5) 

eliminate any empty cell 
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3   SIMULATED ANNEALING 

 

To deal with the cell formation problem, we use a straightforward implementation of the 

simulated annealing method presented in (Ferland and Costa, 2001. 

 

Procedure Simulated Annealing (N) 
Initialization: 

  Let ( )0 0,C F an initial solution; 0TP the initial temperature 

  Let 0iter : 0; : ; : 0TP TP fcount= = =  

  Let ( ) ( ) ( )* * 0 0, : , : , ; stop : falseC F C F C F= = =  

While not stop 

    : 0; : 0changes trials= =  

  While trials SF<  and changes coff<  

     Generate a solution ( ) ( ), ,C F N C F′ ′ ∈   

     ( ) ( ): , ,Eff C F Eff C F′ ′∆ = −  

      If 0∆ >  

         then ( ) ( ), : ,C F C F′ ′=  and changes := changes + 1 

          else generate a random number ( )0,1r ∈  

                  If /TPr e∆<  then ( ) ( ), : ,C F C F′ ′=  and changes := changes + 1 

      If  ( ) ( )* *, ,Eff C F Eff C F′ ′ >  then ( ) ( )* *, : ,C F C F′ ′=  and fcount := 0                                            

      trials := trials + 1 

   :TP TPα=  

   Iter := iter + 1 

   If changes/trials < mpc then fcount := fcount + 1 

   If iter ≥ itermax or fcount = flimit then stop := true 

( )* *,C F  is the best solution generated              �  

                                                                                     

In this implementation of the simulated annealing, we complete several iterations with the 

same temperature TP. This temperature is modified when the number of trial solutions 

(trials) or when the number of times that the current solution is changed (changes) reaches 

threshold values Sf or coff, respectively. The parameter α is used to modify the temperature. 

Two stopping criteria are used. The first is fixed in terms of the number of different 

temperature values used (itermax). To apply the second criterion, we keep track of the 

number of consecutive temperature values (fcount) where the number of changes over the 

number of trials is smaller than a threshold value mpc. When fcount reaches the value flimit, 

the procedure stops. 

To complete the presentation of the procedure, we indicate how the initial solution 
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( )0 0,C F  is generated, and we describe the different neighborhoods N that we are using. 

 

3.1 Initial Solution 
To generate the initial solution, we use a procedure quite similar to the one proposed in 

(Rojas et al., 2004) that is introduced in (Elbenani et al., 2011). First we determine K 

machine groups 0 0

1 , , KC C… . Then the K part families 0 0

1 , , KF F…  are specified on the basis 

of the K machines groups known. 

 

Denote  

1 1

 and 
n m

i ij j ij

j i

a a a a
= =

= =∑ ∑i i
 

the number of parts processed by machine i and the number of machines processing j, 

respectively. To initiate the machine groups formation, select the K machines having the 

largest values ia
i
, and assign them to the different groups 0 , 1, .kC k K= …  Then each of the 

other machines left is assigned to the group 0

kC  including machines processing mostly the 

same parts. More specifically, denote INA the set of machine left. The assignments are 

completed as follows: 

 

I. For all machines i INA∈ , determine the group  

        ( )
0 0

0 01, , 1, ,1 1

1 1
Min ArgMin

k k

k k k k

n n

ij i j i ij i j
k K k Kj ji C i Ck k

k i a a gr a a
C C= == =∈ ∈

      
= − = −   

      
∑ ∑ ∑ ∑

… …

. 

II. Determine the machine i INA∈  

               ( ){ }ArgMin
i INA

i k i
∈

=  

and assign { }0 0 0 to group ;  i.e., .
i i igr gr gri C C C i= ∪  

III. Eliminate  from i INA , and repeat I) until INA becomes empty. 

 

On the basis of the K machine groups 0 0

1 , , KC C… , determine the K part families 0 0

1 , , KF F… . 

For each part j, denote 

( )
0

1   the number of machines in group  that are processing part 

k

In

j ij

i C

a k a k j
∈

= ∑�  

( ) ( )0

0 1
  the number of machines in group  that are not processing part In In

j k j
a k C a k k j= −� �

( )
( )

1

0

  an approximation of the impact on the grouping efficacy of 

                      assigning part  to family .

In

j

In

j j

a k
Eff

a a k

j k

+
i

�

�  

 

( ) ( )
( )

( )
10

1, , 0

Then each part  is assigned to the family  where ArgMax   

In

j

Ink j
k K j j

a k
j F k j

a a k=

  
=  

+  
�

… i

�
�

�
in 
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order to generate a good initial solution ( )0 0,C F  having the grouping efficacy 

( )( )

( )( )

1

1

0

1

.

n
In

j

j

n
In

j

j

a k j

Eff

a a k j

=

=

=

+

∑

∑

��

��

 

 

Note that if some family 0

kF  is empty, then we apply the repair process to reassign one 

part to it inducing the smallest decrease of the grouping efficiency. 

 

3.2    Neighborhoods 
Different neighborhoods are used to obtain different variants of the simulated annealing 

method. Each neighborhood is obtained by using a diversification strategy to destroy and 

recover a new solution, and an intensification strategy to improve the new solution. This 

solution generated is denoted   

( ) ( ), ,C F N C F′ ′ ∈ . 

3.2.1  Diversification of the solution ( ),C F  

The procedure is applied on the current solution ( ),C F in order to modify (destroy) the 

assignment of some elements (machines and/or parts) to be reassigned to other cells 

selected randomly in order to recover a new solution ( ),C F′′ ′′ . We consider two different 

ways to destroy the current solution ( ),C F : 

• D1: Modify the assignment of %n    parts and of %m    machines (the destroy 

percentage % being a parameter of the method). 

• D2: Select randomly between two strategies: modify either %n    parts or modify 

%m    machines. 

 

3.2.2  Intensification of the solution ( ),C F′′ ′′  

To intensify the search around the solution ( ),C F′′ ′′ , we modify successively the machine 

groups on the basis of the part families and the part families on the basis of the machine 

groups until no modification is possible. The solution ( ) ( ), ,C F N C F′ ′ ∈  is the best 

solution generated during the process. In this paper we consider two different ways for 

modifying the part families (machine groups) on the basis of the machine groups (part 

families). 

 

I1: Approximation method: 

The first procedure to modify the part families on the basis of the machine groups is 

introduced in (Elbenani et al., 2011), and it is similar to the process for fixing the part 

families on the basis of the machine groups introduced in the preceding Section 3.1 (where 

we generate the initial solution). A procedure can be obtained mutatis mutandis to modify 
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the machine groups on the basis of the part families. 

