
 
 

           
  
  
 ____________________________ 
   

Designing Parallel Meta-Heuristic 
Methods  

      
Teodor Gabriel Crainic 
Tatjana Davidović 
Dušan Ramljak 
 
                                
June 2012 
 
 
CIRRELT-2012-28 
 
 

 
                              
 

 
 
 
 
 
 
 

G1V 0A6 

Bureaux de Montréal : Bureaux de Québec : 

Université de Montréal Université Laval 
C.P. 6128, succ. Centre-ville 2325, de la Terrasse, bureau  2642 
Montréal (Québec) Québec (Québec) 
Canada H3C 3J7 Canada G1V 0A6 
Téléphone : 514 343-7575 Téléphone : 418 656-2073 
Télécopie  : 514 343-7121 Télécopie  : 418 656-2624 
 

 www.cirrelt.ca 



Designing Parallel Meta-Heuristic Methods 
Teodor Gabriel Crainic1,*, Tatjana Davidović2, Dušan Ramljak3 

1 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT) 
and Department of Management and Technology, Université du Québec à Montréal, P.O. Box 
8888, Station Centre-Ville, Montréal, Canada H3C 3P8 

2 Mathematic Institute, Serbian Academy of Science and Arts, Knez Mihailova 35, 11000 Belgrade, 
Serbia 

3 Center for Data Analytics and Biomedical Informatics, Temple University, 1801, N. Broad Street, 
Philadelphia, PA 19122, USA 

Abstract. Meta-heuristic methods represent very powerful tools for dealing with hard 
combinatorial optimization problems. However, real life instances usually cannot be 
treated efficiently in "reasonable" computing times. Moreover, a major issue in meta-
heuristic design and calibration is to make them robust, i.e., to provide high performance 
solutions for a variety of problem settings. Parallel meta-heuristics aim to address both 
issues. The objective of this chapter is to present a state-of-the-art survey of the main 
parallel meta-heuristic ideas and strategies, and to discuss general design principles 
applicable to all meta-heuristic classes. To achieve this goal, we explain various 
paradigms related to parallel meta-heuristic development, where communications, 
synchronization and control aspects are the most relevant. We also discuss 
implementation issues, namely the influence of the target architecture on parallel 
execution of meta-heuristics, pointing out the characteristics of shared and distributed 
memory multiprocessor systems. All these topics are illustrated by examples from recent 
literature. These examples are related to the parallelization of various meta-heuristic 
methods, but we focus here on Variable Neighborhood Search and Bee Colony 
Optimization. 

Keywords: Combinatorial optimization, meta-heuristics, parallelization. 

Acknowledgements. This work has been partially supported by the Serbian Ministry of 
Science, grant nos 174010 and 174033. Partial funding for this work has also been 
provided by the Natural Sciences and Engineering Research Council of Canada 
(NSERC), the Canada Foundation for Innovation, and the Quebec Ministry of Education. 
The authors would also like to thank Mrs. Branka Mladenović and Mr. Alexey Uversky for 
the proofreading efforts. 

Results and views expressed in this publication are the sole responsibility of the authors and do not 
necessarily reflect those of CIRRELT. 

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
 
_____________________________ 
* Corresponding author: TeodorGabriel.Crainic@cirrelt.ca 
Dépôt légal – Bibliothèque et Archives nationales du Québec 
                      Bibliothèque et Archives Canada, 2012 

© Copyright  Crainic, Davidović, Ramljak and CIRRELT, 2012 



1  Introduction 

Meta-heuristic methods represent are widely used for solving various combinatorial optimization problems. 

Computing optimal solutions is intractable for many important industrial and scientific optimization problems. 

Therefore, meta-heuristic algorithms are used for practical applications, since, in the majority of cases, they 

provide high quality solutions within reasonable CPU times. However, as the problem size increases, the 

execution time required by a meta-heuristic to find a high quality solution may become unreasonably long. 

Parallelization has proven to be an efficient method for overcoming this problem. 

Since meta-heuristics usually represent stochastic search processes, it is important to properly define measures 

to evaluate the performance of their parallelized versions, as we cannot use the standard performance measures 

(speedup and efficiency) for the evaluation of parallel meta-heuristics. Actually, parallelization changes the 

original algorithm, and consequently, the evaluation of both the execution time and the quality of the final 

solution is needed. Indeed, for the majority of parallelization strategies, the sequential and parallel versions of 

heuristic methods yield solutions that differ in value, composition, or both. Thus, an important objective when 

parallel heuristics are considered is to design methods that outperform their sequential counterparts in terms of 

solution quality and, ideally, computational efficiency. More precisely, the parallel method should not require a 

higher overall computation effort than the sequential method, or should justify the effort by a higher quality of the 

final solutions. Consequently, we select the execution time and the quality of the final solution as our 

performance measures. 

A significant amount of work has been performed in defining, implementing, and analyzing parallelization 

strategies for meta-heuristics. According to the survey papers [1,2,3], several main ideas related to the 

parallelization of meta-heuristic methods can be recognized: starting from the low level parallelization realized 

by distributing neighborhoods among processors, up to the cooperative multi-thread parallel search [1,4]. Many 

parallelization strategies dealing with various meta-heuristic methods have been proposed in recent literature 

(surveyed in [1,2,3,4,5,6]). The rich collection of papers on parallel meta-heuristics [7] is devoted to both 

theoretical and practical aspects of this topic. Here, we briefly recall important issues, and then focus on two main 

classes of meta-heuristics: neighborhood-based and population-based methods. We select a representative for 

each class and give a survey of the existing approaches to their parallelization. As the representative for 

neighborhood-based meta-heuristic methods we select Variable Neighborhood Search (VNS) because of its 

numerous successful sequential and parallel applications. Parallelization of population-based methods is 

illustrated on Bee Colony Optimization (BCO), the nature-inspired meta-heuristic recently on the rise. 

The rest of this chapter is organized as follows. The next section contains a brief overview of meta-heuristic 

methods. Review of recent literature addressing the parallelization strategies for various meta-heuristic methods 

is presented in Section 3. The parallelization strategies proposed in recent literature for VNS are described in 

Section 4, while Section 5 contains the review of the parallel BCO method. Section 6 concludes the chapter. 

Designing Parallel Meta-Heuristic Methods

CIRRELT-2012-28 1



2  Meta-heuristics  

Combinatorial optimization problems involve the selection of the best among (finitely many) feasible 

solutions. Each problem is defined by (i) a set of objects, with associated contributions, (ii) an objective function 

computing the value of a particular subset or order of objects, and (iii) the feasibility rules specifying how 

subsets/orderings may be built. The best solution is the one satisfying feasibility rules and yields the value of the 

objective function which is the highest/lowest among all possible combinations. This solution is called the 

optimal solution (optimum). For a more formal definition, let us assume that one desires to minimize an objective 

function f(x), linear or not, subject to x  X  ℝn. The set X collects constraints on the decision variables x and 

defines the feasible domain. Decision variables are generally non-negative and some or all of them usually take 

discrete values. A globally optimal solution x*  X is the one for which holds f(x*)  f(x) for all x  X.  

