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Abstract. We propose a tabu search meta-heuristic for the Time dependent Multi-zone 
Multi-trip Vehicle Routing Problem with Time Windows. Two types of neighborhoods, 
corresponding to two decision sets of the problem, together with a strategy controlling the 
selection of the neighborhood type for particular phases of the search, provide the means 
to set up and combine exploration and exploitation capabilities for the search. A 
diversication strategy, guided by an elite solution set and a frequency-based memory, is 
also used to drive the search to potentially unexplored good regions and, hopefully, 
enhance the solution quality. Extensive numerical experiments and comparisons with the 
literature show that the proposed tabu search yields very high quality solutions, improving 
those currently published. 
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1 Introduction

The basic Vehicle Routing Problem with Time Windows (VRPTW) aims to design least
cost routes from a single depot to a set of geographically distributed customers, while
satisfying time window constraints at customers and the capacity of vehicles. In this
paper, we consider the Time-dependent Multi-zone Multi-trip Vehicle Routing Problem
with Time Windows (TMZT-VRPTW ), which is an extension of the VRPTW involving
both designing and assigning routes to vehicles within time synchronization restrictions.

The TMZT-VRPTW is encountered in several settings, in particular in the context of
planning the operations of two-tiered City Logistics systems. In such systems, incoming
loads are first sorted and consolidated at a first-tier facility, an intermodal platform or
urban distribution center located on the outskirts of the city, moved to a second-tier facil-
ity, satellite or supply point, by a fleet of first-tier vehicles, where they are transferred to
smaller-capacity vehicles for final delivery to customers situated within the controlled city
area. Activities take place over a time horizon several hours long, vehicles, second-tier
ones in particular, performing multiple tours before returning to the depots. Most impor-
tantly, the location and limited capacity of most supply points, together with the need
for efficient operations and on-time delivery to customers, induce the need for transdock
load-transfer activities and the synchronization of the operations of first and second-tier
vehicles, very short waiting times being allowed for vehicles at supply points. Planning
determines the customer demands to service out of each supply point at each time period.
When the set is non empty, it is called thereafter the supply-point zone. A second-tier
vehicle then arrives at a supply point at an appointed time, meets the first-tier vehicles
bringing in the demands for the zone, and loads the planned freight. It then performs a
tour servicing its designated customer demands within the zone. Once the last customer
is serviced, the vehicle moves either directly to a supply point for its next tour, the pre-
ferred move, or to a waiting station (when available) to wait for its next appointment,
or to the depot to end the current activity period.

The TMZT-VRPTW addresses this routing problem, where a fleet of homogeneous
vehicles operating out of a single depot, perform multi-tour routes to service customers
located in multiple (space, time) zones. The time-dependent customer demands are
available at designated supply points within hard time windows, and must be delivered
at customers within soft time windows. Waiting stations may be used by the vehicles
to wait for the next appointment. The goal is to determine the set of vehicle routes
providing timely customer service and scheduled arrival at supply points for loading
freight, minimizing the total cost made up of the (variable) costs of operating vehicles
and the (fixed) costs of using them.

To our knowledge, Crainic et al. (2009) were the first (and only) to propose a method
to address the TMZT-VRPTW. The authors proposed a decomposition approach in
which customer-zone routing out of each supply point subproblems are solved indepen-
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dently. The created vehicle tours are then put together into multi-tour routes by solving
a minimum cost network flow problem. Yet, as routing decisions affect the supply point
assignment decisions and vice versa, these two decision levels are intertwined and should
not be solved separately. This paper aims to address this issue and investigate an al-
ternative approach that addresses the two decisions simultaneously, in a comprehensive
way.

We introduce the first tabu search for the TMZT-VRPTW in which multiple neigh-
borhoods are used to improve both the routing and the assignment of routes to vehicles.
These neighborhoods belong to two types, one for vehicle-to-supply-point assignments
and the other for customer service (routing), corresponding to the two decision levels
of the problem, where vehicles are assigned to supply points (several supply points may
be assigned to the same vehicle) at the high level, while routes are created by assigning
customers to vehicles at the low level. Vehicle-to-supply-point assignment moves perturb
significantly the solution and thus favor exploration of the search space, while routing
moves applied to each vehicle tour exploit good assignments. Hence, dynamically adjust-
ing their utilization during the search provides the proposed algorithm with a powerful
combination of exploration and exploitation capability.

The proposed algorithm starts by freely exploring the search space made up of feasible
and unfeasible solutions. As the search advances, one lowers the probability of selecting
vehicle-to-supply-point assignment neighborhoods, thus limiting the size of the search
region and giving routing moves more time to fully optimize routes. Of course, customer
time windows and synchronization restrictions at supply points constrain these decisions
and moves. A diversification strategy guided by an elite set and a frequency-based mem-
ory is called upon when the search begins to stagnate. Creating new working solutions
from the elite set helps to capitalize on the best solution attributes obtained so far. On
the other hand, employing a frequency-based memory to perturb new working solutions
provides a certain level of diversity to the search.

The main contributions of the papers are, 1) a new formulation for the TMZT-
VRPTW, which is the source to define neighborhoods in the proposed tabu search; 2)
the neighborhood structure and the dynamic strategy used to control the selection of
neighborhoods; 3) a new tabu search meta-heuristic outperforming the available method
(Crainic et al., 2012) with new best-known solutions on all instances and an improvement
in the solution quality by 4.38% on average.

The remainder of the paper is organized as follows. Section 2 contains the detailed
problem description. The formulation is then given in Section 3. Section 4 reviews
the literature. The details of the proposed methodology are described in Section 5.
Computational results are then reported and analyzed in Section 6, while conclusions
and future works are considered in Section 7.

2
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2 Problem Description

Synchronization at supply points requires that vehicles arrive at supply points at ap-
pointed times. Consequently, a direct move that gets the vehicle to a supply point
sooner than the appointed time is forbidden. In this case, the vehicle may go to a loca-
tion, which we call waiting station, and wait there in order to get to its next supply point
just before the appointed time. Otherwise, if there is no waiting station available, the
vehicle goes to the main depot to finish its task. The system may provide physical wait-
ing stations, and then vehicles select the best waiting stations to park, if necessary. On
the other hand, waiting stations could be associated to supply points (when physically
feasible), which means allowing vehicles to wait at supply points and, possibly, incur a
penalty cost. We adopt the former definition in this paper.

The TMZT-VRPTW can then be described as follows. There is a main depot g, a
set of waiting stations w ∈ W , and a set of supply points s ∈ S. We assume that there
is a limited allowable waiting time, defined by δ, available at each supply point. Hence,
the vehicle can arrive at a supply point a bit sooner than the appointed period. Each
supply point s ∈ S has an opening time window [t(s) − δ, t(s)], specifying the earliest
and latest times the vehicle may to be available at s, respectively, and a loading time
δ(s), which is the time required to load freight to service a set of customers Ds. Thus,
customers are divided into multiple zones, each zone belonging to one supply point. Each
customer d ∈ Ds has a demand qd, a service time δ(d), a time window [ed, ld], where ed
is the earliest time service may begin and ld is the latest time.

The TMZT-VRPTW can be seen as the problem of determining a set of routes and an
assignment of each route to one vehicle, such that each vehicle can perform several routes
sequentially. The objective is to minimize the total cost, which is comprised of routing
cost and fixed cost on the use of vehicles, while the following conditions are satisfied:

1. Every vehicle starts and ends its route sequence at the main depot g;

2. Every vehicle required to service customers in Ds must reach its supply point s ∈ S
within its opening time window; These are hard time windows, i.e., a vehicle must
not arrive to s sooner than (t(s) − δ) and no later than t(s); in the former case,
the vehicle has to wait at a waiting station w ∈ W before moving to s; Once at s,
the vehicle starts loading goods at time t(s) and continues loading for a time δ(s),
after which it leaves s to service customers in Ds. After performing a route within
customer zone Ds, the vehicle may move to another customer zone for the next trip
or go to the main depot g to complete its task.

3. Every customer d ∈ ∪s∈SDs is visited by exactly one route with a total load not
exceeding Q, and is serviced within its time window; these are soft, i.e., a vehicle
may arrive before ed and wait to begin service.