Note that whenever the machines groups (or the part families) include an empty one, then 

we apply a repair process to reassign one machine to it inducing the smallest decrease of 

the grouping efficacy. 

 

I2: Exact procedure: 

The exact procedure to modify the part families on the basis of the machine groups relies on 

the Dinkelbach approach (Dinkelbach 1967) to solve fractional programming problems. 

Indeed, since the group efficacy  

( )

1 1 11

0

1 1 1

1

K m n

ij ik jkIn
k i j

K m nIn

ij ik jk

k i j

a x y
a

Eff
a a

a a x y

= = =

= = =

= =
+

+ −

∑∑∑

∑∑∑
 

is fractional, it seems appropriate to use the Dinkelbach algorithm to solve the problem of 

modifying part families on the basis of the machine groups. Indeed, once the machine 

groups are fixed to C  (i.e., x x= ), the problem ( ),M x y reduces to  

( )
( )

( )

1 1 11

0

1 1 1

1

1

,
,           Max  

( , )
1

              Subject to 1 1, ,

1 1, ,

0 or 1 1, , ; 1, , .

K m n

ij ik jkIn

k i j

K m nIn

ij ik jk

k i j

K

jk

k

n

jk

j

jk

a x y
a x y

M x y Eff
a a x y

a a x y

y j n

y k K

y j n k K

= = =

= = =

=

=

= =
+

+ −

= =

≥ =

= = =

∑∑∑

∑∑∑

∑

∑

…

…

… …

 

 

The Dinkelbach procedure to deal with ( ),M x y  requires solving a sequence of problems 

where the objective function becomes linear by combining the numerator and the 

denominator of Eff: 

( ) ( ) ( )1 0

1 1 1

1

1

, ,           Max  ( ) , ( , )

(1 )

              Subject to 1 1, ,

1 1, ,

0 or 1 1, , ; 1, ,

k k

In In

n K K

ij ij jk

j k i C k i C

K

jk

k

n

jk

j

jk

M x y E a x y a a x y

a a a y

y j n

y k K

y j n k K

λ λ λ

λ λ
= = ∈ = ∈

=

=

= − + =

 
− + − − 

 

= =

≥ =

= = =

∑ ∑∑ ∑∑

∑

∑

…

…

… …
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for different values of λ . As we shall see, this problem is trivial to solve. 

First, introduce the Dinkelbach procedure solving ( ), ,M x yλ : 

 

Dinkelbach procedure 

• Initialization. 

o Start with the solution ( )0,C F  

o Take ( )
( )0

10

0 0

0

,
λ : ,

( , )

In

In

a x y
Eff C F

a a x y
= =

+
, and ζ : = 1. 

• Step ζ . 

o Solve the problem ( )1
, ,M x yζλ −             

Let ( ),C F ζ
 be an optimal solution of this problem. 

Let ( )E ζλ  be the optimal of this problem. 

o Stopping rule. If ( ) 0E ζλ = , then STOP: ( ),C F ζ
 is an optimal solution and 

( ),Eff C F ζ
 is an optimal value of ( ),M x y ). 

o Otherwise, let ( )λ : , .Eff C F ζ
ζ =  Let : 1ζ ζ= + , and go back to Step .         ζ �   

                     

In the Dinkelbach procedure, the initial solution ( )0,C F is the current solution on hand. A 

sequence of different part families are generated, and this sequence converges to an optimal 

K part families on the basis of the K machine groups C . The algorithm converges since the 

sequence { }ζλ  is strictly increasing (Crouzeix et al 2008). 

Now consider the problem ( ), ,M x yλ . Since the objective function 

1 1 1

( ) (1 )
k k

n K K

ij ij jk

j k i C k i C

E a a a yλ λ λ
= = ∈ = ∈

 
= − + − − 

 
∑ ∑∑ ∑∑  

is separable in j, the optimal assignment of part j is determined by the index { }1, ,k K∈ …  

where 

 

1, ,
(1 ) Max (1 )

k kk k

ij ij ij ij
k K

i C i C i C i C

a a a aλ λ
=

∈ ∈ ∈ ∈

     
− − = − −    

       
∑ ∑ ∑ ∑

…
                        

and assigning 
k

j F∈ . Note that referring to the formulation of the cell formation problem, 

it follows that  
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the number of 1 in the column  that

belong to the rows included in the set 
(1 )

the number of 0 in the column  that

belong to the rows included in the set 

k k

k

ij ij

i C i C

k

j

C
a a

j

C

λ

λ
∈ ∈

 
− 

   
− − = 

  
 
 

∑ ∑




 
 
 
 

 

A similar procedure can be obtained mutatis mutandis to modify the machine groups on the 

basis of the part families. 

Note that whenever the machines groups (or the part families) include an empty one, then 

we apply a repair process to reassign one machine (one part) to it inducing the smallest 

decrease of the grouping efficiency. This exact procedure is also used by the authors in 

(Khoa et all 2011) to develop a multi starts procedure to solve the Cell Formation Problem. 

 

3.2.3     Four different neighborhoods 

In this paper we compare numerically four different variants specified using the following 

neighborhoods: 
1N : generated with the diversification D1 and the intensification I1 
2N : generated with the diversification D1 and the intensification I2 
3N : generated with the diversification D2 and the intensification I1 
4N : generated with the diversification D2 and the intensification I2. 

 

4  ADAPTIVE SIMULATED ANNEALING  
 

Referring to the Adaptive Large Neighborhood Search (ALNS) proposed by the authors in 

(Pisinger and Ropke 2007), we develop a new variant of the Simulated Annealing where the 

neighborhood used at each iteration is selected randomly in a set of neighborhoods available. 

In our implementation we use the set of neighborhoods { }1 2 3 4, , ,N N N N specified in  

Section 3.2.3. A probability  is associated with each , 1, , 4,i

iP N i = …  and the neighborhood 

is selected according to these probabilities. 

The same values of the probabilities should be used for a fixed number coiteration of 

iterations of the Simulated Annealing procedure before being updated according to the 

performance of the neighborhoods iN during the procedure. In order to do this, associate a 

score parameter iπ with each neighborhood iN . The scores should be proportional to the 

efficiency of the neighborhoods, and hence larger scores induce that the neighborhoods 

should be chosen with larger probabilities.  