The main difficulty in solving combinatorial optimization problems is that the number of feasible solutions 

usually grows exponentially with the number of objects in the initial set. Therefore, meta-heuristics represent the 

only practical tools in addressing these problems in real-life dimensions. Meta-heuristics are computational 

methods that optimize a problem by iteratively trying to generate or improve an existing solution with respect to a 

given objective. Meta-heuristics are general methods, in the sense that they do not use a priori knowledge about 

the problem to be optimized.  They usually apply some form of stochastic search. However, when using meta-

heuristics, it is hard to guarantee the quality of the final solution: how far it is from the optimal one or if it is at all 

possible to reach the optimal solution by the application of meta-heuristic rules. Nonetheless, to obtain any 

feasible solution in the majority of the real-life applications, meta-heuristics are the only possible choice.  

Meta-heuristics represent general approximate algorithms applicable to a large variety of optimization 

problems [8], but should be tailored for each particular optimization problem. They deal with instances of 

problems that are believed to be hard in general by efficiently exploring suitably limited sub-spaces of their large 

solution search space. Meta-heuristics serve three main purposes: solving problems faster, solving large 

problems, and obtaining robust algorithms. Moreover, they are very flexible, and simple for designing and 

implementing.  

Numerous meta-heuristics have been developed in the past twenty years. Many of them are inspired by natural 

metaphors (e.g., evolution of species, annealing process, insect colony behavior, particle swarms, immune 

systems, etc.) to solve complex optimization problems. Others are based on mathematical search principles. They 

include the definition of some metric to measure the distance between solutions, the neighborhoods to distinguish 

solutions that are close to each other, and local search principles which enable efficient searches of the solution 

space. Examples of these methods are Tabu Search [9,10] and Variable Neighborhood Search [11,12]. Another 

classification of meta-heuristics is based on the number of solutions used during the search: we distinguish single 

solution methods and population-based ones. Meta-heuristics are also classified as constructive (if they build new 

Designing Parallel Meta-Heuristic Methods

2 CIRRELT-2012-28



and better solutions during their execution), or based on improvement (in the case when they transform a given 

solution in order to obtain an improved ancestor). Constructive meta-heuristics include Greedy Randomized 

Adaptive Search Procedure [13,14], Ant Colony Optimization [15] and Bee Colony Optimization [16,17,18], 

while Genetic Algorithms [19,20], Simulated Annealing [21,22] and Variable Neighborhood Search represent 

methods based on the improvement of given initial solutions. All relevant details about the design and 

implementation of meta-heuristic methods can be found in [8,23]. 

2.1. Variable Neighborhood Search 

Variable Neighborhood Search (VNS) meta-heuristic was proposed by Mladenović and Hansen [11]. It is a 

simple and effective optimization method widely used for dealing with combinatorial and global optimization 

problems [12]. The basic idea behind VNS is a systematic change of neighborhoods within a descent phase to 

find a local optimum, as well as within a perturbation phase to get out of the corresponding valley. VNS is a 

single-solution neighborhood-based method whose basic building block is a Local Search (LS) procedure. It uses 

multiple neighborhoods in order to increase the efficiency of the search. VNS is based on three simple facts [24]: 

Fact 1 A local optimum w.r.t. one neighborhood structure is not necessarily an optimum for another; 

Fact 2 A global optimum is a local optimum w.r.t. all possible neighborhood structures; 

Fact 3 For many problems, local optima w.r.t. one or several neighborhoods are relatively close to each other. 

To describe VNS, we first introduce the following notation. For a given optimization problem, e.g., min f(x), 

the set of solutions S and the set of feasible solutions X  S are defined. Let x  X be an arbitrary solution, we 

define the neighborhood of x (N(x)) as the set of all solutions obtained from x by the application of a predefined 

elementary transformation. Let, Nk, (k = 1, …, kmax), be a finite set of pre-selected neighborhood structures. Then, 

Nk(x) is the set of solutions in the k
th neighborhood of x, i.e., the set of solutions obtained from x by the 

application of k elementary transformations. Steps in the basic VNS are illustrated in Fig. 1. 

Usually, the initial solution is determined by some constructive scheduling heuristic and then improved by LS 

before the beginning of actual VNS procedure. The role of a shake procedure is to prevent trapping in a local 

minimum. Intensification of the search is realized by the improvement step involving the selected LS procedure to 

improve the current solution. The whole VNS procedure is concentrated around the current global best solution, 

and therefore, the move step has to ensure that this solution is always updated as soon as possible. 

As a meta-heuristics, VNS runs until some predefined stopping criterion is met. The possible stopping criteria 

can include the maximum total number of iterations, the maximum total number of iterations without 

improvement of the objective function, or the maximum allowed CPU time. Once the stopping criterion is met, 

the global best solution is reported. 

  

Designing Parallel Meta-Heuristic Methods

CIRRELT-2012-28 3



 
Initialization. Find an initial solution x  X; improve it with the local search; choose 
stopping criterion; STOP = 0. 
 
Repeat 
       1. Set k  = 1. 
       2. Repeat 
               (a) Shake. Generate a random point x' 
                     in the kth neighborhood of x, (x'  Nk(x)). 
               (b) Improve. Apply some LS method with x' as initial solution; 
                     denote with x'' the obtained local optimum. 
               (c) Move. If this local optimum is better than the  
                     current incumbent,  
                      then move there (x=x''), and continue search within N1 (k=1); 
                     otherwise move to the next neighborhood (k = k+1). 
               (d) Stopping criterion. If the stopping condition is met,  
                     then set STOP = 1. 
           until k == kmax. 
until STOP == 1. 

Fig.1. Pseudocode of the VNS algorithm 

 
VNS has a unique parameter kmax, the maximum number of neighborhoods. Sometimes, but not necessarily, 

successive neighborhoods are nested. There are several variations and modifications of this basic VNS scheme, as 

well as many successful applications. Readers are referred to [12,25] for more details. 

2.2. Bee Colony Optimization 

Lučić and Teodorović [16,17,18] were among the first to use the basic principles of collective bee intelligence 

in solving combinatorial optimization problems. BCO is a meta-heuristic method in which a population of 

artificial bees (consisting of B individuals) searches for the optimal solution. Every artificial bee generates a 

solution to the problem through a sequence of construction steps. This is done over multiple iterations, until some 

predefined stopping criterion is met. Each step of the BCO algorithm is composed of two alternating phases: the 

forward pass and the backward pass, which are repeated until all solutions (one for each bee) are completed. The 

best among them is used to update the global best solution, and an iteration of BCO is completed. The number of 

forward/backward passes (NC), as well as the number of bees (B), are the parameters of the BCO algorithm, and 

should be given before its execution starts. The pseudocode of the BCO algorithm is given in Fig. 2. 