3
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3 Model Formulation

The TMZT-VRPTW is defined on a directed graph G = (V ,A), with vertex set V =
{g ∪ S ∪ D ∪ W}, where g is the main depot, S is the set of supply points, D =
{∪Ds : s ∈ S} is the customer set, W is the set of waiting stations, and the arc set
A = {(g, s) : s ∈ S}∪{(s, d) : s ∈ S, d ∈ Ds}∪{(d, j) : d ∈ D, j ∈ g∪W}∪{(i, j) : i, j ∈
Ds, s ∈ S} ∪ {(d, s′) : d ∈ Ds, s, s

′ ∈ S, t(s) < t(s′)} ∪ {(w, s) : w ∈ W , s ∈ S}. Arcs
representing direct travel from the main depot g to any customer or to waiting station,
from any customer to its supply point or to supply points with opening time earlier than
that of its supply point, from a supply point to any waiting station or to the main depot
g are not included in A. A routing cost (or travel time) cij is associated with each arc
(i, j) ∈ A. A fleet of m identical vehicles with capacity Q is based at the main depot g.
Vehicles are grouped into set K.

Let a route leg be a route that links a pair of supply points, or starts and ends at a
supply point and the main depot g, respectively. Thus, there are two types of route legs
and their feasibility is defined as follows:

• A single-supply point route leg l, starting at a supply point s and ending at
the main depot, is feasible if it starts loading goods at supply point s at time t(s)
with a total load not exceeding Q, then leaves s at time t(s) + δ(s) to perform the
delivery for serving a subset of customers in Ds within their time windows.

• An inter-supply point route leg l that starts and ends at a pair of supply points
s and s′, respectively, is feasible if it starts loading goods at supply point s at time
t(s) with a total load not exceeding Q, then leaves s at time t(s) + δ(s) to perform
the delivery for serving a subset of customers in Ds within their time windows, and
arrives to s′ within the opening time window [t(s′)− δ, t(s′)] (the vehicle can wait
at a waiting station w ∈ W before moving to s′ in case the direct move from the
last serviced customer in leg l to s′ gets the vehicle to s′ before (t(s′)− δ)).

A sequence of route legs, starting and ending at the main depot, assigned to a vehicle
is called a work assignment . For the sake of simplicity, from now on, the terms
vehicle and work assignment are used interchangeably. Figure 1 illustrates a three-leg
work assignment, where s1, s2, s3 are supply points, g and w1 are respectively the main
depot and waiting station, Ds1 = {d1, d2, d3, d4, d5}, Ds2 = {d6, d7, d8, d9}, and Ds3 =
{d10, d11, d12, d13, d14, d15}. The dashed lines stand for the empty arrival from the depot
g or from a waiting station, the empty movement from the last customer in the previous
leg to the supply point of the next leg or to a waiting station, and the empty movement
to the depot g once the work assignment is finished. This work assignment consists of a
sequence of three legs {l1, l2, l3}, where l1 = {s1, d1, d4, d3, s2} and l2 = {s2, d7, d9, w1, s3}

4
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are two inter-supply point route legs, while l3 = {s3, d11, d14, d12, d15, g} is a single-supply
point route leg.

Time

g

w1

s1 s3s2

g

d1

d2

d3

d4

d5

d6

d7

d8

d9

d11

d10

d12

d13

d14

d15

Figure 1: A three-leg work assignment illustration

Let L denote the set of all feasible legs satisfying the total load of vehicles, and the
time windows at customers and supply points. Define the edl and fls coefficients:

edl =

{
1 if customer d ∈ D is on leg l ∈ L;

0 otherwise;

fls =


1 if leg l starts at supply point s ∈ S;

−1 if leg l ends at supply point s ∈ S;

0 otherwise;

Binary decision variables are used in the formulation:

• xkl =

{
1 if leg l ∈ L is assigned to work assignment k ∈ K,

0 otherwise

• yks =

{
1 if work assignment k has the first leg starting at supply point s,

0 otherwise

• zks =

{
1 if work assignment k has the last leg starting at supply point s,

0 otherwise

Let πl be the total cost of route leg l, and F be the fixed cost of using a vehicle. The
TMZT-VRPTW can then be formulated as

Minimize
∑
k∈K

∑
l∈L

πlx
k
l +

∑
k∈K

F
∑
s∈S

yks (1)
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S.t.
∑
k∈K

∑
l∈L

edlx
k
l = 1 ∀d ∈ D, (2)

∑
s∈S

yks ≤ 1 ∀k ∈ K, (3)

∑
s∈S

yks =
∑
s∈S

zks ∀k ∈ K, (4)

∑
l∈L

flsx
k
l = yks ∀s ∈ S, k ∈ K, (5)

xkl ∈ {0, 1} ∀l ∈ L, k ∈ K, (6)

yks ∈ {0, 1} ∀s ∈ S, k ∈ K, (7)

zks ∈ {0, 1} ∀s ∈ S, k ∈ K (8)

The objective function (1) minimizes the total cost made up of the costs of operating
and using vehicles. Constraints (2) guarantee that each customer is visited exactly once,
while constraints (3) state that at most one work assignment is assigned to every vehicle.
Constraints (4) ensure that each work assignment starts and ends at the main depot. In
fact, by summing over all supply points, the left-hand side counts the number of first
legs assigned to each vehicle k, while the right-hand side counts the number of last legs
assigned to each vehicle k. Then, from constraints (3) and (4), either the numbers of
first and last legs assigned to the vehicle k are both equal to zero, or, equivalently, the
vehicle k is not used (

∑
s∈S y

k
s =

∑
s∈S z

k
s = 0), or are both equal to 1, or, equivalently,

the vehicle k is used (
∑

s∈S y
k
s =

∑
s∈S z

k
s = 1).

Constraints (5) ensure that when a vehicle goes to a supply point, it also leaves it,
except for the starting supply point of the first leg. In fact, for any given vehicle k and
supply point s, the left-hand side of the equality sums the value of fls on all legs starting
or ending at supply point s which are assigned to vehicle k. Consequently, when yks = 1,
the equality (5) becomes

∑
l∈L flsx

k
l = 1, which means that there must be one leg starting

at supply point s assigned to vehicle k as the first leg. Constraints (6), (7), and (8) define
the sets of decision variables.

4 Literature review

The literature on TMZT-VRPTW is limited. In the TMZT-VRPTW, customer demands
are divided into a number of groups with associated supply points and time periods.
More precisely, given a (supply point, period) zone, we have a known set of customer
demands that need to be serviced. Taking advantage of this special structure, Crainic
et al. (2009) proposed a decomposition-based heuristic approach for TMZT-VRPTW,

6
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but no implementation was reported. The general idea is to decompose the problem
by (supply point, period) zone, solve the resulting small VRPTW at each zone, and
finally determine the flow of vehicles to operate the routes associated with these zones
at minimum cost by solving a minimum cost network flow problem. Crainic et al. (2012)
later implemented this idea, and calculated a lower bound by relaxing vehicle capacity
and time window constraints at supply points and customers.

A number of VRP variants share the multi-trip setting with the TMZT-VRPTW, e.g.,
the Multi-trip Vehicle Routing Problem (or the Vehicle Routing Problem with Multiple
Use of Vehicles; Taillard et al., 1995; Brandão and Mercer, 1998; Petch and Salhi, 2003;
Salhi and Petch, 2007), the VRP with Intermediate Facilities or with inter-depot routes
(Tarantilis et al., 2008; Crevier et al., 2007) and the Waste Collection VRP (Kim et al.,
2006; Ombuki-Berman et al., 2007; Benjamin and Beasley, 2010). In the first variant,
only one depot is used to replenish vehicles between their trips, while in the latter vari-
ants, vehicles may be replenished at intermediate depots along their trips. In addition,
unlike the first two variants, each driver is assumed to take a lunch break in a period of
time in the Waste Collection VRP. The challenging setting in our problem compared to
these three variants is the time synchronization restrictions at supply points, which then
introduces the waiting stations. Thus, each time a vehicle undergoes its trip, it has to
consider the hard time window of the supply point where it will go next. The vehicle
must then go to a waiting station to wait if arriving too early to the supply point.

