
 
 

           
  
  

 ______________________________ 
   

A Study of Auction Mechanisms for 

Multilateral Procurement Based on 

Subgradient and Bundle Methods 

  

      
Jawad Abrache 
Teodor Gabriel Crainic 
Michel Gendreau 
Tarik Aouam 
 
                                
August 2012 
 
 
CIRRELT-2012-40 
 
 

 
                              
 

 
 
 

G1V 0A6 

Bureaux de Montréal : Bureaux de Québec : 

Université de Montréal Université Laval 
C.P. 6128, succ. Centre-ville 2325, de la Terrasse, bureau  2642 
Montréal (Québec) Québec (Québec) 
Canada H3C 3J7 Canada G1V 0A6 
Téléphone : 514 343-7575 Téléphone : 418 656-2073 
Télécopie  : 514 343-7121 Télécopie  : 418 656-2624 
 

 www.cirrelt.ca 



A Study of Auction Mechanisms for Multilateral Procurement Based on 
Subgradient and Bundle Methods 

Jawad Abrache1, Teodor Gabriel Crainic2,3,*, Michel Gendreau2,4, Tarik Aouam1 

1 Al Akhawayn University, P.O. Box 104, Avenue Hassan II, Ifrane, 53000, Morocco 
2 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT) 
3 Department of Management and Technology, Université du Québec à Montréal, P.O. Box 8888, 

Station Centre-Ville, Montréal, Canada H3C 3P8 
4 Department of Mathematics and Industrial Engineering, École Polytechnique de Montréal, P.O. 

Box 6079, Station Centre-ville, Montréal, Canada H3C 3A7 

Abstract. The use of iterative auctions is very common in procurement processes, where 

the marketmaker often does not have access to complete and truthful information about 

the bidders' private valuations of the resources on sale. The literature on the design of 

iterative mechanisms for combinatorial auctions has addressed only the most basic cases 

and has been dominated by primal-dual approaches. In this paper, we consider a general 

production/consumption exchange of interdependent goods, for which we investigate 

iterative auction mechanisms based on mathematical programming dual decomposition 

methods. We focus on Lagrangian relaxation and the solution of the Lagrangian dual 

through subgradient algorithms and the bundle method. A case study of a simulated wood 

chip market is used to evaluate numerically the efficiency of the mechanisms. 
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1 Introduction and background

The spectacular growth of electronic commerce and information technology made Internet
a place of choice for conducting business. The apparition of electronic marketplaces that
followed has brought forth issues in relation to their structure and organization. Among
these issues, the question of designing business rules governing the transactions in these
marketplaces is of prime importance and has contributed heavily to the renewed interest
in the discipline of market mechanism design.

A market mechanism can be defined as a set of deterministic rules that specify an
allocation of the items traded in the market to the participants, as well as the correspond-
ing payments the latter should make or receive. Market mechanisms can be classified
into two classes (Mas-Colell et al., 1995): direct-revelation and indirect-revelation mech-
anisms. The first requires the participants to completely and truthfully report their
types to the market-maker who “clears” the market such that an economic objective
(e.g., overall social welfare) is optimized. For instance, in a production-consumption
economy sellers need to disclose their production technologies and cost functions, while
buyers need to reveal their preferences for the goods and their consumption constraints.
Unfortunately, this strict requirement on information disclosure is very rarely realistic.
Most of the time, the participants are unwilling and/or unable to disclose their private
information to a third party. Indirect-revelation mechanisms helps circumvent some of
these problems by not requiring systematic access by the market-maker to all the infor-
mation. Iterative auctions, in particular, are an important family of indirect-revelation
mechanisms that allow for progressive revelation of pertinent information. In each round
of an iterative auction, sellers and buyers submit bids to sell or buy items, to which
the market-maker responds by determining provisional allocations and payments, and
by sending “signals” about the state of the auction; sellers and buyers then re-evaluate
accordingly their bids, and so on. It is noteworthy that bids neither have to represent
complete preferences - they only reflect participants’ needs given the observed signals,
nor to convey truthful information - unless the auction incentives prevents preference
misrepresentation. The design of iterative auction mechanisms in optimized markets has
attracted much attention recently. Yet, most of the auctions suggested in the literature
are primal-dual algorithms that capitalize on linear programming formulations of the
market clearing problem.

Mathematical programming decomposition approaches offer an interesting alterna-
tive. These methods have been used for decades to address large-scale structured opti-
mization problems. Yet, their potential for decentralized decision making, if thoroughly
analyzed, has seldom been exploited in the design of auction mechanisms. Hence, this
paper aspires to contribute to a better understanding of the decomposition methods used
as iterative auction mechanisms. The focus is on Lagrangian relaxation solved using ba-
sic subgradient algorithms and the bundle method. The methodology of the paper is
as follows. We consider a general combinatorial exchange economy in which the partic-
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ipants trade heterogeneous divisible commodities. We assume that the participants are
self-interested buyers and sellers who maximize their economic own surplus and react
optimally to the prices announced on the market. We first formulate the allocation and
payment rules of an ideal direct-revelation mechanism with the objective of maximizing
the overall social efficiency of the market. Then we show that, under appropriate assump-
tions, the application of Lagrangian relaxation to the centralized allocation problem leads
to indirect auction mechanisms that have the ability to achieve social efficiency without
requiring complete information revelation from the participants. The efficiency of the
different auctions derived is evaluated numerically on a simulated wood chip market.

