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Abstract. This paper reconsiders the inventory replenishment problem and emphasises 

the fact that it is a multi-objective problem where, in addition to minimizing the sum of 

order and inventory holding costs, we should optimize the usage of storage resources. 

The paper proposes a mathematical formulation of the problem, suggests two heuristic 

solution approaches, and assesses their performance. 
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1- INTRODUCTION 

This paper deals with inventory replenishment of multiple items supplied by external 

suppliers to fulfil constant demands. It is assumed that these items share a limited storage 

space and/or other storage resources like manpower and handling equipments. Two cost 

elements are considered: ordering costs and inventory holding costs. Items order costs are 

assumed known, constant and independent of each other. Also, per unit inventory holding 

costs are assumed known and constant. In practice it is required that replenishment be 

cyclic and that cycles be integer multiples of a basic time period also called fundamental 

cycle. This basic period is also required to be an integer number of time units. 

The problem is to determine the time length of the fundamental cycle, the multiples that 

determine replenishment cycles of items, and items reception (replenishment) periods. 

The objective is to minimize the sum of order and inventory costs while minimizing the 

maximum storage space needed and/or other storage resource requirements. This means 

that we are dealing with a multi-objective problem where all objectives are to be 

minimized. 

It is a common practice to solve this problem by first determining the optimal or near 

optimal cycle times without neither determining replenishment periods nor taking into 

consideration the storage space requirements. Then, using the obtained cycle times, 

determine items replenishment periods that minimizes the maximum required storage 

space. Handling these two sub-problems separately may lead to less good solutions. 

Sometimes little modifications of cycle times may allow reducing the maximum required 

storage space significantly and allows using smaller storage facility. Thus we may be able 

to avoid important facility expansion investments. 

To illustrate this point let us consider the 3-item replenishment problem shown in table 1. 

If we do not take into consideration storage space requirements, optimal cycle times for 

these items are respectively 3, 4 and 7 and the corresponding total cost (order cost and 

inventory holding cost) is 120. Given these cycle times, the maximum required storage 

space is the same whatever the chosen replenishment periods. This maximum storage 

The Inventory Replenishment Planning and Staggering Problem Revisited

CIRRELT-2012-19 1



 

space is 300 space units (Figure 1.a). Now if we modify cycle times to become 3, 3 and 6, 

the total cost increases to 122.5 which is just 2.1% increase. In the same time the 

maximum required storage space can be reduced, as shown in Figure 1.b, to 233.3 space 

units by replenishing these items in periods 1, 2 and 3 respectively. In addition to using 

less storage space, we now need less manpower and less handling equipments for our 

warehouse operations. Often this largely recompense for the increase of inventory and 

order costs. 

 

Item 
Demand 
Unit per 
time unit 

Order 
cost 

Inventory 
holding 
cost per 
time unit 

Storage 
space 

per unit 

Optimal 
replenishment 

cycle 

Optimal 
cost per 
time unit 

Modified 
cycle 
time 

Total 
cost 

1 100 45 0.10 1 3 30 3 30 
2 100 96 0.12 1 4 48 3 50 
3 100 147 0.06 1 7 42 6 42.5 

Total  120  122.5 
Table 1: A three items example 

 

For large ware houses operations, it is recognized now that solving the cycle-times 

determination problem separately from the replenishment staggering problem is not 

optimal. Rather we need to consider the minimization of total cost and storage space 

together; meaning that we have to handle our replenishment problem as a multi-objective 

problem. Defining a problem as a multi-objective one implies that we are not willing to 

decide a priori which objective is more important or what the weight to assign to each 

objective is? Thus, instead of providing the decision maker with a unique solution, we 

have to construct a series of non-dominated (Pareto or near-Pareto optimum) ones leaving 

the final choice to him or her.  
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2- PROBLEM DEFINITION AND MATHEMATICAL FORMULATION 

The problem addressed in this article, called the inventory replenishment and staggering 

problem, is that of determining the replenishment cycles of N different items that share 

the same storage space (and/or any other storage resource) as well as staggering their 

reception periods in order to minimize: (1) the total cost per period, denoted C, and (2) 

the maximum required storage space, denoted S.  