During the forward pass, every bee adds new components to its partial solution. The number of components is 

calculated in such a way that a single iteration of BCO completes after NC forward/backward passes. At the end 

of the forward pass, the new (partial or complete) solution is generated for each bee. 

  

Designing Parallel Meta-Heuristic Methods

4 CIRRELT-2012-28



 
Initialization: Read problem data, parameter values and  
                       stopping criterion. 
Do  
     (1) Assign an empty solution to each bee. 
     (2) For  (i=0; i<NC; i++)  // forward pass 
              (i) For (b=0; b<B; b++) 
                         For  (s=0; s<f(NC); s++) //count moves 
                               (a) Evaluate all possible moves; 
                               (b) Choose one move using the roulette wheel; 
                   // backward pass 
              (ii) For (b=0; b<B; b++) 
                           Evaluate the (partial/complete) solution of bee b; 
              (iii) For (b=0; b<B; b++) 
                           Loyalty decision using the roulette wheel for bee b; 
              (iv) For (b=0; b<B; b++) 
                           If (b is uncommitted), choose a recruiter using the  
                               roulette wheel. 
     (3) Evaluate all solutions and find the best one. 
while stopping criteria is not satisfied. 

Fig.2. Pseudocode of the BCO algorithm 

 
The bees start the second phase, the so-called backward pass by sharing information about their solutions. In 

nature, bees perform a dancing ritual, to inform other bees about the amount of food they have found, and the 

proximity of the patch to the hive. In the optimization search algorithm, the values of objective functions are 

compared. Each bee decides, with a certain probability, whether it will stay loyal to its solution or not. The bees 

with better solutions have a higher chance of keeping and advertising them. The bees that are loyal to their partial 

solutions are called recruiters. Once a solution is abandoned, the bee becomes uncommitted and has to select one 

of the advertised solutions. This decision is made probabilistically, in such a way that better advertised solutions 

have higher chances to be chosen for further exploration. This way, within each backward pass, all bees are 

divided into two groups (R recruiters, and the remaining B-R uncommitted bees). Values for R and B-R vary from 

one backward pass to another. 

3  Meta-Heuristics and Parallelism 

The main goal of traditional parallelization is to speed up the computations needed to solve a particular 

problem by engaging several processors and dividing the total amount of work between them. For stochastic 

algorithms, meta-heuristics in particular, several goals may be achieved [8]: (i) speeding up the search (i.e., 

reducing the search time); (ii) improving the quality of the obtained solutions (by enabling searching through 

different parts of the solution space); (iii) improving the robustness (in terms of solving different optimization 

problems and different instances of a given problem in an effective manner; robustness may also be measured in 

Designing Parallel Meta-Heuristic Methods

CIRRELT-2012-28 5



terms of the sensitivity of the meta-heuristic to its parameters); (iv) solving large-scale problems (i.e., solving 

very large instances that cannot be solved by a sequential machine). A combination of gains may also be 

obtained: parallel execution can enable an efficient search through different regions of the solution space, 

yielding an improvement of the quality of the final solution within a smaller amount of execution time.  

A significant amount of work concerning the parallelization of meta-heuristics already exists. The approach 

can be twofold: considering theoretical aspects of parallelization, or developing practical applications of parallel 

meta-heuristics for different optimization problems. The survey articles [1,2,3,4,7] summarize these works and 

propose adequate classifications. 

One of the first papers introducing classification of parallelization strategies is [3]. This classification, based 

on the control of the search process, resulted in two main groups of parallelization strategies: single walk and 

multiple walks parallelism. To refine the classification of parallelization strategies, communication aspects 

(synchronous or asynchronous) and search parameters (same or different initial point and/or same or different 

search strategies) have to be considered. The resulting classification is described in details in [4], and we briefly 

recall it here in order to be able to adequately classify our parallelization strategies for VNS and BCO. 

The classification from [4] takes three main aspects of parallel execution into account: search control, 

communication control, and search differentiation. Such an approach resulted in the 3D-Taxonomy X/Y/Z. Here, 

X is used to denote search control cardinality, which could take centralized (1C) or distributed (pC) values. Y 

deals with two aspects of communication control, synchronization and type of data to be exchanged. The four 

possibilities for Y are Rigid Synchronous (RS), Knowledge Synchronous (KS), Collegial Asynchronous (C), and 

Knowledge Collegial (KC). Search differentiation Z specifies the part of the search executed by each of the 

parallel processes. The difference is characterized by the initial point and by the search strategy. Each process can 

start from the same or different initial point, and it can perform the same or different search procedure. Therefore, 

there exist four combinations for Z: Same initial Point-Same search Strategy (SPSS), Same initial Point-Different 

search Strategies (SPDS), Multiple initial Points-Same search Strategy (MPSS), Multiple initial Points-Different 

search Strategies (MPDS). The particular implementation of each of the described strategies may vary, depending 

on the given multiprocessor architecture and the characteristics of the problem at hand. 

Considering implementation issues, we have to take care of the target architecture for parallel execution of 

meta-heuristics. When shared memory multiprocessor systems are used, the synchronization of execution steps 

represents the main difficulty. Namely, since all processors have access to a common (shared) memory, it is 

important to ensure that the relevant information is treated correctly. More precisely, it is important that no data is 

read before being stored to a given location, as well as that it is not overwritten before accessed by all processors. 

Barriers and semaphores are common control variables used for the synchronization of processors. Software 

resources supporting shared memory parallel implementations include openMP [26] and POSIX threads [27], 

with directives and library routines available for various programming languages. 

Designing Parallel Meta-Heuristic Methods

6 CIRRELT-2012-28



In the case of distributed memory multiprocessor systems, the main problem is information exchange between 

various processors. Each processor needs a copy of the data relevant for its own processes to be stored in its local 

memory. Therefore, the physical data transfer has to be performed, causing communication delays that may 

significantly deteriorate the performance of parallel execution. Besides minimizing the amount and/or frequency 

of data exchanges, selecting of the proper multiprocessor interconnection topology can yield the minimization of 

communication delays. The most commonly used multiprocessor systems are illustrated in Fig. 3.  

 
  

 
 

Fig.3. (a) Complete interconnection network of 5 processors;     (b) Star architecture; (c) Unidirectional 

processor ring 

 
The completely connected architecture (Fig. 3(a)) provides the minimal communication delay since each 

processor can directly exchange data with any other processor. On the other hand, it becomes hard for 

implementation when the number of processors increases. Star architecture (Fig. 3(b)) is the easiest for 

implementation, and the communication delay is not too large since the distance between any two processors is at 

most two. It is used to implement centrally coordinated parallel applications or asynchronous cooperative 

methods that require global memory. However, this architecture is highly fault sensitive: if the central processor 

crashes, the resulting system becomes unconnected. Processor rings (Fig. 3(c)) are also quite popular and easy for 

implementation. They provide platforms suitable for autonomous, non-centrally coordinated parallel applications. 