The paper makes several important theoretical and practical contributions. While
mathematical programming decomposition methods have been presented in the past as
market mechanisms (notably Lagrangian relaxation, see de Vries and Vohra (2003)),
the analysis has been limited to the one-sided case (that is, the market-maker selling
several different items to many buyers). To the best of our knowledge, this is the first
attempt to analyze these methods in a many-to-many exchange context. Moreover, the
numerical results provide interesting insights into the potential and limitations of auction
mechanisms based on decomposition approaches.

The paper is organized as follows. We formulate in Section 2 the problems of determin-
ing a socially efficient allocation and the corresponding equilibrium prices in a centralized
many-to-many direct-revelation market. In Section 3, we present two relaxation-based
methods, using the subgradient algorithm and the bundle method, respectively, and in-
terpret them as iterative auctions. Finally, we devote Section 4 to the experimental
study.

2 Centralized market-clearing

We consider a simplified economy with a set of divisible goods on sale and two categories
of participants, sellers and buyers. Sellers have the capacity to produce the goods accord-
ing to their own technology and production cost functions, while buyers consume goods
either directly or as inputs to a transformation process. Hence, buyers have preferences
for bundles of goods on sale and may also face technological requirements that constrain
their consumption. The following notation is introduced:

• L (resp. S, J ): set of goods (resp. sellers, buyers).

• qs,l (resp. qj,l): quantity of good l, l ∈ L produced by seller s, s ∈ S (resp. consumed
by buyer j, j ∈ J ).

• Ds (resp. Dj): production (resp. consumption) feasibility set of seller s (resp.
buyer j), containing all admissible quantities qs = {qs,l}l∈L (resp. qj = {qj,l}l∈L)
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that seller s (resp. buyer j) may produce (resp. consume). These sets are assumed
to be convex and bounded.

• Cs(.): production cost function of seller s, s ∈ S; that is, Cs(qs) is the cost to seller
s of producing qs. This cost function is assumed to be continuous, convex, and
monotone increasing.

• Vj(.): valuation function of buyer j, j ∈ J ; similarly, Vj(qj) is buyer j’s preference
for consuming qj. This valuation function is assumed to be continuous, concave,
and monotone increasing.

In a direct-revelation market mechanism, sellers and buyers need to communicate to
the market-maker their production and consumption feasibility sets and their cost and
valuation functions, respectively. The mechanism’s output is an allocation of goods and
payments sellers (resp. buyers) need to make (resp. receive). The market-maker needs
to determine a socially-efficient allocation, that is, a feasible allocation of goods that
maximizes the overall welfare of all sellers and buyers. More precisely, a socially-efficient
allocation is a solution of model (MC):

max
∑
j∈J

Vj(qj)−
∑
s∈S

Cs(qs) (1)

s.t.
∑
j∈J

qj,l −
∑
s∈S

qs,l = 0, l ∈ L (2)

qj ∈ Dj, j ∈ J ; qs ∈ Ds, s ∈ S (3)

Model (MC) maximizes the market surplus, that is, the difference between the buyers’
valuations and the sellers’ production costs. Contraints (2) match the demand with the
supply, while constraints (3) are buyer and seller quantity feasibility constraints.

With the classical assumptions on the buyers and sellers of having quasi-linear utility
functions and being price-takers, the concept of Walrasian Equilibrium can be defined.

Definition 1 The allocation q̃ = [{q̃j}j∈J ; {q̃s}s∈S ] and the price vector p = {pl}l∈L form
a Walrasian Equilibrium if: (1) The allocation q̃ is feasible for Model (MC); (2) Vj(q̃j)−
p.q̃j = maxqj∈Dj

(Vj(qj)− p.qj), ∀j ∈ J ; and (3) p.q̃s −Cs(q̃s) = maxqs∈Ds(p.qs −Cs(qs)),
∀s ∈ S.

Condition 1 above means that q̃ is an acceptable allocation for all sellers and buyers,
that matches the total supply with the total demand. Conditions (2) and (3) point out
the behavior of sellers and buyers as price-taking, utility-maximizing participants.

3
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3 Auctions based on Lagrangian relaxation

The structure of the centralized market-clearing formulation (MC) naturally suggests
Lagrangian relaxation as a decomposition approach. Hence, let us dualize (MC) by
relaxing the supply/demand matching constraints (2). Let λ = {λl}l∈L be the vector
of Lagrangian multipliers associated with (2). The corresponding Lagrangian can be
defined as:

L(q;λ) =
∑
j∈J

Vj(qj)−
∑
s∈S

Cs(qs)

+
∑
l∈L

λl(
∑
s∈S

qs,l −
∑
j∈J

qj,l);

qj ∈ Dj, j ∈ J ; qs ∈ Ds, s ∈ S;λ ∈ R|L| (4)

Consider the Lagrangian dual function Θ(λ) = maxq {L(q;λ) : qj ∈ Dj, j ∈ J , qs ∈ Ds, s ∈ S}.
The Lagrangian dual problem (LD) is minλ Θ(λ). It is noteworthy that the Lagrangian
dual function can be formulated as (LR(λ)):

max
q

∑
j∈J

(
Vj(qj)−

∑
l∈L

λlqj,l

)

+
∑
s∈S

(∑
l∈L

λlqs,l − Cs(qs)

)
(5)

s.t. qj ∈ Dj, j ∈ J (6)

qs ∈ Ds, s ∈ S (7)

which is decomposable into |J |+ |S| independent sub-problems, one for each seller and
buyer. Moreover, each one of these sub-problems consists of maximizing the surplus of a
seller or buyer within the respective production or consumption feasibility sets.

Conditions under which an optimal solution of the Lagrangian dual problem and the
corresponding optimal primal solutions correspond to an efficient allocation and form a
Walrasian Equilibrium are stated in the following result.