The School Bus Routing problem (SBRP) resembles our problem setting quite closely.
In general, the SBRP involves transporting students from predefined locations to their
schools using a fleet of buses with varying capacity, while satisfying all timing require-
ments of the schools. The SBRP consists of three components: determine the bus stop
locations, assign students to bus stops, route and schedule the buses. However, most of
the problems described in the literature just consider some parts of the SBRP. In the
multi-school setting, the SBRP shares some constraint settings with the TMZT-VRPTW,
e.g., vehicle capacity, school time window, multi-trip. Yet, there are also differences in
conditions and settings between the SBRP and the TMZT-VRPTW. In the SBRP, a
mixed-loads setting may occur in which students from different schools can be put on
the same bus at the same time, as well as maximum riding times for students on buses.
These settings are not imposed in the TMZT-VRPTW. In the SBRP, only the exact
earliest pick-up time for all students is considered, while there is a time window for each
customer in the TMZT-VRPTW.

5 Tabu search meta-heuristic

Among the meta-heuristics proposed for the vehicle routing problem, tabu search has
been shown to be very effective, providing a good compromise between solution qual-

7
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ity and computation time. Various techniques have also been proposed to enhance the
performance of tabu search to tackle complex problems with multiple constraints and
characteristics. Following this trend, a tabu search with multiple neighborhoods and ap-
propriate memory mechanisms was designed for the TMZT-VRPTW. In this section, we
present our tabu search algorithm, starting with the description of its general structure,
then detailing its main components. The search space and initial solution generator are
presented in Sections 5.2 and 5.3, respectively. Sections 5.4 - 5.6 describe the neigh-
borhood structures, the neighborhood-selection Control procedure, and the tabu status
mechanism for each neighborhood. We detail in Section 5.7 the elite set management
and the Diversification mechanism. Finally, the post optimization procedure is given in
Section 5.8.

5.1 General structure

The TMZT-VRPTW schedules vehicles from the main depot to supply points in order to
load freight. The vehicles then deliver freight from supply points to customers. In order
to address this problem, we have to deal with two types of decision: the first assigns
vehicles to supply points, and the second assigns customers to vehicles. Consequently,
we define different neighborhood structures based on these two types of decisions. The
leg neighborhoods aim to change the vehicle assignments to supply points, while routing
neighborhoods move customers among vehicle routes.

Various studies on tabu search use multiple neighborhoods. All neighborhoods are
evaluated simultaneously in a number of studies (e.g., Dell’Amico and Trubian, 1993;
Gaspero and Schaerf, 2007), while neighborhoods are explored in serial fashion, one after
another in either a fixed or randomized order, in a number of other ones (e.g. Xu et al.,
2006; Hamiez et al., 2009). Experiments show that these approaches do not work well
for the TMZT-VRPTW (see details in Annex A). The most important reason is that,
in our problem, each type of neighborhood works on a particular part of the decision
domain of the problem, whereas size is the main difference between neighborhoods in the
literature. Moreover, the two decision domain parts are related and their explorations
impact each other. Consequently, we propose an approach that not only guides the
selection of the neighborhood type, but also balances the workload within each part of
the decision domain. The selection of neighborhood types in the proposed tabu search
is driven based on the variation of solution quality. More precisely, we use a parameter
r to specify the ratio of selecting routing neighborhoods to leg neighborhoods, and adjust
the value of this parameter during the course of the algorithm. Unfeasible solutions are
allowed during the search, the amount of violation being penalized.

The general structure of the tabu search meta-heuristic (TS) we propose is presented
in Algorithm 1. It starts with an initial feasible solution p, generated by a greedy method
that aims to fully utilize vehicles and minimize the total cost. Then, at each iteration,

8
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a neighborhood is selected probabilistically based on the current value of r, the selected
neighborhood is searched, and the best move is chosen (Lines 7-8). This move must not
be tabu, unless it improves the current best solution pbest (aspiration criterion). The
algorithm adds the new solution to the elite set E when it improves pbest, remembers
the current ratio r at which pbest was found (Lines 9-13), and updates E by removing a
solution based on its value and the difference between solutions (Section 5.7).

Algorithm 1 Tabu search
1: Generate an initial feasible solution p
2: pbest ← p
3: Elite set E ← �
4: Ratio of selecting routing neighborhood to leg neighborhood r ← 1
5: STOP ← 0
6: repeat
7: A neighborhood is selected based on the value of r
8: Find the best solution p′ in the selected neighborhood of p
9: if p′ is better than pbest then
10: pbest ← p′

11: rbest ← r
12: Add (pbest, rbest) to the elite set E ; update E
13: end if
14: p← p′

15: if pbest not improved for ITcNS iterations then
16: if pbest not improved after CcNS consecutive executions of Control procedure then
17: if E = � then
18: STOP ← 1
19: else
20: Select randomly (p, rp) (and remove it) from the elite set E
21: Diversify the current solution p
22: Set r ← rp and reset tabu lists
23: end if
24: else
25: Apply Control procedure to update the value of r
26: p← pbest
27: end if
28: end if
29: until STOP
30: pbest ← Post-optimization(pbest)
31: return pbest

Initially, the search freely explores the solution space by giving each neighborhood
the same probability of being selected. The Control procedure is triggered to reduce the
probability of selecting leg neighborhoods whenever the best solution is not improved for
ITcNS TS iterations (Line 25). This helps to limit the size of the search region, giving
the routing moves more time to fully optimize routes. The search then starts from the

9
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current best solution pbest (Line 26). Moreover, after CcNS consecutive executions of the
procedure Control without improvement of the current best solution pbest, a solution
p is taken randomly and removed from the elite set E (Line 20), and a Diversification
mechanism is triggered to perturb p (Line 21). The value of r is reset to the value at
which the solution taken from the elite set was found, and all tabu lists are reset to
empty (Line 22). The search then proceeds from the perturbed solution p. The search is
stopped when the elite set E is empty. Finally, a post-optimization procedure is performed
to potentially improve the current best solution pbest (Line 30).

5.2 Search space

As described in Section 3, a solution is a set of work assignments, each work assignment
consisting of a sequence of route legs linking supply points. The search space is thus
made up of the work assignments.

For a solution p, let c(p) denote the total travel cost of the work assignments, and let
q(p), wc(p), and ws(p) denote the total violation of vehicle load, customer time windows,
supply point time windows, respectively. The total vehicle-load violation is computed on
a route leg basis with respect to the value Q, whereas the total violation of time windows
of customers is equal to

∑
d∈pmax{(ad− ld), 0}, and the total violation of time windows

of supply points is equal to
∑

s∈pmax{(t(s)− δ− as), (as− t(s)), 0}, where ad and as are
the arrival time at customer d and supply point s, respectively.

Due to the time synchronization restriction at supply points, the arrival time at
the first customer d of each leg l starting at supply point s is always calculated as
ad = t(s) + δ(s) + csd, no matter when the vehicle arrives at supply point s. This
helps to prevent the propagation among legs within a work assignment of time-window
unfeasibility.

Solutions are then evaluated according to the weighted fitness function f(p) = c(p) +
α1q(p) + α2wc(p) + α3ws(p) + F ∗m, where α1, α2, α3 are penalty parameters adjusted
dynamically during the search. The updating scheme is based on the idea of Cordeau
et al. (2001). At each iteration, the value of α1, α2 and α3 are modified by a factor
1 + β > 1. If the current solution is feasible with respect to load constraints, the value
of α1 is divided by 1 + β; otherwise it is multiplied by 1 + β. The same rule applies
to α2 and α3 with respect to time window constraints of customers and supply points,
respectively. In our algorithm, we set α1 = α2 = α3 = 1 and β = 0.5.
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5.3 Initial solution

We assume the supply points (customer zones) are indexed in increasing order of opening
time. Thus if t(s1) ≤ t(s2) then s1 < s2 and vice versa. We then construct an initial
solution by building each work assignment sequentially. Each work assignment construc-
tion consists of two phases: 1) Determine the first supply point for the current work
assignment; 2) Each leg is then created sequentially by applying a greedy algorithm.