Each item i is replenished in cycles of length Ti which is an integer multiple mi of a basic 

period, also called fundamental cycle, denoted b. The demand rate of item i, denoted di, is 

known and constant and as no backlogging is allowed, the replenishment quantity Qi is 

known and equals mibdi. For each item i, both the unit inventory holding cost per unit of 

time, denoted hi, and the order cost, denoted Oi are known and constant. Under these 

assumptions, the global replenishment cycle is composed of M basic periods, indexed t, 

where M is the least common multiple (lcm) of all cycle multipliers mi, and the number of 

replenishments of i within the global cycle, denoted ni, equals M/mi. Two more variables 
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can be used: xit which is a binary that takes the value 1 if item i is replenished at the 

beginning of period t and Iit which indicates the inventory level of i at the beginning of 

period t. Without loss of generality, it is assumed that each unit of i requires one space 

unit for its storage; or in other words, the measuring unit of i is the quantity that requires 

one unit of storage space. We also assume that if the first replenishment of item i is 

scheduled to occur at a given period, we should manage to have enough initial inventory 

to cover the demand up to the beginning of this period. In the following only two 

objectives are considered: (1) to minimize C, the total cost, and (2) to minimize S, the 

maximum storage space required.  

Using the above given notation, the problem can be formulated as follows: 

Model 1 

Find: b integer ≥0, mi integer ≥0, xit{0,1} and Iit ≥0; i=1, …, N,  t=1, …, M which: 

Minimize: 
 









N

i

iii

i

i bmdh

bm
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C

1 2
 (1) 

Minimize: S (2) 
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it ,...,1;                                          1   :Subject to
1




 (3) 





N

i

is MtSI
it

1
,...,1;                                                             (4) 

MtNixbdmdII
ititit isiiisisi ,...,1 ;,...,1;                           1,,    (5) 

 .,...,1 ;,...,1;                         )(mod             where MtNim  t  s iit   (6) 

Notice that the optimal solution is such that b and mi; i=1, ..., N, are strictly larger than 

zero because of the hyperbolic term of the cost function C. 

The first objective function gives the sum of ordering and inventory holding costs per 

time unit. The first set of constraints assures that each item is replenished once and only 

once during its first replenishment cycle. The second set determines the maximum 

storage space required while the third set determines inventory levels at the beginning of 

each period and assures that replenishment is cyclic. This is a non-linear multi-objective 
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program where the integers mi are not only direct decision variables but also determine 

the limits of a sum on other variables.  

Few authors proposed methods to deal with some special cases of this problem. Zoller 

(1977) and Rosenblatt and Rothblum (1990) considered this problem under the 

assumption that all items have the same cycle length. Hartley and Thomas (1982) and 

Thomas and Hartley (1983) considered the two-item case. 

Other researchers did not consider the staggering aspect of the problem and proposed to 

minimize the sum of order and inventory holding costs under the constraint that the sum 

of space required by the sum of all ordered quantities is less than or equal to a given limit 

denoted L (Page and Paul 1976, Goyal 1978, Anily 1991, Gallego, Queyranne and 

Simchi-Levi 1996).  This problem can be modeled as follows: 

Find: b integer ≥0, mi integer ≥0; i=1,…, N,  which: 

Minimize: 
 









N

i

iii

i

i bmdh

bm

O
C

1 2
 (1) 

                                            :Subject to
1

Lbdm
N

i

ii 


 (7) 

This model can be solved by: (1) generating all feasible vectors mi; i=1,…, N in 

lexicographic order, (2) for each vector determine the corresponding optimal value of b 

and C, and (3) retain the solution producing the minimum cost. 

