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Abstract. We introduce a new vehicle routing problem class in which customers are 
divided into a number of customer zones defined through geographical or timing 
characteristics. The customers of each of these zones must be serviced within time 
windows by dedicated routes originating at associated supply points characterized by hard 
time windows and very limited waiting facilities, if any. A key feature of the problem is that 
a vehicle can be used to cover routes in different zones at different times. The objective is 
to minimize the total transportation cost to ensure that the customers are serviced on time 
and that vehicles arrive at the next customer zone just in time for the next assignment. 
The problem is addressed by a decomposition-based heuristic. Lower-bound procedures 
and benchmark problem instances are introduced, highlighting the satisfactory 
performance of the heuristic. Finally, a wide range of sensitivity analyses on several key 
parameters reveal interesting facets of the behavior of this new problem class. 
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1 Introduction

The Vehicle Routing Problem (VRP) involves the design of a set of minimum cost delivery
or collection routes from one or several depots to a number of geographically scattered
customers subject to some side constraints such as vehicle capacity, time windows, route
length, etc. Depending upon these side constraints, a large variety of vehicle routing
problems have been classified in the literature. We present a new VRP variant where
customers are divided into a number of customer zones and a vehicle is allowed to perform
multiple tours for different zones. This problem can be stated as the Multi-Zone Multi-
Trip Vehicle Routing Problem with Time Windows (MZMT-VRPTW ). The problem has
the following four distinctive features.

1. Multi-Zone. We assume that a large city is divided into a number of customer zones
on the basis of some common attributes such as geographical proximity, delivery
times, type of product, type of vehicle used for delivery, etc. Thus, each customer
zone has a set of customers associated with it. Each customer zone also has one
supply point, which works as a distribution center to satisfy the demand of the
associated customers. Customer zones are not necessarily disjoint, i.e., they may
overlap.

2. Time-Constrained. Each supply point has a fixed opening time and the loading of
a vehicle starts exactly at the opening time of a supply point. This forces vehicles
to be readily available at supply points upon their opening time. We also assume
that there is a limited allowable waiting time available at any supply point. Thus
vehicles cannot arrive much in advance at supply points. However, vehicles can
wait at designated waiting stations before moving to supply points to arrive just
before their opening time.

3. Multiple-Tour. A vehicle can perform more than one tour for different customer
zones in a given planning period. However, the fixed opening time of supply points
restricts vehicles to perform at most one tour in each customer zone.

4. Time Windows. A time window is imposed on the start of service at each customer.

A vehicle route starts from the main depot, performs multiple tours to service different
customer zones and finally returns to the main depot. The problem involves the design
of a set of minimum cost vehicle routes to ensure that vehicles deliver the goods on time
and that they arrive at supply points on time for their next assignment. The objective is
to minimize the total transportation cost. This cost cost includes two terms: 1) a fixed
cost for operating a vehicle, 2) a variable cost in terms of the total distance travelled
by all the vehicles. The main challenge in this problem is to effectively synchronize the
successive portions of vehicle routes in different customer zones, since vehicles must meet
the time windows at both customer locations and supply points.
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In this paper, we propose a heuristic solution approach for the MZMT-VRPTW and
we study the properties of solutions for various parameter values. The contributions of
the paper are the following: 1) A formal definition of a new variant of vehicle routing
problem, the MZMT-VRPTW, and a general model formulation; 2) A heuristic solution
procedure for the MZMT-VRPTW; 3) A set of benchmark instances for the problem; 4)
An extensive sensitivity analysis for a wide range of values of key problem parameters.

The remainder of this paper is organized as follows. In Section 2, we describe the
problem and review the related literature. The problem is formulated in Section 3 and
a solution procedure is proposed in Section 4. In Section 5, we present lower bound
calculations. In Section 6, we introduce benchmark instance sets for the MZMT-VRPTW
and describe how these problem sets are generated. Computational results are reported
in Section 7, followed by conclusions in Section 8.

2 Problem description

In this section we describe the problem in detail and present the literature review. We
first define some necessary notation.

Let S be the set of supply points. Since we assume that there is a unique supply
point associated with each zone and that each supply point supplies a single zone, S also
refers to the set of customer zones, i.e., index s ∈ S is used to refer both to customer
zone s and its associated supply point, depending on the context. Let t(s) be the opening
time for supply point s. To simplify the exposition, we assume that supply points (and
customer zones) are indexed in non-decreasing order of opening time, i.e., s < s′ implies
that t(s) ≤ t(s′). Let Ds denote the set of customers associated with customer zone s
and D = ∪s∈SDs. A non-negative demand qd is associated with each customer d ∈ D. A
fleet of nν identical vehicles of capacity Q are based at main depot g. When a vehicle is
moved from the main depot g to a supply point s ∈ S, no travel cost is incurred, but a
fixed cost F is charged.

At supply point s, loading of vehicles starts exactly at opening time t(s). Thus, all
the vehicles required to serve customers in Ds must be available at supply point s at
time t(s). A vehicle takes δ(s) time units for loading all the freight that it will deliver in
zone s. Vehicles load the designated freight at supply point s at time t(s) and leave this
point at time t(s) + δ(s) to perform the delivery route for servicing a subset of customers
from Ds. A time window [a(d), b(d)] is imposed on the start of service at customer d. A
vehicle takes δ(d) time units to unload the freight at customer d and τij time units to
travel from point i to point j, where i, j ∈ S ∪D. After performing its route in customer
zone s, a vehicle can move to another customer zone s′ for the next tour. Eeach supply
point has a limited allowable time η for a vehicle to wait. The fixed opening time and
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limited allowable waiting time restrict vehicles to arrive at supply point s′ between time
instants t(s′)− η and t(s′). However, vehicles are allowed to wait (longer) at designated
waiting stations w ∈ W before moving to a supply point s′. Finally, vehicles return back
to the main depot g.

Our interest in the MZMT-VRPTW arises from the two-tier city logistics distribution
system described by Crainic et al. (2009). In this system, two types of vehicles, urban
trucks and city freighters, are used. The two tiers of the system operate from two different
facilities called City Distribution Centers (CDC) and satellites. In the first tier, freight is
moved from the CDC to satellites by urban trucks. Each urban truck travels to a subset
of satellites and returns back to the CDC. At satellites, freight is transferred from the
urban truck to city freighters. In the second tier of the system, goods are moved from
each satellite to their final destination by city freighters. Each city freighter performs a
route to serve designated customers. After performing a route at a satellite, city freighters
travel to another satellite to perform another route. When a city freighter has completed
the successive routes that were assigned to it for the day, the vehicle returns to the depot
where it is based, thus completing its workday.

The MZMT-VRPTW corresponds to the second tier of the two-tier city logistics
system, which involves the design of optimal delivery routes for city freighters. The
correspondance between the second tier of the two-tier city logistics system and the
MZMT-VRPTW is further explained below:

• Multi-Zone. In the second tier of the system, the set of customer demands that have
to be satisfied through a particular satellite at a given time is already determined
by the distribution strategy of urban trucks. The combination (satellite, time) is
called in this paper a supply point. This leads to the main assumption of our model
on dividing a large city into a number of customer zones each with a unique supply
point.

• Time-Constrained. Satellites are assumed to be cross-docking points where goods
are transferred from urban trucks to city freighters. Upon the arrival of an urban
truck, goods are moved directly to the appropriate city freighters without using
any intermediate facility. Therefore, in our model, we assume that the loading of
vehicles starts exactly at the opening instant of supply points gioven by the arrival
time of the urban truck. Traffic regulations and space availability do not allow
city freighters to wait at supply points for a long period, if at all, and we thus
assume a (very) limited allowable waiting time at supply points. This leads to
the introduction of waiting stations, which are dedicated locations (e.g., parkings)
where vehicles can wait for longer periods.

Another similar situation in which customers are divided into a number of customer
zones arises in the School Bus Routing Problem (SBRP). In the SBRP, a fleet of buses
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is used to service several schools. Each school has a set of bus stops associated with it
and for each of these stops there is a known group of students. Each school has a fixed
opening time and there are strict time windows for the delivery of students to the schools.
School buses pickup students from their bus stop and take them to their school. After
performing its route for any given school zone (including the delivery of students to the
school itself), a bus typically moves to another school zone to pick up its students. The
problem is to optimize the level of service in such a way that all students are picked up
brought to their respective school, while satisfying all the time windows.