Basic advantages and disadvantages of various multiprocessor topologies are analyzed in [28] using the theory of 

graph spectra. 

Designing Parallel Meta-Heuristic Methods

CIRRELT-2012-28 7



Usual way to realize distributive memory parallel applications is to use Message Passing Interface (MPI) 

communication protocol (library for C, FORTAN, JAVA, and some other programming languages) [29,30]. As 

we could notice, distributed memory implementations dominate in recent literature, probably due to the available 

hardware resources and/or straightforward application of the MPI routines. The implementations described in this 

chapter are also based on the distributed memory multiprocessor systems. 

4  Parallelization of Variable Neighborhood Search 

The first parallelization strategies for VNS were tested with benchmark instances of the p-Median Problem 

[31]. The authors in [31] proposed and compared three strategies. The first approach involved low-level 

parallelism, and may be classified as 1C/RS/SPSS: it attempted to cut computation time by parallelizing the local 

search phase within a sequential VNS. The second one implemented an independent search strategy that ran a 

sequential VNS procedure on each processor, the best solution being collected at the end. We can classify it as 

pC/RS/MPSS. The third method applied a synchronous cooperation mechanism through a classical master-slave 

approach. The master processor ran a sequential VNS. The current best solution was sent to each slave processor 

that had to shake it to obtain an initial solution from which a local search would be started. The solutions were 

passed on to the master to select the best among them and continue the algorithm. The authors tested their 

methods using the tsplib problem instances with 1400 customers. Not surprisingly, the last two strategies found 

better solutions compared to the first one. In addition, the third (1C/KS/SPSS) approach used marginally less 

iterations than the second one. 

The p-Median Problem has also been used in [32] for the evaluation of the proposed parallelized VNS 

algorithms. Besides the independent run from [31], an asynchronous centrally coordinated parallelization strategy 

(classified as pC/C/MPSS) has been proposed. It was implemented on master-slave multiprocessor topology, with 

the master processor playing the role of central (globally accessible) memory, and the slaves performing basic 

VNS steps (shake and local search, SH+LS) in parallel. The proposed parallel VNS has been extensively tested 

on p-median benchmark problem instances of up to 1000 medians and 11948 customers. The results of 

comparison between parallel and sequential VNS indicated that the cooperative strategy yields significant gains 

in terms of computation time without losing solution quality. The results also showed that, for a given time limit, 

the cooperative parallel method was able to find better solutions than the sequential strategy. The parallel VNS 

allowed solving large-scale problem instances, and the quality of the obtained solutions was comparable to the 

quality of the best results in literature (when available). 

Parallel VNS algorithms for Job Shop Scheduling problems were proposed in [33]. Four parallelization 

strategies were taken into account: (i) synchronized cooperative strategy proposed in [31]; (ii) asynchronous 

centrally coordinated method from [32]; (iii) Non-centralized parallelism via unidirectional-ring topology; (iv) 

Designing Parallel Meta-Heuristic Methods

8 CIRRELT-2012-28



Non-centralized parallelism via bidirectional-ring topology. The last two strategies were applied to VNS for the 

first time in [33]. Non-centralized parallelism via unidirectional-ring topology can be classified as pC/C/MPSS. 

It implies that the processors are organized in a unidirectional-ring topology, in which the processors with 

succeeding indices are adjacent to each other and the first processor is adopted to be the adjacent to the last one. 

The idea in [33] was to feed a particular processor for the next generation with the outcome of the previous 

processor while the first processor was fed by the last processor. A particular processor was executing a single set 

of basic VNS steps (SH+LS), sending the obtained result to the succeeding one, and collecting the result 

generated by the preceding processor. The newly arrived solution became an initial point for the next execution 

cycle. This method provided a number of different ongoing runs with different initial solutions and diversifying 

with exchanging intermediate states. Non-centralized parallelism via mesh (bidirectional-ring topology) was 

another proposed peer-to-peer organization of processors. Each particular processor received three different 

solutions: one obtained by the processor itself, and the other two from the previous and the next adjacent 

processors. The processor selected the best of these solutions for the next execution cycle. The experimental 

investigation revealed that central coordination was less efficient than non-central coordination. Since the 

synchronous policy offers a rigorous simultaneous search within a particular region of the space, the weakest 

performance occurred within this approach. On the other hand, unidirectional-ring topology proposed a 

concurrent search in various regions of the space and outperformed the others with respect to the solution quality. 

The comparison between parallel and sequential VNS implementation was performed in [34]. 

Two cooperation schemes, based on a central memory mechanism, for parallelization of VNS were proposed 

in [35]. They were tested on the Multi Depot Vehicle Routing Problem with Time Windows. The used 

parallelization strategy was an extension of the one implemented in [32]. Each worker had to search through a 

certain number of neighborhoods. In the fine-grained cooperation scheme (pC/C/MPSS), the search in a single 

cycle did not necessarily include the whole set of neighborhoods. In the coarse-grained cooperation scheme, 

however, the number of iterations performed by each worker before the information exchange was significantly 

higher than the number of neighborhoods. This resulted in a more independent search of the individual processes. 

The authors proposed making the cooperative scheme adaptive by adjusting search parameters during the 

execution. This adjustment resulted in a pC/KC/MPSS classification of the coarse-grained cooperation scheme. 

For the experimental evaluation cooperative execution with up to 32 search threads was compared to the 

sequential procedure, and to 32 independent runs. The fine-grained cooperation scheme performed better for 

cases where the characteristics of the problem instances were known in advance and the appropriate parameter 

settings could be made. Both cooperation schemes showed high efficiency, resulting in excellent runtime 

scalability.  

Parallel VNS for the Car Sequencing Problem was developed in [36]. Using Time Restricted LS (TRLS), in 

which the local search procedure was allowed to run until a predefined amount of CPU time, was proposed. 

Designing Parallel Meta-Heuristic Methods

CIRRELT-2012-28 9



TRLS was incorporated into Randomized Variable Neighborhood Descent (VND), where “randomized” means 

that the order of neighborhoods is not fixed. Several iterations of TRLS in different neighborhoods were 

performed in parallel, the processes were synchronized, and the best solution identified and propagated to the 

next TRLS phase. The described parallel VNS falls into the 1C/KS/SPDS class. Computational tests were 

twofold: identifying the most appropriate order of neighborhoods and increasing the efficiency by parallelization. 