To update the scores after completing coiteration iterations, we specify a scalar 

ico indicating the number of times that iN is selected and a value iδ measuring the 

efficiency of iN . These values are updated each time neighborhood iN is selected as 

follows: 

: 1

:

i i

i i

co co

δ δ σ

= +

= +
 

where  
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1

2

3

4

       if 0 and the best solution is improved

       if 0 and the best solution is not improved

       if the current solution is modified according to the probability

       if the current

σ

σ
σ

σ

σ

∆ >

∆ >
=

 solution does not change,








 

and 
1 2 3 40 .σ σ σ σ> > > >  Then after completing coiteration iterations, the scores 

, 1, , 4,i iπ = …  are updated as follows: 

( ): Max , 1

: : 0,

i
i i

i

i i

co

co

δ
π ε ρ π ρ

δ

   
= − +  

   

= =

 

and the probabilities , 1, , 4,iP i = …  become 

4

1

: .i

i

l

l

P
π

π
=

=

∑
 

The values of ε  prevents iπ  to become negative, and the value of iπ  is modified more 

extensively when the value of [ ]0,1ρ ∈  is larger. Moreover, it follows that the probability 

iP  should increase when the neighborhood iN  is successful to increase the value of Eff. 

 

5 MODIFYING THE HYBRID METHOD (HM) IN (Elbenani et al 2011) 

 
 The Hybrid Mehod (HM) introduced in (Elbenani et al 2011) generates very good 

solutions for the 35 benchmark problems. This hybrid method integrates a Local Seach 

Algorithm (LSA) within a steady state Genetic Algorithm (GA).  

The LSA includes two different procedures, one to diversify and the other to intensify the 

search. They are applied successively for a fixed number of iterations. To diversify more 

extensively the feasible domain, a destroying procedure is used to select either a subset of 

machines or a subset of parts for which the assignment is modified. Then a recovering 

procedure allows generating a new solution by reassigning a new group to each machine or 

a new family to each part of the subset in order to reduce the grouping efficacy as little as 

possible. Note the difference with the destroying procedure used to specify the 

neighborhoods in Section 3.2.1 where the elements are reassigned randomly to a new group 

or a new family. The intensification strategy is described in Section 3.2.2 where the 

Approximation method (I1) is used to modify the part families (machine groups) on the 

basis of the machine groups (part families). 

 The purpose of the Hybrid Method HM is to allow improving even more the quality of the 

solutions using a steady state GA to diversify even more the procedure. Each solution is 

encoded as a vector of ( )n m+ elements including the family of each of the n parts and the 

group of each of the m machines. To generate the initial population S, we first introduce the 

solution generated in Section 3.1. Then each of the other solution in S is obtained according 

to the following procedure. First we decide to generate either the machine groups or the part 
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families, each alternative having a probability of 0.5. If the first alternative is selected, then 

each machine i is assigned randomly to a group k. We also prevent that each group is not 

empty by applying a repair process to move a machine from the group including the most to 

the empty group. Then the part families are determined on the basis of these machine 

groups as described in Section 3.1. The LSA is applied to improve the solution which is 

included in the population S. The procedure to complete the second alternative is similar. 

The role of machines and parts are exchanged. 

 At each iteration (generation) of the GA, two solutions are selected according to a 

tournament strategy based on their fitness measured in term of their Eff. A uniform 

crossover is applied to generate two offspring solutions. If required, the repair process is 

applied to insure that no group or no family is empty. A mutation operator is specified by 

selecting randomly one machine and one part that are reassigned to a new group and a new 

family selected randomly. The mutation is performed according to a probability pm. Finally, 

the LSA method is applied to improve each offspring solution before updating the 

population of solutions. 

The GA stops whenever the best solution is not improved for a fixed number nga of 

consecutive iterations.    

In this paper, we introduce two different modifications of HM, and we compare them 

numerically. The first modification (HM_E) is obtained by modifying the LSA to replace the 

Approximation method by the Exact procedure to modify the part families (machine groups) 

on the basis of the machine groups (part families). The purpose of the second modification 

is to verify if the solutions obtained with the methods HM and HM_E can be improved by 

applying a SA method afterward to their solutions. The corresponding methods are denoted 

HM_SA and HM_E_SA. 

 

6   NUMERICAL RESULTS 

To complete the numerical experimentation, we consider the 35 benchmark problems that 

are commonly used by authors to evaluate the efficiency of their methods. The first 5 

columns of Table 3 indicate the problem number, the reference where it is specified 

(Problem source), its size (values of m, n, and K), and the value of its best-known solution 

(BKS). Moreover the values of the best-known solutions are identified by refereeing to the 

following references (Goncalves and Resende, 2004, James et al., 2007, Luo and Tang, 

2009, Mahdavi et al., 2009, Tunnukij and Hicks, 2009, Elbenani et al., 2011, and Ying et al., 

2011). Furthermore, the authors in (Elbenani and Ferland, 2012) are using an exact method 

based on the Dinkelbach approach to show that the best-known value is in fact equal to the 

optimal value for the following problems: P1 to P17, P19 to P24, P28, P30, P34, and P35. 

This is indicated in Table 3 by marking these optimal values with the index *. 

 The numerical tests are completed on a PC equipped with an INTEL Core 2 Duo processor 

running at 2.2 GHZ, and having a 2 GB of central memory on a Linux system. To complete 

the comparisons of the variants, we always use the average Eff (Aver. Eff) and the average 

solution time (Aver. Time) over 10 runs for solving each problem. 

The first part of this section is dedicated to compare the different variants of the SA method. 

Then we verify if the adaptive impact allows obtaining better results using the ASA methods. 

The different variants of the HM method are compared numerically to verify if the Exact 

procedure allows also improvements and to see the benefit of applying a SA method 
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afterward. Finally, we conclude this section by comparing numerically the best variants of 

these three methods.  

 

6.1  The SA method 
The purpose of this analysis is threefold. First we compare the average group efficacy (A.Eff) 

of the four variants of SA. As a consequence we should identify the best diversification (D1 

or D2) and the best intensification (I1 or I2) strategies. In the second part, we compare the 

impact of the percentage % of modified elements in the diversification strategies. Three 

different values are considered: 20%, 30%, and 50%. Finally, we verify how the quality of 

the solutions can be improved when the solution time allowed increases.  

 

Comparing the neighborhoods 
To compare the neighborhoods, we implement the SA method with the following values for 

the parameters: 
0 100 mpc 0.5 0.2

itermax 10 2 2

TP K

K Sf K coff K

α= = =

= = =
 

                         flimit = 5K. 

The last four columns of Table 3 include the A.Eff for the SA using the four different 

neighborhoods , 1, , 4.iN i = …  For each problem, the best value of A.Eff is marked in bold. 