In this paper, we present a new variant of the VRP. While numerous variations of the
original VRP have been proposed since the original paper of Dantzig and Ramser (1959),
none of these corresponds exactly to our problem. Some variants, however, share some
common aspects with our work. The Multi-Trip Vehicle Routing and Scheduling Problem
(MTVRSP) and the VRP with Inter-Depot Routes (VRPIDR) are two such variants
in which each vehicle is allowed to perform more than one route during its planning
period. In the MTVRSP, a single depot is used to replenish vehicles before they perform
subsequent trips. This problem has been addressed by Taillard et al. (1996), Brandao
and Mercer (1997, 1998), Petch and Salhi (2003), Salhi and Petch (2007) and Olivera and
Viera (2007). Azi et al. (2007) propose an exact algorithm for a single-vehicle MTVRSP
with time windows, while Azi et al. (2010) tackle the multi-vehicle case. In the VRPIDR,
vehicles are allowed to replenish at intermediate points and can thus perform more than
one trip in a given planning period. Angelelli and Speranza (2002) address a periodic
version of this problem, while Crevier et al. (2007) study a multi-depot one.

As described earlier, the School Bus Routing Problem (SBRP) is the only problem
that closely resembles the problem that we address. While there is a large number of
articles on the SBRP, there is no standard definition of the problem. In fact, most of the
papers on the SBRP focus on real-world applications and thus each of them deals with
very specific assumptions and constraints (see the surveys by Desrosiers et al. (1981),
Braca et al. (1997) and Park and Kim (2009)). According to Desrosiers et al. (1981),
the SBRP can be decomposed into a five subproblems: 1) Data preparation, 2) Bus
stop selection, 3) Bus route generation, 4) School bell time adjustment and 5) Route
scheduling. Most of the studies consider either a single or a subset of these subproblems.
The fifth subproblem, i.e., the route scheduling one, is close to our problem. Given exact
starting and finishing times for routes, this subproblem consists in determining subsets
of routes that can be executed by the same bus. Different heuristic approaches have
been proposed for solving this subproblem, such as the ones presented by Newton and
Thomas (1974), Bodin (1975), Bodin and Berman (1979), Desrosiers et al. (1981, 1986),
Braca et al. (1997), Li and Fu (2002), and Spada et al. (2005). In the school bell-time
adjustment subproblem, the starting and ending times of a school are considered to be
decision variables that can be set to minimize the number of buses. The issue of bell-
timing adjustment is considered by Desrosiers et al. (1981, 1986), Bodin et al. (1983)
and Fugenschuh (2009). As stated earlier, the structure of our problem is similar to
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the multi-school bus route scheduling problem, however, the characteristics, objectives
and issues are completely different. For example, one of the objectives considered by a
number of studies on the SBRP is to minimize the total travel time spent by students
on the bus, while in our case the total time spent by freight in the vehicle is not a issue.
For more information on the SBRP, we refer readers to the recent survey by Park and
Kim (2009).

3 Problem formulation

In this section we provide a formulation for the MZMT-VRPTW. This formulation is
inspired from the one found in Crainic et al. (2009). The problem is defined on a space-
time network (V,A), where the set of nodes V represents physical locations and the arcs
in A stand for the possible movements between these nodes that are feasible with respect
to the associated time windows. Set V is made up of the main depot g and the sets of
supply points, customers, and waiting stations, i.e., V = g ∪ S ∪D ∪W .

Several subsets of arcs make up set A:

A = ∪s∈S[ASDs ∪ ADSs ∪ ADDs ] ∪ ADW ∪ ADG ∪ AGS ∪ AWS.

• Arcs in ASDs = {(s, d)|d ∈ Ds, t(s) + δ(s) + τsd ≤ b(d)}, s ∈ S, go from a supply
point s to each customer d ∈ Ds, such that the vehicle can arrive before due date
b(d) to serve node d.

• Arcs in ADSs = {(d, s′)|s′ ∈ S, d ∈ Ds, t(s
′) > t(s), a(d) + δ(d) + τds′ ≤ t(s′)}, s ∈ S,

link customers d ∈ Ds to supply points s′ (s′ > s) that can be reached before their
opening time t(s′).

• We can also define the backward-star of a supply node s ∈ S with respect to
customers as the set AS

−
s = {(d, s)|d ∈ Ds′ , s

′ ∈ S, s′ < s, a(d) + δ(d) + τds ≤ t(s)},
i.e., the sets of links from some customers to s such that a vehicle can travel from
these customers to s before its opening time t(s).

• An arc exists between each pair of customers (d, j), d, j ∈ Ds, for which the move-
ment is feasible with respect to the respective time-window constraints. Given the
time window [a(d), b(d)] and the service time δ(d) of customer d ∈ Ds, one considers
only the arcs to customer j such that a(d) + δ(d) + τdj ≤ b(j). Set ADDs contains
these arcs.

• Define the back-star of node d ∈ Ds, s ∈ S, with respect to customers as the set of
arcs AD

−

d = {(i, d)|i ∈ Ds, a(i) + δ(i) + τid ≤ b(d)}, such that the vehicle can arrive
before latest starting time b(d) to serve node d.
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• Arcs in ADW = {(d, w)|d ∈ ∪s∈SDs, w ∈ W} go from customers in D to waiting
stations in W .

• Arcs in ADG = {(d, g)|d ∈ ∪s∈SDs } go from customers to the main depot g.

• Arcs in AGS = {(g, s), |s ∈ S} go from the main depot g to supply points in S.

• Arcs in AWS = {(w, s), |s ∈ S,w ∈ W} go from waiting stations in W to supply
points in S.

Let F stand for the fixed cost for operating a vehicle and cij, (i, j) ∈ Ā = A \ (AGS ∪
ADG) represent the unit transportation cost between two nodes i, j ∈ V . We define the
following decision variables:

• xkij, a binary variable that takes value 1 if arc (i, j) is used by vehicle k and value
0 otherwise;

• ωki , a continuous variable specifying the start of service at demand node i ∈ D
when serviced by vehicle k. For supply points and waiting stations, ωki represents
the arrival time of vehicle k.

The MZMT-VRPTW can then be formulated as the following three-index based ve-
hicle flow model:

(MZMT − V RPTW ) Minimize
nν∑
k=1

 ∑
(i,j)∈Ā

cijx
k
ij + F

∑
(i,j)∈AGS

xkgs

 (1)

Subject to
∑

(s,d)∈ASDs

xksd ≤ 1 s ∈ S, k = 1, ..., nν , (2)

nν∑
k=1

∑
(d,j)∈ADDs

xkdj+
nν∑
k=1

∑
(d,s′)∈ADSs

xkds′+
nν∑
k=1

∑
(d,g)∈ADG

xkdg+
nν∑
k=1

∑
(d,w)∈ADW

xkdw = 1 d ∈ Ds, s ∈ S

(3)
nν∑
k=1

xksd +
∑

(i,d)∈AD−d

xkid

 = 1 d ∈ Ds, s ∈ S, (4)

∑
(g,s)∈AGS

xkgs +
∑

(w,s)∈AWS

xkws+
∑

(d,s)∈AS−s

xkds =
∑

(s,d)∈ASDs

xksd

s ∈ S, k = 1, ..., nν ,

(5)

nν∑
k=1

∑
(d,g)∈ADG

xkdg =
nν∑
k=1

∑
(g,s)∈AGS

xkgs, (6)
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∑
(d,w)∈ADW

xkdw =
∑

(w,s)∈AWS

xkws w ∈ W, k = 1, ..., nν , (7)

∑
d∈Ds

qdx
k
sd +

∑
(i,j)∈Ds

qjx
k
ij ≤ Q s ∈ S k = 1, ..., nν , (8)

t(s) + δ(s) + τsd − ωkd ≤(1− xksd)(t(s) + δ(s) + τsd)

(s, d) ∈ ASDs , s ∈ S, k = 1, ..., nν ,
(9)

ωki + δ(i) + τij − ωkj ≤ (1− xkij))(b(i) + δ(i) + τij)

(i, j) ∈ ADDs , s ∈ S, k = 1, ..., nν ,
(10)

a(d)

xksd +
∑

(i,d)∈AD−s

xkid

 ≤ ωkd

≤ b(d)

 ∑
(d,i)∈ADDs

xkdi +
∑

(d,s′)∈ADSs

xkds′ +
∑

(d,g)∈ADG
xkdg +

∑
(d,w)∈ADW

xkdw


d ∈ Ds, s ∈ S, k = 1, ..., nν ,

(11)

(t(s)− η)
∑

(s,d)∈ASDs

xksd ≤ ωks ≤ t(s)
∑

(s,d)∈ASDs

xksd s ∈ S, k = 1, ..., nν , (12)

ωkd + δ(d) + τds − ωks ≤(1− xkds)(b(d) + δ(d) + τds)

(d, s) ∈ AS−s , s ∈ S, k = 1, ..., nν ,
(13)

ωkw + τws − ωks ≤(1− xkws)(maxd∈D(b(d) + τdw) + τws)

(w, s) ∈ AGS, s ∈ S, k = 1, ..., nν ,
(14)

ωkd + δ(d) + τdw − ωkw ≤(1− xkdw)(b(d) + δ(d) + τdw)