It was shown that a substantial reduction of the computation time is possible. Further, the tests revealed that no 

"perfect" neighborhood ordering could be identified, which implies that such a parallel self-adaptive approach is 

valuable and necessary for obtaining solutions of good qualities. 

Several VNS instances running on different processors and exchanging the best solution after several iterations 

have been used in [37] for tackling the Periodic Vehicle Routing Problem with Time Windows. The number of 

iterations between two communications was determined with respect to the number of VNS instances, i.e., the 

number of available processors. The main aim of implementing this pC/KS/MPDS parallel VNS was to increase 

the quality of the final solution within the same amount of CPU time as required by the sequential VNS. In the 

second version of parallel VNS, the authors combined a heuristic search with an Integer Linear Programming 

solver used to improve the best solution after communication. The experimental results showed that the hybrid 

version yielded an improvement in the quality of the final solution for 80% of used test instances.  

Multiple independent runs of various VNS algorithms were used in [38] in order to increase exploration of the 

search space for the Flexible Job-Shop Problem (FJSP). The main part of the proposed algorithm was comprised 

of internal and external loops. The internal loop was responsible for searching the solution space, whereas the 

external loop controlled the stopping condition of the algorithm. A number of processors in the internal loop were 

used in the search process to perform a single run of shake and local search procedures, independently, in 

parallel. These procedures used different neighborhood structures, and this strategy is therefore classified as 

1C/RS/SPDS. Shaking was always applied to the current best solution. The performance of the presented 

algorithm was evaluated on 181 benchmark problems of FJSP. The computational results showed that the 

proposed algorithm was competitive to similar methods from relevant literature. 

Six strategies for the parallelization of VNS applied to the multiprocessor scheduling problem with 

communication delays were considered in [39]. The first strategy involved independent execution of various 

(different) VNS algorithms. It was named IVNS, classified as pC/RS/MPDS, and used as a referent sequential 

execution result: parallel executions were compared to the best sequential one (the best among all independent 

executions) within the same amount of CPU time. In [40] the parallelization of LS procedure was considered. The 

best-performing parallel LS procedure was incorporated into VNS. The reported experimental evaluation of such 

a fine-grained parallel VNS showed that both, the quality of final solution and the running time were improved 

when parallel LS was executed on a modest number of processors (up to 10). The resulting parallel VNS, named 

PVNSPLS, was the second strategy used in [39]. It was classified as 1C/C/SPSS, as it represented the sequential 

Designing Parallel Meta-Heuristic Methods

10 CIRRELT-2012-28



VNS speeded up by parallelizing the most computationally intensive part, namely the local search procedure. The 

third strategy was distributive VNS (DVNS), classified as 1C/C/MPSS, based on the main idea to explore 

different neighborhoods in parallel. This was realized by performing basic VNS steps (SH+LS) on different 

processors at the same time. This strategy is similar to the one proposed in [32], but it performs search in more 

systematic way. Centralized, medium-grained asynchronous cooperation of different VNS algorithms represented 

the fourth strategy proposed in [39]. It was implemented on star multiprocessor architecture with the central 

processor playing the role of global memory and the others executing various VNS algorithms. The central 

processor was updating the current global best solution and sending it to the others upon request. Each out the 

remaining processors executed basic VNS steps (SH+LS) and referred to the global memory. The resulting 

solution was sent to the central processor who replied with the actual global best solution. The better among these 

two solutions served as the new reference point for further search. This strategy was named CVNSall and 

classified as pC/C/SPDS, as well as the fifth one, coarse-grained centralized asynchronous cooperation named 

CVNSkkALL. The main difference between these two was in the amount of work performed between two 

communications with the global memory. In the latter case each processor performed the whole VNS iteration 

(until k == kmax) before referring to the global memory. As the last strategy, the medium-grained non-centralized 

asynchronous cooperation on unidirectional processor ring (pC/C/MPDS) was implemented and named 

CVNSring. The main difference between this and the corresponding strategy proposed in [33] was that 

CVNSring always took the better solution as the new reference point. The experimental evaluation reported in 

[39] showed that CVNSring was the best performing parallel VNS. Moreover, all parallel methods (except 

DVNS) outperformed sequential VNS within the same amount of wall clock time. 

We summarize the characteristics of the described methods in Table 1. As can be seen from this table, both 

synchronous and asynchronous strategies have been used. However, in the majority of papers better performance 

of the asynchronous parallelization has been reported. On the other hand, cooperative execution dominates 

centrally coordinated not only with respect to the performance but also regarding the frequency of the usage.  

  

Designing Parallel Meta-Heuristic Methods

CIRRELT-2012-28 11



Table.1. Summary of the parallelization strategies for VNS  

Reference Strategies Classification Details 
García-Lopez et al.[31] PLS in seq. VNS 1C/RS/SPSS Low level 
 IVNS pC/RS/MPSS independent execution 
 SH+LS in parallel 1C/KS/SPSS same k synchronous 
Crainic et al. [32] IVNS pC/RS/MPSS independent execution 
 SH+LS in parallel pC/KS/MPSS random k asynchronous 
Sevkli, Aydin [33] SH+LS in parallel 1C/KS/SPSS same k synchronous 
 SH+LS in parallel pC/C/MPSS random k asynchronous 
 SH+LS ring pC/C/MPSS systematic asynchronous 
 SH+LS mesh pC/C/MPSS systematic asynchronous 
Polacek et al. [35] SH+VND in parallel pC/C/MPSS fine grained cooperation 
 multiple  SH+VND pC/KC/MPSS coarse grained cooperation 
Knausz [36] SH+RVND in parallel 1C/KS/SPDS random neighborhood subset 
Pirkwieser, Raidl[37] several VNS in parallel pC/KS/MPDS synchronous VNS multi-search 
Yazdani et al. [38] SH+LS in parallel 1C/RS/SPDS different neighborhoods for LS 
Davidović, Crainic [39] IVNS (different VNS) pC/RS/MPDS independent execution  
 PLS in seq. VNS 1C/C/SPSS low level 
 SH+LS in parallel 1C/C/MPSS different k-same LS 
 SH+LS in parallel pC/C/SPDS different k and different LS   
 VNS iteration in parallel pC/C/SPDS coarse centralized asynchronous 
 SH+LS in parallel pC/C/MPDS different k-different LS, non-

centralized 

5  Parallelization of Bee Colony Optimization  

The BCO algorithm is created as a multi-agent system which inherently provides a good basis for 

parallelization on different levels. High-level parallelization assumes a coarse granulation of tasks, and can be 

applied to the iterations of BCO. Smaller parts of the BCO algorithm (the forward and backward passes within a 

single iteration) are suitable for low-level parallelization because they contain a lot of independent executions. To 

the best of the authors' knowledge, parallel execution of BCO was treated only in [41,42]. However, there are 

some papers in recent literature describing parallelization techniques for another bees-inspired meta-heuristic, the 

Artificial Bee Colony (ABC) method [43,44]. In this survey, we cover both ABC and BCO meta-heuristics. 

