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Abstract. In this paper, we address the problem of determining the optimal fleet size for 

three vehicle routing problems, i.e., multi-depot VRP, periodic VRP and multidepot 

periodic VRP. In each of these problems, we consider three kinds of constraints that are 

often found in reality, i.e., vehicle capacity, route duration and budget constraints. To 

tackle the problems, we propose a new Modular Heuristic Algorithm (MHA) whose 

exploration and exploitation strategies enable the algorithm to produce promising results. 

Extensive computational experiments show that MHA performs impressively well, in terms 

of solution quality and computational time, for the three problem classes. 
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1 Introduction
In the classical Vehicle Routing Problem (VRP), a homogeneous fleet of vehicles ser-
vices a set of customers from a single distribution depot or terminal. Each vehicle has
a fixed capacity that cannot be exceeded and each customer has a known demand that
must be fully satisfied. Each customer must be serviced by exactly one visit of a single
vehicle and each vehicle must depart from the depot and return to the depot (Dantzig
and Ramser [1959]).

During the past five decades, the vehicle routing problem and its variations have
been extensively studied. However, surveying the literature, one can perceive that not
all VRP variants have been addressed with the same degree of attention. This is the
case for the problem classes considered in this paper. On the other hand, most of the
methodological developments target a special problem variant, the Capacitated VRP
(CVRP) or the VRP with Time Windows (VRPTW), despite the fact that the majority of
the problems encountered in real-life applications display more complicating attributes
and constraints. This also applies to the problem addressed in this paper. Moreover, the
literature survey underlines that, the problem classes studied in this study have been of-
ten set up with objective functions other than the minimization of the fleet size, despite
the fact that there are many real-life applications in which it is more crucial to give
more importance to the minimization of the fleet size in comparison with other exist-
ing objectives as the total traveled distance. This situation may occur when important
factors such as high vehicle fixed costs exist.

Our objective is to contribute toward addressing the above three challenges. In this
paper, we propose a modular heuristic algorithm capable of successfully dealing with
three VRP variants: Multi-depot VRP, MDVRP, Periodic VRP, PVRP, and Multi-depot
Periodic VRP, MDPVRP. In each of these problems, the goal is to determine the opti-
mal fleet size where three practical constraints, i.e., vehicle capacity, maximum route
duration and budget constraints, should be satisfied. The proposed heuristic algorithm
incorporates different exploration and exploitation strategies to produce good results,
in terms of solution quality and computational efficiency.

The remainder of this paper is organized as follows: Section 2 gives the problem
statement. In Section 3, the literature survey relevant to the topic of this study is pre-
sented. Different aspects of the proposed heuristic algorithm are described in Section 4.
The experimental results are given in Section 5. Finally, Section 6 provides conclusions
and the evaluation of the work.

2 Problem statement
In this section, we formally state each of the problem classes, introducing the notations
used throughout this paper.

MDVRP- Consider an undirected graph G(V,E). The node set V is the union of
two subsets V = VC ∪ VD, where VC = {C1, ...,CN} represents the customers and
VD = {D1, ...,DM} includes the depots. With each node i ∈ VC is associated a
deterministic demand qi. The edge set E contains an edge for each pair of customers
and for each depot-customer combination. There are no edges between depots. With
each edge (vi, vj) ∈ E is associated a travel cost cij . The travel distance for arriving
to node j from node i (dij) is considered equal to cij . Each vehicle performs only one
route and each vehicle route must start and finish at the same depot. (Cordeau et al.
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[1997]).
PVRP- In the PVRP, the undirected graph G(V,E) is modified by fixing the value

of M to one and by introducing a planning horizon of T periods. In such a graph, each
customer i is characterized by a service frequency fi, stating how often within these T
periods the customer must be visited and a list Ωi of possible visit-period combinations.
Moreover, Ω is defined as the set of subsets of T , giving all the allowable patterns, that
is: Ω = ∪Ni=1Ωi (Vidal et al. [2012]).

MDPVRP- Finally, the Multi-Depot Periodic VRP (MDPVRP) combines the two
above problem settings, asking for the selection of a depot and a visit pattern for each
customer, with services in different periods to the same customer being required to
originate at the same depot (Vidal et al. [2012]).

In each problem class, the goal is to determine the optimal fleet size subject to the
following three practical constraints:

1. The vehicle capacity constraint: This constraint states that the total demand of
the customers on any route should not exceed the vehicle capacity Q.

2. The route duration constraint: This constraint reveals this fact that the total du-
ration of a route does not exceed a preset value D.