(w, s) ∈ AGS, s ∈ S, k = 1, ..., nν ,
(15)

xkij ∈ {0, 1}, (i, j) ∈ A, k = 1, ..., nν . (16)

The objective function (1) minimizes the total transportation cost, including the fixed
costs incurred for using vehicles. Constraint (2) ensures that a vehicle leaving a supply
point visits a customer, while constraint (3) forces the single assignment of customers
to routes. Constraint (3) also ensures that a vehicle leaving a customer d goes either
to another customer from the same set Ds, a supply point s′(s′ > s), a waiting station
w ∈ W or the main depot g. These two sets of constraints together with (4) also enforce
the flow conservation at customer nodes. The conservation of flow at supply point is
completed by constraint (5). Constraints (6) and (7) represent the conservation of flow
at main depot and waiting stations respectively. Constraint (8) enforces the restrictions
on the vehicle capacity, each time a city freighter leaves a supply point s to deliver
customer demands from set Ds.
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Constraints (9), (10) and (11) enforce schedule feasibility with respect to the service
time consideration for movements between customers, but no restrictions are imposed
on the actual arrival time of a vehicle. Constraints (12), (13), (14) and (15) impose the
synchronization between vehicle arrival and opening time of supply points. Constraint
(12) ensure that if a vehicle k is used to serve customers associated with supply point s
then it should arrive at supply point s between time interval t(s)−η and t(s). Constraint
(13) enforce the schedule feasibility for movements between a customer node d ∈ Ds′(s

′ <
s) and a supply point s. Constraint (14) enforce the schedule feasibility for movements
between a waiting station w and a supply point s. Constraint (15) enforce the schedule
feasibility for movements between a customer node d ∈ ∪s∈SD and a waiting station w.
Finally, constraint (16) impose binary values on the flow variables.

4 Solution Method

Because the MZMT-VRPTW is an extension of the VRP and since only small instances of
the VRP can be solved exactly, it is clear that one cannot expect to solve large instances
of the MZMT-VRPTW with the formulation presented in Section 3. We have therefore
opted for the development of a heuristic solution procedure. In the MZMT-VRPTW,
customers are divided into a number of customer zones. Taking advantage of this special
structure of the problem, we use a decomposition-based solution method for the MZMT-
VRPTW. The general idea behind our approach, inspired by Crainic et al. (2009), is to
decompose the problem by customer zone, to solve the resulting small VRPTW in each
customer zone, and finally to determine the flow of vehicles among different customer
zones to serve the routes associated with these customer zones. The method proceeds in
two phases:

1. Routing, in which we solve an independent VRPTW for each customer zone s.
This independent VRPTW consists of supply point s and the set of customers Ds

associated with zone s.

2. Circulation, where we solve the problem of moving vehicles among supply points
to determine the flow of vehicles at minimum cost. The flow of vehicles originates
from the main depot, visits subset of supply points, serves the routes associated
with these supply points, and finally returns back to the main depot.

4.1 Routing

We solve an independent VRPTW for each customer zone s. This individual VRPTW
is defined on a complete graph Gs = (Vs, As), where Vs = {s} ∪Ds is the vertex set and
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As = {(i, j) : i, j ∈ Vs, i 6= j} is the arc set. Vertex s represents the supply point where
vehicles start delivery tours, while the other vertices of Vs represent the customers to be
served. With each customer i ∈ Ds are associated a nonnegative demand qi, a service
time δ(i) and a time window [a(i), b(i)]. At supply point s, a maximum of nν vehicles
(city freighters) are available to serve customers.

The VRPTW then consists in designing a maximum of nν routes on Gs such that:
(i) every route starts and ends at supply point s; (ii) every customer belongs to exactly
one route; (iii) the total load of each vehicle does not exceed the vehicle capacity Q; (iv)
customers are visited within their respective time window; (v) the total travel time of all
vehicles is minimized. In case of early arrival at a customer location, the vehicle serving
this customer must wait until the beginning of the timi window before starting service.

In a standard VRPTW, each vehicle returns back to the depot after serving its cus-
tomers. However, in the final solution of MZMT-VRPTW, a vehicle moves to some other
customer zone s′ (with s′ > s) after performing a route in customer zone s. Therefore
the cost of arcs (i, s), i ∈ Ds, going back to supply point s affect the solution quality. We
consider two different alternatives to address this issue : 1) set the cost of all of these arcs
to zero, 2) set the cost of arc cost (i, s), i ∈ Ds, to the cost of moving to nearest supply
point from node i. In section 7, we perform experiments with these two alternatives to
see which one produces the most effective solutions.

To solve the VRPTW for graph Gs, we use the Unified Tabu Search designed by
Cordeau et al. (2001), a method which has proved to be highly effective for tackling a
wide range of classical vehicle routing problems. Since we have an individual VRPTW
problem for each customer zone, a total of |S| individual VRPTWs must be solved. The
solutions of these VRPTWs provide routes for the vehicles. These routes are assigned to
be serviced by one of the vehicles in the circulation phase.

4.2 Circulation

The output of the routing phase determines the number of vehicles required to serve each
customer zone and the actual vehicle routes. In the circulation phase, we determine the
flow of vehicles among customer zones to serve the predefined routes generated in the
routing phase.

The workday of a city freighter can be described as follows: The vehicle starts from
the main depot and moves to some customer zone, say s, where it is assigned to serve
one of the routes generated in the routing phase for this zone. After performing this
route, the vehicle can move to another customer zone, say s′(s′ > s). The vehicle is
allowed to move to supply point s′ only if it is possible to reach it before its opening time
t(s′). At the same time, a vehicle is not allowed to reach s′ before t(s′)− η. If the direct
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movement of a vehicle would make it arrive at s′ before t(s′)−η, then it must go to some
waiting station to wait before moving to s′ or finishing its workday. The vehicle leaves
the waiting station in such a way that it arrives at supply point s′ between t(s′)− η and
t(s′). In this way, a vehicle moves through a subset of customer zones to perform exactly
one predefined route in each zone and finally returns back to the main depot.

Let Ns represent the number of vehicles required to service customer zone s. Let ∆φ(s)
and kφ(s) represent the total time and total distance for route φ = 1, ..., Ns, from supply
point s to the last customer visited on route φ, which is denoted d(sφ). Then t(s)+∆φ(s)
is the time at which route φ is completed and the vehicle is ready to proceed to the next
customer zone or to the main depot. Let w(sφ, s

′) ∈ G represent the nearest waiting
station between demand node d(sφ) and supply point s′. A minimum cost network flow
problem may then be defined to yield a circulation plan for the vehicles.

The set V is made up of the node sets s for supply points and g for main depot plus
the set of route nodes sφ standing for the routes φ = 1, ..., Ns associated with each node
s. The arcs of the network are:

• Arcs (s, sφ) ∈ ASDs go from supply-node s to each route node sφ, φ = 1, ..., Ns, s ∈ S.

• Arcs in ADSs = {sφ, s′} link each route-node sφ to supply-nodes s′, such that t(s′)−
η ≤ t(s) + ∆φ(s) + δd(sφ),s′ ≤ t(s′) or t(s) + ∆φ(s) + δd(sφ),g(sφ,s′) + δg(sφ,s′),s′ ≤ t(s′).
These two conditions represent the schedule feasibility at supply point s′ either
directly or while using waiting station.
The set AS

−
s = {s′φ, s} represents the backstar of node s with respect to route-nodes

s′φ such that t(s)−η ≤ t(s′)+∆φ(s′)+δd(s′φ),s ≤ t(s) or t(s′)+∆φ(s′)+δd(s′φ),g(s′φ,s)
+

δg(s′φ,s),s ≤ t(s).

• Arcs in AGS = (g, s) go from main depot g to supply point s.

• Arcs in ADG = (sφ, g) go from route node sφ to main depot g.

Define the decision variables yij to stand for the number of city freighters that move
between nodes i, j ∈ V . Let F stand for the fixed cost for operating a vehicle and
cij, (i, j) ∈ Ā = A \ (AGS ∪ ADG) represent the unit transportation cost between two
nodes i, j ∈ V . The minimum cost network formulation for the circulation problem then
becomes

Minimize
∑

(i,j)∈Ā

cijyij + F
∑

(g,s)∈AGS
ygs (17)

Subject to
∑

(s,sφ)∈ASDs

yssφ = Ns, s ∈ S, (18)

yssφ = 1, (s, sφ) ∈ ASDs , s ∈ S, (19)
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ygs +
∑

(i,j)∈AS−s

yij =
∑

(s,sφ)∈ASDs

yssφ , s ∈ S, (20)

yssφ = ysφg +
∑

(sφ,s′)∈ADSs

ysφs′ , s ∈ S, (21)

∑
(g,s)∈AGS

ygs =
∑

(sφ,g)∈ADG
ysφg, (22)

yij ≥ 0, (i, j) ∈ A. (23)

The objective function (17) minimizes the total transportation cost. Constraint (18)
fixes the number of city freighters that must arrive at each supply point. Constraint (19)
restricts single vehicle per route condition at each route node. Constraints (20) and (21)
enforce the flow conservation conditions at supply points and route nodes respectively.
Conservation of flow at main depot g is enforced by constraint (22). Finally, condition
(23) imposes binary values on the flow variables.