As the minimal value of b and mi,i is 1, a necessary feasibility condition for model 5 is: 

  



N

i

i Ld
1

.  (8) 

The upper bound on mi is reached when b and all mj,j≠i take the value one. Thus the 

limits on the value of mi are: 

 ).(11 



ij

j

i

i dL
d

m  (9) 

For a given vector mi; i=1,…, N, The optimal corresponding value of b can be determined 

by: 
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  ;
otherwise   1

)1()( if        
 (11) 

Still we don’t have any efficient method to solve the general case modeled by model 1 

above. Thus we need to develop some heuristic methods to produce good but not 

necessarily optimal solutions. In the following, two heuristics solution approaches are 

proposed. 

3- TWO HEURISTIC SOLUTION APPROACHES 

In the following, two solution approaches are suggested to deal with the considered 

replenishment planning and staggering problem. The first approach, called hereafter the 

exploratory method (EM), tries different vectors of cycle multipliers mi, i=1, …, N and 

always fix the fundamental cycle b =1. For each vector, we determine the corresponding 

total cost C and solve the corresponding replenishment staggering problem where 

replenishment (reception) periods within the obtained cycles are determined while trying 

to minimize the maximum storage space required. This approach may provide as many 

solutions as the number of cycle multipliers vectors we are willing to consider. 

Dominated solutions should then be discarded. 

The second approach is an evolutionary algorithm; called hereafter the Two-Population 

Evolutionary Algorithm (TPEA), produces a series of solutions, identify the non-

dominated ones and leaves the final choice again to the decision maker. These two 

approaches are discussed and assessed in the following. 
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3.1- The exploratory method 

The fundamental cycle value for all the solutions produced by this method is one (b=1). 

The method can be summarized as follows: we generate a number of cycle multipliers 

vectors, for each vector calculate the corresponding total cost C and solve the 

corresponding replenishment staggering problem to minimize S. Dominated solutions are 

then discarded. 

Although b equals 1 for all the generated solutions, to generate the required cycle 

multipliers vectors, we use several different values of b. Once the vector is generated we 

put back b=1. Precisely we use all the values of b between two chosen limits bl and bu 

with a step of b and for each value of b we generate a vector of cycle multipliers mi; 

i=1,…, N. This vector is the one that minimizes the total cost without taking in 

consideration storage space required; i.e., the one that solves the following model: 

Find: mi integer ≥0; i=1,…, N which: 

Minimize: .
21


 









N

i

iii

i

i bmdh

bm

O
C  (12) 

This function is separable into N functions and the problem becomes to solve for each of 

the N items the following problem: 

Find: mi integer ≥0 which: 

Minimize:           
2

)(
bmdh

bm

O
mC iii

i

i

ii   (13) 

It is easy to see that the optimal solution of this problem is: 
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
 ii

i

i

i

iiiii

i
dh

O
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CC
m

21   where;     
otherwise     

)1()( if       

1

* 



 (14) 

For each obtained vector of mi; i=1,…, N, we calculate the total cost C for the 

corresponding multipliers with b=1. This can be done by substituting these values in (12).  

Afterwards, we move to solve the reception or replenishment staggering problem; i.e., to 

determine the reception period for each item. This can be done either by using a heuristic 

(such a heuristic will be presented later in this section) or by solving the following model. 
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Model 2 

Using b=1 and the obtained values of mi; i; find xit{0,1} and Iit ≥0; i=1, .., N, t=1, .., mi 

which: 

Minimize: S (2) 

Nix
im

t

it ,...,1;                                     1   :Subject to
1




 (3) 





N

i

is MtSI
it

1
,...,1;                                                        (4) 

MtNixbdmdII
ititit isiiisisi ,...,1 ;,...,1;                              1,,    (5) 

 .,...,1 ;,...,1;                       )(mod           where MtNim  t  s iit   (6) 

This model is a mixed integer model with binary and continuous variables. A more 

compact, but equivalent, model with only binary variables is: 

Model 3 

Using b=1 and the obtained values of mi; i=1, ..., N; find xit{0,1}; i=1, ..., N, t=1, ..., mi 
which: 

Minimize: S (2) 

Nix
im

t

it ,...,1;                               1   :Subject to
1




 (3) 


 


N

i

ist

m

s

is MtSIx
i

1 1
.,...,1;                                          (15) 