Theorem 1 Let λ? be an optimal solution of the Lagrangian dual problem, and q? an op-
timal primal solution of the corresponding Lagrangian relaxation Θ(λ?). Under conditions
of: (1) convexity of seller production functions, concavity of buyer valuation functions,
and convexity of the feasibility sets, (2) stability of problem (MC), and (3) feasibility of
q? for (MC), q? is a socially-efficient allocation and q?,λ? form a Walrasian Equilibrium.

Proof 1 The social-efficiency of the allocation q? follows immediately from the strong
Lagrangian duality theorem (Geoffrion, 1971), which precludes the existence of a duality
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gap between the primal problem and the Lagrangian dual problem under convexity and
stability conditions1. With respect to the fact that q? and λ? constitute a Walrasian
equilibrium, one may simply notice that each one of the |J | + |S| sub-problems of the
Lagrangian relaxation (LR(λ)) corresponds to the maximization of the utility of a seller
or a buyer.

3.1 The subgradient approach

The subgradient algorithm has been traditionally used to solve Lagrangian dual problems.
In the basic version of the algorithm, a subgradient of the dual function Θ is computed
at each iteration for the current vector of Lagrangian multipliers and the multipliers are
updated along the direction of the subgradient. For the problem at hand, the algorithm
can be stated as follows:

• STEP 0: Set k = 0, Θ
(0)
? = +∞, k? = 0. Initialize the vector of Lagrangian

multipliers, e.g., set λ(0) = 0. Define a step size series ξ.

• STEP 1: Evaluate Θ(λ(k)). Let q(k) be an optimal solution of (LR(λ(k))). Compute

a subgradient g(k) of Θ at λ(k). For example: g(k) =
∑

s∈S q
(k)
s −

∑
j∈J q

(k)
j is a

subgradient. Update Θ
(k)
? : if Θ(λ(k)) < Θ

(k)
? then set Θ

(k)
? = Θ(λ(k)), and k? = k.

• STEP 2: If g(k) = 0 then λ(k) is an optimal solution of (LD). Return λ(k)

and q(k).
Otherwise, adjust the Lagrangian multipliers according to λ(k+1) = λ(k) −
ξ(k)g(k).

• STEP 3: If an appropriate stopping criterion is satisfied, return λ(k) and
q(k).
Otherwise, set k = k + 1 and return to STEP 1.

The choice of the step size series ξ(k) is critical to the convergence of the algorithm.
In practice, the following two schemes are the most commonly used.

1. The series {ξ(k)}k∈N is such that limk→∞ ξ
(k) = 0+ and

∑∞
k=0 ξ

(k) = +∞.

1The stability of problem (MC) is a key condition for having no “duality gap” between the primal
problem (MC) and its Lagrangian dual. Stability is guaranteed when the filling property (Hiriart-Urruty
and Lemaréchal, 1991), which requires the subsets Dj , j ∈ J and Ds, s ∈ S to be compact and the
functions Vj , j ∈ J and Cs, s ∈ S to be continuous. This condition is satisfied in particular, when the
objective and the constraints of the primal problem are affine or quadratic.
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2. Suppose an “estimate” Θ̄(k) on the optimal value of (MC) is available at each

iteration k. Consider the series {ξ(k)}k∈N such that ξ(k) = ρ(k) Θ(λ(k))−Θ̄(k)

‖g(k)‖2
, where

ρ(k) is a scaling factor. Typically, the sequence {ρ(k)}k∈N is such that ρ(0) ∈ [0, 1]

and ρ(k) is halved each time Θ
(k)
? has not been updated for n (generally equal to 10

or 20) consecutive iterations.

Concerning the algorithm’s stopping criterion, a reasonable condition would be ‖g(k)‖ ≤
ε (the rationale of this criterion is Everett’s theorem (Everett, 1963), which states that,
as far as the supply/demand constraints 2 are concerned, the corresponding primal solu-
tion q(k) would be ε−feasible). However, the condition ‖g(k)‖ ≤ ε may never be satisfied
due to the fact that the subgradient algorithm only requires one subgradient of the dual
function, and not the entire subdifferential, to be evaluated at each iteration. Thus, this
test is often combined to other “heuristic” criteria, such as: “stop if Θ

(k)
? has not been

improved in the last N last iterations”, or “stop if the gap Θ(λ(k))− Θ̄(k) is smaller than
a threshold ε”.

The subgradient algorithm has an interesting interpretation as an iterative auction
mechanism, driven by prices. The market-maker arbitrarily sets an initial vector λ(0)

of single-product prices. At a given round k of the process, each seller s, s ∈ S, deter-
mines a production level q

(k)
s that maximizes its surplus given the current prices of the

goods and formulates a bid B
(k)
s = {q(k)

s } that specifies this production level. Similarly,

each buyer j, j ∈ J , formulates a unique bid B
(k)
j = {q(k)

j }, where q
(k)
j is a surplus-

maximizing consumption level for buyer j at the given prices. The market-maker then
revises the prices of the goods along a steepest descent direction given by the excess
vector

∑
s∈S q

(k)
s −

∑
j∈J q

(k)
j . The auction continues until there is a marginal difference

between the supply and the demand in the market.