4.3 Improvement Scheme

The routing and circulation phases determine the complete routes of city freighters, as
well as the number of vehicles used to serve each zone. Since in this complete solution
city freighters do not return to the supply point of the zone in which they just performed
a route, it is possible to improve the solution by reassigning customers between the routes
servicing each zone. To maintain the consistency of the overall delivery plan, we only
consider customer reassignments between routes that service the same zone. We may
thus perform this improvement step separately for each customer zone. This is done
using again the Unified Tabu Search of Cordeau et al. (2001), but the method is applied
in a slightly different way than in the routing phase: 1) The solution obtained after
the routing and circulation phases is used as an initial feasible solution; 2) The number
of vehicles routes is known and kept constant; 3) Each route has a known (and fixed)
endpoint, which is either another supply point or the main depot; 5) Each route has a
maximum duration, which depends upon the opening time of its endpoint.

5 Lower bounds

To assess the quality of the solutions produced by the heuristic described in the previous
section, we would like, ideally, to compare these solutions with optimal ones. Unfor-
tunately, the MZMT-VRPTW integer programming model presented in section 3 is not
tractable within reasonable CPU times even for small problem instances. This stems from
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the fact that this model relies on a three-index vehicle flow formulation and therefore
requires a large number of decisions variables. We must therefore settle down to com-
parisons between heuristic solution values and lower bounds, which should be obtained
by relaxing some of the constraints of the original problem.

Going back to the three-index formulation, we note that we must resort to it to ensure
the schedule feasibility at waiting stations and supply points. If we allow unlimited
waiting time at supply points, then vehicles can move directly from a demand node
to a supply point without using a waiting station. In this case, we can remove the
time variables ωki for supply points and waiting stations from the formulation and then
formulate the relaxed problem as a two-index vehicle flow model. We formulate this model
for the relaxed MZMT-VRPTW on a space-time network (V,A). The vertex set V is made
up of the main depot g, the set of supply points S, and customer demands d ∈ Ds, s ∈ S.
The arc set is made up of sets ASDs , ADSs , ADDs , ADG, AGS from section 3, i.e., feasible
movements corresponds to the arcs of A = ∪s∈S[ASDs ∪ ADSs ∪ ADDs ] ∪ ADG ∪ AGS.

As in Section 3, let F stand for the fixed cost for operating a vehicle and cij, (i, j) ∈
Ā = A \ (AGS ∪ ADG), represent the transportation cost between nodes i, j ∈ V . We
define the following decision variables:

• xij, a binary variable which takes value 1 if arc (i, j) is used by a vehicle and 0
otherwise;

• ω(i), a continuous variable specifying the start time of service for customer i ∈ D;

• ui, a continuous variable representing the load of the vehicle that visits customer
i, as it departs.

The relaxed MZMT-VRPTW can then be written as the following multi-commodity
network flow model with time window and capacity constraints:

(LB1) Minimize
∑

(i,j)∈(Ā)

cijxij + F
∑

(g,s)∈AGS
xgs (24)

S.t.
∑

(d,j)∈ADDs

xdj +
∑

(d,s′)∈ADSs

xds′ +
∑

(d,g)∈ADG
xdg = 1, d ∈ Ds, s ∈ S, (25)

xsd +
∑

(i,d)∈AD−s

xid = 1, d ∈ Ds, s ∈ S, (26)

∑
(g,s)∈AGS

xgs +
∑

(d,s)∈AS−s

xds =
∑

(s,d)∈ASDs

xsd, s ∈ S, (27)

∑
(d,g)∈ADG

xdg =
∑

(g,s)∈AGS
xgs, (28)
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ui + qj − uj ≤ (1− xij)Q, (i, j) ∈ ADDs , s ∈ S, (29)

qd ≤ U(d) ≤ Q, d ∈ D, (30)

t(s) + δ(s) + τsd − ω(d) ≤(1− xsd)(t(s) + δ(s) + τsd − a(d))

(s, d) ∈ ASDs , s ∈ S,
(31)

ω(i) + δ(i) + τij − ω(j) ≤ (1− xij)(b(i) + δ(i) + τij − a(j))

(i, j) ∈ ADDs , s ∈ S,
(32)

a(d) ≤ ω(d) ≤ b(d), d ∈ D, (33)

ω(d) + δ(d) + τds− t(s) ≤(1− xsd)(b(d) + δ(d) + τds− t(s))
(d, s) ∈ AS−s , s ∈ S,

(34)

xij ∈ {0, 1}, (i, j) ∈ A. (35)

The objective function (24) minimizes the total transportation-related cost, as well as
the number of vehicles used. Constraints (25) and (26) enforce the flow conservation at
customer nodes. These constraints also guarantee that each customer node will be visited
exactly once. Constraints (27) and (28) represent the conservation of flow at supply
points and main depot respectively. Constraints (29) and (30) enforce the restrictions
on the vehicle capacity. These constraints also ensure the connectivity requirements for
customer nodes.

Constraints (31), (32), (33) and (34) enforce schedule feasibility with respect to the
time consideration at customer nodes and supply points. Constraint (31) enforces the
schedule feasibility for movements between supply point s and customers d ∈ Ds. Con-
straints (32) and (33) enforce the schedule feasibility for movements between customers.
Constraint (34) enforces the schedule feasibility for movements between customer-demand
d ∈ Ds′(s

′ < s) and supply point s. Finally, constraint (35) ensures that the flow variables
take binary values.

We call the above formulation the LB1 model. This model can solve larger problem
instances compared to the MZMT-VRPTW model. Still, LB1 cannot solve the really
large problem instances because of time-window and capacity constraints. Therefore,
we now introduce the LB2 model to solve even larger problem instances. The LB2
model is a relaxation obtained from LB1 by dropping constraints on time windows and
vehicle capacity. Let n(Ds) represents the minimum number of vehicles required to serve
customer set Ds, then LB2 can be formulated as follows:

(LB2) Minimize
∑

(i,j)∈(Ā)

cijxij + F
∑

(g,s)∈AGS
xgs (36)

Subject to
∑

(s,d)∈ASDs

xsd ≥ n(Ds) s ∈ S, (37)

13

Multi-Zone Multi-Trip Vehicle Routing Problem with Time Windows

CIRRELT-2012-36



∑
(d,j)∈ADDs

xdj +
∑

(d,s′)∈ADSs

xds′ +
∑

(d,g)∈ADG
xdg = 1 d ∈ Ds, s ∈ S, (38)

xsd +
∑

(i,d)∈AD−s

xid = 1 d ∈ Ds, s ∈ S, (39)

∑
(g,s)∈AGS

xgs +
∑

(d,s)∈AS−s

xds =
∑

(s,d)∈ASDs

xsd s ∈ S, (40)

∑
(d,g)∈ADG

xdg =
∑

(g,s)∈AGS
xgs, (41)

xij ∈ {0, 1} (i, j) ∈ A. (42)

Constraint (37) enforces the restriction on minimum number of vehicles required to
serve customer zone s. Other constraints are the same as in model LB1 described earlier.
To compute the value of n(Ds), we use a lower-bound calculation for the Bin Packing
Problem (BPP).

6 Development of Sets of Problem Instances

In order to perform computational experiments on the methods we present, we generated
two sets of problem instances, a large and small one. The total number of customers in
the former set varies from 400 to 3,600, while in the latter it varies from 25 to 90. Large
problem instances correspond to real-world applications, but the lower-bound formulation
LB1 cannot be solved for them. This motivated the generation of the smaller instances
in order to be able to use the lower bound LB1 in the evaluation of the performance of
the proposed heuristic.

We generated six sets of 10 large instances each, for a total of 60 large problem
instances. The six sets are called A1, A2, B1, B2, C1, and C2. The number of customer
zones for these sets is 4, 8, 16, 32, 36, and 72, respectively. Instances in set A are the
smallest in size with 400 customers, instances in set B are of medium size with 1600
customers, and instances in set C are the largest ones with 3600 customers. Supply
points, waiting stations, and customers were uniformly distributed in a square, with the
X and Y coordinates in the interval [0,100], [0, 200], and [0, 300] for sets A, B, and
C, respectively. We included one waiting station for every group of 100 customers. A
summary of these parameters is given in Table 1.