In the first phase, the supply point s with earliest opening time and unserviced cus-
tomers is assigned as the initial supply point of the first leg of the current work assign-
ment. The first leg l is then created by applying a greedy algorithm in the second phase.
If the leg l ends at a supply point s′, we continue applying the greedy algorithm to build
the next leg of l in which s′ is now used as the initial supply point. Otherwise, if the
leg l ends at the main depot, it means the current work assignment cannot be used any-
more, and we return to the first phase to build another work assignment. This process
is repeated until all customers are serviced.

The greedy algorithm constructs each leg by attempting to minimize the cost and
keep the vehicle working at full capacity as much as possible. Thus, for a given initial
supply point s assigned to the leg, it finds a set of supply points S ′ = {s′ ∈ S|s′ with
unserviced customers and t(s′) > t(s)}. If S ′ 6= ∅, for each pair (s,s′), it creates an
empty leg with s and s′ as the initial and end supply point, respectively. It then assigns
unserviced customers of customer zone s to this leg sequentially by applying the Solomon
heuristic until the vehicle is full. When feasible legs exist, the one with minimum cost is
selected. In the case there are no feasible legs or S ′ = ∅, it builds the last leg (s,g) by
applying the Solomon heuristic.

5.4 Neighborhoods

Leg neighborhoods focus on repositioning legs at supply points within the time restrictions.
Let Wu be the work assignment performed by vehicle u. Let si−1 and si+1 denote the
predecessor and successor supply points, respectively, of si within a work assignment.
The leg-move operators are:

• Relocate supply point. Consider two work assignments Wu and Wv as illustrated in
Figure 2. For supply point si ∈ Wu, such that si /∈ Wv, and for each two successive
supply points sj, sj+1 ∈ Wv, if sj < si < sj+1 then move supply point si from work
assignment Wu to Wv locating it between sj and sj+1. All customers serviced by si
on Wu are also moved to Wv.

• Exchange supply points. Consider two work assignments Wu and Wv as illustrated
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in Figure 3. For supply points si ∈ Wu and sj ∈ Wv such that si−1 < sj < si+1 and
sj−1 < si < sj+1, swap si and sj together with their customers.

si

sj sj+1

si

sj sj+1

Wu
Wu

Wv Wv

(a) Work assignments before Relocate (b) Work assignments after Relocate

Figure 2: Relocate supply point

sj

sj-1
sj+1

Wu

Wv

(a) Work assignments before Exchange

si

si+1si-1 sj

sj-1 sj+1

Wu

Wv

(b) Work assignments after Exchange

si

si+1si-1

Figure 3: Exchange supply points

When moving a supply point, all customers serviced by it are also moved. Therefore,
the violations of load and time windows for customers are not changed by the move.
The move value is thus defined as ∆f = ∆c + F ∗ ∆m + ∆ws. The three components
of the summation are the difference in travel cost, the fixed cost of using vehicles, and
the difference in violation of time windows at supply points between the value of the
neighboring solution and the value of the current solution.

Routing neighborhoods try to improve routing by using different intra and inter route
neighborhoods commonly used in the VRPTW literature: Relocation, Exchange and
2-opt. For each move in each neighborhood, two customers are considered.

• Relocation move: one of the two customers is taken from its current position and
inserted after the other one.

• Exchange move: two customers are swapped.

• 2-opt move: for two customers in the same leg, the edges emanating from them
are removed, two edges are added, one of which connects these two customers, and
the other connects their successor customers. For two customers in different legs,
the work assignment segments following them are swapped preserving the order of
customers succeeding them in each segment.
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Moving customers could change the travel cost and the number of vehicles, as well as
the level of constraint violations of load, time windows of customers, and time windows
of supply points. Consequently, the value of a routing move is defined as ∆f = ∆c +
F ∗∆m+ ∆q + ∆wc + ∆ws. Note that ∆c, the change in the routing cost, may involve,
beside a change in the routing cost between customers, a change in the routing cost from
the last customer to the supply point at the end of the modified leg(s). For example,
a routing move may impact on whether a vehicle has to go to a waiting station or not,
therefore impacting the traveling cost from the last customer to its supply point.

5.5 Neighborhood selection and the Control procedure

The algorithm explores one neighborhood at each iteration. This neighborhood is ran-
domly selected among the five previously defined. The main issue in this case is how to
determine these selection probabilities.

Using a priori defined probabilities has several drawbacks, limiting the exploration
capability of the algorithm. Fixed probabilities mean, in particular, that the algorithm
would display the same behavior during the entire search. Moreover, the calibration
of these probabilities would be extremely challenging and instance dependent. Indeed,
too low routing-neighborhood probabilities (high leg-neighborhood probabilities) would
result in an insufficient number of routing moves to adequately optimize the customer
routes after the leg moves. The search may easily get stuck in the opposite case, as it
needs to move to less-explored regions of the search space once a succession of routing
moves have “optimize” routes.

We therefore define a dynamically adjusting mechanism for selecting neighborhoods.
The goal is to enable the algorithm to freely explore the solution space in the initial
moments of the search. We therefore assign the same initial probability of selection to all
leg and routing neighborhoods. Later, as the number of supply points is much smaller
than the number of customers in most TMM-VRPTW instances, the algorithm should
perform more routing than leg moves, to ensure adequate optimization of routes. Con-
sequently, after the initial phase, the probability of selecting leg neighborhoods becomes
lower than the probability of selecting routing neighborhoods.

Let r be the neighborhood-selection parameter, and let a routing neighborhood to
be selected with probability r/(2 + 3r), and a leg neighborhood with probability 1/(2 +
3r). The equal initial probabilities are then obtained by setting r = 1. The Control
procedure is then varying the value of r in the course of the algorithm to monotonically
reduce (increase) the probability of selecting leg (routing) neighborhoods after each ITcNS

iterations without improvement of the best solution. A linear scheme rk+1 = rk + ∆r is
used, where ∆r is a user defined parameter.
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5.6 Tabu lists and tabu duration

We keep a separate tabu list for each type of move. Elements of a solution generated by
a move are given a tabu status as follows:

• Leg moves:

– Relocate supply point: the position of supply point si just inserted into work
assignment Wv cannot be changed by another relocate supply point move while
it is tabu.

– Exchange supply points: supply points si and sj just swapped cannot be
swapped again while they are tabu.

• Routing moves:

– Relocation move: the position of customer i just inserted after customer j,
cannot be changed by the same type of move while it is tabu.

– Exchange move: customers i and j just swapped cannot be swapped again
while they are tabu.

– 2-opt move: a 2-opt move applied to customers i and j cannot be applied
again to the same customers while tabu.

A tabu status is assigned to each tabu list element for θ iterations, where θ is randomly
selected from a uniform interval. Generally, the tabu status of a move stays so for
a number of iterations proportional to the number of possible moves. Consequently,
we use different intervals of tabu list size for leg and routing moves. Since there are
O(m′ ∗ |S|) possible leg moves, we set the interval of tabu list size for leg moves to
[m′*|S|/a1, m′*|S|/a2], where m′ is the number of vehicles used in the initial solution,
and a1 and a2 are user-defined parameters.

In TMZT-VRPTW, each supply point has its own customers. Therefore, the number
of iterations during which a routing move within the zone of a supply point s remains
tabu is only counted each time the algorithm deals with customers in that zone. The
interval of tabu list size for routing moves for each supply point s with |Ds| associated
customers is therefore calculated as [a3log10(|Ds|), a4log10(|Ds|)], where a3 and a4 are
user defined parameters.

The aspiration criterion is a condition that allows the search to perform a move even
though it is forbidden by the tabu conditions. In our tabu search, the aspiration criterion
allows to accept moves declared tabu if it improves the current best solution.
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5.7 Diversification strategy

A diversification strategy, based on an elite set and a frequency-based memory, moves
the search to potentially unexplored promising regions when it begins to stagnate. In
a nutshell, diversification aims to capitalize on the best attributes obtained so far by
selecting a new working solution from the elite set and perturbing it based on long-term
trends.

In more details, we use the elite set as a diversified pool of high-quality solutions
found during the tabu search. The elite set starts empty and is limited in size. The
quality and diversity of the elite set is controlled by the insertion of new best solutions
produced by the tabu search and the elimination of the existing solutions in the elite set.
The elimination is based on the Hamming distance ∆(p1, p2) measuring the number of
customer positions that differ between solutions p1 and p2.