The parallelization of BCO reported in [42] considered independent multiple executions of different BCO 

algorithms using distributed memory processors. The authors reported a significant speedup, while preserving 

solution quality. They also evaluated fine-grained (low-level) parallelization and showed that it was not suitable 

for these multiprocessor systems. On the other hand, in [45] it was shown that this strategy was hard to 

implement efficiently for ABC even on shared-memory multiprocessor systems. The conclusion was that the 

portion of work is too small, and thus the extensive use of CPU time for creating threads and their 

synchronization outweighs the benefits of parallel execution. 

In [42], various coarse grain strategies for the parallelization of BCO using distributed memory multiprocessor 

systems were considered. These included two synchronous strategies, distributed BCO (DBCO) and cooperative 

Designing Parallel Meta-Heuristic Methods

12 CIRRELT-2012-28



BCO (CBCO), and an asynchronous strategy named general BCO (GBCO). DBCO assumed that the total 

amount of computation was (equally) distributed among available processors. CBCO involved a knowledge 

exchange between various BCO algorithms executed on different processors. GBCO implemented asynchronous 

cooperation of various BCO algorithms as the most general parallelization concept. All strategies were 

implemented in several different ways, and compared with each other and with the sequential BCO execution. 

Scheduling of independent tasks to identical machines was used as test problem. Here, we present some details 

about these strategies, and point out the analogy with the corresponding parallelization of ABC when applicable.  

The independent execution of all necessary computations on different processors represents the simplest form 

of coarse-grained parallelization strategies. For BCO it was implemented in three different ways [41]. All the 

calculations were equally distributed among the available processors by reducing the stopping criterion (DBCO), 

the number of bees (BBCO), or both (MBCO). In all cases, each processor independently performed a sequential 

variant of BCO, with a different seed or different parameter values.  

The main aim of the DBCO approach was to speed up the execution of BCO by dividing the total workload 

among several processors, and therefore it could be classified as pC/RS/MPSS. DBCO is similar to the second 

approach proposed in [46] for the ABC algorithm, while for BCO it was proposed for the first time in [42]. 

BBCO was also considered for the first time in [42] and it is similar to the first approach proposed for ABC in 

[45]. It was assumed that the BCO parameters (the number of bees B and the number of forward/backward passes 

NC) were the same for all BCO processes executing on different processors, in order to ensure load balancing 

between all processors. Therefore, this approach was also classified as pC/RS/MPSS. 

Combining these two approaches, it was possible to vary the values of the BCO parameters and change the 

stopping criterion at the same time. This approach was referred to as MBCO (Multiple BCO) and classified as 

pC/RS/MPDS. It had the best performance among the independent executions since it introduced more 

diversification into the search process.  

A more sophisticated way to achieve coarse-grained parallelization in [41] was through cooperative execution 

of several BCO processes. At certain predefined execution points, all processes were exchanging the relevant data 

(usually the current best solutions). These data were used to guide further searches. The synchronous cooperative 

strategy, named CBCO, was classified as pC/KS/MPSS if all BCO processes had the same values of the 

parameters B and NC, or as pC/KS/MPDS otherwise. Similar approaches were used for the parallelization of the 

ABC meta-heuristic in [45,47,48]. 

The communication points were determined in two different ways: fixed and processor-dependent. In the first 

case, the best solution was exchanged 10 times during the parallel BCO execution, regardless of the number of 

processors engaged. The processor-dependent communication frequency was defined using the following rule: 

the current global best solution was exchanged each runtime/(10*q) iterations where runtime represented the 

maximum allowed CPU time. 

Designing Parallel Meta-Heuristic Methods

CIRRELT-2012-28 13



The experimental results were performed on completely connected multiprocessor architectures consisting of 2 

to 20 processors. The authors showed that in both cases the quality of the final solution obtained by CBCO was 

either improved, or at least preserved, for a modest number of processors (q  12), with respect to the sequential 

execution of the best performing BCO. At the same time, in the majority of cases, the CPU time was reduced. 

The CBCO variant with less frequent communications showed a slightly better performance with respect to both 

solution quality and minimum CPU time. 

To decrease the communication and synchronization overhead during the cooperative execution of different 

BCO algorithms, the asynchronous execution strategy was proposed as the third approach in [41]. This strategy 

was named general (GBCO) and was implemented in two different ways. The first implementation involved a 

centrally coordinated knowledge exchange, while the second one utilized non-centralized parallelism. Each 

processor executed a particular sequential variant of BCO until some predefined communication condition was 

satisfied. It then informed others about its search status, collected the current global best, and continued its 

execution. As its main characteristic, this strategy did not require all of the processors to participate in the 

communication at the same time. Each processor would send its results, and collect the results from other 

processors, when it reached its own communication condition. 

The first approach assumed the existence of a central blackboard (a global memory) [1] to which each 

processor had access to. The communication condition was defined as the improvement of the current best 

solution or the execution of 5 iterations without improvement. Each improvement of the current best solution was 

immediately noted on the blackboard. On the other hand, if improvement did not occur after 5 iterations, the 

corresponding processor referred to the blackboard for the improvements generated by other processors. If some 

other processor reported an improved solution, that new solution was used as the reference point for further 

search. When an improvement had not been announced by others, the execution continued with the previous best 

as the reference point. This strategy was classified as pC/C/MPSS when the BCO parameters were the same on 

all processors (only the seed differs), and as pC/C/MPDS otherwise. The implementation used the master-slave 

multiprocessor system, with the master processor playing a role of central blackboard and slaves executing the 

cooperating BCO algorithms. 

Non-centralized asynchronous parallel BCO execution was implemented on a unidirectional ring of 

processors. Each processor was communicating only with its neighbors. More precisely, it was allowed to write 

(put new best solutions) to the blackboard of its predecessor and read from the blackboard associated to its 

successor. The communications were performed after a single iteration of the corresponding BCO was 

completed. This strategy was also classified as pC/C/MPSS or pC/C/MPDS, depending on the search parameters. 

Analysis of the computational results showed that non-centralized asynchronous execution outperformed all other 

parallel variants in the majority of the cases, with respect to both the solution quality and the running time. The 

strategies proposed in [41] are summarized in Table 2. 