Other parameters were generated as follows. The opening time of the first supply
point was set to zero and generated randomly in the [0, 14,400] range (in minutes) for
the others. The opening times were first ordered and then assigned to to the supply points
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Problem Number of Number of Number of X,Y customer
set customer zones / customers waiting coordinates

supply points stations
A1 4 400 4 [0, 100]
A2 8 400 4 [0, 100]
B1 16 1600 16 [0,200]
B2 32 1600 16 [0, 200]
C1 36 3600 36 [0, 300]
C2 72 3600 36 [0, 300]

Table 1: Parameters for large instances

to enforce their non-decreasing order. Waiting and vehicle-loading times at supply points
were set at 100 and 30, respectively, for all supply points.

A customer is assigned to a customer zone based on its proximity to the corresponding
supply point. A customer is randomly assigned to one of the four nearest supply points,
the assignment probability being inversely proportional to the distance between the cus-
tomer and the supply point. More precisely, the weights for assigning customers to their
first, second, third, and fourth nearest supply points were set to 50%, 25%, 15%, and
10%, respectively. The ready time of a customer was generated randomly in the range of
[0, 300], a time window duration was then randomly generated in the interval [150, 450],
and finally, the due date for delivery was set by adding the time window duration to the
ready time. These ready times and due dates may, however, not be feasible, because
customers are serviced by different supply points with different opening times. To ensure
feasibility, a number of values were added to the ready times and due dates: the open-
ing time of the supply point to which the customer is assigned, the loading time at the
supply point, and the smallest integer higher than the value of the distance between the
customer and the supply point. The demand of each customer was randomly generated
in the interval [5, 25]. Since we fix the vehicle capacity to 100 and the average customer
demand is 15, a vehicle should handle on average 6-7 customers (per zone). The service
time of customers was set to 20 for all customers.

The capacity of all vehicles was set to 100. The main depot was located in the middle
of the region served, with X and y coordinates equal to [50,50] for set A, [100,100] for
set B, and [150,150] for set C. The location of main depot does not affect the solution
since the distance from the main depot to other nodes is not included in the objective
function. We assume that the required number of vehicles is readily available at supply
points. The fixed cost for operating a vehicle was set to 500 for all instance sets.

The six sets of small problem instances, D1 to D6 with 10 instances in each set, were
generated following the same main ideas. We seek to evaluate the performance gap of
our heuristic solution relative to the lower bound solution. In addition, we would like to
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Problem Number of Number of Total umber of X,Y customer
set customer zones customers / zone customers coordinates
D1 5 5 25 [0, 100]
D2 5 7 35 [0, 100]
D3 5 9 45 [0,100]
D4 5 6 30 [0, 100]
D5 10 6 60 [0, 100]
D6 15 6 90 [0, 100]

Table 2: Parameters for small instances

analyze the correlation between this gap and the problem size/complexity. Unlike other
VRP variants, however, the total number of customers may not necessarily reflect the
difficulty of addressing a particular problem instance, which is principally affected by
two parameters: i) the number of customers per customer zone |Ds|, and ii) the number
of supply points |S|. Therefore, the small problem sets were divided into two groups.
The number of supply points |S| was kept the same (at 5) for the instances of the first
group but the number of customers per customer zone |Ds| varied, being set to 5, 7 and
9 for D1, D2, and D3, respectively. The reverse policy was applied to the second group
of instance sets, the number of customers per zone being kept the same at 6, but the
number of supply points varied, being set respectively to 5, 10, and 15 for sets D4, D5,
and D6. Small instances have no waiting stations but allow waiting at supply points. A
summary of the parameters for these six problem sets is given in Table 2.

The other parameters were generated similarly to the large-instance case, except for
the assignment of customers to customer zones. Here, we considered again the four
nearest supply points for possible assignment, but if these supply points were already
assigned with the required number of customers, we consider all other supply points for
possible assignment.

7 Experiments

This section presents the computational results of the proposed heuristic procedure.
First, we present the numerical results on the large problem instances generated in Sec-
tion 6. We then compare our heuristic solution with lower bound values to evaluate the
performance of the heuristic under consideration. We complete the presentation with
the results of sensitivity analyses with different parameters, for a better understanding
of the behavior of the model and heuristic.

The proposed heuristic was coded in C and implemented on AMD Opteron 2.3 GHz
workstation with 16 GB of RAM. The circulation phase and lower bound formulations
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were solved with CPLEX 10.1. All computations were performed in double precision
arithmetic and the final results are rounded to their nearest integer value. All travel times
were set equal to the corresponding distances. Similarly, the unit transportation cost
between two nodes was set equal to the distance between those nodes. The abbreviations
used in reporting the results are defined in Table 3.

Name Definition
NR Total number of routes obtained in the routing phase by solving indi-

vidual VRPTW for all customer zones;
TL Total distance traveled by all vehicles;
NV Total number of vehicles used in the final solution;
TC Total transportation cost, including the fixed cost for operating vehicles

and the variable cost for the total distances traveled by all vehicles;
DM Number of times vehicles move directly from one customer zone to

another customer zone without using waiting stations;
MWS Number of times waiting stations are used by vehicles before moving

to the next customer zone;
CPU Total CPU time taken by the algorithm under consideration.

Table 3: Performance measure definitions

7.1 Numerical Results

We investigate first the effect of distances associated to arcs going back to the depot in the
routing phase, which make up an important factor in determining the solution quality. We
consider two alternatives: 1) zero cost for all the arcs, and 2) cost of going to the nearest
supply point s′ that can be reached feasibly from node i i.e., a(i)+δ(i)+τis <= t(s). The
average results of the 60 large problem instances for these two alternatives are reported
in Table 4. The total cost for first alternative is 59,358, while the total cost of the second
alternative is 59,338, which indicates that there is no significant difference between the
alternatives, even though using zero costs for all arcs displays a slight advantage. It seems
that considering the nearest supply point makes the solution slightly biased towards
choosing this supply point, which might not be the most appropriate choice. Giving
equal importance to the arcs going back to the depot thus seems to make the solution
unbiased. In the remainder of the paper, therefore, we consider zero distances for all the
arcs going back to the supply point in the routing phase of our solution method.

Scenario NR TL NV TC DM MWS
1 288 36016 47 59358 25 217
2 289 35863 47 59338 24 218

Table 4: Impact of return-to-depot-arc distances in the routing phase
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We now turn to the results of the heuristic on the large instances, average results being
reported in Table 5 (detailed results are reported in Tables 16 and 17 in the Appendix).
The total cost reported in these tables is the sum of the fixed cost of operating the
displayed number of vehicles and the variable cost corresponding to the distance traveled
by the same vehicles. The CPU times indicate the proposed heuristic is efficient even for
large instance dimensions.

Comparing reults for sets A1 and A2 shows that the average total cost of set A2 is
less than for set A1. The same observation holds also for the average number of vehicles
used and the average total distance traveled by vehicles. Remember that both sets have
400 customers, but set A1 has 4 customer zones while set A2 has 8 customer zones. This
result provides an important insight on correlation between the total cost and the number
of customer zones. The total transportation cost can thus be reduced by increasing the
number of supply points, i.e., customer zones. Increasing the number of customer zones
increases the utilization of the vehicles, which finally reduces the total transportation
cost. This argument is supported by results from the other two problem sets.

Problem Set NR TL NV TC DM MWS CPU
A1 61 6625 24 18575 1 36 290
A2 63 6161 19 15411 2 42 145
B1 245 30353 51 55653 14 180 1289
B2 251 28146 39 47396 20 193 607
C1 549 74126 87 117426 39 423 2990
C2 566 69770 64 101570 68 434 1351

Average 289 35863 47 59338 24 218 1112

Table 5: Average results for the large instance sets

Detailed results show that, in total, 2817 vehicles are used in the 60 problem instances,
servicing a total of 17,337 routes. Hence, on average, a vehicle services 6.15 routes, which
shows a reasonably high vehicle utilization. On the other hand, detailed results also show
that a waiting station is used by vehicles on 13,037 occasions, while they move directly
from one customer zone to another customer zone on 1449 occasions only. This low, 9.98
%, factor of direct moves to another customer zone without using a waiting station is
mainly due to the small waiting time δ allowed at supply points. We investigate the effect
of allowable waiting time at supply points on the transportation cost in the sensitivity
analysis subsection (Section 7.3).

7.2 Comparisons with lower bounds

The performance of the heuristic solution is evaluated by comparing the heuristic solution
(HS) with the lower bound solution LB1 and LB2 (Section 5). We used small instances
sets when LB1 was involved, and large ones otherwise (involving LB2).
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The comparative results of HS and LB1 for problem sets D1-D6 (averages over 10
problem instances for each set) are reported in Table 6 (detailed results are reported in
Tables 18 and 19 in the Appendix). Other than the total length traveled by all vehicles
TL, number of vehicles used NV , and total transportation cost TC, the tables also
display the % Gap between HS and LB1. Notice that the HS solutions were obtained
with an allowable waiting time δ set to infinity, in which case, the MZMT-VRPTW
reduces to the relaxed problem LB1. Hence, the percentage gaps reported in Table 6
stand for the optimal gaps between heuristic and optimal solution. The optimality gap
of HS with respect to the total cost is on average 9.5 % away from the LB1 bound. This
is mainly due to the large gap in the number of vehicles (of the order of 20% on average).
Indeed, small-size instances are highly sensitive to the number of vehicles used. On the
other hand, no trend was observed in the relationships between the gaps and the instance
size.