The elimination of a solution from the elite set is considered each time a new best
solution pbest is inserted. There are two cases. When the elite set is not yet full, the
solution which is most similar to pbest is deleted, i.e., the solution p with the smallest
∆(p, pbest) ≤ 0.05(n+ |S|). This aims to balance the impact on pool quality and diversity.
When the elite set is full, pbest replaces the solution p that is the most similar to it, i.e.,
the one with the smallest ∆(p, pbest).

The long-term frequency memory keeps a history of the arcs most frequently added
to the current solution. Let tij be the number of times arc (i, j) has been added to
the solution during the search process. The frequency of arc (i, j) is then defined as
ρij = tij/T , where T is the total number of iterations executed so far.

Diversification then proceeds to perturb the search that starts from the solution taken
from the elite set by removing arcs with high frequency and inserting arcs with low
frequency. Thus, the evaluation of neighbor solutions is biased so as to penalize the
arcs most frequently added to the current solution. More precisely, a penalty g(p̄) =
C̄(

∑
(i,j)∈Aa

ρij+
∑

(i′,j′)∈Ar
(1−ρi′j′)) is added to the evaluation of the fitness f(p̄) (Section

5.2) of a neighbor p̄ of the current solution p, where C̄ is the average cost of all arcs in
the problem, and Aa and Ar are the sets of arcs that are added to and removed from
the solution p in the move to p̄, respectively. The diversification mechanism is executed
ITdiv iterations.

5.8 Post-optimization

The best solution obtained through the tabu search is enhanced by applying a number of
well-known local search route improvement techniques. Two are intra-route operators,
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the 2-opt of Lin (1965) and the Or-opt of Or (1976). The others are inter-route operators,
the λ-interchange of Osman (1993), and the CROSS-exchange of Taillard et al. (1997).
For the λ-interchange, we only consider the cases where λ = 1 and λ = 2 corresponding to
the (1,0), (1,1), (2,0), (2,1), and (2,2)-interchange operators. A customer is re-allocated
only to legs with the same initial supply point. The post-optimization procedure is
executed for each customer zone separately.

The post-optimization procedure starts by applying in random order the five λ-
interchange and CROSS-exchange inter-route operators. Each neighborhood is searched
on all possible pairs of legs (in random order) of the same starting supply point and
stopped on the first improvement. The solution is then modified and the process is re-
peated until no further improvement can be found. The search is then continued by
locally improving each leg of the current starting supply point in turn. The intra-route
2-opt and Or-opt neighborhoods are sequentially and repeatedly applied until no more
improvement is found.

6 Computational Results

The objective of the numerical experimentation is threefold. First, to study the impact of
a number of major parameters and search strategies on the performance of the proposed
algorithm in order to identify the most efficient ones. The second objective consists in
evaluating the performance of the method through comparisons with currently published
results. We finally analyze the impact of synchronization on solution quality.

TS is implemented in C++. Experiments were run on a 2.8 GHz Intel Xeon 4-core
processor with 16GB of RAM. Six sets of instances generated by Crainic et al. (2012)
were used throughout the experiments. These Euclidean instances are identified as A1,
A2, B1, B2, C1, and C2. The numbers of customer zones for these sets are 4, 8, 16, 32,
36, and 72 respectively. The numbers of customers are 400, 1600, and 3600 for set of
type A, B, and C, respectively. One waiting station is set for every 100 customers in all
instances.

6.1 Algorithm design and calibration

We aimed for a general algorithmic structure avoiding instance-related parameter set-
ting. We therefore defined settings as functions of problem size for the main parameters
of the proposed algorithm, tabu tenure, neighborhood selection-control, diversification
triggering, and size of the elite set.
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6.1.1 Tabu tenure calibration

The intervals for the tabu list tenures for leg and routing moves were defined in Section
5.6 as [m′*|S|/a1, m′*|S|/a2] and [a3log10(|Ds|), a4log10(|Ds|)], respectively. Using a large
interval for routing moves,[10,20], we tested different values for a1 in the integral interval
[7,9] and for a2 in the integral interval [4,6]. We observed that too large an interval is
not productive as low values cannot prevent cycling, while high ones overly restrict the
search path. We therefore set a1 and a2 to 7 and 5, respectively.

A similar process, explored different values of a3 in the integral interval [6,8] and a4
in the integral interval [10,12] using the just fixed leg-move tabu tag interval. We found
that the most appropriate values for a3 and a4 are 7 and 10, respectively.

6.1.2 Neighborhood selection control calibration

Two parameters govern the selection of neighborhoods, ITcNS, the number of consecutive
iterations without improvement in the best solution triggering a new execution of the
Control procedure, and ∆r, the adjustment factor of the neighborhood-selection ratio r.

The value of ITcNS is defined as a function of the problem size, aiming to give each
customer and supply point in each leg the possibility to be moved. Thus, ITcNS =
e1 ∗ (m′ ∗ |S| + n), where m′ is the number of vehicles used in the initial solution, |S|
and n are the numbers of supply points and customers, respectively, and e1 is a user
defined parameter. Similarly, we aimed to set the amplitude of ∆r, and therefore the
amplitude of the changes in the probability of selecting leg neighborhoods versus routing
neighborhoods after each ITcNS iterations, proportional to the ratio of the number of
customers to the number of supply points. Thus, ∆r = e2 log10(n/|S|), where e2 is a user
defined parameter.

Searching for a good combination of values for e1 and e2 concerns balancing between
exploration and exploitation. On one hand, the higher the value of ITcNS, the more
chances customers and supply points are to be moved between routes, thus favoring
exploration. On the other hand, too high a ITcNS value may waste time in useless
moves. We experimented with different values of e1 in the integral interval [1,5] and
e2 in the integral interval [1, 7]. Three runs were performed for each instance for 1
million iterations. Computational results for each combination of values (e1, e2) over all
60 instances are summed up in Table 1, which displays the average gaps to the previous
best known solutions (BKS) of the solutions obtained by each combination.

The table indicates that (3,5) as the most appropriate combination for (e1, e2), im-
proving the solution quality by 3.44% on average. We also observed that executing the
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Table 1: Performance comparison between (e1, e2) combinations for fixed computing
effort

e1
e2

1 2 3 4 5 6 7

1 -2.21% -2.42% -2.98% -3.09% -3.11% -3.18% -3.15%

2 -2.27% -2.45% -3.24% -3.21% -3.17% -3.14% -3.12%

3 -2.34% -2.73% -3.37% -3.39% -3.44% -3.36% -3.28%

4 -2.46% -2.74% -3.31% -3.36% -3.41% -3.28% -3.24%

5 -2.41% -2.78% -3.32% -3.37% -3.39% -3.29% -3.19%

algorithm with r greater than 50log10(n/|S|), yields an average improvement of the best
solution of less than 0.1%, while requiring about 37.3% more time. Based on these re-
sults, we used (e1, e2) = (3, 5) and rmax = 50 log10(n/|S|), the maximum value of r, in
the remaining experiments.

6.1.3 Neighborhood search strategy

The neighborhood exploration strategy specifies how to explore the neighborhoods. Sev-
eral such strategies can be envisioned and we actually experimented with quite a number
of them before selecting the one introduced in Section 5.5. For concision’s sake, we placed
in Annex A the description of the alternate strategies we explored and the numerical re-
sults supporting our selection.

The neighborhood-search strategy also specifies which move in the neighborhood is
to be chosen at each iteration. We studied two strategies, first and best improvement,
respectively. The former chooses the first neighboring solution that improves the objective
function as the next starting solution, while the latter chooses the best neighbor thus
requiring to evaluate all neighbors. The customers in each route are searched sequentially.

Table 2 reports comparison results between these two strategies. Corresponding av-
erage gaps to the previous BKS and average computation times are displayed in column
(GAP to BKS) and (Time(min)), respectively.