To reduce the length of the paper, we report only the table where the percentage is fixed at 

30%, but the tables for the other two values of % are quite similar. Additional results 

comparing the average A.Eff (Aver. Eff) and the average solution time (Aver. Time) for the 

35 problems, and the number of problems where the BKS is reached or exceeded for the 

four neighborhoods are included in Table 4. The numerical results in Tables 3 and 4 indicate 

that the variants using neighborhoods 2 4 and N N  allows generating better results than 

using 1 3 and N N . Furthermore, the overall average (last row of the Table 3) for the variant 

with 2N exceeds slightly that of BKS, and that of the variant with 4N  is slightly smaller 

than that of BKS. Hence these variants seem very efficient to solve the cell formation 

problem. 

This analysis above allows concluding that the intensification strategy I2 seems more 

efficient than I1. Furthermore, since the variant 2N is slightly more efficient than 4N , it 

follows that the diversification D1 seems to be slightly more efficient than D2 when 

combined with the intensification I2. 

       
Table 3: Compare A. Eff  of the four neighborhoods when %=30% 

 

P Problem source m n K BKS 1

N  
2

N  
3

N  
4

N  

P1 King and Nakornchai 

(1982) 

5 7 2 82.35* 82.35 82.35 82.35 82.35 

P2 Waghodekar and Sahu 

(1984) 

5 7 2 69.57* 69.25 69.57 69.41 69.57 

P3 Seifoddini (1989) 5 18 2 79.59* 79.59 79.59 79.59 79.59 

P4 Kusiak and Cho (1992) 6 8 2 76.92* 76.92 76.92 76.92 76.92 

P5 Kusiak and Chow (1987) 7 11 5 60.87* 60.87 60.87 60.87 60.87 
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P6 Boctor (1991) 7 11 4 70.83* 70.83 70.83 70.83 70.83 

P7 Seifoddini and Wolfe 

(1986) 

8 12 4 69.44* 69.44 69.44 68.84 69.44 

P8 Chandrasekharan and 

Rajagopalon (1986a) 

8 20 3 85.25* 85.25 85.25 85.25 85.25 

P9 Chandrasekharan and 

Rajagopalon (1986b) 

8 20 2 58.72* 58.62 58.56 58.4 58.5 

P10 Mosier and Taube (1985a) 10 10 5 75* 75 75 75 75 

P11 Chan and Milner (1982) 10 15 3 92* 92 92 92 92 

P12 Askin and Subramanian 

(1987) 

14 24 7 72.06* 71.64 72.06 71.54 72.06 

P13 Stanfel (1985) 14 24 7 71.83* 71.83 71.83 71.83 71.83 

P14 McCormick (1972) 16 24 8 53.26* 52.96 53.26 52.83 53.26 

P15 Srinivasan et al. (1990) 16 30 6 69.53* 67.83 69.53 68.02 69.11 

P16 King (1980) 16 43 8 57.53* 57.41 57.53 57.38 57.53 

P17 Carrie (1973) 18 24 9 57.73* 57.73 57.73 57.73 57.73 

P18 Mosier and Taube 

(1985b) 

20 20 5 42.96 43.01 43.12 42.83 43.06 

P19 Kumar et al. (1986) 20 23 7 50.81* 50.81 50.81 50.68 50.81 

P20 Carrie (1973) 20 35 5 77.91* 76.33 77.91 76.33 77.91 

P21 Boe and Cheng (1991) 20 35 5 57.98* 56.93 57.98 56.86 57.98 

P22 Chandrasekharan and 

Rajagopalon (1989) 

24 40 7 100* 100 100 100 100 

P23 Chandrasekharan and 

Rajagopalon (1989) 

24 40 7 85.11* 85.11 85.11 85.11 85.11 

P24 Chandrasekharan and 

Rajagopalon (1989) 

24 40 7 73.51* 73.51 73.51 73.51 73.51 

P25 Chandrasekharan and 

Rajagopalon (1989) 

24 40 11 53.29 53.29 53.29 53.29 53.29 

P26 Chandrasekharan and 

Rajagopalon (1989) 

24 40 12 48.95 48.95 48.95 48.85 48.95 

P27 Chandrasekharan and 

Rajagopalon (1989) 

24 40 12 46.58 46.57 46.58 46.52 46.55 

P28 McCormick (1972) 27 27 5 54.82* 54.82 54.82 54.78 54.82 

P29 Carrie (1973) 28 46 10 47.08 46.39 47.08 46.23 47.08 

P30 Kumar and Vannelli 

(1987) 

30 41 14 63.31* 62.99 63.31 62.9 63.31 

P31 Stanfel (1985) 30 50 13 60.12 60.12 60.12 60.09 60.12 

P32 Stanfel (1985) 30 50 14 50.83 50.8 50.83 50.74 50.83 

P33 King and Nakornchai 

(1982) 

36 90 17 46.67 46.71 47.18 

 

46.7 

 

47.17 

 

P34 McCormick (1972) 37 53 3 60.64* 58.31 60.63 58.26 60.63 

P35 Chandrasekharan and 

Rajagopalon (1987) 

40 100 10 84.03* 84.03 84.03 84.03 84.03 

Aver 

Eff 

    65.92 

 

65.66 

 

65.93 

 

65.61 

 

65.91 
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                   Table 4: Comparing the four neighborhoods for %=30% 

 Aver.  

Eff 

Aver. 

Time 

(sec) 

BKS 

reached 

BKS 

exceeded 

1
N  

65.66 10.01 20 2 

2
N  

65.93 15.49 31 2 

3
N  

65.61 7.22 15 1 

4
N  

65.91 9.91 29 2 

 

 

Impact of the value of the destroying percentage % 

Now consider the results summarized in Tables 5 and 6 to analyze the efficiency of the 

variant using 2N with different percentages %. For each problem, the best-solution is 

marked in bold, and the smallest solution time (A. Time) average solution time over the 10 

runs, is marked in italic bold. The results in Table 6 indicate that the percentage 30% allows 

reaching or exceeding the best-known solution more often, but the percentage 20% allows a 

smaller average solution time. Thus if the user put more emphasis on the quality of the 

solution, then the percentage 30% is more appropriate, but if the solution time must be 

reduced, then the percentage of 20% is more convenient. 

Table 5: Compare A. Eff  of 2N   when  %=20% , 30% and 50% 

2
(20%)N  

2
(30%)N  

2
(50%)N  

P BKS 

 
A. Eff A. Time 

(sec.) 

A. Eff A.Time 

(sec.) 

A. Eff A.Time 

(sec.) 