Problem TL NV TC
Set HS LB1 % Gap HS LB1 % Gap HS LB1 % Gap
D1 977 988 0.1 1.8 1.3 50.0 1877 1638 16.8
D2 1227 1123 9.3 2.2 2.2 0.0 2327 2223 4.7
D3 1367 1331 3.2 3 2.5 23.3 2867 2581 11.4
D4 1075 1091 0.2 2.2 1.8 30.0 2175 1991 9.0
D5 1718 1648 4.4 3.1 2.6 18.3 3268 2948 10.5
D6 2187 2022 8.5 3.3 3.3 0.8 3837 3672 4.5

Average 1425 1367 4.3 2.6 2.3 20.4 2725 2509 9.5

Table 6: Average comparative results between HS and LB1 for small instances

Table 7 display comparative results on the performance of LB2 with respect to that
of LB1. Experiments were performed on the small instances, the gap columns displaying
the percentage “away” of LB2 solutions from LB1 solution. Detailed results of LB1 and
LB2 bounding procedures are reported in Tables 18 - 21 in the Appendix. Table 7 shows
that, on average, LB2 solutions are 13.4 % away from the optimum. It is intuitive that
LB2 will provide a looser lower bound since all critical constraints, such as time windows
and vehicle capacity, have been relaxed. The percentage gap in terms of the number of
vehicles used is 7.5%, which is low comparatively to the gap in terms of total cost. The
lower gap on the number of vehicles follows from the constraint (37), which enforces the
restriction on the minimum number of vehicles at customer zones. On the other hand,
the gap is high regarding the total distances traveled (16.6 %). This performance could
be improved by adding sub-tour elimination constraints to the LB2 formulation, but this
would make it significantly less tractable. Again, no significant correlation between gap
and instance size may be observed.

Finally, average comparative results for HS, with the allowable waiting time at supply
points δ set to ∞, and LB2 are reported in Tables 8 and 9, for small and large instance
sets, respectively. The gaps are 26.1 % and 27.2%, respectively (with no significant
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correlation between gap and instance size or number of supply points).

Problem TL NV TC
Set LB1 LB2 % Gap LB1 LB2 % Gap LB1 LB2 % Gap
D1 988 813 15.9 1.3 1.0 15.0 1638 1313 18.5
D2 1123 919 18.1 2.2 2.1 3.3 2223 1969 11.3
D3 1331 1100 16.9 2.5 2.4 3.3 2581 2300 11.1
D4 1091 868 19.1 1.8 1.7 5.0 1991 1718 14.1
D5 1648 1387 15.6 2.6 2.4 5.8 2948 2587 12.1
D6 2022 1736 14.1 3.3 2.9 12.5 3672 3186 13.2

Average 1367 1137 16.6 2.3 2.1 7.5 2509 2179 13.4

Table 7: Average comparative results between LB1 and LB2 for small instances

Problem TL NV TC
Set HS LB2 % Gap HS LB2 % Gap HS LB2 % Gap
D1 976 813 20.5 1.8 1.0 80.0 1876 1313 43.4
D2 1211 919 32.8 2.2 2.1 5.0 2311 1969 17.6
D3 1320 1100 20.6 3.0 2.4 30.0 2820 2300 23.5
D4 1070 868 23.2 2.2 1.7 40.0 2170 1718 27.7
D5 1734 1387 25.1 2.9 2.4 21.7 3184 2587 23.2
D6 2198 1736 27.0 3.3 2.9 18.3 3848 3186 21.1

Average 1418 1137 24.9 2.6 2.1 32.5 2701 2179 26.1

Table 8: Average comparative results between HS and LB2 for small instances

The gaps are large. Yet, the previous discussion underlined the observation that LB2
is rather loose. This is supported by the figures in these two tables, where the comparative
behavior of HS and LB2 is the same for both small and large instances. Recalling the
very good behavior of LS relative to LB1 on mall instances, we infer that, on the one
hand, the large gaps in these comparisons follow mainly from the relative quality of the
bound and, on the other hand, the actual behavior of the proposed heuristic should be
similar on large instances to the satisfying one on the small ones.

7.3 Sensitivity Analysis

The goal of this part of the experimentation is to better understand the nature of the
MZMT-VRPTW variant of the routing family of problem setting by exploring the behav-
ior of the solution relative to variations in the value of a number of key parameters. We
focus, in particular, on the waiting time allowed at supply points, the number of waiting
stations, the proportion of supply points providing waiting facilities, the amplitude of
the customer time windows. the location of supply points relative to customers, and the
importance of the vehicle fixed costs.
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Problem TL NV TC
Set HS LB2 % Gap HS LB2 % Gap HS LB2 % Gap
A1 5818 3903 51.1 24 22 10.9 17768 14903 20.5
A2 5171 4179 24.7 19 14 36.3 14421 11029 31.0
B1 27373 21610 27.7 51 38 34.9 52673 40510 29.9
B2 24593 20538 20.0 39 28 35.8 43843 34738 26.2
C1 68261 54550 25.1 87 65 33.0 111561 87200 28.0
C2 62114 47498 30.7 64 52 22.5 93964 73498 27.8

Average 32222 25380 29.9 47 37 28.9 55705 43646 27.2

Table 9: Average comparative results between HS and LB2 for large instances

7.3.1 Allowable waiting time at supply points

The time vehicles may wait at supply points constitutes one of the main complicating
factors for the problem setting we address. In actual practice, the waiting-time capabili-
ties of supply points is determined, and limited, by many factors, including the location,
organization, and environment (e.g., type of urban neighborhood and activity zone) of
the supply point, traffic and parking regulations, and so on.

The experiment consisted in solving the large instances with various values for the
allowable waiting time δ parameter. We selected two extreme values, 0 and∞, and three
intermediate one, namely 25, 50, and 100. The 0 extreme value corresponds to the case
when vehicles cannot wait at supply points, being forced to arrive just in time for the
opening time of the supply points. On the other hand, the infinite value indicates no
restrictions on waiting time at supply points.

Average results for the large instances are reported in Table 10. The figures in the ta-
ble show that all performance measures (except the number of routes, which depends only
on the customers assigned to each supply point and are thus invariant), total transporta-
tion cost, number of vehicles used, and distance traveled, decrease when more waiting
time is allowed at supply points. More waiting capabilities at supply points thus increases
the probability of moving directly to the next customer zone, without using the waiting
stations and thus avoiding traveling additional distances. Examining the performance
measures for the extreme values reinforces this observation. No waiting possibilities at
supply points results in the highest utilization of waiting stations and highest costs, 7.19%
higher in total cost compared to the δ =∞ case, when no waiting station is in use.

The experimental results thus confirms that the allowable waiting time at supply
points is one of the critical elements of the problem setting and the model. Recall that
the relaxed problem LB1 represents the model for infinite allowable waiting time. One
may thus infer that part of the gap of HS relatively to LB1 finally, notice that the results
of this analysis provide an economic estimation of the value of waiting facilities associated
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to the supply points.

δ NR TL NV TC DM MWS
0 289 36112 47 59712 0 242
25 289 36073 47 59565 10 232
50 289 35978 47 59453 15 227
100 289 35863 47 59338 24 218
∞ 289 32222 47 55705 242 0

Table 10: Average results for the large instances for different values of δ

7.3.2 Number of waiting stations

The number of waiting stations, where vehicles may wait before moving to the customer
zone to reach it on time, is the second main synchronization characteristic of the problem
studied, directly influencing the performance of the corresponding system. We consider
four cases of limited parking availability by defining 1, 2, 4, and 50 waiting stations for
each 100 customers. The latest figure is used to model the situation of an “infinite”
number of waiting stations, corresponding to the case of unlimited availability of parking
space in the city (street parking, for example). One may thus wait just outside the
supply point, which is equivalent to going there directly and waiting for the opening
time. Infinite number of waiting stations is thus equivalent to infinite allowable waiting
time at supply points.

More waiting stations, if suitably distributed among customer locations, should result
in more direct routes toward the next supply point and, thus, in lower distances traveled.
This intuition is validated by the results of the four cases are reported in Table 11, where
Column W/C identifies the case through the number of waiting stations for every 100
customers included in the large instances. These results indicate that the total cost
decreases with the number of waiting stations, while the number of vehicles used remains
the same. Thus, the decrease in total cost is due only to the decrease in the distance
traveled by vehicles.