3. The budget constraint: In many logistical systems, one is usually faced with
budgetary constraints that come from the fact that a limited investment budget is
available for a certain area or a certain period of time. Although it is quite easy
to understand the practical aspect of these constraints, budget considerations are
almost always ignored when dealing with VRPs. In this paper, we consider a
Travel-Distance Budget (TDB) constraint which imposes a threshold on the total
distance traveled by vehicles for delivery operations. The TDB constraint is de-
fined using two different rules, each realizing an important managerial challenge
in real-life distribution and logistical systems. In the first rule (R1), we set a
bound on the total distance that vehicles are permitted to travel over the planning
horizon. On the other hand, the second rule (R2) aims to reflect the situations in
which, due to geographical and operational constraints, the total distance trav-
eled by vehicles assigned to a depot cannot exceed a limit in a period.

Depending on how we model the TDB constraint, each of the above problem
classes can be expressed by one of the following mathematical programming models.

(R1) min K (1)

subject to
F (x,K) = b (2)

τ ≤ ε (3)

In the above model, K is the total number of used vehicles (Fleet size) over the
planning horizon which is to be minimized. Constraint (2) corresponds to the vehicle-
capacity and route-duration restrictions described above. Constraint (3) imposes that
the total traveled distance (τ ) is limited by a positive value ε.

(R2) min K (4)

subject to
F (x,K) = b (5)
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τtj ≤ εtj ∀t ∈ T, ∀j ∈ D; (6)

where τtj is the total distance traveled by the vehicles assigned to depot j in period
t and εtj is a positive upper bound which is set on τtj .

Cordeau et al. [1997] showed that the formulation of a generalized PVRP includes
the MDVRP as a special case by associating a different period to each depot, such that
the ith customer has a frequency fi=1 and can be visited in any period. Vidal et al.
[2012] extended this result by proving that an MDPVRP with T periods and D depots
can be transformed into a generalized PVRP by associating a period to each (period,
depot) pair, such that the ith customer, having a list Ωi of L patterns, is visited fi times
over the planning horizon using one of the D × L patterns. We rely on these two
transformations in the development of the proposed modular heuristic algorithm.

3 Literature review
In this section, we focus on reviewing papers formerly published in the literature to
solve the PVRP, the MDVRP and the MDPVRP. The aim of this review is first to
present the most recently proposed heuristic and meta-heuristic algorithms for the con-
sidered problems and, to discern leading solution approaches which have been demon-
strated to be impressive to address the three problem settings.

Several heuristics have been put forward for the MDVRP. Early heuristics, perform-
ing based on simple construction and improvement procedures, have been developed
by Tillman [1969], Tillman and Hering [1971], Tillman and Cain [1972], Golden et al.
[1977], and Raft [1982].

Cassidy and Bennett [1972] proposed an iterative heuristic for the multi-depot ve-
hicle routing problem. The proposed method progressively improves the routing ar-
rangements starting from an initial solution. An interesting feature of the algorithm is
the method of data storage, which is designed to facilitate the alteration of route con-
figurations. The suggested heuristic is divided in three main steps. In the first step,
an initial solution is generated by assigning each customer to its nearest depot. In the
second step, the initial solution obtained from the previous step is improved by taking
each customer in turn and trying to fit it into another position. Finally in the last step,
the algorithm examines all depots in the routes to see if any of them can be replaced
by any of those still having enough capacity. Several years later, Chao et al. [1993]
proposed a search procedure combining the record-to-record local search method for
the reassignment of customers to different vehicle routes, followed by a 2-opt pro-
cedure for the improvement of individual routes. Salhi and Sari [1997] suggested a
multi-level construction-based composite heuristic for solving a multi-depot fleet mix
vehicle routing problem in which allocating customers to depots, finding the delivery
routes and determining the vehicle fleet composition are simultaneously considered.
The main purpose of that paper was to minimize the total traveled cost where both the
vehicle capacity (the largest vehicle in case there are different types of vehicles) and the
maximum distance traveled on any route must not be violated. The proposed heuristic
consists of three levels. In the first level, a starting solution is found as follows: the
vehicle fleet mix problem is first solved within each depot with certain customers left
unassigned (borderline customers). Then each of these customers is inserted into an
existing route or an empty route by using a selection-insertion procedure. In the sec-
ond level, a composite heuristic, which attempts to improve on the solution found for
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each depot when taken separately, is introduced. Finally in the third level, a composite
heuristic which considers all depots is implemented.