Where Iist is the inventory level of item i at the beginning of period t if its order is 

received at the beginning of period s of its replenishment cycle. Formally: 







 


tI

mstsdstQ
I

imtis

iii

ist  of esother valu allfor  ,            
for  ,      )(

)mod(,
 (16) 

Very few published research work addressed this replenishment staggering problem for a 

given cycle times (see Murthy, Benton and Rubin, 2003 and Boctor 2010). Gallego, 

Shaw and Simchi-Levi (1992) showed that the problem is NP-hard even if only one cycle 

multiple is different from the others. Hariga and Jackson (1995) proposed to solve the 

problem by varying lot sizes through time while no backlogs are allowed. Hall (1998) 

examined the problem in the case where all cycle lengths are equal, showed that the 
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problem is NP-hard, compared two solution heuristics and provided the worst case ratios 

for the considered heuristics. Teo, Ou and Tan (1998) proposed an upper bound and a 

heuristic for the case where each cycle time is a divisor for another one. More recently, 

Murthy, Benton and Rubin (2003) proposed a heuristic to solve this staggering problem. 

However, this heuristic seems to provide solutions of average quality. Boctor (2010) 

proposed a number of other heuristic methods and shown, based on a number of 

randomly generated instances, that the proposed heuristics outperform the one by Murthy 

et al. for all tested instances. 

Among the proposed heuristics, the following one will be used in this paper to produce an 

approximate solution to the staggering problem. 

Heuristic H1 

Initialisation: - Order the set of items in the ascending order of their lot sizes Qi, 

- Schedule the first item in the list, denoted u, to be replenished at 

periods nmu+1 where n = 0, 1,…, nu-1. 

Iteration:  - Consider the next item in the list, denoted i, 

- Schedule its replenishments at fi +nmi (n=0, 1,…, ni-1) where fi is the 

replenishment period leading to the smallest maximum space required 

for items 1, …,i. 

Improvement: - considers items one by one and eventually moves its replenishments to 

the periods that lead to the maximum reduction of the maximum 

required storage space. The procedure stops if no further improvement 

can be achieved. 

Numerical illustration 

Let us consider the ten-item example presented in Table 2 and use the proposed 

exploratory approach to solve it. Using the parameters bl=0.9, bu=3.9 and b =0.03333 to 

generate a set of different multiplier vectors and the Heuristic H1 to determine S, the 

maximum storage space required. We obtain the 17 non dominated solutions given by the 
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second and third rows of Table 3. To get a rough estimation of by how much we can 

reduce the maximum storage space required if we used Model 3 instead of heuristic H1, 

we solved the model to determine S for each of the 17 non-dominated solutions. The 

obtained values of S are given by the fourth row of the same table. These results (the 

empirical Pareto front) are also depicted on Figure 2. 
item Demand 

per 
period 

Cost per 
Order 

Unit inventory 
holding cost per 

period 
1 100 50 0,1 

2 100 90 0,12 

3 100 120 0,06 

4 120 40 0,08 

5 120 100 0,1 

6 150 160 0,08 

7 150 100 0,05 

8 200 150 0,1 

9 200 200 0,12 

10 200 240 0,05 

Table 2: Data for the ten-item example 
 

Solution 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
C the total cost per period 538.4 538.6 539.2 540.2 547.4 554.4 557.4 559.3 565.6 584.5 640.5 647.5 662.5 696.1 783.3 887.3 1019.3 
S as obtained by H1  5320 5100 4640 4570 4310 4060 3860 3840 3830 3230 3010 2910 2610 2410 2090 1910 1790 
S as obtained by Model 3 5140 5100 4520 4480 4100 3940 3840 3740 3700 3080 2890 2810 2510 2410 2060 1910 1740 
Deviation of H1 from Model 3 2.9% 0.0% 1.5% 0.0% 4.0% 3.6% 4.2% 4.9% 3.5% 2.7% 0.5% 3.1% 5.1% 2.0% 2.7% 0.0% 3.5% 

Table 3: Non dominated solutions obtained by the exploratory method 
 

Figure 2: Non dominated (Pareto) solutions as obtained by the Exploratory Method (EM) 
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Obviously using Model 3 requires more computational time and gives smaller values of S 

than those obtained if we use heuristic H1; the average improvement of S is 2.58%. 