Given that the subgradient-based auction may stop before an “implementable” out-
come is reached (one that satisfies - at least approximately - the balance of supply and
demand), a process for recovering feasible primal solutions is needed. In many practical
cases, specialized heuristics can often be designed for that purpose. The general nature
of the problem at hand, however, only allows for equally general procedures to recover
primal feasibility. Hence, we adapt a very simple approach due to Larsson, Patriksson,
and Strömberg (Larrson et al., 1999), which consists in projecting upon the feasible do-
main of (MC) the elements of an ergodic sequence of primal solutions converging to an
optimal solution of (MC). More specifically, it can be shown that the sequence {q̄(k)}k∈N
such that q̄(k) =

∑k−1
r=1 ξ

(r)q(r)∑k−1
r=1 ξ

(r)
, k ∈ N converges to the set of optimal solutions of (MC). Let

K be the last iteration of the auction. The (Euclidean) projection of q̄(K) on the feasible
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domain of (MC) corresponds to allocation vectors q that solve:

min
q

‖q − q̄(K)‖2 (8)

s.t.
∑
j∈J

qj,l −
∑
s∈S

qs,l = 0, l ∈ L (9)

qj ∈ Dj, j ∈ J (10)

qs ∈ Ds, s ∈ S (11)

In order to implement this recovery procedure, the market-maker nevertheless needs
complete knowledge of feasibility sets Dj, j ∈ J and Ds, s ∈ S. In the absence of this
knowledge, bids submitted by sellers and buyers in previous iterations of the auction can
be used to “shape” approximations of the actual feasibility sets. Consider the convex
hulls: D̂j = {qj =

∑K
k=0 q

(k)
j αkj :

∑K
k=0 α

k
j = 1;αkj ≥ 0, k = 0, . . . , K}, j ∈ J , and

D̂s = {qs =
∑K

k=0 q
(k)
s βks :

∑K
k=0 β

k
s = 1; βks ≥ 0, k = 0, . . . , K}, s ∈ S. Thanks to

the convexity of the feasibility sets, D̂j, j ∈ J and D̂s, s ∈ S are inner-approximations
of Dj, j ∈ J and Ds, s ∈ S, respectively. The projection of q̄(K) on the approximated
feasible sets yields the following quadratic problem:

min
q

‖q − q̄(K)‖2 (12)

s.t.
∑
j∈J

qj,l −
∑
s∈S

qs,l = 0, l ∈ L (13)

qj ∈ D̂j, j ∈ J (14)

qs ∈ D̂s, s ∈ S (15)

One should be aware of the heuristic nature of this recovery procedure. Problem (12-
15) is a restriction of (8-11) and, thus, is not necessarily feasible and may not be successful
in providing a feasible outcome when a small number of bids are used to approximate the
feasibility sets, or when the feasible domain of the allocation problem is originally tight.

3.2 The bundle approach

Bundle methods, originally developed for nonsmooth optimization (Wolfe, 1975; Lemaréchal,
1989), may equally be suggested for solving the Lagrangian dual problem. These meth-
ods rely basically on the concept of bundle of information, which is used to build “good”
approximation models of the dual function Θ - at least in the vicinity of an optimal so-
lution. Hence, let the bundle B = {(λ(k); Θ(λ(k)); g(k))}k=1,...,K represent the information

gathered at a given time, where g(k) ∈ ∂Θ(λ(k)), ∀k = 1, . . . , K is a subgradient of Θ
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at λ(k). The first-order approximation of Θ with the information in bundle B yields the

cutting-plane model of Θ: Θcp(λ) = max1≤k≤K{Θ(λ(k)) + g(k)T (λ− λ(k))}.

The early cutting-plane algorithm (Kelley, 1960) is an iterative procedure that consists
in minimizing the approximate model Θcp and using the optimal solution λ(K+1) obtained
at iteration K to enrich Θcp with a new cutting plane. Practical experience with the
cutting-plane algorithm has nonetheless revealed its instability : the iterate λ(K+1) is often
very remote from λ(K), even if the latter is very close to an optimal dual solution. A
significant number of the cutting planes generated by the algorithm are consequently
of little help in closing the gap between Θ and Θcp in the neighborhood of an optimal
solution. Bundle methods address the instability issue by defining a stability center λ̄
and requiring that the approximate model produces an iterate λ(K+1) “not too far” from
λ̄. This is done by the introduction of a stabilizing term 1

2tK
‖λ− λ̄‖2

in the expression
of the cutting-plane model Θcp, where tK is a parameter that can be interpreted both
as a step size and a trust-region parameter. The new approximation model of Θ is thus
ΘB(λ) = Θcp(λ) + 1

2tK
‖λ− λ̄‖2

. The minimization of ΘB at iteration K corresponds to
the quadratic problem (QB):

min
ν,λ

ν +
1

2tK
‖λ− λ̄‖2

s.t. ν ≥ Θ(λ(k)) + g(k)T (λ− λ(k))

, k = 1, . . . , K (16)

Let (ν(K+1);λ(K+1)) be an optimal solution of this problem, and let ∆K = Θ(λ̄) −
Θ(λ(K+1)) and ∆̃K = ΘB(λ̄)−ΘB(λ(K+1)) denote the actual and the predicted (by model
ΘB) decrease of Θ, respectively. If ∆K ≥ m∆̃K (m is a pre-specified parameter such
that 0 < m < 1), i.e., the value of Θ has actually been “sufficiently” decreased with
respect to the predicted value, the bundle method performs a serious-step: accept λ(K+1)

as the new stability center. Otherwise, a null-step, which consists in leaving the stability
center unchanged but adding (λ(K+1); Θ(λ(K+1)); g(K+1)) to the bundle for a more refined
approximation of Θ, is made.