Various meta-heuristics have also been developed to tackle the MDVRP. Renaud
et al. [1996] described a tabu search heuristic in which an initial solution is built by
first assigning every customer to its nearest depot. A petal algorithm is then used for
the solution of the VRP associated with each depot. The algorithm is completed by
an improvement phase using either a subset of the 4-opt exchanges to improve indi-
vidual routes, swapping customers between routes from the same or different depots,
or exchanging customers between three routes. The tabu search approach of Cordeau
et al. [1997] is probably the best known algorithm for the MDVRP. An initial solution
is obtained by assigning each customer to its nearest depot and a VRP solution is gen-
erated for each depot by means of a sweep algorithm. Improvements are performed by
transferring a customer between two routes incident to the same depot, or by relocating
a customer in a route incident to another depot. Reinsertions are performed by means
of the GENI heuristic (Gendreau et al. [1992]). One of the main characteristics of this
algorithm is that infeasible solutions are allowed throughout the search. Continuous di-
versification is achieved through the penalization of frequent moves. Dondo and Cerdà
[2007] studied the multi-depot vehicle routing problem with time windows. To solve it,
they presented a model-based large-scale neighbourhood search algorithm that steadily
improves an initial solution generated through the three-phase cluster-based hybrid ap-
proach. At each iteration, a sequence of two evolutionary steps is executed. First,
a neighbourhood around the starting solution is generated by using a mixed-integer
linear problem that permits the algorithm to exchange multiple nodes between neigh-
bouring trips. Next, a different neighbourhood is defined by just allowing relocations of
nodes on the same tour. Lau et al. [2010] addressed an MDVRP in which the objective
is to simultaneously optimize both the cost due to the total traveling distance and that
due to the total traveling time. To solve the problem, a genetic algorithm with fuzzy
logic adjusting the crossover rate and mutation rate after ten consecutive generations
was proposed. Finally, Yu et al. [2011] designed a parallel ant colony optimization
algorithm for the MDVRP. In the proposed algorithm, three improved strategies: the
coarse-grain parallel strategy, the ant weight strategy and the local search strategy, were
applied.

Solution algorithms proposed to solve the PVRP can be categorized into two main
groups, i.e., classical heuristics, and meta-heuristics. Heuristics have been extensively
studied to solve the PVRP. The majority of these heuristics are multi-phase optimiza-
tion approaches which try to solve the problem at hand in a sequential manner. Russell
and Gribbin [1991] presented a multi-phase approach to solve the PVRP. The first
phase of the proposed method consists of a procedure which generates initial solutions
by using a generalized network approximation method. The second phase involves an
interchange heuristic that reduces the total traveled cost through a surrogate traveling
salesman problem. In the third phase, the total traveled cost is further reduced by ad-
dressing the actual routes. Finally, a proposed 0-1 integer model is used to attempt
further improvements. Chao et al. [1993] provided a two-phase heuristic. To obtain an
initial solution they solve an integer linear program to assign visit day combinations to
the customers. In a second phase, they use several improvement operators while they
relax the capacity of the vehicles. When getting stuck, re-initializations are performed.
Bertazzi et al. [2004] suggested a heuristic algorithm for a special case of the PVRP
namely the periodic traveling salesman problem, in which a single vehicle is used in
each period. The algorithm is a construction type with an embedded improvement pro-
cedure. At each iteration, a procedure selects a not yet processed city, assigns to it a
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combination of visit days and, for each day of the combination day, inserts the city to
the best position of the current partial tour. The iteration process is temporarily inter-
rupted after a predefined number of iterations and an iterative improvement procedure
tries to improve the current solution.