W/C NR TL NV TC DM MWS % TC Saving
1 289 35863 47 59338 24 218 0
2 289 34208 47 57683 22 220 2.79
4 289 33260 47 56743 20 222 4.37
50 289 32285 47 55769 18 224 6.02

Table 11: Average results, large instances, for different values of number of waiting
stations

The last column of Table 11 displays the transportation cost savings computed for
Cases 2 to 4 with respect to the base Case 1. These figures provide upper bounds, within
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the parameter of the large instances, on the additional cost for opening and operating
additional waiting stations.

7.3.3 Proportion of supply points with waiting facilities

It is actually possible in some applications (e.g., City Logistics), that some supply points
be provided with waiting facilities (e.g., when located within parking lots) for vehicles
to wait for their net service. We therefore performed an analysis letting the proportion
of supply points with facilities allowing vehicle waiting (allowable waiting time = 100)
vary from 0 to 100% by increments of 25. Results are reported in Table 12. Observations
are similar to those of the sensitivity analysis of the allowable waiting time δ (Table
10). Indeed, similar to the impact of allowable waiting time at supply points, when the
proportion of supply points allowing waiting of vehicles increases, the total travel distance
reduces because more direct trips to the next customer zone become possible, while the
utilization of waiting stations decreases, which reduces the total distances traveled by
the vehicles.

Proportion NR TL NV TC DM MWS
0 % 289 36112 47 59712 0 242
25 % 289 36063 47 59638 6 236
50 % 289 35994 47 59535 12 230
75 % 289 35923 47 59423 18 224
100 % 289 35863 47 59338 24 218

Table 12: Impact of the proportion of supply points with allowable waiting time (average
results, large instances)

7.3.4 Customer time windows

Table 13 displays the average results over the large instances of the analysis of the impact
of the width of the customer service time window on global system performance. We
compared the results of the base case to those of applying the heuristic to the same
instances but with customer due dates yielding time windows twice as large as before.

Problem sets NR TL NV TC DM MWS
Initial 289 35863 47 59338 24 218
Wide 289 34839 47 58314 19 223

Table 13: Impact of customer time window width (average results, large instances)

Notice that the number of routes was the same for all previous analyses, since the
routing phase of the heuristic solved the same problem. This is no longer true in the
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present case, as modifying the width of the time windows changes the routing-problem
setting. Examining the detailed results, one observes minor differences in the number of
routes. More significantly, broadening the customer time windows modifies the customer-
to-route assignments lowering the total transportation cost, from 59,338 to 58,314 and
the total distance traveled by vehicles from 35,863 to 34,839.

7.3.5 Location of supply points

A supply point can be located either inside the customer zones or at their periphery,
on the outer boundary of all customer zones. The former organization characterizes
the original instance sets, identified as “Within the zone” in Table 14. We aim with
this analysis to measure the impact, if any, of this location, by changing the location of
supply points to the nearest outer boundary of the customer zones, identified as “On the
border” in the same table.

Consider the example of a supply point s. Assume the coordinates of s are [50, 10] in
the original problem set. The nearest outer boundary for s is the line y = 0. Therefore,
we locate the supply point s on the line y = 0, and its new coordinates become [50,
0]. Changing the coordinates of a supply point will generally modify the travel times to
customer and, consequently, some previous customer time windows might no longer be
feasible. We therefore modify the customer ready time and due date by replacing in the
original computation (see Section refsection6) the initial distance between the customer
and the supply point by the maximum value between this distance and the distance
between the customer and the new location of the supply point. Table 14 reports the
results of this analysis averaged over the large instances.

Supply point location NR TL NV TC DM MWS
Within the zone 290 36575 48 60417 21 221
On the border 287 47606 48 71489 21 218

Table 14: Average results on large instances with different supply-point locations

As expected, moving the supply points outside the customer zones increases the dis-
tance traveled by the vehicles and, thus, the total transportation cost. It also decreases
the utilization of waiting stations. This increase must be put into the perspective of
each particular application, however. Thus, for City Logistics, a location of the supply
points within the customer zone implies longer distances traveled by first-tier vehicles
and, thus, generally, higher impacts on congestion and the environment. While the full
City-Logistics analysis is beyond the scope of this paper, the present results emphasize
the interest of the MZMT-VRPTW problem setting and the proposed methodology.
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7.3.6 Vehicle fixed costs

One of the objectives of the MZMT-VRPTW is to minimize the total number of vehicles
used. This number is directly related to the fixed cost F associated with the utilization
of the vehicles. We therefore, vary the fixed cost F , setting it to 0, 50, 200, 500, and
1000. The average results over large instances are reported in Table 15.

Fixed Cost NR TL NV DM MWS
0 289 17590 289 0 0
50 289 28410 90 11 188
200 289 34986 49 22 218
500 289 35863 47 24 218
1000 289 35864 47 24 218

Table 15: Effect of fixed cost on solution quality (average results on large instances)

The fixed cost set to zero represents the case where the only objective is to minimize
the total distances traveled by all the vehicles. The results clearly show the corresponding
measure as the minimum distance required for the instances. No waiting stations are
necessary in this case. This performance is achieved, however, at the cost of using the
minimum number of vehicles, i.e., one vehicle for each of the routes performed. Increasing
the fixed costs increases the distance traveled and decreases the utilization of waiting
stations and the number of vehicles operated. Variations may be dramatic, witness the
passage from 0 to 50, which emphasizes the major role of fixed vehicle costs within this
problem setting. Actually, one has already reached the good-results region when the
fixed costs are set at 200. Imposing higher values, e.g. 1000, increasing represents the
case when travel costs are not important, the main objective being the minimization of
the number of vehicles used (the last row of the table indeed displays the lowest number
of vehicles, for the highest total distance traveled and level of utilization of the waiting
stations).

8 Conclusions

We have studied the MZMT-VRPTW, a new vehicle routing problem class in which cus-
tomers are divided into a number of zones along geographic or temporal lines defined by
the customer time windows and the tight time windows of the supply points of each zone
where demand becomes available. Vehicles in MZMT-VRPTW may perform multiple
tours for different zones, aiming to reach the next zone just-in-time for the beginning of
its time window. The global objective is the minimization of the total cost computed
as the sum of the fixed costs of selecting vehicles and the variable costs of moving them
around to service customers.
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We have developed and analyzed a decomposition-based heuristic approach, which
addresses the problem in two phases. Small VRPTW for each customer zone are solved
in the first phase, while the flow of vehicles among different customer zones is determined
in the second phase. The decomposition heuristic was tested on randomly generated
problem instances. We have also performed sensitivity analyses on several parameters
of the MZMT-VRPTW, which revealed interesting facets of the behavior of this new
problem class. We also provided two lower bounds that, even though not very tight,
indicate the heuristic performs reasonably well. The MZMT-VRPTW is a new problem
and no previous results were available, but we hope our results have opened the field for
investigation and provide a benchmark for future research.
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Appendix

The Appendix displays the detailed results for the heuristic on the large instances, Tables
16 and 17, and lower bound computations for the small instance sets in Tables 18 and
19 for LB1, and Tables 20 and 21 for LB2. The definition of the column identifiers is:

NR Total number of routes obtained in the routing phase by solving indi-
vidual VRPTW for all customer zones;

TL Total distance traveled by all vehicles;
NV Total number of vehicles used in the final solution;
TC Total transportation cost, including the fixed cost for operating vehicles

and the variable cost for the total distances traveled by all vehicles;
DM Number of times vehicles move directly from one customer zone to

another customer zone without using waiting stations;
MWS Number of times waiting stations are used by vehicles before moving

to the next customer zone;
CPU Total CPU time taken by the algorithm under consideration.
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Inst. NR TL NV TC DM MWS CPU
A1-1 63 8267 19 17767 0 44 280.96
A1-2 59 6783 24 18783 0 35 320.84
A1-3 60 6614 19 16114 0 41 283.14
A1-4 61 5436 31 20936 0 30 275.76
A1-5 63 6850 18 15850 11 34 282.08
A1-6 60 7456 20 17456 0 40 283.43
A1-7 61 7169 24 19169 0 37 328.08
A1-8 62 6790 20 16790 2 40 289.32
A1-9 63 5570 32 21570 0 31 273.8
A1-10 58 5316 32 21316 0 26 277.98
A2-1 63 5880 21 16380 1 41 162.09
A2-2 62 6433 24 18433 2 36 156.94
A2-3 64 5654 18 14654 4 42 140.14
A2-4 62 6556 13 13056 0 49 143.32
A2-5 63 7256 14 14256 3 46 156.91
A2-6 61 5480 24 17480 7 30 142.34
A2-7 65 6455 15 13955 1 49 136.06
A2-8 64 5975 18 14975 0 46 135.96
A2-9 61 6430 16 14430 0 45 133.02
A2-10 63 5490 22 16490 6 35 147.49