Indeed, the additional computational time for using Model 3 for such a small instance is 

quite small. However, including this model in the exploratory approach in order to 

determine S for all enumerated solutions (dominated and non-dominated) increases the 

computational time to about 640 times the computational time of the approach if we use 

the heuristic H1. For larger problems the ratio is expected to be much higher than 640. 

3.2- The proposed evolutionary algorithm 

The second approach we propose to solve the considered inventory replenishment 

problem is an evolutionary algorithm. The literature indicates that evolutionary 

algorithms are well suited for solving multi-objective optimization problems as they are 

able to produce several solutions from which we can extract a set of non-dominated 

(Pareto near-optimal) solutions. 

Many multi-objective evolutionary algorithms (MOEA) were proposed since the mid-

eighties (see Van Veldhuizen et al 2000, Konak et al 2006). However the question of 

which one is better or outperforms others is not yet settled. Few comparative studies (see 

Zitzler et al 2000) attempted to deal with this question but many new MOEA were 

developed since. 

Our objective here is not to develop a more efficient MOEA but a fast one based on a 

new concept and to show that it is able to handle efficiently our inventory replenishment 

problem. Designing a MOEA requires dealing with two important issues: (1) how to 

guide the search towards the Pareto-optimal front by designing the suitable fitness 

assignment scheme, and (2) which solutions to preserve all along the evolution process in 

order to converge to a sufficiently good set of non-dominated solutions. To deal with the 

first issue we suggest a two-population evolutionary algorithm (TPEA) where the fitness 

of each population is determined based on either the total cost or the maximum storage 

space. To deal with the second issue we use an external archive where non-dominated 

solutions are stored and updated. External archives are used by some of the most recently 

proposed MOEA like NSGA-II (Deb et al 2002) and SPEA2 (Zitzler et al 2001). 
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In the following we present the elements of the proposed two-population evolutionary 

algorithm (TPEA). 

Solution coding: each solution is represented by its vector of cycle multipliers. The first 

replenishment period for each item (and the consecutive replenishment periods) is not 

coded as a part of the solution. Instead for each multipliers vector we apply a heuristic to 

solve the staggering problem (determine the replenishment periods). 

Number and size of populations: we need to use as many populations as the number of 

objectives to consider. In our case as our objectives are to minimize C and S, we use two 

populations. The population size, denoted P, is a parameter to be chosen by the user. To 

accelerate the evolution procedure, in the tested implementation of the algorithm we use 

populations of 100 solutions each (P=100). 

Initial population: We generate 2P chromosomes and we use the first P chromosome as 

the first population and the P as the second population. To generate these 2P 

chromosomes we first generate one chromosome (cycle multipliers vector) by 

substituting b=1 in equation (14). Then we generate each of the remaining individuals as 

follows. Randomly select between 4 and 8 genes (items to replenish) in the first vector 

and randomly modify their cycle multiplier within a given range (example by adding or 

subtracting a random value between 1 and a predetermined value u). for each generated 

vector (chromosome) we calculate its total cost per period C and apply a heuristic (we 

use H1) to solve the corresponding staggering problem and to determine the maximum 

storage space required S.  

Mating pool selection: The selection of individuals to participate in production of the 

next generation is done in the same way for each of the two populations as follows: 

1- We arrange the overall set of all individuals in the ascending order of their total 

cost C (respectively S for the second population), 

2- The top half individuals in the resulting list constitute the first population. If a 

given solution has more than one copy in this population, keep only one copy and 

remove the other copies. If there is more than a p individuals remaining (in our 
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implementation p=80% of the population size) keep only the first p individual and 

remove the others. Add to the population a copy the best 20% (those with the 

lowest values of C for the first population and respectively S for the second one). 

Cross-over operator: the used operator is a random one position cross-over operator. 