These early heuristics are outperformed by more recent meta-heuristic approaches,
including tabu search, scatter search, and variable neighbourhood search. Cordeau et al.
[1997] proposed a tabu search heuristic for the PVRP that can also be used to solve the
Multi-Depot Vehicle Routing Problem and the Periodic Traveling Salesman Problem
(PTSP). The neighbourhood consists of moving a customer from one route to another
route of the same day or assigning a new visit combination to a customer. Insertions
and removals of customers are performed using the GENI operator (Gendreau et al.
[1992]). The tabu search algorithm allows for infeasible solutions during the search
process using an adaptive penalty function. This paper presents an asynchronous par-
allel metaheuristic for the period vehicle routing problem (PVRP). Drummond et al.
[2001] designed an island-based parallel meta-heuristic for the PVRP. The proposed
algorithm was based on concepts used in parallel genetic algorithms and local search
heuristics. Angelelli and Speranza [2002] presented a tabu search algorithm for an ex-
tension of the periodic vehicle routing problem where the homogeneous vehicles have
the possibility of renewing their capacity at some intermediate facilities. The initial
solution of the proposed tabu search is generated by using a procedure similar to the
sweep algorithm (Gillett and Miller [1974]). Then, the initial solution is improved
via an improvement procedure which consists of four move operators, i.e., relocation,
changing the visiting schedule of a customer, redistribution, intersection. To enhance
the performance of the proposed algorithm, the tabu search is permitted to search the
solution space by using a tunneling strategy. Besides that, a diversification mecha-
nism is also used. Recently, a scatter search procedure was developed by Alegre et al.
[2007] for solving a problem of periodic pick-up of raw materials for a manufacturer
of auto parts. They use a two-phase approach, that first assigns orders to days and then
constructs the routes of each day. Alonso et al. [2008] proposed a tabu search for an
extension of the periodic vehicle routing problem where each vehicle can service more
than one route per day as long as the maximum delay operation time in not exceeded.
Besides that, there exist some accessibility constraints of the vehicles to the customers
in the sense that not every vehicle can visit every customer. The efficiency of the im-
plemented tabu search is proved based on some existing and randomly generated test
problems. Hemmelmayr et al. [2009] implemented a variable neighbourhood search
for the periodic vehicle routing problem. First, for obtaining an initial solution each
customer is randomly assigned a visit day combination. Routes are constructed by solv-
ing a vehicle routing problem for each day using Clarke and Wright savings algorithm
(Clarke and Wright [1964]). Then, for the shaking phase two popular and effective
neighbourhoods, i.e., move and cross-exchange, are proposed in order to enhance the
quality of the starting solution in each iteration. Finally, the solution obtained through
shaking is further improved by using 3-opt procedure as a local search. Pirkwieser
and Raidl [2010] proposed a variable neighbourhood search for the periodic vehicle
routing problem with time windows. In that paper, the authors claimed that using a
random VNS often yielded significantly better results than a VNS using a reasonable
fixed ordering of the shaking neighbourhoods. Furthermore, a selectively applied sim-
ple inter-route improvement procedure, 2-opt*, was shown to considerably improve
both VNS variants at nearly no computational cost at all. Gulczynski et al. [2011]
developed a new heuristic for the PVRP that combined integer programming and the
record-to-record travel algorithm. The proposed heuristic produced very high-quality
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results on standard benchmark instances. The authors also extended the heuristic to
two new variants of the PVRP that involve reassigning customers to new routes and
balancing the workload among drivers across routes.

The majority of solution methods, targeting the MDPVRP, are divided into two
main groups: 1) Classical heuristics, which often solve the problem in a sequential
manner, and 2) Sophisticated meta-heuristics and parallel algorithms, which tackle the
problem by simultaneously optimizing all the involved attributes.

We are aware of three heuristics in the first group. Hadjiconstantinou and Baldacci
[1998] formulated the problem of providing maintenance services to a set of customers
as the MDPVRP with Time Windows (MDPVRPTW). The authors proposed a multi-
phase optimization problem and solved it using a four-phase algorithm. In the devel-
oped algorithm, all customers are first assigned to particular depot. Then, customer
visits are successively inserted among available periods to obtain feasible visit combi-
nations. In the third phase, each of the depot-period VRP sub-problems is separately
solved using a tabu search algorithm. Finally, in the last phase, solutions obtained
during the optimization process are improved by modifying the period or depot assign-
ments through a 3-opt procedure. Kang et al. [2005] designed a two-phase heuristic
method to address the same problem. In the proposed method, all feasible schedules
are first generated from each depot for each period and, then, the set of routes are de-
termined through using the shortest path problem. Parthanadee and Logendran [2006]
proposed a tabu search heuristic to tackle the problem considered by Hadjiconstantinou
and Baldacci [1998]. In this algorithm, all the initial assignments are built by cheapest
insertion, where each customer is assigned to its nearest depot and is given its most
preferred visit pattern. In the improvement phase, a neighbourhood search is defined
by depot and visit pattern interchanges.

We are also aware of two contributions belonging to the second group. The first
contribution was the evolutionary meta-heuristic proposed by Vidal et al. [2012]. The
authors developed a hybrid Genetic Algorithm (GA) to tackle the MDPVRP and two of
its special cases, i.e., the Multi-depot VRP (MDVRP) and the Periodic VRP (PVRP).
The most interesting feature of the proposed GA is a new population-diversity man-
agement mechanism which allows a broader access to reproduction, while preserving
the memory of what characterizes good solutions represented by the elite individuals
of the population. The second contribution was the cooperative parallel algorithm de-
signed by Crainic et al. [2009]. The authors proposed a structured cooperative parallel
search method, called Integrative Co-operative Search (ICS), to solve highly complex
combinatorial optimization problems. The proposed ICS framework involves prob-
lem decomposition by decision sets, integration of elite partial solutions yielded by the
sub-problems, and adaptive guiding mechanism. The authors used the MDPVRPTW
to present the applicability of the developed methodology.