Designing Parallel Meta-Heuristic Methods

14 CIRRELT-2012-28



 
Table.2. Summary of the parallelization strategies for BCO  

Name Description Classification Details 
DBCO same BCO,  different seed pC/RS/MPSS reduced stopping criteria 
BBCO same BCO, different seed pC/RS/MPSS reduced number of bees 
MBCO different BCO, 

independent 
pC/RS/MPDS different B and NC 

CBCO1 cooperative synchronous pC/KS/MPDS fixed number  
of communications 

CBCO2 cooperative synchronous pC/KS/MPDS variable number  
of communications 

GBCO1 cooperative asynchronous pC/C/MPDS centralized communications 
GBCO2 cooperative asynchronous pC/C/MPDS non-centralized communications 

6  Conclusion 

Parallel meta-heuristics represent powerful tools for dealing with hard combinatorial optimization problems, 

especially for large size real-life instances. Therefore, a systematic approach to the design and implementation of 

parallel meta-heuristic methods is of great importance. The main objective of this chapter was to present a state-

of-the-art survey of the ideas and strategies for parallel meta-heuristic, and to discuss general design and 

implementation principles applicable to all meta-heuristic classes, neighborhood- and population-based, in 

particular. We explained various paradigms related to the parallel meta-heuristic development. We recalled the 

corresponding taxonomy and used it for the classification of the described strategies. We also discussed 

implementation issues, namely the influence of the target architecture on parallel execution of meta-heuristics. 

The characteristics of shared and distributed memory multiprocessor systems were pointed out. These topics were 

illustrated through examples from recent literature. These examples are related to the parallelization of two meta-

heuristic methods, population-based Bee Colony Optimization and neighborhood-based Variable Neighborhood 

Search. The common conclusion for both methods is that non-centralized asynchronous parallelization performs 

the best. The extensive literature and practical experience provided in this overview should help researchers in 

designing efficient parallel optimization algorithms. 

Acknowledgments    

This work has been partially supported by the Serbian Ministry of Science, Grant nos. 174010 and 174033. 

Partial funding for this work has also been provided by the Natural Sciences and Engineering Research Council 

of Canada, the Canada Foundation for Innovation, and the Quebec Ministry of Education. The authors would also 

like to thank Mrs. Branka Mladenović and Mr. Alexey Uversky for the proofreading efforts. 

Designing Parallel Meta-Heuristic Methods

CIRRELT-2012-28 15



7  References 

[1] Crainic, T. G.; Toulouse, M.; (2010), Parallel Meta-heuristics, Springer, New York Dordrecht Heidelberg London, 
Gendreau, M.; Potvin, J.Y. (eds), Handbook of metaheuristics, pp. 497-541. 

[2] Cung, V.-D.; Martins, S.L.; Ribeiro, C. C.; Roucairol, C.; (2002), Strategies for the parallel implementations of 

metaheuristics, Kluwer Academic Publishers, Norwell, MA, Ribeiro, C. C.; Hansen, P. (eds), Essays and Surveys in 
Metaheuristics, pp. 263-308. 

[3] Verhoeven, M. G. A.; Aarts, E. H. L.; (1995), Parallel local search,  J. Heur., Vol. 1, pp. 43-65. 
[4] Crainic, T. G.; Hail, N.; (2005), Parallel meta-heuristics applications, John Wiley & Sons, Hoboken, NJ, Alba, E. 

(ed), Parallel Metaheuristics, pages pp. 447-494. 
[5] Ferreira, A.; Morvan, M.; (1997), Models for parallel algorithm design: An introduction, Kluwer Academic 

Publishers, Dordrecht/Boston/London, Migdalas, A.; Pardalos, P.; Storøy, S. (eds), Parallel Computing in 
Optimization, pp. 1-26. 

[6] Toulouse, M.; Crainic, T. G.; Gendreau, M.; (1996), Communication issues in designing cooperative multi thread 

parallel searches, Kluwer Academic Publishers, Osman, I. H.; Kelly, J. P. (eds), Meta-heuristics 98: Theory & 
Applications, pp. 501-522. 

[7] Alba E., editor; (2005), Wiley-Interscience, Parallel metaheuristics: a new class of algorithms. 
[8] Talbi, E.-G.; (2009), John Wiley & Sons, Inc., Hoboken, New Jersey, Metaheuristics: From Design to Implementation. 
[9] Glover, F.; Laguna, M.; (1997), Kluwer Academic Publishers, Tabu search. 
[10] Gendreau, M.; Potvin, J-Y.; (2010), Tabu search, Springer, New York Dordrecht Heidelberg London, Gendreau, M.; 

Potvin, J-Y. (eds), Handbook of Metaheuristics, (second edition), pp. 41-59.  
[11] Mladenović, N.; Hansen, P.; (1997), Variable neighborhood search, Comput. & OR, Vol. 24, No. 11, pp. 1097-1100. 
[12] Hansen, P.; Mladenović, N.; Brimberg, J.; Moreno-Pérez, J. A.; (2010),  Variable neighbourhood search, Springer, 

New York Dordrecht Heidelberg London, Gendreau, M.; Potvin, J-Y. (eds), Handbook of Metaheuristics, (second 
edition), pp. 61-86. 

[13] Feo, T. A.; Resende, M. G. C.; (1995), Greedy randomized adaptive search procedures, Journal of Global 
Optimization, Vol. 6 pp. 109-133. 

[14] Resende, M. G. C.; Ribeiro, C. C..; (2010), Greedy Randomized Adaptive Search Procedures: Advances, 

Hybridizations, and Applications, Springer, New York Dordrecht Heidelberg London, Gendreau, M.; Potvin, J-Y. 
(eds), Handbook of Metaheuristics, (second edition), pp. 283-319. 

[15] Dorigo, M.; Stützle, T.; (2010), Ant Colony Optimization: Overview and Recent Advances, Springer, New York 
Dordrecht Heidelberg London, Gendreau, M.; Potvin, J-Y. (eds), Handbook of Metaheuristics, (second edition), pp. 
227-263. 

[16] Lučić, P.; Teodorović, D.; (2001), Bee system: modeling combinatorial optimization transportation engineering 

problems by swarm intelligence, Preprints of the TRISTAN IV Triennial Symposium on Transportation Analysis, Sao 
Miguel, Azores Islands, pp. 441-445. 

[17] Lučić, P.; Teodorović, D.; (2003), Computing with bees: attacking complex transportation engineering   problems, Int. 
J. Artificial Intelligence Tools, Vol. 12, pp. 375-394. 

[18] Lučić, P.; Teodorović, D.; (2003), Vehicle routing problem with uncertain demand at nodes: the bee system and fuzzy 

logic approach, Physica Verlag: Berlin Heidelberg, Verdegay, J. L. (ed), Fuzzy Sets based Heuristics for Optimization, 
pp. 67-82. 

[19] Goldberg, D. E.; (1989), Addison-Wesley Publ. Comp. Inc., Genetic algorithms in search, optimization, and machine 

learning. 
[20] Reeves, C. R.; (2010), Genetic algorithms, Springer, New York Dordrecht Heidelberg London, Gendreau, M.; Potvin, 

J-Y. (eds), Handbook of Metaheuristics, (second edition), pp. 109-139. 
[21] Kirkpatrick, S.; Gelatt Jr, C. D.; Vecchi, M. P.; (1983), Optimization by simulated annealing, Science, Vol. 220, No. 