P1 82.35 82.35 0.018 82.35 0.027 82.35 0.033 

P2 69.57 69.57 0.02 69.57 0.028 69.57 0.03 

P3 79.59 79.59 0.037 79.59 0.048 79.59 0.052 

P4 76.92 76.92 0.026 76.92 0.028 76.92 0.04 

P5 60.87 60.87 0.374 60.87 0.426 60.87 0.465 

P6 70.83 70.83 0.227 70.83 0.245 70.83 0.302 

P7 69.44 69.44 0.251 69.44 0.28 69.44 0.338 

P8 85.25 85.25 0.146 85.25 0.166 85.25 0.2 

P9 58.72 58.53 0.045 58.56 0.051 58.72 0.058 

P10 75 75 0.421 75 0.493 75 0.624 

P11 92 92 0.14 92 0.154 92 0.192 

P12 72.06 72.06 2.252 72.06 2.735 72.06 3.34 

P13 71.83 71.83 2.206 71.83 2.755 71.83 3.355 

P14 53.26 53.26 4.83 53.26 5.22 53.26 6.124 
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                              Table 6: Table Table 6:Comparing the % for 
2N  

% Aver.  

Eff 

Aver. 

Time 

(sec.) 

BKS 

reached 

BKS 

exceeded 

20 65.93 12.787 29 2 

30 65.93 15.489 31 2 

50 65.93 19.469 30 2 

 

Impact of increasing solution time 

To complete this analysis, we consider only the better variants 2 4 and .N N  Furthermore, 

we implement the SA method using smaller values for the two parameters 

 and 0.5 ,Sf K coff K= =     and the destroy percentage is fixed at 30%: 

0
100 mpc 0.5 0.2 30%

0.5

TP K destroy percentage

Sf K coff K

α= = = =

= =   
 

P15 69.53 69.53 1.621 69.53 1.904 69.53 2.435 

P16 57.53 57.53 6.932 57.53 7.759 57.53 8.85 

P17 57.73 57.73 6.288 57.73 7.34 57.73 8.427 

P18 42.96 43.04 1.398 43.12 1.702 43.1 2.204 

P19 50.81 50.81 3.336 50.81 3.8 50.81 4.761 

P20 77.91 77.91 1.254 77.91 1.484 77.91 1.889 

P21 57.98 57.98 1.483 57.98 1.764 57.98 2.216 

P22 100 100 4.284 100 4.362 100 5.296 

P23 85.11 85.11 4.423 85.11 4.865 85.11 7.36 

P24 73.51 73.51 4.637 73.51 5.502 73.51 8.611 

P25 53.29 53.29 15.459 53.29 19.5 53.29 25.57 

P26 48.95 48.95 21.828 48.95 29.264 48.88 41.684 

P27 46.58 46.58 21.194 46.58 27.573 46.51 43.48 

P28 54.82 54.82 1.306 54.82 1.631 54.82 1.98 

P29 47.08 47.07 21.323 47.08 22.886 47.08 32.465 

P30 63.31 63.29 47.698 63.31 58.074 63.31 65.175 

P31 60.12 60.12 32.113 60.12 39.162 60.12 51.847 

P32 50.83 50.83 47.931 50.83 55.442 50.83 77.801 

P33 46.67 47.17 161.88 47.18 204.38 47.18 229.04 

P34 60.64 60.63 1.008 60.63 1.021 60.63 1.055 

P35 84.03 84.03 29.171 84.03 30.058 84.03 44.132 

Aver. 65.93 65.93 12.787 65.93 15.489 65.93 19.469 
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the purpose being to reduce the solution time for the tests.  

Since the numerical results indicate that the variants 2 4 and N N reached the optimal 

value for several problems, we only verify the impact of increasing the solution time for the 

13 problems where the optimal value is unknown (P9, P15, P16, P18, P25 to P27, P29 to 

P34) and where one of the methods does not reach the optimal solution. 

To modify the solution time, we increase the values of the stopping criteria itermax and 

flimit: 

c  0: itermax 10    andSA K=    flimit = 5K 

 c  1: itermax 20    andSA K=   flimit = 15K 

  c 2: itermax 45    andSA K=   flimit = 40K. 

The first column of Table 7 includes the problems considered, and columns 2 to 4 and 5 to 7 

are associated with the variants 2 4 and  N N , respectively. Each entry in Table 7 includes 

the values A. Eff and A. Time in the first and the second row, respectively. Furthermore, for 

each problem and for each variant, the best A. Eff is marked in bold when it is reached for 

the smallest A. Time. Denote this best value of A. Eff by B. Eff, and the smallest A. Time by  

B. Time . 

 

Table 7: Increasing solution time for 2 4
 and N N  when % = 30% 

  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

2
N  

4
N  

P 

cSA 0 cSA 1 cSA 2 cSA 0 cSA 1 cSA 2 

58.56 58.62 58.68 58.46 58.47 58.53 P9 

0.021 0.044 0.114 0.009 0.027 0.063 

69.32 69.53 69.53 68.27 68.69 69.32 P15 

0.891 2.328 6.091 0.733 1.453 3.45 

57.53 57.53 57.53 57.49 57.51 57.53 P16 

4.103 9.969 25.835 2.696 5.642 13.228 

43.06 43.09 43.13 43.06 43.04 43.10 P18 

0.81 2.125 5.188 0.522 1.228 2.949 

53.29 53.29 53.29 53.29 53.29 53.29 P25 

9.5 26.583 74.111 5.378 15.092 40.755 

48.95 48.95 48.95 48.92 48.92 48.95 P26 

15.808 37.656 101.088 9.752 21.426 56.407 

P27 46.56 46.57 46.58 46.50 46.58 46.55 

 14.621 37.596 103.407 8.826 22.368 55.708 

P29 47.08 47.08 47.08 47.06 47.08 47.08 

 13.051 30.501 86.155 11.051 26.037 68.5 
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Increasing solution time seems to have a larger impact for the variant 4.N  Indeed, 

referring to the last row of Table 7, it follows that multiplying the solution time by a factor 

of 2.66 and 2.41 to move from cSA 0 to cSA 1 induces an increase of the Aver. Eff  by 

factors  of 1.0004 and 1.0009 for 2 4 and  N N , respectively. Similarly, to move from cSA 

1 to cSA 2 by multiplying the solution time by a factor of 2.72 and 2.66 induces also a larger 

increase of Aver. Eff for 4N  than for 2N (factors of 1.0002 and 1.0011 for 2 4 and N N , 

respectively). This observation also follows from the fact that, for each problem, the case 

number (cSA 0, cSA 1, or cSA 2) where B. Eff is reached is in general smaller or equal in 
2 4 .than  in  N N  

Comparing 2N and  4N  

Now considering only the problems used in Table 7, evaluate the average values (Aver. B. 