Table 16: Results for the A large instance set
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Inst. NR TL NV TC DM MWS CPU
B1-1 246 26507 89 71007 4 153 1290.51
B1-2 246 31419 44 53419 22 180 1278.53
B1-3 247 30675 41 51175 20 186 1155.21
B1-4 243 33331 42 54331 25 176 1415.79
B1-5 243 31572 45 54072 12 186 1338.3
B1-6 248 29593 50 54593 16 182 1378.36
B1-7 241 30322 46 53322 15 180 1315.15
B1-8 246 31423 48 55423 5 193 1121.7
B1-9 240 28708 53 55208 19 168 1214.03
B1-10 248 29979 48 53979 5 195 1377.85
B2-1 246 28889 32 44889 21 193 545.2
B2-2 247 26927 47 50427 22 178 570.26
B2-3 253 28941 40 48941 25 188 681.78
B2-4 253 31894 28 45894 19 206 590.88
B2-5 253 26023 41 46523 17 195 602.21
B2-6 251 28441 36 46441 16 199 573.18
B2-7 249 27894 34 44894 16 199 594.27
B2-8 252 30549 28 44549 23 201 635.97
B2-9 256 28301 37 46801 21 198 619.19
B2-10 250 23606 62 54606 16 172 660.81
C1-1 547 72967 86 115967 67 394 2814.88
C1-2 546 67176 92 113176 43 411 2750.84
C1-3 551 74773 80 114773 62 409 2937.05
C1-4 548 72810 83 114310 30 435 2908.79
C1-5 548 71245 100 121245 25 423 3094.12
C1-6 552 71824 87 115324 39 426 2905.78
C1-7 548 77443 86 120443 31 431 3069.55
C1-8 551 76473 78 115473 40 433 2911.42
C1-9 550 81560 89 126060 34 427 3428.86
C1-10 545 74993 85 117493 18 442 3076.06
C2-1 562 66732 69 101232 70 423 1347.69
C2-2 571 71789 53 98289 85 433 1326.31
C2-3 562 73680 65 106180 71 426 1344.62
C2-4 559 60387 74 97387 35 450 1347.63
C2-5 569 74590 53 101090 74 442 1347.21
C2-6 565 64347 85 106847 54 426 1462.27
C2-7 562 67471 62 98471 76 424 1348.63
C2-8 570 72448 55 99948 73 442 1308.74
C2-9 568 73801 57 102301 79 432 1307.41
C2-10 567 72450 63 103950 67 437 1371.44

Average sets A,B,C 288.95 35863 46.95 59338 24.15 217.85 1111.97

Table 17: Results for large instance sets B and C
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Inst. NR TL NV TC CPU
D1-1 6 845 2 1845 1.82
D1-2 5 1052 1 1552 0.03
D1-3 5 1324 1 1824 0.27
D1-4 5 1223 1 1723 0.06
D1-5 5 876 1 1376 0.19
D1-6 5 827 1 1327 0.03
D1-7 5 1029 2 2029 0.06
D1-8 5 858 2 1858 0.25
D1-9 5 935 1 1435 0.04
D1-10 5 909 1 1409 0.17
D2-1 7 1139 2 2139 0.27
D2-2 7 970 3 2470 7.68
D2-3 9 1188 2 2188 9.37
D2-4 7 1082 3 2582 2.19
D2-5 9 1249 2 2249 0.43
D2-6 7 1177 2 2177 25.95
D2-7 9 1173 2 2173 0.08
D2-8 6 1078 2 2078 29.04
D2-9 5 1119 2 2119 254.76
D2-10 8 1054 2 2054 0.25

Table 18: LB1 results for the small instances sets D1, D2
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Inst. NR TL NV TC CPU
D3-1 10 1165 3 2665 243.53
D3-2 10 1315 2 2315 107.61
D3-3 10 1111 4 3111 143.68
D3-4 10 1383 2 2383 2.58
D3-5 9 1235 2 2235 80.86
D3-6 10 1538 2 2538 534.16
D3-7 9 1435 2 2435 21.50
D3-8 10 1459 2 2459 51.52
D3-9 10 1149 4 3149 104.06
D3-10 10 1523 2 2523 103.04
D4-1 6 1092 2 2092 0.28
D4-2 5 788 2 1788 2.36
D4-3 5 1436 1 1936 2.44
D4-4 7 1012 2 2012 0.33
D4-5 7 976 2 1976 3.17
D4-6 5 1285 1 1785 60.65
D4-7 6 1121 2 2121 68.72
D4-8 6 1006 2 2006 0.24
D4-9 7 1109 2 2109 0.34
D4-10 7 1085 2 2085 10.43
D5-1 13 1696 3 3196 6.35
D5-2 12 1785 2 2785 592.90
D5-3 12 1854 3 3354 48.52
D5-4 12 1624 2 2624 2.91
D5-5 13 1742 2 2742 2649.32
D5-6 13 1536 4 3536 734.38
D5-7 13 1483 3 2983 113.63
D5-8 11 1420 2 2420 97.27
D5-9 12 1785 2 2785 2756.95
D5-10 13 1559 3 3059 345.02
D6-1 18 2254 3 3754 4020.97
D6-2 19 2057 3 3557 640.39
D6-3 18 1809 3 3309 1867.42
D6-4 16 1901 4 3901 2977.89
D6-5 21 2186 4 4186 21272.70
D6-6 23 2031 4 4031 1870.13
D6-7 18 1722 3 3222 7413.11
D6-8 18 2139 3 3639 5275.44
D6-9 19 1846 3 3346 882.86
D6-10 17 2279 3 3779 8871.51

Average all sets 10 1367 2 2509 1071.90

Table 19: LB1 results for the small instances sets D3 - D5
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Inst. NR TL NV TC CPU
D1-1 5 830 1 1330 0.01
D1-2 5 949 1 1449 0.00
D1-3 5 755 1 1255 0.01
D1-4 5 789 1 1289 0.00
D1-5 5 747 1 1247 0.00
D1-6 5 770 1 1270 0.01
D1-7 5 954 1 1454 0.01
D1-8 5 799 1 1299 0.00
D1-9 5 822 1 1322 0.01
D1-10 5 712 1 1212 0.00
D2-1 7 945 2 1945 0.01
D2-2 6 777 3 2277 0.01
D2-3 9 1032 2 2032 0.01
D2-4 7 1021 2 2021 0.01
D2-5 7 1024 2 2024 0.01
D2-6 7 837 2 1837 0.00
D2-7 9 966 2 1966 0.01
D2-8 6 793 2 1793 0.01
D2-9 5 846 2 1846 0.01
D2-10 8 946 2 1946 0.01

Table 20: LB2 results for the small instances D1, D2
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Inst. NR TL NV TC CPU
D3-1 10 1210 2 2210 0.01
D3-2 10 1024 2 2024 0.01
D3-3 10 886 4 2886 0.01
D3-4 10 1164 2 2164 0.01
D3-5 9 1075 2 2075 0.01
D3-6 10 1172 2 2172 0.01
D3-7 9 1230 2 2230 0.01
D3-8 9 957 2 1957 0.01
D3-9 10 982 4 2982 0.01
D3-10 10 1299 2 2299 0.01
D4-1 6 928 2 1928 0.01
D4-2 5 769 1 1269 0.01
D4-3 5 976 1 1476 0.00
D4-4 7 884 2 1884 0.01
D4-5 6 794 2 1794 0.00
D4-6 5 807 1 1307 0.01
D4-7 6 838 2 1838 0.01
D4-8 6 886 2 1886 0.01
D4-9 7 917 2 1917 0.01
D4-10 6 884 2 1884 0.01
D5-1 13 1481 3 2981 0.02
D5-2 11 1447 2 2447 0.02
D5-3 11 1534 3 3034 0.02
D5-4 12 1339 2 2339 0.02
D5-5 12 1389 2 2389 0.02
D5-6 12 1298 3 2798 0.02
D5-7 13 1431 2 2431 0.02
D5-8 11 1234 2 2234 0.02
D5-9 12 1405 2 2405 0.02
D5-10 13 1313 3 2813 0.02
D6-1 17 1900 3 3400 0.04
D6-2 19 1987 2 2987 0.04
D6-3 17 1657 2 2657 0.04
D6-4 16 1555 4 3555 0.04
D6-5 18 1723 4 3723 0.04
D6-6 21 1839 3 3339 0.05
D6-7 17 1392 3 2892 0.04
D6-8 17 1673 3 3173 0.04
D6-9 18 1612 3 3112 0.04
D6-10 16 2023 2 3023 0.04

Average all sets 9.55 1137 2 2179 0.01

Table 21: LB2 results for the small instances D3 - D5
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