This brief review supports the general statements made in Section 1 that the prob-
lem classes of this study, especially the MDPVRP, are among the VRP variants which
did not receive an adequate degree of attention and the solution algorithms proposed
to solve them are scarce. Moreover, to the best of our knowledge, there is no signifi-
cant contribution in the literature dealing with the minimization of the fleet size for the
problem settings considered in this paper. To contribute toward addressing these three
challenges, we develop a Modular Heuristic Algorithm (MHA) to efficiently address
the PVRP, the MDVRP and the MDPVRP. The proposed MHA is described in the next
section.
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4 The proposed Modular Heuristic Algorithm (MHA)
In this section, we propose a new modular heuristic algorithm which solves each of the
considered problems in three sequential phases, each targeting one special dimension
of the problem. The general concepts and structure of the heuristic algorithm are first
described in Section 4.1. Then, the main components of the MHA are explained in
details in Sections 4.2-4-5.

4.1 The general structure of MHA
The Modular Heuristic Algorithm (MHA) that we propose is based on the sequential
optimization paradigm, but it includes a number of advanced exploration and exploita-
tion features which contribute to its high performance level, in terms of solution quality
and computational efficiency.

The general scheme of the proposed heuristic algorithm is displayed in Algorithm
1. MHA consists of three different steps that sequentially address the decisions to be
made. These decisions are: the visit pattern assignment, the depot assignment and the
detailed route design. These three steps can be performed in different orders depending
on the problem in question. Our experiments show that the order generating the best
results, in terms of solution quality and computational time, is:

1. The visit pattern assignment: In this step, each of the customers is assigned to
one of the possible visit patterns.

2. The depot assignment: In this step, customers of each period are assigned to
depots.

3. The routing problem: Finally, in this step, the routes are established for each
period and depot.

These three steps are iteratively repeated until MHA reaches its pre-defined stop-
ping criteria. In this study, the following two stopping criteria are simultaneously con-
sidered:

• MHA is stopped if no improving solution is found for Ψ successive iterations. Ψ
is a positive value which is determined at the beginning of the algorithm. Or,
• MHA is terminated if it passes a maximum allowable running time.

One of the most important characteristics of MHA is to use an elitism strategy
which enables the algorithm not to lose good and diverse solutions obtained in the
course of the optimization. Towards this end, MHA keeps all generated high-quality
and diverse solutions in a list called the reference set. The reference set has the size
equal to a predetermined positive value γ and consists of two different subsets. The
first subset, B1, preserves d3 × γ/4e high quality solutions, while the second subset,
B2, is made up of bγ/4c diverse solutions. The reference set is initially set as an empty
list and is subject to be iteratively updated. Suppose a new solution, Snew, is obtained
by the algorithm. The reference set is updated using the following two steps:

1. Snew is first investigated in terms of solution quality. In this case, Snew is
directly added to B1 if the number of solutions preserved in B1 is less than
d3×γ/4e; otherwise, if Snew is better than the worst existing solution inB1, the
latter is replaced by the former.
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2. If none of the conditions mentioned in Step 1 are not met, Snew is assessed in
terms of solution diversification. In this case, Snew is directly added to B2 if the
number of solutions existing in B2 is less than bγ/4c; otherwise, the following
replacement strategy is implemented. We first define the contribution to diversity
of solution S to the first subset of the reference set, D(S,B1), as the similarity
between itself and its nearest neighbour in B1, that is:

D(S,B1) = minX∈B1,X 6=S ∆(S,X)

where ∆(S,X) is the Hamming distance. Moreover, let us define OFS as the
objective function value of solution S. The replacement strategy is implemented
in three phases as follows: Firstly, the replacement strategy considers all the
solutions of B2 with poorer objective function values than Snew and finds the
one, Smax, which maximizes the ratio of (objective function value)/(contribution
of diversity) (Step 1). Then, the new generated solution, Snew, replaces Smax if
the following inequality holds (Step 2):

OFSnew

D(Snew, B1 − Smax)
<

OFSmax

D(Smax, B1)
(7)

In this way, we introduce into B2 a solution with better objective function value
and possibly higher contribution to diversity. If Inequality (7) does not hold, the
worst solution of the set determined in the first step is replaced by Snew (Step 3).

Algorithm 1 Modular heuristic algorithm
-Initialize the search parameters.
-Determine the upper limit of the budget constraint.
-Set the initial reference set as an empty list.
while the termination criterion is not met do

-Assign a possible visit pattern to each customer.
-Assign each customer to a depot in each period of the

selected visit pattern.
-Design routes visiting customers assigned to the same

depot using the three-phase heuristic.
-Update the reference list.

end while

In the following sections, each of the steps used in MHA is described in details.