Stopping rule: when a predetermined number of generations is produced. 

Application to the 10-item numerical example 

The proposed two-population evolutionary algorithm was applied to the 10-item example 

presented in table 2. The algorithm is stopped once 30 generations are produced. The 

results are depicted on Figure 3. We also solved Model 3 for each of the 46 obtained 

solutions to see by how much the maximum required storage space can be reduced. The 

solutions obtained are also presented in Figure 3. 

Figure 3: Non dominated (Pareto) solutions as obtained by the Two-Population 
Evolutionary Algorithm (TPEA) 
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Figure 4 presents the 46 non-dominated solutions obtained by the genetic algorithm 

together with the 17 non-dominated solutions of the exploratory method. Among these 63 

solutions 32 are non-dominated. Ten (59%) of the 17 solutions of the exploratory 

methods are not dominated by any of the solutions obtained by the genetic algorithm 

while 7 solutions are dominated. Also 22 of the 46 solutions of the genetic algorithm are 

not dominated (48%) while the other 24 are dominated. Thus although the proposed 

genetic algorithm produce more solutions, a higher percentage of these solutions are 

dominated by those produced by the exploratory method. 

 

Figure 4: Pareto solutions obtained by each method (EM and TPEA) 

Figure 5 presents the empirical Pareto Front (PF) of the solutions obtained by the two 

approaches together and shows by which approach each solution was produced. It also 

shows the empirical Utopia Point (UP) and the empirical Threat Point (TP) associated 

with this Pareto Front. The coordinates of the Utopia Point are the minimum values of the 

considered objectives while the coordinates of the Threat Point are the maximum values. 

The Compromise Solution (CS) is the nearest Pareto solution to the Utopia Point.  
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The distance between the Utopia point and the Pareto solutions is usually a weighted 

distance reflecting the importance of the different objectives. Thus the identification of 

the Compromise Solution depends on the used weights. Instead if using arbitrary weights, 

we transfer the origin of our coordinates to the Utopia point and rescale both axes by 

dividing all values by the range of the values on the corresponding axis. We notice that 

doing so, the compromise solution is one of those obtained by the exploratory method 

(For more details on these concepts see Kasprzak & Lewis 2001 and Marler & Arora, 

2004). 

 

 
Figure 5: Empirical Overall Pareto Front (OPF) 

4- PERFORMANCE EVALUATION 

4.1- Test instances 

To assess the performance of the proposed solution methods we generated 30 test 

instances with 20 items each. The demand rates are randomly and uniformly generated 

between 5 and 30 units per period. Order costs are generated between 10 and 100 while 

inventory holding cost are generated in a way to produce cycle times between 2 and 20. 

The generated test instances are available on: http://www.mcbolduc.com/tests.htm. 
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4.2- Performance criteria 

Three criteria will be used to compare the performance of the proposed solution methods. 

The first criterion is the number of solutions on the Overall Pareto Front (OPF) produced 

by the method. The second and third are respectively the percentage of solutions on the 

PF as obtained by the method that are also on the OPF; and the number of time the 

compromise solution is obtained by the method. 

4.3- Results and analysis  

Table 4 gives the obtained results by the two proposed solution methods: the exploratory 

method (EM) and the Two-Population Evolutionary Algorithm (TPEA). The appendix 

gives the obtained results for each of the 30 test instances. From Table 4 we can see that 

the proposed evolutionary algorithm produced a larger number of solutions on the overall 

Pareto front (OPF) but the percentage of its Pareto solutions that are on the OPF is not 

much higher than the percentage for the exploratory method. The Exploratory method 

obtained the compromise solution in 13 out of the 30 test instances (43%) while the Two-

population evolutionary algorithm obtained the compromise solution for 17 instances 

(57%). However it is important to notice that the TPEA requires about 26 times the 

computation time required by the EM. 