Computational results show that using the same elite set size (=5), best improve-
ment gives better solutions for all sets, while first improvement has a lower computation
time. One observes, however, that the difference in computation time is smaller than
the difference in solution quality, indicating that the best improvement strategy yields
a better algorithm. More importantly, even doubling size of the elite set (=10), which
results in longer computation times, the solutions of the first improvement strategy are
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Table 2: Comparative performances between neighborhood search strategies

Problem set

Best improvement First improvement

Elite set size = 5 Elite set size = 5 Elite set size = 10

GAP to BKS Time (min) GAP to BKS Time (min) GAP to BKS Time (min)

A1 -3.01% 18 -1.95% 16 -2.06% 24

A2 -6.22% 10 -4.42% 8 -4.57% 14

B1 -4.47% 60 -2.82% 45 -2.98% 69

B2 -4.71% 39 -3.23% 27 -3.35% 46

C1 -3.78% 165 -1.14% 115 -1.24% 176

C2 -3.72% 104 -1.89% 80 -1.91% 108

Average -4.33% 66 -2.57% 49 -2.68% 73

still significantly worse than the solutions of the best improvement strategy.

6.1.4 Elite set calibration and diversification

We now turn to the parameters characterizing the diversification procedure and the elite
set utilization, and examine their impact the performance of the algorithm.

Four variants of the algorithm were studied corresponding to the different ways to
set an elite solution as the new working solution and the inclusion, or not, of the diver-
sification phase. The first two variants simply select an elite solution p at random and
re-start the algorithm from it. The Diversification mechanism described in Section 5.7
is applied in the last two variants to diversify from the elite solution p.

The initialization of the r parameter following the selection of p is a component
common to the four variants. We studied two alternatives where r was set to either the
full or half the value at which p was found, respectively (i.e., r = rp or r = rp/2). The
size of the elite set is relevant for the Diversification mechanism only. Three values were
tested, 1, 5, and 10.

Similar to previous experiments, we used formulas dependent on the problem di-
mensions for ITdiv and CcNS, which determine for how long exploration can proceed.
Thus, the number of diversification phases is set to ITdiv = m′ ∗ |S| + n, where m′

is the number of vehicles used in the initial solution, and |S| and n are the num-
bers of supply points and customers, respectively. We also set the number of consec-
utive executions of the Control procedure without improvement of the best solution to
CcNS = min(3 log10(n/|S|), (rmax − r)/∆r), which keeps the value of CcNS sufficiently
high during the course of the algorithm, even though Control procedure is started with
different values of r (remember that rmax = 50 log10(n/|S|)). Intuitively, in the begining,
r is small and CcNS takes the value 3 log10(n/|S|), while when r becomes large enough,
CcNS takes the value (rmax − r)/∆r.
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Table 3 displays the performance comparison between the four variants with the three
different values for the elite set size. For each variant and size of the elite set, the table
shows the average gaps to the previous BKS of the average cost of the best solutions of
all instances, together with the corresponding average computation time in minutes over
10 runs.

Table 3: Performance comparison between multi-start variants

Elite set

Without diversification With diversification

size

1st variant 2nd variant 3rd variant 4th variant

r = rp r = rp/2 r = rp r = rp/2

GAP to BKS Time GAP to BKS Time GAP to BKS Time GAP to BKS Time

0 -2.96% 24 - - - - - -

1 -3.18% 29 -3.03% 38 -3.93% 35 -3.97% 47

5 -3.39% 39 -3.34% 47 -4.33% 66 -4.24% 71

10 -3.53% 50 -3.61% 59 -4.35% 92 -4.25% 98

As expected, results indicate that guidance using elite solutions contributes signifi-
cantly to improve the performance of the algorithm. Without using the elite set, the
algorithm requires the lowest computation effort but produces solutions with the lowest
average (improvement) gap to the previous BKS of -2.96%, compared to all the variants
using the elite set. Comparing the two variants corresponding to the two values at which
r is reset, one observes that the solution quality is not very sensitive to this value, but
computing effort is increasing when the value of r is lower (r = rp/2).

One observes that the third and fourth variants are significantly better in terms of
finding high quality solutions. This indicates that the long-term memory and diversifi-
cation mechanism added to the algorithm are important features for high performance.
Moreover, setting the size of the elite set to 5 achieves a better balance between solution
quality and computation time, compared to a larger size of 10. Indeed, doubling the size
of the elite set improves only slightly the solution quality, 0.02%, but requires 39% more
time. We therefore set the size of the elite set to 5 and reset r = rp.

6.2 Comparing performance to the literature

The performance of the proposed tabu search meta-heuristic is evaluated by comparing
its performance with published results on the instances provided by Crainic et al. (2012).
For concision sake, only aggregated results are provided in this section. Details can be
found in Annex B.

Table 4 displays the comparison between the (best) results reported by Crainic et al.
(2012) and those obtained by the proposed tabu search meta-heuristic run 10 times for
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Table 4: Comparative performances on Crainic et al. (2012) instances

Problem set
Crainic et al. (2012) TS GAP to BKS

Best #Vehicles DM MWS Time Avg 10 Best 10 #Vehicles DM MWS Time %

A1 18575 24 1 36 5 18043.84 18010.52 23 2 36 18 -3.04

A2 15411 19 2 42 3 14495.23 14440.79 17 5 42 10 -6.29

B1 55653 51 14 180 22 53124.00 53036.13 45 31 168 60 -4.64

B2 47396 39 20 193 10 45092.96 45081.29 34 40 177 39 -4.88

C1 117426 87 39 423 50 112965.99 112843.60 79 73 394 165 -3.90

C2 101570 64 68 434 23 97727.18 97565.44 60 108 394 104 -3.93

Average 59338.50 47.33 24 218 18.83 56908.2 56829.63 43 43.17 201.85 66 -4.38

each instance. For comparison sake, we report the best results we obtained for the 10
runs, but provide both best and average results in the detailed tables of Annex B. Table
4 gives the best results (Best column), the number of vehicles (#Vehicles column), the
number of times vehicles move directly from one customer zone to another customer zone
without using waiting stations (DM column), and the number of times waiting stations
are used for moving between customer zones (MWS column). Average computation
times in minutes are displayed in the Time column, while the corresponding gaps to the
previous BKS are given in the last column.

TS produces high quality solutions, with an average improvement gap of -4.38%
compared to the previous BKS, yielding better solutions than Crainic et al. (2012) on
all instances. Moreover, the proposed tabu search meta-heuristic produces consistently
good solutions, the average solution quality being very close the that of the best one.
Noteworthy, as shown in Table 3, without post-optimization and using the same size of
the elite set (=5), TS obtains an average gap to the previous BKS of -4.33%. Thus, the
post-optimization process helped to improve solution quality 0.05% on average, requiring
only a few extra seconds.

TS produces solutions that not only require less vehicles (8.87% on average), but also
require less usage of waiting stations. More precisely, the TS we proposed uses waiting
stations 12082 times compared to 13071 times in Crainic et al. (2012), vehicles move
directly from one customer zone to another customer zone on 2582 occasions compared
to 1449 occasions in Crainic et al. (2012). Thus, in our TS, 17.61% of the times vehicle
move directly to another customer zone without using waiting stations, compared to
9.98% in Crainic et al. (2012). Moreover, the proposed TS provides better customer
routing (i.e., traveling cost), with an average gap of -1.30% to the previous BKS. This
advantage goes beyond the simple numerical performance in terms of cost to propose
a distribution system that is structurally better with less vehicles traveling for idling
purposes.
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6.3 Synchronization at supply points

Waiting stations are introduced as locations where vehicles can wait when the direct
move would get them at supply points sooner than the opening times. In this section,
we analyze the impact of waiting stations on solution quality.

In all previous experiments, traveling cost and time were equivalent. In order to
analyze the impact of waiting without modifying the travel costs, we explicitly intro-
duced into the model a waiting cost measure related to the customer-to-waiting station
movement generating the need to wait. Thus, the waiting cost for a (customer, supply
point) pair is computed as a percentage of the total cost from the customer to the waiting
station and from the latter to the supply point. We performed 6 runs corresponding to
a percentage equal to 10%, 20%, 30%, 40%, 50%, and 100%.