The setting of the parameter sequence {tk}k∈N is extremely important in defining
the behavior of a bundle algorithm and its numerical efficiency (Hiriart-Urruty and
Lemaréchal, 1991). Small values of t tend to drive the bundle algorithm into making
relatively few null-steps and also “small” serious-steps resulting only in marginal im-
provement of the dual functions (when t → 0, the bundle method is nothing else than
the subgradient algorithm). On the other hand, with large values of t the bundle algo-
rithm tends to performs few serious-steps when large values of t are considered, moving
toward the cutting-plane algorithm as t→ +∞. The design of variable sequences {tk}k∈N
is indeed a complex issue and the literature is clearly lacking in theoretical results on
provably “good” sequences. To date, heuristic approaches that consist in increasing tk
after a serious-step and decreasing it after a null-step (Kiwiel, 1990; Schramm and Zowe,
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1992) seem to provide the best results.

It is interesting to compare the way bundle methods manage prices with the simpler
price update scheme of the subgradient algorithm. Basically, two fundamental observa-
tions can be made: (a) the bundle approach relies on a collection of information repre-
senting a “history” of the market, that is, a set of prices and the corresponding bidder
reactions (the desired production and consumption levels at these prices); (b) a specific
price vector (the stability center), in the neighborhood of which the approximate cutting-
plane model can be reasonably “trusted”, is given a special status. In that regard, the
dual viewpoint provides additional insight. Let us consider ΠB, the problem obtained by
dualizing constraints (16) of QB:

max
δ

K∑
k=1

δk{Θ(λ(k))− g(k)Tλ(k)}

−1

2
tK‖zδ(K)‖2

+ zδ
(K)T λ̄ (17)

s.t.
K∑
k=1

δk = 1 (18)

δk ≥ 0, k = 1, . . . , K (19)

where zδ
(K) =

∑K
k=1 δkg

(k).

By writing optimality conditions ofQB and ΠB, we obtain that, for an optimal solution
(ν?;λ?) of QB, there exists an optimal solution {δ?k}k=1,...,K of ΠB such that:

(i) λ? = λ̄− tK
∑K

k=1 δ
?
kg

(k);

(ii)
∑K

k=1 δ
?
k = 1 and δ?k ≥ 0, k = 1, . . . , K;

which indicates that the bundle algorithm actually constructs aggregated subgradients
z(K) =

∑K
k=1 δ

?
kg

(k) as convex combinations of the subgradients available in the bundle,
and moves (in the case of a serious-step) in the opposite direction of the aggregated
subgradient, to an extent given by step size tK . By pushing the analysis a little bit further,
it is possible to establish (Lemaréchal, 2001) that the convex combination

∑K
k=1 δ

?
kg

(k)

tends towards 0 as K → +∞. This result is fundamental for the bundle-based auction,
as it implies asymptotic feasibility of

∑K
k=1 δ

?
kq

(k) for the centralized market model (MC),
and by consequence, optimality for (MC). In a nutshell, the bundle-based auction does
not need an ad-hoc feasibility recovery procedure: convex combinations

∑K
k=1 δ

?
kq

(k) are
asymptotically social-efficient.
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4 Application to a procurement case study

4.1 The experimental setting

Our proposed auction mechanisms are illustrated on a more detailed model of multi-
lateral multi-commodity markets presented in Bourbeau et al. (2005). This model has
the advantage of being closer to actual applications in procurement, especially in the
context of regulated marketplaces for the trade of natural resources. We briefly present
in the following the notation and the important elements of the model. We refer the
reader interested in more details about the model to Bourbeau et al. (2005).

Participants in the market seek to trade a set of products. A product is a basic
commodity with a specific physical denomination (e.g., a wood specie). Products are
generally not available in a “pure” state and come rather as part of lots that are “mix-
tures” of several products. Hence, let K be the set of basic products, L the set of lots,
and bkl be the proportion of product k in lot l, k ∈ K, l ∈ L.

It is assumed for simplicity (but with no loss of generality) that each seller may only
offer a single lot. Thus, a lot l ∈ L is attached to seller l and Ql denotes the maximum
quantity produced of that lot. The production cost function Cl(.) of lot l is assumed to
have a continuous, piecewise-linear, and strictly increasing marginal cost function C ′l(.).
On the buyer side, Bourbeau et al.’s model accounts for the differences in quality among
the various lots by considering: (i) a multiplicative adjustment coefficient rlj, which
indicates that one unit of lot l is equivalent for buyer j to rlj units of a standard lot; and
(ii) an additive coefficient slj, which denotes how much more or less buyer j values, in
absolute terms, a unit of lot l with respect to a unit of the standard lot. Furthermore,
the model considers a unit transportation cost tlj between the seller producing lot l and
buyer j. The latter’s preference for a bundle qj = {qj,l}l∈L can accordingly be expressed
as Vj(qj) = Uj(

∑
l∈L r

l
jqj,l) +

∑
l∈L (slj − tlj)qj,l, where Uj(.) is a utility function such that

U ′j(.) is continuous, piecewise-linear, and strictly decreasing. Buyers need also to express
requirements regarding the composition of the lots they purchase. More specifically, let
Mk

j and mk
j denote respectively the maximum and minimum proportions of product k

that buyer j may tolerate in the acquired lots, and Qj the maximum total volume -
expressed in terms of the standard lot - buyer j requires.