Eff and Aver. B. Time) similar to those in the last row of Table 7, but where, for each 

problem, we use the B. Eff and the B. Time reaching it. These elements are included in the 

second and third columns of Table 8. Furthermore, determine the number of problems 

where each variant reaches a better B. Eff than the other. They are included in the 2 2×  

matrix in columns 4 and 5 of Table 8 (i.e., 2N ( )4N reaches a better B. Eff than ( )4 2N N  

in 4 (0) problems). 

Table 8: Comparing 
2 4

 and N N  

Variant Aver. 

B. Eff 

Aver. 

B. Time 

(sec.) 

2
N  

4
N  

BKS 

2
N  54.37 67.609 

−  4 2 

4
N  54.34 50.268 

0 −  2 

BKS 
−  −  

2 3 −  

63.27 63.31 63.31 63.27 63.31 63.31 P30 

27.465 73.476 217.905 17.629 42.194 118.13 

60.12 60.12 60.12 60.12 60.12 60.12 P31 

19.889 55.452 164.04 11.66 30.849 84.967 

50.83 50.83 50.83 50.83 50.83 50.83 P32 

27.099 77.366 225.759 17.132 42.349 118.892 

47.16 47.17 47.19 47.13 47.16 47.18 P33 

90.153 241.075 604.44 72.655 172.285 452.21 

60.63 60.63 60.63 60.63 60.63 60.63 P34 

0.519 1.077 2.739 0.405 0.897 2.184 

54.34 54.36 54.37 54.23 54.28 54.34  

17.225 45.788 124.375 12.188 29.373 78.265 
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The results in Table 8 lead to the conclusion of selecting the variant 2N to get better 

solutions and 4N to reduce the solution time. 

 

6.2  The ASA method 
First note that the parameters to implement the SA method are the same as those used above 

when analyzing the impact of increasing the solution time for SA: 

0
100 mpc 0.5 0.2

0.5

TP K

Sf K coff K

α= = =

= =   
 

The additional parameters required in ASA are specified as follows: 

1 2

3 4

 (frequency to modify the scores) 2

the values to update the scores: 7 3

2 1

 (parameter to modify the scores) = 0.7

coiteration K

σ σ

σ σ

ρ

=

= =

= = −
 

To implement the ASA method, we use the 4 neighborhoods .iN  Different variants are 

obtained with different values for the original scores 0 , 1, , 4i iπ = … , and for different values 

for the destroy percentage % of the neighborhoods. Preliminary tests using more than 20 

variants indicate that the most promising variants are those where the initial scores of 
0 0 2 4

2 4 and  for  and N Nπ π are larger than 0 0 1 3

1 3 and  for  and .N Nπ π  For this reason, we 

complete the numerical comparison with the following variants: 

1 0 0 0 0

1 2 3 4

2 0 0 0 0

1 2 3 4

: 10, 100, 10, 100; % 30%, 1, , 4

: 25, 100, 25, 75; % 30%, 1, , 4.

i

i

ASA i

ASA i

π π π π

π π π π

= = = = = =

= = = = = =

…

…
 

To compare the two variants 1 2 and ASA ASA , and to analyze the impact of increasing the 

solution time, we only consider the 14 problems where the optimal solution is unknown (P9, 

P15, P16, P18, P25 to P34) or where the optimal solution is not reached. The results are 

summarized in Table 9 having the same format as Table7. 

  

Table 9: Increasing solution time for 1 2
 and  A SA A SA  when % = 30% 

 

1
ASA  

2
ASA  

P 

cSA 0 cSA 1 cSA 2 cSA 0 cSA 1 cSA 2 

58.5 58.56 58.65 58.53 58.56 58.62 P9 

0.019 0.034 0.079 0.017 0.036 0.075 

68.97 68.65 69.37 68.87 68.47 69.37 P15 

0.76 1.526 3.143 0.632 1.403 3.395 

57.38 57.49 57.53 57.4 57.52 57.51 P16 

1.911 5.715 12.281 2.059 5.205 12.248 
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42.96 43 43.08 42.96 43.06 43.07 P18 

0.609 1.298 3.02 0.531 1.381 2.921 

53.29 53.29 53.29 53.29 53.29 53.29 P25 

5.347 14.39 34.736 5.535 14.809 37.016 

48.78 48.82 48.95 48.71 48.92 48.95 P26 

8.481 20.303 47.069 7.717 19.418 51.294 

46.36 46.57 46.57 46.53 46.57 46.58 P27 

8.719 20.502 48.748 8.281 19.488 48.16 

54.77 54.82 54.82 54.81 54.82 54.82 P28 

0.604 1.371 3.26 0.639 1.393 3.048 

47.01 47.08 47.08 47.08 47.08 47.08 P29 

9.688 22.047 53.966 9.483 23.145 53.541 

63.27 63.27 63.31 63.31 63.31 63.31 P30 

18.583 42.778 116.322 18.571 45.845 112.592 

60.12 60.12 60.12 60.12 60.12 60.12 P31 

10.779 31.394 81.746 10.303 28.589 76.467 

50.83 50.83 50.83 50.8 50.83 50.83 P32 

14.011 40.208 109.265 16.971 40.238 108.891 

47.16 47.16 47.18 47.15 47.17 47.19 P33 

58.589 181.303 422.702 65.454 176.526 425.27 

60.57 60.63 60.63 60.63 60.62 60.63 P34 

0.457 0.904 2.115 0.46 0.917 2.063 

54.28 54.31 54.39 54.3 54.31 54.38  

9.897 27.412 67.032 10.475 27.028 66.927 

  

 

The last row of Table 9 indicates that we can get better Aver. Eff with 1 2 than ASA ASA using 

similar solution time. Furthermore, increasing solution time seems to have a larger impact 

for 1.ASA  Indeed, moving from cSA 0 to cSA 1 by multiplying the solution time by factors 

2.76 and 2.51 for 1 2 and ASA ASA  induces a larger increase of Aver. Eff for 1
ASA  than for 

2
ASA (factors of 1.0006 and 1.0002 for 1 2 and ASA ASA , respectively). Similarly, when 

moving from cSA 1 to cSA 2 by multiplying the solution time by a factor 2.45 for 
1 2 and ASA ASA  induces a larger increase of Aver. Eff for 1

ASA  than for 2
ASA (factors of 

1.0015 and 1.0013 for 1 2 and ASA ASA , respectively). 

Comparing 1ASA and  2ASA  

Determine the elements of Table 10 as those in Table 8.  

Table 10: Comparing 
1 2
 and ASA ASA  

Variant Aver. 

B. Eff 

Aver. 

B. Time 

(sec.) 