The experiment was run on the C2 set, which includes the largest instances in terms
of the numbers of customers, supply points, and waiting stations. Table 5 sums up the
solution-quality variations for the six cases compared to the case without waiting costs.
The table displays the solution-quality variations in terms of the total cost, traveling cost,
number of vehicles, and synchronization requirement at supply points. One observes that
higher waiting cost result in vehicles performing longer routes (the routing cost increases)
to avoid going to waiting stations. Consequently, the number of direct moves increases,
and accordingly, the number of moves using waiting stations is reduced. Moreover, it
also requires more vehicles, resulting in a higher total cost.

Table 5: Impact of waiting cost on solution quality

Impact on
Increase the cost of waiting by

solution quality 10% 20% 30% 40% 50% 100%

Total cost 2.87% 5.15% 7.46% 9.75% 11.77% 20.23%

Routing cost 3.78% 6.78% 10.04% 13.13% 15.39% 26.59%

#Vehicles 0.82% 1.47% 1.64% 2.13% 3.61% 5.91%

DM 3.91% 15.14% 23.24% 31.30% 34.19% 58.41%

MWS -5.45% -8.68% -10.90% -12.97% -14.14% -21.38%

7 Conclusions

We proposed a tabu search meta-heuristic for the Time-dependent Multi-zone Multi-trip
Vehicle Routing Problem with Time Windows. The proposed model formulation provided
the means to identify clearly the main components of the decision set of the problem. We
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could thus propose a tabu search method that works on multiple neighborhoods, which
are used to improve both the routing and the assignment of routes to vehicles. The
selection of neighborhoods is dynamically adjusted along the search to keep the balance
between exploration and exploitation. Moreover, a diversification strategy guided by an
elite set and a frequency-based memory is introduced to not only provide a certain level
of diversity to the search, but also help incorporate good attributes into newly created
solutions.

Experimental results illustrated clearly the superior performance of the proposed
methodology compared to the literature. It yields higher quality solutions in terms of
both required number of vehicles and traveling cost. In addition, the utilization of waiting
stations, resulting from the synchronization restriction at supply points, was significantly
reduced. The quality of these results in terms of costs, times, and frequency of direct
movements indicate that the proposed methodology could prove magisterially efficient in
actual applications.
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A Neighborhood selection strategies

This Annex briefly presents the neighborhood selection strategies that have been studied
to determine how neighborhoods in our algorithm should be combined and how they
are intertwined. To select the neighborhood selection strategy that we included into the
proposed tabu search (Section 5.5), we tried two variants of a greedy strategy (denoted L
and M), three variants of fixing the probability of selecting leg neighborhoods (denoted
N1, N2, and N3), and three variants of a two-level strategy.

The performance of all variants is compared to that of the Control procedure em-
bedded into the proposed tabu search, where the selection of the neighborhood is driven
dynamically.

Greedy strategy L. All five neighborhoods are evaluated at each iteration. The
best move is selected among all the moves in all neighborhoods.

Greedy strategy M. One type of neighborhood, leg or routing, is first selected at
each iteration based on the value of r. Then, the neighborhoods of the selected type are
evaluated. The best move is finally selected.

Fixing the probability of selecting neighborhoods. A single neighborhood is
evaluated at each iteration selected randomly by a fixed probability. The Strategy N1
allocated the same probability to all neighborhood (r = 1). Strategy N2 sets the
probability of selecting routing neighborhoods greater than the probability of selecting
leg neighborhoods (r > 1) to give more time to optimizing routes following a leg move.
Strategy N3 allows the search to freely explore the solution space at the beginning by
allowing all neighborhoods to share the same probability of selection, while restricting
the selection of leg moves (and encouraging the optimization of routes following such a
move) afterwards. It thus applies Strategy N1 for the first T1 iterations, and Strategy
N2 for the last T2 iterations.

The same number of iterations, 1 million, was performed for all strategies on each
instance. In addition, we ran three times the M, N2, N3 strategies for three values of r
= {15, 30, 45}. Table A6 displays the average best- solution results for all strategies and
problem types. The last column (GAP to Control (%)) shows the average gap of each
strategy relative to the results obtained by the Control neighborhood selection strategy
used in the implementation studied in the main sections of the paper.

Examining the experimental results, we observe that the performance of Strategy L
is the worst. The main reason is that leg moves, which are necessary to diversify the
search, are not selected sufficiently often in this strategy. Indeed, one observes the better
performance of the greedy Strategy M where leg moves are given a higher probability
of selection. The best performance in this group of strategies is offered by Strategy N3,
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Table A6: Performance comparison between neighborhood selection strategies
Strategy Problem set GAP to

A1 A2 B1 B2 C1 C2 Control (%)

L 18593.07 14958.53 56089.99 48058.11 117755.10 107118.90 4.43

r = 15 18246.81 14744.71 54524.40 46218.93 116762.10 100245.40 1.40

M r = 30 18253.74 14740.81 54408.71 46526.30 116008.10 100474.13 1.41

r = 45 18268.07 14729.11 54100.25 46295.93 117025.80 100810.93 1.43

N1 18255.39 14660.38 54109.26 46122.47 116200.50 100056.02 1.04

r = 15 18198.15 14664.80 53927.76 46536.96 115836.10 99894.28 0.94

N2 r = 30 18198.24 14636.68 54029.69 46535.03 115298.60 99982.87 0.94

r = 45 18200.22 14663.08 53865.71 46330.53 115812.40 99978.64 0.92

r = 15 18143.10 14657.21 54364.18 46320.67 116379.40 99931.71 1.09

N3 r = 30 18158.00 14646.96 53869.52 46282.02 115768.70 99957.79 0.83

r = 45 18142.19 14646.21 53741.44 46128.00 115595.40 99973.40 0.70

Control 18102.02 14549.13 53539.38 46000.00 114260.90 98503.27

however, adjusting the type of exploration as the search progresses, from equal proba-
bilities at the beginning of the search, to increased route-optimization neighborhoods in
later stages.

Yet, fixing a priori the selection probabilities may limit the exploration capability
of the search. Indeed, the Control procedure, implementing a selection strategy driven
dynamically by variations in solution quality, outperforms all the other strategies.

Two-level strategy. It consists in running TS using one type of neighborhood until
no further improvement can be found, and then switching to using the other type of
neighborhood.

The algorithm starts at the “high level” applying the two leg neighborhoods in ran-
domized order. In each case, all pairs of vehicles are searched sequentially, and the search
stops either at the first improvement, or with the best improvement once all pairs have
been evaluated. When both neighborhoods are completely evaluated but no improving
solution has been identified, the best move is selected and becomes the current solution.
“Low-level” search then starts from this solution using the three routing neighborhoods
in randomized order with either the first or the best improvement criterion. Low-level
search continues until no further improving solution can be found. The algorithm stops
when the maximum number of iterations is reached, otherwise it is switched back to the
high level.

In the variant described above, only one leg move is implemented before making the
transition from the high level to the low level, no mater whether improved moves have
been performed or not. It can cause to the two-level search to be trapped in local optima,
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since employing only one leg move may not change significantly the solution. Thus, we
define the second variant where if no improving leg move is found in a high-level TS
sequence, the search will continue for a small number of leg moves before switching to
the low level.

We run each variant for 1 million iterations. Table A7 reports comparison results
between these variants of the two-level neighborhoods strategy. Corresponding average
gaps to the solutions obtained by the tabu search with the Control neighborhood-selection
strategy and average computation times are displayed in column (GAP to Control) and
(Time (min)), respectively.

For the first variant, best improvement produces higher quality solutions with an av-
erage error gap of 1.25% compared to 2.87% for the first improvement strategy. However,
first improvement requires less computation time. For the second variant, the number
of leg moves (high level search) is selected randomly in the integral interval [2,5]. The
result is reported in the two last columns of Table A7. One observes that this variant
performs better than the two previous variants. However, given a same total number of
iterations (1 million), compared to strategies N2 and N3 where neighborhoods are mixed
liberally or their selections are driven by a fixed number, the two-level strategy does not
perform better.