With the notation above, the market-clearing problem corresponds to the following
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formulation

max
∑
j∈J

Uj(
∑
l∈L

rljqj,l) +
∑
l∈L

(slj − tlj)qj,l −
∑
l∈L

Cl(ql)

s.t.
∑
j∈J

qj,l − ql = 0, l ∈ L (20)∑
l∈L

rljqj,l ≤ Qj, j ∈ J (21)

mk
j

∑
l∈L

rljqj,l ≤
∑
l∈L

bkl r
l
jqj,l, j ∈ J , k ∈ K (22)∑

l∈L

bkl r
l
jqj,l ≤Mk

j

∑
l∈L

rljqj,l, j ∈ J , k ∈ K (23)

0 ≤ ql ≤ Ql, qj,l ≥ 0, j ∈ J , l ∈ L (24)

where qj,l denotes the quantity of lot l purchased by buyer j and ql the total quantity of
lot l procured by the corresponding seller.

The computational experiments aim to compare auction processes based on various
decomposition methods from the perspective of achieved economic efficiency. For that
purpose, the “benchmark” used is a mechanism based on the centralized market-clearing
formulation (20-24), which assumes that the market-maker has access to complete in-
formation about the sellers and buyers valuation and cost functions, as well as their
technological constraints.

We have performed tests on several problem series made of instances obtained from
a custom problem generator we have developed. Given values for the numbers of buyers,
sellers (lots), and basic products, volumes {Qj}j∈J and {Ql}l∈L, proportions {bkl }l∈L,k∈K,
and tolerances Mk

j ,m
k
j , j ∈ J , k ∈ K are randomly generated according to continuous

uniform distributions over pre-specified intervals. For the sake of simplicity, we considered
purely quadratic buyer utility functions Uj(.), j ∈ J and seller cost functions Cl(.), l ∈ L.
This implies no loss of generality, since a simple transformation suggested in Bourbeau
et al. (2005) allows to deal with a general piecewise-quadratic formulation as a purely
quadratic one. Furthermore, our instances involved no transportation costs tjl or additive
adjustment coefficients sjl , j ∈ J , l ∈ L. Table 1 displays the characteristics of the
problem series considered in the study. The series are subdivided into two categories
according to (1) |K|, the number of basic products; and (2) ∆m, the minimum difference
between tolerances Mk

j ,m
k
j (∆m = M − m, where M designates the minimum value

Mk
j can take, and m the maximum value of mk

j ). These two parameters are important
since they directly impact the number and forcefulness of constraints (23 and 22) in the
market-clearing formulation. Each series of problems consisted of 10 randomly generated
instances.

We have set up four auction processes. The first three are based on different variants
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Table 1: Characteristics of Problem Instances
Problem Problem description
series # buyers # lots # products ∆m = M −m (%)

S − 01 50 100 3 30
S − 02 50 250 3 30
S − 03 100 50 3 30
S − 04 100 200 3 30
S − 05 100 500 3 30
S − 06 50 100 10 10
S − 07 50 250 10 10
S − 08 100 50 10 10
S − 09 100 200 10 10
S − 10 100 500 10 10

of the subgradient algorithm, and the fourth on Frangioni’s implementation of the bundle
method (Carraresi et al. (1996)). More specifically, the subgradient variants used are:

1. The basic subgradient method: λ(k+1) = λ(k) − ξ(k)g(k), with step size formula

ξ(k) = ρ(k) Θ(λ(k))−Θ̄(k)

‖g(k)‖2
. We have used the simple estimate Θ̄(k) = 0.5.Θ

(k)
? , where Θ

(k)
?

denotes the best value of the Lagrangian dual function Θ(.) found so far. Parameter
ρ(0) has been calibrated in the set {0.1, 0.3, 0.5, 0.7, 1.0} for each problem series.

2. The subgradient method with the Camerini-Fratta-Maffioli rule (Cam). This vari-
ant relies on an elementary aggregation of the subgradients to compute a direc-
tion along which to move at each iteration. Thus, λ(k+1) = λ(k) − ξ(k)d(k), where
d(k) = g(k) + σ(k)d(k−1) and σ(k) is such that

σ(k) =

{
−µg(k)d(k−1)

‖d(k)‖2
ifg(k)d(k−1) < 0,

0 otherwise,

where parameter µ is set to 1.5. The step size formula used is similar to that of

the basic subgradient, that is ξ(k) = ρ(k) Θ(λ(k))−Θ̄(k)

g(k)d(k)
.

3. The subgradient method with the modified Camerini-Fratta-Maffioli rule: µ =

−‖g
(k)‖‖d(k−1)‖
g(k)d(k−1) .

The bundle algorithm requires the calibration of many parameters, the most impor-
tant of which are: (1) The maximum size of the bundle, with the following values: 10, 20,
50, 100, and 200; (2) the parameter m controlling the serious step condition (∆K ≥ m∆̃K ,
see section 3.2), for which we tested the two values that are known to work best in prac-
tice, 0.1 and 0; and (3) the relative accuracy ε = 10−6 of the bundle algorithm’s stopping
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criterion t?‖z(K)‖2 − ω(K) ≤ Θ(λ̄), where z(K) =
∑K

k=1 δ
?
kg

(k) is the aggregated subgradi-

ent, ω(K) =
∑K

k=1 δ
?
k[Θ(λ̄)− (Θ(λ(k)) + g(k)(λ̄− λ(k)))] the aggregated linearization error,

and t? a fixed step size, generally one order of magnitude larger than t(0).