1
ASA  

2
ASA  

BKS 

1
ASA  54.39 48.541 

−  3 2 

2
ASA  54.38 44.45 

2 −  2 

BKS 
−  −  

4 4 −  
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The results in Table 10 lead to the conclusion of selecting the variant 1ASA to get better 

solutions and 2ASA to reduce the solution time. 

 

6.3  The modified HM methods 

In this section we are using 2N as the SA applied afterward on the results of  HM and 

HM_E. The parameter values to implement 2N  are the following: 

0
100 mpc 0.5 0.2 20%

itermax 45 0.5

TP K destroy percentage

K Sf K coff K

α= = = =

= = =   
 

              flimit = 40K. 

The parameter values for the HM method are those specified in (Elbenani et al., 2011). 

Furthermore, to evaluate the impact of increasing the solution time, we modify the number 

of generations (iterations) in HM: 

                                cHM 0 = 5m 

cHM 1 = 10m 

cHM 2 = 20m. 

Here also, we only verify the impact of increasing the solution time only for the 20 

problems where the optimal solution is unknown (P18, P25 to P27, P29, P31 to P33) or 

where the optimal solution is not reached. The numerical results summarized in Tables 11 

and 12 indicate that increasing the number of generations is more significant for HM , but 

not for the other three variants.  

Table 11: Increasing solution time for HM and HM_E  

 

HM HM_E P 

cHM 0 cHM 1 cHM 2 cHM 0 cHM 1 cHM 2 

69.41 69.57 69.57 69.57 69.57 69.57 P2 

0.006 0.016 0.028 0.022 0.042 0.084 

68.84 68.84 68.84 69.44 69.44 69.44 P7 

0.099 0.183 0.357 0.254 0.462 0.881 

71.83 71.83 71.83 71.59 71.83 71.83 P13 

1.173 2.316 4.586 3.547 6.937 12.852 

52.9 53.16 53.16 53.26 53.26 53.26 P14 

2.455 5.592 9.074 5.261 10.312 20.24 

69.53 69.53 69.53 67.42 67.42 67.42 P15 

1.684 3.142 6.055 3.744 7.389 14.626 

57.33 57.34 57.36 57.53 57.53 57.53 P16 

6.027 10.418 20.63 12.094 22.552 43.909 

57.28 57.28 57.37 57.73 57.73 57.73 P17 

4.612 7.702 14.525 9.445 18.853 38.21 

43.07 43.09 43.09 43.14 43.15 43.15 P18 

1.797 3.189 5.561 3.43 6.558 12.228 

50.68 50.72 50.81 50.81 50.81 50.81 P19 

3.202 5.94 13.027 6.113 12.102 24.114 

76.76 77.06 77.42 77.58 77.58 77.58 P20 

2.031 4.734 10.753 4.851 9.605 19.076 

Hybrid of Metaheuristic Methods for Solving the Cell Formation Problem

CIRRELT-2012-14 21



  

57.17 57.25 57.32 57.07 57.07 57.07 P21 

2.84 5.009 9.251 5.363 10.679 21.547 

53.29 53.29 53.29 53.29 53.29 53.29 P25 

14.739 29.038 57.301 37.485 73.22 144.079 

48.95 48.95 48.95 48.95 48.95 48.95 P26 

19.443 36.898 72.585 49.315 91.669 174.905 

46.58 46.58 46.58 46.58 46.58 46.58 P27 

19.482 36.19 69.489 48.524 90.732 175.611 

54.77 54.78 54.79 54.82 54.82 54.82 P28 

2.094 4.366 8.778 6.895 13.556 26.907 

46.85 46.86 46.9 47.08 47.08 47.08 P29 

23.727 43.249 94.496 47.605 90.735 176.955 

62.99 63.1 63.1 63.31 63.31 63.31 P30 

55.89 102.323 162.1 89.325 166.114 320.859 

60.12 60.12 60.12 60.12 60.12 60.12 P31 

38.584 75.711 148.866 88.49 175.606 347.844 

50.83 50.83 50.83 50.83 50.83 50.83 P32 

66.315 111.24 199.169 122.935 243.632 485.504 

46.99 47.03 47.06 47.18 47.19 47.19 P33 

320.063 555.388 963.506 361.8 608.213 1021.15 

60.38 60.39 60.39 60.63 60.63 60.63 P34 

4.892 9.514 17.581 6.168 11.854 22.946 

57.45 57.50 57.54 57.52 57.53 57.53  

28.15 50.103 89.891 43.46 79.563 147.835 

 

 

Table 12: Increasing solution time for HM_
2

N  and HM_E_
2

N   

 

HM_
2

N  HM_E_
2

N  
P 

cHM 0 cHM 1 cHM 2 cHM 0 cHM 1 cHM 2 

69.57 69.57 69.57 69.57 69.57 69.57 P2 

0.015 0.022 0.035 0.028 0.05 0.09 

69.44 69.44 69.44 69.44 69.44 69.44 P7 

0.222 0.304 0.477 0.382 0.59 1.004 

71.83 71.83 71.83 71.83 71.83 71.83 P13 

2.662 3.807 6.073 5.021 8.396 14.274 

53.26 53.26 53.26 53.26 53.26 53.26 P14 

4.656 7.797 11.273 7.485 12.551 22.423 

69.53 69.53 69.53 69.53 69.53 69.53 P15 

2.754 4.206 7.128 4.632 8.272 15.499 

57.49 57.51 57.51 57.53 57.53 57.53 P16 

11.07 15.27 25.61 16.979 27.612 48.773 

57.73 57.73 57.73 57.73 57.73 57.73 P17 

9.085 12.154 18.991 13.903 23.343 42.548 

43.12 43.14 43.14 43.14 43.15 43.15 P18 

2.734 4.112 6.489 4.334 7.488 13.13 

50.81 50.81 50.81 50.81 50.81 50.81 P19 

5.644 8.366 15.453 8.564 14.593 26.505 

77.91 77.91 77.91 77.91 77.91 77.91 P20 

2.732 5.442 11.505 5.542 10.305 19.752 

57.98 57.98 57.98 57.98 57.98 57.98 P21 

3.826 5.988 10.229 6.234 11.546 22.416 

53.29 53.29 53.29 53.29 53.29 53.29 P25 

30.416 44.723 73.054 52.927 89.03 159.598 
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48.95 48.95 48.95 48.95 48.95 48.95 P26 