4.2 Solution representation
The first step in designing an algorithm for a particular problem is to devise a suitable
solution representation scheme. In the proposed heuristic algorithm, the path repre-
sentation proposed by Rahimi-Vahed et al. [2012] is used. The idea of this path rep-
resentation is that the customers are listed in the order in which they are visited. In
this kind of representation, a single row array of the size equal to N+1 is generated for
each depot in each period, where N is the number of customers to be visited. The first
position of the array (index 0) is related to the corresponding depot, while each of the
other positions (index i; 1 ≤ i ≤ N ) represents a customer. The value assigned to a
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position of the array represents which customer should be immediately visited after the
customer or depot related to that position. In this path representation, negative values
corresponds to the beginning of the next route index, 0 refers to the end of the routes
and a vacant position reveals that the customer corresponding to that position is not
served by the depot with which the array is associated. For a detailed description of the
above solution representation, readers should refer to Rahimi-Vahed et al. [2012].

4.3 Visit pattern assignment
The modular heuristic algorithm, as depicted in Algorithm 1, first assigns, at each it-
eration, a possible visit pattern to each customer. There exist a very scarce number of
contributions in the literature that use systematic and non-random methods to assign
customers to visit patterns. For example, Tan and Beasley [1984] extended the gener-
alized assignment problem of Fisher and Jaikumar [1981] to assign a customer to an
allowable visit pattern. Christofides and Beasley [1984] developed a median problem
to establish an initial assignment of customers to visit patterns that meets customer
service requirements. Russell and Gribbin [1991] designed a generalized network ap-
proximation method to assign visit patterns to customers. The proposed method was
represented by a tripartite transshipment graph with source nodes (customers), trans-
shipment nodes (allowable visit patterns), and sink nodes (periods of the planning hori-
zon).

In this study, we also propose a non-blind and non-random algorithm to systemat-
ically assign customers to their possible visit patterns. In the proposed algorithm, we
first locate a single point, called reference point, for each period of the planning horizon
and, then, using a new Integer Programming Model (IPM), customers are assigned to
visit patterns so as to minimize the sum of customer-to-reference point distances. The
proposed IPM, unlike the similar models existing in the literature, is governed by some
parameters whose values are dynamically adjusted in the course of the optimization.
This feature enables IPM to assign better visit patterns to customers as MHA evolves.
The integer programming model is formulated as follows:

min
T∑
t=1

N∑
i=1

∑
k∈Ωi

akt{(xi − xνt )2 + (yi − yνt )2}uik (8)

subject to ∑
k∈Ωi

uik = 1 ∀i ∈ V ; (9)

LBνt ≤
N∑
i=1

∑
k∈Ωi

aktqiuik ≤ UBνt ∀t ∈ T ; (10)

uik ∈ {0, 1} ∀i ∈ V,∀k ∈ Ωi; (11)

In the above model, (xi, yi) is the location of customer i and (xνt , y
ν
t ) is the location

of a reference point which is generated, in iteration ν of the algorithm, for period t.
Moreover, the parameter akt equals 1 if period t is in pattern k, and 0 otherwise. The
decision variable of this model is uik, which is equal to 1 if customer i is assigned to
pattern k, and 0 otherwise. Finally, LBνt and UBνt are respectively lower and upper
limits that bound the total number of demands which should be satisfied in period
t and iteration ν. As it can be seen in this mathematical formulation, the aim is to
assign possible visit patterns to customers so that the total squared Euclidean distance
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between the customers and reference points is minimized. Constraints (9) impose that
each customer is assigned to exactly one feasible pattern. Constraints (10) show that
the demands serviced in a given period must be within an imposed interval.

One of the most crucial parameters affecting the strength of the above integer pro-
gramming model is the reference points’ locations. In this paper, the reference points’
locations are generated using a memory-based algorithm as follows: We first enumer-
ate all the customers that can be serviced in period t (t=1,2...T ). That is: It={i ∈ Vc
| ∃k ∈ Ωi: akt = 1}. Then, the coordinates of the reference point is calculated using
the two following formulas:

xνt =

∑
i∈It witxi∑
i∈It wit

∀ν = 1, 2...,∀t ∈ T ; (12)

yνt =

∑
i∈It wityi∑
i∈It wit

∀ν = 1, 2...,∀t ∈ T ; (13)

In the above equations, wit is defined as a self-adjusting positive weight which
reflects the desirability of visiting customer i in period t. The values of these weights
are dynamically adjusted, at each iteration, based on the information gathered from
the reference set. The adjusting procedure is summarized as follows: If customer i
is visited in period t in more than θ% of the solutions existing in the reference set,
the value of wit is multiplied by 1+ϕ, otherwise it remains unchanged, where ϕ is a
positive parameter. It should be noted that, this adjusting procedure starts after the
modular heuristic passes a preliminary phase called Warming-up Stage (WS). In WS,
the algorithm is repeated in λ successive iterations, λ ≥ γ, so that, at each iteration,
the weights involved in equations (12) and (13) are randomly generated in the interval
(0,1].