In order to compare the different auction mechanisms, we fixed the maximum number
of rounds to 1000 for the subgradient-based auctions and to 2000 for the bundle-based
auction. The following metrics are used:

(a) For the auction processes based on the subgradient and its variants (CFM and
modified CFM), we measured:

1. the gap GAPlr = (Zlr − Zcent)/Zcent, where Zlr is the best upper bound
obtained by the corresponding subgradient methods;

2. the gap GAP P

lr = (Zcent−Z̃)/Zcent, where Z̃ is the economic surplus achieved

by the “closest” feasible allocation to the primal solution q(k?), obtained by
projecting the latter on the feasible domain of model (20-24);

3. the gap GAPE

lr corresponding to the allocation qE obtained through the pro-

jection of the last term q(K) of the ergodic sequence {q̄(k)}k∈N defined in Section
3.1 on the domain of feasible allocations, that is GAPE

lr = (Zcent− Z̄)/Zcent,

where Z̄ is the economic surplus achieved by qE;

4. the Euclidean norms ‖g(k?)‖ and ‖g(K)‖ of the trivial subgradients correspond-
ing to allocations q(k?) and q(K), respectively.

(b) For the bundle process, the following quantities have been measured:

1. the gap GAPb = (Zb − Zcent)/Zcent, where Zb is the best upper bound
obtained by the bundle algorithm;

2. the Euclidean norm ‖zδ(K)‖ of the aggregated subgradients.

Finally, the experiments were carried out on a 64-processor, 64 Gigabytes of RAM
Sun Enterprise 10000 operated under SunOS 5.8, with versions 8.0 and 1.2 of the CPLEX
solver and the Concert library, respectively.

4.2 Numerical results

Table 2 displays the results obtained by the basic subgradient, the Camerini-Fratta-
Maffioli (CFM), and the modified CFM methods. The column (GAPlr) indicates the
average gaps corresponding to the best upper bound achieved at the last bidding round
(1000th in this case). We only retained the best gaps with respect to the five possible
values of the initial scaling factor ρ(0)) (the corresponding value of ρ(0) is listed in the
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table). The second and the third entries of the table are the average gaps of the allocations
obtained by projecting q(k?) and q(K), respectively, on the feasible allocation domain, while
the average norms of the subgradients corresponding to q(k?) and q(K) are indicated in
the last two columns.

Several observations can be made regarding these results. First, both the basic subgra-
dient and the CFM method displayed relatively small average gaps, consistently converg-
ing to within 4% of the optimal solution of the centralized market-clearing formulation.
By comparison, the convergence of the modified CFM was not as uniform, and the gaps
obtained on some series (S − 03, S − 07, and S − 08 in particular) were much larger.
In that regard, the poor performance of the modified CFM method seems likely to be a
consequence of its relatively greater sensitivity to the choice of the initial scaling factor
ρ(0), rather than an inherent lack of effectiveness.

Yet, feasibility of the primal solutions obtained by the three methods is a major
source of concern. Fairly large subgradients (taking into consideration the magnitude of
the randomly generated quantities Qj, j ∈ J and Ql, l ∈ L) were obtained. The results in
the table also indicate that the heuristic approaches suggested do not satisfactorily resolve
this issue, as (1) the projection of the primal solution on the feasible domain produces very
poor allocations, and (2) despite significantly reducing infeasibility, the ergodic sequence
of Larrson et al. (1999) seems to suffer from its notoriously slow convergence rate.

In order to gain more insight into the behavior of the three subgradient-based auctions,
we have taken the one instance of series S − 01 and we mapped out in Figure 1 the best
upper bounds as each auction progresses. The figure shows quite clearly the relative
superiority of the two CFM methods in terms of speed of convergence: 189 and 183
rounds of bidding were enough for the CFM and the modified CFM auctions, respectively,
to attain a less-than 1% gap, while the basic subgradient method needed 463 rounds to
achieve comparable gap levels. Another interesting question, raised in our analysis of the
results in Table 2, is the sensitivity of the subgradient variants to the initial scaling factor
ρ(0). We have thus plotted the upper bounds obtained by the three methods with different
values of ρ(0) (see Figures 2,3, and 4). The results corroborate our previous observation,
that the modified CFM method is much more sensitive to the value of parameter ρ(0):
therefore it might perform very poorly and fail to converge within a reasonable number
of rounds if a wrong value of the initial scaling factor is chosen (e.g., with ρ(0) = 1.0).

Finally, we present in Table 3 the results of the bundle-based auction process. The
table shows for each problem series the largest, smallest, and average number of rounds
(up to a limit of 2000 rounds) needed for convergence, as well as the average of the
corresponding gap GAPb and of the norm of the aggregated subgradient z(K). In or-
der to compare the bundle results with those of the three subgradient variants, we also
listed these quantities up to the 1000th round, which was the limit for the subgradient
auctions. The results show the superiority of the bundle process regarding dual con-

14

A Study of Auction Mechanisms for Multilateral Procurement Based on Subgradient and Bundle Methods

CIRRELT-2012-40



Table 2: Behavior of the Subgradient, the CFM, and the Modified CFM Auctions.
Series Basic subgradient

GAPlr (%) GAP P

lr (%) GAPE

lr (%) ‖g(k?)‖ ‖g(K)‖ ρ
(0)
?

S − 01 0.11 2.84 17.68 954.51 260.38 0.5
S − 02 0.69 5.15 57.41 1480.18 243.71 0.5
S − 03 1.29 12.07 76.80 1663.27 185.89 0.5
S − 04 0.05 3.17 27.09 2118.53 442.49 0.7
S − 05 1.76 10.47 68.44 3247.60 378.24 0.5
S − 06 0.23 3.78 24.85 1337.48 328.63 0.7
S − 07 2.99 15.37 70.25 2131.56 276.35 0.5
S − 08 1.70 14.69 78.53 2342.54 190.53 0.7
S − 09 1.21 6.28 43.84 3071.38 578.84 0.7
S − 10 4.05 20.22 73.10 4323.10 401.54 0.7

CFM

GAPlr (%) GAP P

lr (%) GAPE

lr (%) ‖g(k?)‖ ‖g(K)‖ ρ
(0)
?