40.603 58.062 93.754 70.438 113.151 196.055 

46.58 46.58 46.58 46.58 46.58 46.58 P27 

41.085 57.789 91.087 70.126 112.609 197.198 

54.82 54.82 54.82 54.82 54.82 54.82 P28 

3.167 5.441 9.836 7.97 14.647 27.953 

47.08 47.01 47.04 47.08 47.08 47.08 P29 

43.855 63.163 114.475 67.381 110.681 196.499 

63.31 63.29 63.29 63.31 63.31 63.31 P30 

104.436 149.963 209.489 137.444 214.687 368.535 

60.12 60.12 60.12 60.12 60.12 60.12 P31 

76.482 113.589 187.219 127.111 214.142 387.09 

50.83 50.83 50.83 50.83 50.83 50.83 P32 

120.043 164.933 252.806 176.217 297.387 539.877 

47.19 47.19 47.19 47.18 47.19 47.19 P33 

529.706 762.139 1171.75 558.764 809.098 1217.85 

60.63 60.63 60.63 60.63 60.63 60.63 P34 

5.52 10.141 18.202 6.946 12.616 23.628 

57.69 57.69 57.69 57.69 57.69 57.69  

49.558 71.305 111.187 64.211 100.609 168.605 

 

To ease the comparison of the variants, we generate the elements of Table 13 as we did in 

Table 8. These results allow verifying the positive impact of replacing the Approximation 

method modifying the part families (machine groups) on the basis of the machine groups 

(part families) by the Exact procedure. Indeed, the variant HM_E reaches a better B. Eff 

than the variant HM for 11  (out of 21) problems while the reverse is true for only 2 

problems. Similarly, HM_E_ 2N get a better B. Eff  than HM_ 2N for 2 problems. 

 

 

Table 13: Comparing HM, HM_E, HM_
2

N , and HM_E_
2

N  

Variants Aver.  

B. Eff 

Aver.  

B. Time 

(sec.) 

HM HM_E 
HM_

2
N  HM_E_

2
N  

BKS 

HM 57.54 67.595   2 0 0 2 

HM_E 57.53 55.505 11   2 0 2 

HM_
2

N  57.69 49.823 
12 3   0 2 

HM_E_
2

N  
57.69 76.282 12 3 2   2 

BKS −  −  10 4 2 1 −  

  

The improvement of applying 2N afterward is also indicated in Table 13. HM_ 2N  and 

HM_E_ 2N  reach better B. Eff than variant HM and HM_E for 12 and 3 problems, 

respectively. Globally, the results in Table 13 allow to conclude that the variant 

HM_E_ 2N dominate the other three as far as the B. Eff is concerned, even though its 
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B.Time is larger. 

 

6.4  Comparing the best variants of SA, ASA, and HM modified 

The numerical results in this experimentation indicates that the three variants 2N , 1ASA , 

and HM_E_ 2N all reach the best-known solution for 29 problems. For the other 6 problems 

left, the results are summarized in Table 14. For each problem, the B. Eff for the variants 

having a smaller or a larger value than BKS is indicated in italic or in bold, respectively. For 

P18 and P33, the B.Eff obtained with the three variants exceeds the BKS. 

Table 14: Grouping efficacy of 
2

N , 
1

ASA ,and HM_E_
2

N  

P BKS 2
N  

1
ASA  HM_E_

2
N  

P9 58.72* 58.68 58.65 58.72 

P15 69.53* 69.53 69.37 69.53 

P18 42.96 43.13 43.08 43.15 

P27 46.58 46.58 46.57 46.58 

P33 46.67 47.19 47.18 47.19 

P34 60.64* 60.63 60.63 60.63 

 

The elements of Table 15 are obtained as those in Table 8. We observe that 

HM_E_ 2N reaches a better B. Eff than 2N and 1ASA for 2 and 5 of the 6 problems. 

Similarly, 2N  reaches a better B. Eff than 1ASA for 5 problems. Furthermore, note that the 

performance of the variants to reach a better B. Eff seems to increase with their B. Time. 

Finally, HM_E_ 2N , 2N , and 1ASA fail to reach to best-known solution for 1, 2 and 4 

problems, respectively. 

Table 15: Comparing, 
2

N , 
1

ASA ,and HM_E_
2

N  

Variants B. Eff B. Time 

(sec.) 

2
N  

1
ASA  HM_E_

2
N  

BKS 

2
N  65.93 25.841 

  5 0 2 

1
ASA  65.93 19.965 

0    0 2 

HM_E_
2

N  65.94 52.87 
2 5    2 

BKS 65.92   2 4 1   

   

In summary, all the variants analyzed in this paper are quite efficient to deal with the cell 

formation problem, but the three variants compared in Tables 14 and 15 are the most 

efficient of their categories. Finally, the variant HM_E_ 2N seems to include all the best 

features and dominates over all. 

Hybrid of Metaheuristic Methods for Solving the Cell Formation Problem

24 CIRRELT-2012-14



  

7 CONCLUSION 

In this paper we introduce three different methods to deal with the cell formation problem: a 

Simulated Annealing method (SA), an Adaptive Simulated Annealing method (ASA), and a 

Hybrid Method (HM) combining a Local Search Algorithm (LSA) and a Genetic Algorithm 

(GA). Four variants of SA are considered using different neighborhoods. Each neighborhood 

is obtained by combining one of the two diversification strategies to destroy and recover a 

new solution, and one of the two intensification strategies to improve the solution. The two 

diversification strategies are as follows: 

• D1: Modify the assignment of %n    parts and of %m    machines  

• D2: Select randomly between two strategies: modify either %n    parts or modify 

%m    machines 

where the parameter % takes the values 20%, 30%, or 50%. The intensification strategies 

are using one of the following method to modify the part families (machine groups) on the 

basis of the machine groups (part families): 

• I1: Approximation method  introduced in (Elbenani et al., 2011) 

• I2: Exact procedure based on the Dinkelbach method. 

The ASA method is a modification of the SA where the neighborhood used at each iteration 

is selected randomly among the four neighborhoods mentioned above. The method is 

adaptive in the sense that the probability of selecting a neighborhood is modified during the 

procedure according to the results obtained when using the neighborhood. Finally, we 

consider the HM introduced in (Elbenani et al., 2011) modified as follows. The first 

modification is to replace the Approximation method used in the LSA to modify the part 

families (machine groups) on the basis of the machine groups (part families) by the Exact 

procedure. The second modification is to apply a SA method afterward. 

A numerical experimentation is completed using the 35 benchmarked problems commonly 

used in the literature. The results indicate that better results are obtained using the Exact 

procedure rather than the Approximation method. Increasing solution time seems to be more 

beneficial for the SA and the ASA variants than for the modified HM variants. All the 

variants are quite efficient to deal with the cell formation problems, but if we compare the 

best performing variants of the three methods, the modified HM using the Exact procedure 

followed by an SA afterward seems to dominate. 
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