 
Evaluation criterion EM TPEA 
Average number of Pareto solutions obtained 29.7 54.3 
Average number of solutions on the Overall Pareto Front (OPF) 15.8 35.9 
Average percentage of PF solutions that are on the OPF 51.9 66.9 
Number of times the method produced the Compromise Solution 13 17 
Average computation time (sec) 42.0 1099.8 

Table 4: Summary of the obtained results 

5- CONCLUSIONS 

This research work emphasises the fact that the inventory replenishment planning and 

staggering problem is a multi-objective one and in addition to minimizing the involved 

costs we need also to minimize the storage space and inventory handling resources. It 

was shown that a simple method, the Exploratory Method can produce useful solutions 
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and if more solutions are needed we can use the suggested Two-population Evolutionary 

Algorithm. Actually, it is suggested that we can use the two methods and produce an 

overall Pareto front of solutions that can be offered to the decision maker to choose the 

solution to implement. 

It is also obvious that more efficient solution procedures should be developed and we also 

need to develop more evaluation criteria to assess the performance of the developed 

methods. Thus we consider this research work as the beginning of many future research 

works by us as well as by the other interested researchers. 
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Appendix 

  EM TPEA 
Method 

producing 
the 

Compromise 
Solution 

Instance 
Number 

of PF 
solutions 

Number of 
PF solutions 

on the 
Overall 

Pareto Front 
(OPF) 

Percentage 
of PF 

solutions 
that are on 
the OPF 

Computation 
time (sec) 

Number 
of PF 

solutions 

Number of 
PF solutions 

on the 
Overall 

Pareto Front 
(OPF) 

Percentage 
of PF 

solutions 
that are on 
the OPF 

Computation 
time (sec) 

1 31 24 77.4% 8 60 20 33.3% 1089 EM 
2 28 7 25.0% 26 56 47 83.9% 1242 TPEA 
3 25 5 20.0% 27 55 51 92.7% 842 TPEA 
4 31 17 54.8% 66 54 40 74.1% 1102 EM 
5 34 12 35.3% 5 53 38 71.7% 1792 TPEA 
6 29 16 55.2% 27 44 35 79.6% 1231 TPEA 
7 30 11 36.7% 72 48 42 87.5% 871 EM 
8 34 10 29.4% 16 44 40 90.9% 891 TPEA 
9 34 18 52.9% 59 55 45 81.8% 1149 TPEA 

10 30 21 70.0% 18 59 23 39.0% 997 TPEA 
11 25 5 20.0% 21 48 39 81.3% 798 TPEA 
12 22 19 86.4% 18 52 24 46.2% 954 EM 
13 31 20 64.5% 127 54 31 57.4% 1119 EM 
14 31 17 54.8% 66 50 34 68.0% 1097 EM 
15 36 27 75.0% 183 57 31 54.4% 1035 EM 
16 35 21 60.0% 20 48 30 62.5% 1138 TPEA 
17 36 19 52.8% 12 66 49 74.2% 1313 TPEA 
18 33 32 97.0% 170 61 21 34.4% 2120 EM 
19 24 10 41.7% 6 53 33 62.3% 896 TPEA 
20 30 4 13.3% 12 59 56 94.9% 1312 TPEA 
21 21 6 28.6% 21 49 35 71.4% 1470 TPEA 
22 30 7 23.3% 8 59 55 93.2% 811 EM 
23 26 4 15.4% 18 55 53 96.4% 608 TPEA 
24 31 28 90.3% 41 60 8 13.3% 1186 EM 
25 37 28 75.7% 80 64 23 35.9% 1068 EM 
26 33 23 69.7% 26 55 39 70.9% 1064 TPEA 
27 26 21 80.8% 32 46 20 43.5% 1088 EM 
28 34 21 61.8% 55 67 47 70.2% 966 TPEA 
29 22 12 54.6% 17 52 30 57.7% 889 EM 
30 23 8 34.8% 3 45 38 84.4% 857 TPEA 

average 29.7 15.8 51.9% 42.0 54.3 35.9 66.9% 1099.8 
 

Minimum 21 4 13,3% 3 44 8 13,3% 608 
 

Maximum 37 32 97,0% 183 67 56 96,4% 2120 
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