S − 01 0.10 2.58 24.81 925.06 311.12 0.3
S − 02 0.71 5.46 58.97 1509.12 247.88 0.5
S − 03 1.22 11.32 76.56 1691.69 185.73 0.5
S − 04 0.12 3.14 27.07 1999.62 441.17 0.7
S − 05 1.57 9.29 67.85 3115.90 377.95 0.5
S − 06 0.39 3.93 26.61 1302.91 342.53 0.7
S − 07 2.49 13.40 70.05 2055.00 275.99 0.5
S − 08 1.88 16.43 79.72 2347.58 192.34 0.7
S − 09 1.54 7.08 44.06 3055.72 580.74 0.7
S − 10 4.03 20.32 74.18 4314.83 404.95 0.7

Modified CFM

GAPlr (%) GAP P

lr (%) GAPE

lr (%) ‖g(k?)‖ ‖g(K)‖ ρ
(0)
?

S − 01 0.08 2.40 39.92 910.22 412.35 0.1
S − 02 0.78 5.35 62.19 1552.66 262.85 0.3
S − 03 5.61 35.75 85.58 1788.30 199.65 0.3
S − 04 0.16 3.22 39.15 2036.43 545.61 0.3
S − 05 2.11 10.33 74.04 3234.97 409.98 0.3
S − 06 0.26 3.55 39.14 1287.81 430.49 0.3
S − 07 11.27 41.38 84.87 2318.16 311.49 0.3
S − 08 23.30 76.02 91.69 2566.29 211.83 0.5
S − 09 3.18 8.84 62.98 3209.39 720.68 0.3
S − 10 28.32 67.58 92.59 4896.05 455.18 0.3
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Figure 1: Evolution of the Best Upper Bound for the Three Subgradient Auctions.
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Figure 2: Evolution of the Best Upper Bound for the Basic Subgradient Auction.
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Figure 3: Evolution of the Best Upper Bound for the CFM Auction.
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Figure 4: Evolution of the Best Upper Bound for the modified CFM Auction.

Table 3: Behavior of the Bundle-based Auction.
Series Total # rounds GAPb ‖z(K)‖ GAP

(1000+)

b
‖z(K)‖(1000+)

min. max. avg.
S − 01 379 591 458.7 2.02E-5 0.05 2.02E-5 0.05
S − 02 662 851 737.4 5.25E-5 0.01 5.25E-5 0.01
S − 03 266 346 297.9 6.08E-5 0.01 6.08E-5 0.01
S − 04 654 1438 998.6 6.59E-6 0.09 1.74E-5 0.24
S − 05 1413 > 2000 1643.4 3.30E-5 0.07 0.556 3.71
S − 06 388 548 461.3 2.07E-5 0.05 2.07E-5 0.05
S − 07 671 960 825.1 1.85E-5 0.05 1.85E-5 0.05
S − 08 280 352 300.7 5.5E-5 0.01 5.5E-5 0.01
S − 09 844 1103 990.2 3.9E-5 0.05 8.8E-5 0.21
S − 10 1323 > 2000 1720.5 5.6E-6 0.11 0.565 17.20

vergence to the optimal objective, as most problem series displayed average gaps in the
order of 10−5. By comparison, the two series with the largest instances, S − 05 and
S − 10, have large gaps up to the 1000th round; but remarkably, extending this limit to
2000 rounds has brought down the gaps dramatically, and the stopping criterion of the
bundle algorithm was actually met in 98% of the instances before the 2000th round. As
for the aggregated subgradients, they are several orders of magnitude smaller than the
subgradients displayed in Table 2, which tends to confirm the asymptotic convergence of
the bundle-based auctions to primal feasible allocations.

5 Conclusions

This paper has presented a new perspective of mathematical decomposition methods as
iterative auctions in combinatorial exchanges of interdependent goods. We have focused
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on the Lagrangian relaxation, and we have shown that auctions inspired from subgra-
dient and bundle algorithms could be interpreted as iterative mechanisms in which the
participants progressively reveal their preferences to the market-maker. Under certain
conditions, these auctions yield outcomes that reconcile the overall welfare-maximization
market objective with the individual views of participants seeking to maximize their
surplus. Numerical results obtained on a wood chip market case study show that the
different variants of the subgradient method often converge in the dual space to the opti-
mal market surplus but generally fail to produce feasible allocations. The bundle-based
auction, with its more sophisticated price update rules, resolves this primal feasibility
issue.

Several interesting research issues could be addressed in the future. First, the convex-
ity assumption we made about feasibility sets of participants is a key one. In particular,
when indivisible goods are considered, duality gaps prevent the interpretation of dual
multipliers as prices. Two avenues that seem to be attractive are: (a) the exploration of
extended formulations of the market-clearing allocation problem; and (b) pricing schemes
based on approximated linear prices, which sacrifices either dual feasibility or complemen-
tary slackness (e.g., DeMartini et al. (1999)). Second, we have only considered a minimal
set of constraints on the market side (demand and supply balance). Real world markets
would typically add other constraints derived from specific business rules, such as buyers
requiring to be matched with a few ”qualified” sellers, and the decomposition approaches
need to be adequately adapted to deal with the additional constraints. Third, the basic
iterative auctions designed in this paper do not provide mechanisms to differentiate be-
tween identical bids, or to stop before the subgradient and the bundle stopping criteria
are met. These refinements will be the subject of further research. Finally, incentive
compatibility of the auction mechanisms associated with the decomposition approaches
is an important and challenging issue we plan to explore.
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