4598,   pp. 671-680. 
[22] Nikolaev, A. G.; Jacobson, S. H.; (2010),  Simulated annealing, Springer, New York Dordrecht Heidelberg London, 

Gendreau, M.; Potvin, J-Y. (eds), Handbook of Metaheuristics, (second edition), pp. 1-39.   

Designing Parallel Meta-Heuristic Methods

16 CIRRELT-2012-28



[23] Gendreau, M.; Potvin, J-Y. (eds.); (2010), Springer, New York Dordrecht Heidelberg London, Handbook of 

Metaheuristics (second edition). 
[24] Hansen, P.; Mladenović, N.; (2003), Variable neighbourhood search. Kluwer Academic Publishers, Dordrecht, 

Glover, F.; Kochenagen, G. (eds), Handbook of Metaheuristics, pp. 145-184.  
[25] Hansen, P.; Mladenović, N.; (2005), Variable neighbourhood search, Springer, Burke, E. K.; Kendall, G. (eds), Search 

Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques,   pp. 211-238. 
[26] Dagum, L.; Menon, R.; (1998), OpenMP: an industry standard api for shared-memory programming, Computational 

Science & Engineering, IEEE, Vol. 5, No. 1, pp. 46-55. 
[27] Butenhof, D.R.; (1997), Addison-Wesley Professional, Programming with POSIX threads. 
[28] Cvetković, D.; Davidović, T.; (2011), Multiprocessor Interconnection Networks, Mathematical Institute SANU, 

Cvetković, D.; Gutman, I. (eds), Zbornik radova, Selected Topics on Applications of Graph Spectra, second edition 
14(22), pp. 35-62. 

[29] Gropp, W.; Lusk, E.; Skjellum. A.; (1994), The MIT Press, Using MPI: Portable Parallel Programming with 

theMessage-Passing Interface.  
[30] Gropp, W.; Lusk, E.; (1996), University of Chicago, Argonne National Laboratory, Users Guide for  mpich a Portable 

Implementation of MPI. 
[31] García-López, F.; Melión-Batista, B.; Moreno-Pérez, J. A.; Moreno-Vega, J. M.; (2002), The parallel variable 

neighborhood search for the p-median problem, J. Heur., Vol. 8, No. 3, pp. 375-388. 
[32] Crainic, T. G.; Gendreau, M.; Hansen, P.; Mladenović, N.; (2004), Cooperative parallel variable neighborhood search 

for the p-median, J. Heur., Vol. 10, No. 3, pp. 293-314. 
[33] Sevkli, M.; Aydin, M. E.; (2007), Parallel variable neighbourhood search algorithms for job shop scheduling 

problems, IMA Journal of Management Mathematics, Vol. 18, No. 2, pp. 117-133. 
[34] Aydin M.; Sevkli M; (2008), Sequential and parallel variable neighborhood search algorithms for job shop 

scheduling, Springer, Xhafa F.; Abraham A. (eds), Metaheuristics for Scheduling in Industrial and Manufacturing 
Applications, pp. 125-144. 

[35] Polacek, M,; Benkner, S.; Doerner, K. F.; Hartl, R. F.; (2008), A cooperative and adaptive variable neighborhood 

search for the multi depot vehicle routing problem with time windows, Business Research, Vol. 1, No. 2, pp. 1-12. 
[36] Knausz, M.; (2008), Parallel variable neighbourhood search for the car sequencing problem, Technical report, 

Fakultät für Informatik der Technischen Universität Wien. 
[37] Pirkwieser, S.; Raidl, G.; (2009), Multiple variable neighborhood search enriched with ilp techniques for the periodic 

vehicle routing problem with time windows, Hybrid Metaheuristics, pp. 45-59. 
[38] Yazdani, M.; Amiri, M.; Zandieh, M.; (2010), Flexible job-shop scheduling with parallel variable neighborhood 

search algorithm, Expert Systems with Applications, Vol. 37, No. 1, pp. 678-687. 
[39] Davidović, T.; Crainic, T. G.; (2011), Parallelization strategies for VNS, (submitted for publication). 
[40] Davidović, T.; Crainic, T. G.; (2011), Parallel local search to schedule communicating tasks on identical processors, 

(submitted for publication). 
[41] Davidović, T.; Jakšić, T,; Ramljak, D.; Šelmić, M.; Teodorović, D.; (2012), MPI parallelization strategies for bee 

colony optimization, (submitted for publication). 
[42] Davidović, T.; Ramljak, D.; Šelmić, M.; Teodorović, D.; (2011), MPI parallelization of bee colony optimization, Proc. 

1st International Symposium & 10th Balkan Conference on Operational Research, Vol. 2, pp. 193-200, Thessaloniki, 
Greece. 

[43] Karaboga, D.; (2005), An idea based on honey bee swarm for numerical optimization, Technical report, Erciyes 
University, Engineering Faculty Computer Engineering Department Kayseri/Turkiye. 

[44] Karaboga, D.; Basturk Akay, B.; Ozturk, C.; (2007), Artificial bee colony (ABC) optimization algorithm for training 

feed-forward neural networks, LNCS: Modeling Decisions for Artificial Intelligence, Vol. 4617, pp. 318-319. 
[45] Subotić, M.; Tuba, M.; Stanarević, N.; (2011), Different approaches in parallelization of the artificial bee colony 

algorithm, Int. J.Mathematical Models and Methods in Applied Sciences, Vol. 5, No. 4 pp. 755-762. 
[46] Parpinelli, R. S.; Benitez, C. M. V.; Lopes, H. S. (2011), Parallel approaches for the artificial bee colony algorithm, 

Springer, Berlin, Germany, Panigrahi, B. K.; Shi, Y.; Lim, M-H. (eds), Handbook of Swarm Intelligence: Concepts, 
Principles and Applications, volume Series: Adaptation, Learning, and Optimization, Vol. 8, pp. 329-346. 

Designing Parallel Meta-Heuristic Methods

CIRRELT-2012-28 17



[47] Banharnsakun, A.; Achalakul T.; Sirinaovakul B.; (2010), Artificial bee colony algorithm on distributed environments, 
Proc. Second World Congress on Nature and Biologically Inspired Computing (NaBIC'10), Fukuoka. 

[48] Narasimhan, H.; (2009), Parallel artificial bee colony (PABC) algorithm, Proc. VIII International Conference on 
Computer Information Systems and Industrial Management (CISIM, 2009), World Congress on Nature and 
Biologically Inspired Computing (NaBIC'09), Coimbatore. 

 

Designing Parallel Meta-Heuristic Methods

18 CIRRELT-2012-28