Table A7: Comparative performance of two level neighborhood-search strategies
Problem First improvement Best improvement Best improvement

set & random leg moves
GAP to Control Time (min) GAP to Control Time (min) GAP to Control Time (min)

A1 1.96% 32 1.51% 52 1.35% 64
A2 2.27% 25 1.62% 47 1.24% 53
B1 4.95% 59 2.59% 102 2.21% 128
B2 1.93% 41 0.74% 83 0.58% 94
C1 3.01% 105 0.65% 171 0.21% 193
C2 3.12% 93 0.39% 121 0.01% 138

Average 2.87% 59.17 1.25% 96 0.93% 111.67

B Detailed Results

Tables A8, A9, and A10 display comparison results on the Crainic et al. (2012) instances.
The first group of columns displays the results of Crainic et al. (2012), the best solution
values (Best column), the number of vehicles (#Vehicles column), the number of times
vehicles move directly from one customer zone to another without passing through waiting
stations (DM column), and the number of times waiting stations are used for moving
between customer zones (MWS column). The next group of columns displays the same
information for the proposed tabu search, plus the average values (Avg 10 column) and
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standard deviations (Std column) over 10 runs, as well as the corresponding gap to the
previous BKS (last column).

Table A8: Best performance comparison between our algorithm and Crainic et al. (2012)
on problem sets A

Instances Crainic et al. (2012) TS GAP

No Best #Vehicles DM MWS Avg 10 Std Best 10 #Vehicles DM MWS %

A1-1 17767 19 0 44 17152.7 24.36 17118.40 18 0 44 -3.65

A1-2 18783 24 0 35 18392.85 18.29 18371.20 24 0 35 -2.19

A1-3 16114 19 0 41 15749.17 14.10 15731.10 19 0 41 -2.38

A1-4 20936 31 0 30 20798.3 17.71 20780.00 31 0 29 -0.75

A1-5 15850 18 11 34 15633.8 17.46 15613.70 18 13 32 -1.49

A1-6 17456 20 0 40 16760.83 27.52 16720.80 19 0 40 -4.21

A1-7 19169 24 0 37 18790.99 15.08 18760.10 23 0 37 -2.13

A1-8 16790 20 2 40 16598.9 23.40 16553.30 20 4 38 -1.41

A1-9 21570 32 0 31 19361.32 43.02 19318.10 26 4 31 -10.44

A1-10 21316 32 0 26 21199.57 42.77 21138.50 32 0 26 -0.83

Average 18575.1 23.9 1.3 35.8 18043.84 24.37 18010.52 23 2.1 35.3 -3.04

A2-1 16380 21 1 41 15864.90 29.61 15823.40 20 2 41 -3.40

A2-2 18433 24 2 36 17140.57 35.63 17085.00 21 10 35 -7.31

A2-3 14654 18 4 42 13785.34 37.68 13717.80 16 6 41 -6.39

A2-4 13056 13 0 49 12828.75 31.65 12774.90 13 0 48 -2.15

A2-5 14256 14 3 46 13622.56 33.07 13579.70 13 3 46 -4.74

A2-6 17480 24 7 30 15430.33 36.16 15355.10 20 17 26 -12.16

A2-7 13955 15 1 49 13325.39 31.88 13287.90 14 0 49 -4.78

A2-8 14975 18 0 46 14815.85 29.67 14765.50 18 0 46 -1.40

A2-9 14430 16 0 45 13149.59 45.10 13103.00 13 4 46 -9.20

A2-10 16490 22 6 35 14988.99 53.43 14915.60 20 8 35 -9.55

Average 15410.9 18.5 2.4 41.9 14495.23 36.39 14440.79 16.8 5 41.3 -6.29
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Table A9: Best performance comparison between our algorithm and Crainic et al. (2012)
on problem sets B

Instances Crainic et al. (2012) TS GAP

No Best #Vehicles DM MWS Avg 10 Std Best 10 #Vehicles DM MWS %

B1-1 71007 89 4 153 65660.43 81.26 65570.2 76 30 140 -7.66

B1-2 53419 44 22 180 50886.42 80.38 50778.1 39 42 160 -4.94

B1-3 51175 41 20 186 48328.92 33.47 48284.8 36 36 170 -5.65

B1-4 54331 42 25 176 53547.07 64.46 53439.8 42 32 168 -1.64

B1-5 54072 45 12 186 51435.01 56.81 51309.7 37 31 171 -5.11

B1-6 54593 50 16 182 51604.48 61.61 51577.5 41 45 161 -5.52

B1-7 53322 46 15 180 51843.15 67.97 51785 44 26 170 -2.88

B1-8 55423 48 5 193 53941.65 70.38 53820.5 45 22 183 -2.89

B1-9 55208 53 19 168 52555.43 71.93 52427.7 48 32 162 -5.04

B1-10 53979 48 5 195 51437.39 75.74 51368 42 14 188 -4.84

Average 55652.9 50.6 14.3 179.9 53124.00 66.40 53036.13 45.00 31.00 167.30 -4.62

B2-1 44889 32 21 193 43492.67 79.24 43318.3 27 43 175 -3.50

B2-2 50427 47 22 178 46697.50 109.51 46506.1 39 54 152 -7.78

B2-3 48941 40 25 188 46839.89 121.45 46582 36 52 168 -4.82

B2-4 45894 28 19 206 44627.32 80.86 44531.5 28 34 193 -2.97

B2-5 46523 41 17 195 44538.50 89.31 44345.1 37 29 182 -4.68

B2-6 46441 36 16 199 43574.68 91.52 45066.5 35 21 190 -2.96

B2-7 44894 34 16 199 43601.74 61.52 43450.6 31 32 183 -3.22

B2-8 44549 28 23 201 43041.03 101.17 42816.4 25 43 187 -3.89

B2-9 46801 37 21 198 44543.77 62.17 44408.8 30 58 165 -5.11

B2-10 54606 62 16 172 49972.49 96.31 49787.6 50 33 171 -8.82

Average 47396.5 38.5 19.6 192.9 45092.96 89.31 45081.29 33.80 39.90 176.60 -4.77

30

A Tabu Search for the Time-Dependent Multi-Zone Multi-Trip Vehicle Routing Problem with Time Windows

CIRRELT-2012-44



Table A10: Best performance comparison between our algorithm and Crainic et al. (2012)
on problem sets C

Instances Crainic et al. (2012) TS GAP

No Best #Vehicles DM MWS Avg 10 Std Best 10 #Vehicles DM MWS %

C1-1 115967 86 67 394 111143.00 62.10 111196 75 114 359 -4.11

C1-2 113176 92 43 411 109077.00 98.18 109320 81 85 388 -3.41

C1-3 114773 80 62 409 109013.30 118.31 108758 68 101 374 -5.24

C1-4 114310 83 30 435 110412.90 109.96 110269 79 61 404 -3.54

C1-5 121245 100 25 423 115635.50 116.06 115335 84 55 406 -4.87

C1-6 115324 87 39 426 111761.60 180.11 111558 81 64 400 -3.27

C1-7 120443 86 31 431 117028.30 98.70 116869 83 59 401 -2.97

C1-8 115473 78 40 433 111768.80 97.67 111565 72 76 394 -3.38

C1-9 126060 89 34 427 121740.30 112.01 121607 84 68 386 -3.53

C1-10 117493 85 18 442 112079.20 120.98 111959 74 47 426 -4.71

Average 117426.4 86.6 38.9 423.1 112965.99 111.41 112843.60 78.10 73.00 393.80 -3.90

C2-1 101232 69 70 423 97566.43 101.30 97350.2 67 101 391 -3.83

C2-2 98289 53 85 433 95340.22 105.34 95262.7 48 146 372 -3.08

C2-3 106180 65 71 426 102038.30 85.31 101888 61 94 397 -4.04

C2-4 97387 74 35 450 93426.91 96.49 93217.2 64 79 410 -4.28

C2-5 101090 53 74 442 96744.10 103.29 96602.5 52 98 414 -4.44

C2-6 106847 85 54 426 101813.60 88.09 101665 75 90 392 -4.85

C2-7 98471 62 76 424 95197.20 98.25 95096.4 60 99 395 -3.43

C2-8 99948 55 73 442 96761.28 82.87 96598.2 55 123 409 -3.35

C2-9 102301 57 79 432 97949.94 92.90 97691.2 56 134 373 -4.51

C2-10 103950 63 67 437 100433.80 94.98 100283 62 108 386 -3.53

Average 101569.5 63.6 68.4 433.5 97727.18 94.88 97565.44 60.00 107.20 393.90 -3.93
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