The other important parameters having key roles in the integer programming model
are the bounds considered in constraints (10). In this paper, LBνt and UBνt are consid-
ered as two parameters which are iteratively adjusted based on the information obtained
from elite solutions kept in the reference set. Towards this end, LBνt and UBνt are re-
spectively defined, in iteration ν, as the minimum and maximum required capacity for
period t observed in elite solutions existing in the reference set. It should be noted that,
in the Warming-up Stage described above, Constraints (10) are relaxed by respectively
setting LBνt and UBνt to 0 and∞.

4.4 Depot assignment
The proposed heuristic continues by assigning the customers of each period to depots.
The assignment algorithm that we propose in this step belongs to a category of as-
signment problems which is called assignment by clusters. In this type of assignment
problems, a cluster is defined as the set of points consisting of a depot and the customers
assigned to it. The algorithms in this class try to build compact clusters of customers
for each depot. When a customer is assigned to a cluster it means that this customer is
assigned to that cluster’s depot. In this study, the way in which customers are incorpo-
rated in a cluster is defined by an integer programming model which is mathematically
expressed as follows:

min
T∑
t=1

∑
i∈Πt

M∑
j=1

bijt{(xi − xDj
)2 + (yi − yDj

)2}ωijt (14)
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subject to
M∑
j=1

ωijt = 1 ∀t ∈ T, ∀i ∈ Πt; (15)

ωijt ∈ {0, 1} ∀t ∈ T, ∀i ∈ Πt,∀j ∈ D; (16)

In the above model, (xDj , yDj ) is the location of depot j and Πt is the set of
customers to be visited in period t. The decision variable of this model is ωijt, which
is equal to 1 if customer i is assigned to depot j in period t, and 0 otherwise. Moreover,
the parameter bijt is defined as the penalty of assigning customer i to depot j in period
t. In fact, the higher bijt is, the more desirable customer i is not assign to depot j in
period t. The objective of the above integer programming model is to assign customers
to depots so that the total weighted squared Euclidean distance between the customers
and depots is minimized. Moreover, constraints (15) force that each customer to be
assigned to exactly one depot in a period.

The strength of the integer programming model is dependent on the penalties in-
volved in the objective function. In this paper, these penalties are considered as self-
adjusting parameters which are iteratively updated based on the information obtained
from the reference set. The adjusting procedure is summarized as follows: If customer
i is assigned to depot j in period t in more than θ% of the solutions kept in the reference
set, the value of bijt is divided by 1+µ, otherwise it is multiplied by 1+µ, where µ is a
positive parameter. This updating procedure enables the algorithm to assign customers
to better depots as the heuristic gets closer to the termination criteria. It should again
be noted that, in the Warming-up Stage, the penalties involved in the objective function
are randomly generated in interval (0,1].

4.5 Route design
In this phase, customers assigned to the same depot, in each period, are divided into
different routes. Towards this end, a heuristic algorithm, consisting of the following
three phases, is implemented in a sequential manner:

1. Construction phase- In the first phase, customers of each depot are assigned
to a giant tour using the GENIUS heuristic to solve the corresponding trevel-
ing salesman problem. GENIUS, proposed by Gendreau et al. [1992], consists
of two phases that are implemented in a sequential manner. In the first phase,
called GENI, a Hamiltonian cycle is progressively generated by inserting ver-
tices (i.e., customers) one at a time. More precisely, GENI starts with a partial
solution consisting of three arbitrarily chosen vertices and, at each iteration, it
includes any given vertex between two of its p closest neighbors on the partial
cycle. While making an insertion, GENI performs a local reoptimization of the
partial cycle. Once all vertices have been inserted, the second phase, named US,
is executed as a post-optimization heuristic which successively removes each
vertex from the cycle, and reinserts it using GENI.

2. Splitting phase- In the second phase, using the optimal splitting procedure pro-
posed by Prins [2004], each constructed giant tour is split into shorter routes,
each satisfying the vehicle capacity constraint. In other words, by relaxing the
route duration restriction and budget constraint, each giant tour is split to least
possible number of shorter routes.
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3. Improving phase- Finally, in the third phase, a heuristic consisting of two ex-
change procedures is implemented on each constructed route in order to reduce
the route’s length and, accordingly, to improve the total traveled distance. One
of the main characteristics of the proposed heuristic method is that infeasible so-
lutions are allowed throughout the search. Let us assume that X denotes the new
solution generated by the search mechanism. Moreover, let τ (X) denote the total
traveled distance of solution X, and let A(X) and B(X) denote the total violation
of the route-length and ε- constraints, respectively. Solution X is evaluated by a
function, z(X) = τ(X) + αA(X) + βB(X), where α and β are self-adjusting pos-
itive parameters. By dynamically adjusting the values of these two parameters,
this relaxation mechanism facilitates the exploration of the search space and is
particularly useful for tightly constrained instances. Parameter α is adjusted as
follows: if there is no violation of the route-length constraints, the value of α is
divided by 1+Λ , otherwise it is multiplied by 1+Λ , where Λ is a positive param-
eter. A similar rule applies also to β with respect to route duration constraint.
The two proposed exchange procedures are described as follows:

• SWAP procedure: The first exchange procedure, called SWAP, is per-
formed by choosing two distinct customers i and j, where i= 1,2...nk-1
and j=i+1, i+2...nk (nk is the number of customers that are visited in the
kth route), and then exchanging their positions within the route. If the
swapping procedure results in a better solution according to the penalty
function described above, the positions are exchanged, otherwise the so-
lution remains unchanged. The procedure stops when no more exchanges
that result in an improving solution are possible.
• INSERT procedure: The second exchange procedure, called INSERT, is

based on removing a customer from one route and inserting it into an-
other route. Towards this end, we first randomly select a customer from
the longest route of a depot whose length is defined as tmax. Then, the
selected customer is removed from its current position and is re-inserted to
a new route using the two following methods:
(a) Inter-depot method: In this method, the removed customer is re-

inserted into either one of the existing routes or a new route of the
same depot from which the customer has been removed.

(b) Intra-depot method: In this method, the depot to which the customer
is concurrently assigned is changed to another one and the customer is
re-inserted into either one of the existing routes or a new route of the
new depot.

Note that, in both cases, an insertion is called feasible if: 1) It does not
violate the vehicle’s capacity constraint, and 2) It does not produce a route
longer than tmax. The position to which the customer is inserted is the one
that satisfies the two above conditions and results in the best improvement
in the penalty function. This procedure is repeated for a predetermined
number of iterations, denoted by σ.

5 Experimental results
In this section, the performance of the proposed MHA is investigated based on three
different sets of test problems. The first two sets, each including 10 problem instances,
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have been developed by Cordeau et al. [1997] for the PVRP and the MDVRP, respec-
tively, while the last set includes 10 different test problems which have been designed
by Vidal et al. [2012] for the MDPVRP. Note that, in all the considered problem in-
stances, the number of vehicles assigned to a depot, which was originally set as a lim-
ited and fixed parameter, is ignored. Detailed information on these sets are provided in
Subsection 5.2.

The efficiency of the developed heuristic is tested in two different settings that are
defined according to how the budget constraint is formulated: either using Rule R1 or
Rule R2 defined in Section 2. Recall that, in Rule R1, an upper limit is imposed on the
total distance traveled over the planning horizon. As for Rule R2, an upper bound is
enforced on the total distance traveled by the vehicles assigned to each depot in each
period.

In both of the above cases, values assigned as the upper bound of the budget con-
straint may have a major impact on the performance of the proposed modular heuristic
algorithm. In this paper, the upper bounds of both rules (R1 and R2) are initially set
based on the information extracted from the Best Known Solution (BKS) reported by
Vidal et al. [2012] for the considered problems. More precisely, the values of ε, in Rule
R1, is set to the total traveled distance of the BKS, whereas the value of εtd, in Rule
R2, is fixed to the total distance traveled by the vehicles assigned to depot d in period
t of the BKS. Then, we systematically vary the values of the upper bound, set on the
budget constraint, to investigate how the performance of MHA is affected by tightening
or widening the budget constraint.

The proposed algorithm is run on each problem instance, for both budget constraint
rules, and its efficiency, in terms of solution quality and computational time, is com-
pared to the Unified Tabu Search (UTS) implemented in Lahrichi et al. [2011]. Note,
however, that this algorithm was modified to handle the objective considered in this
paper, i.e., minimization of the fleet size. Furthermore, the penalty function used in the
algorithm was also modified to include budget constraint violations. Both algorithms
have been coded in C++ and executed on a Pentium 4, 2.8 GHz, and Windows XP
using 256 MB of RAM.

Different aspects of the experimental results are discussed as follows: In Section
5.1, we first use a well-structured algorithm to calibrate all the parameters involved in
the heuristic algorithm. Then, in Section 5.2, computational results are given in details.

5.1 Parameter setting
Like most heuristic and meta-heuristic algorithms, the proposed heuristic method has
several parameters that need to be tuned before it can reach good results. The problem
then turns into finding best parameter setting for the heuristic to solve the considered
problems efficiently and timely. Table 1 provides a summary of all the parameters
involved in the algorithm.

There are various different methods in the literature to calibrate parameters used in
a heuristic or meta-heuristic algorithm. Coy et al. [2000] designed a procedure based
on statistical Design Of Experiments (DOE) that systematically selects high-quality
parameter values. The parameter setting procedure has four steps that are implemented
in a sequential manner. In the first step, a subset of problems to analyze is chosen
from the entire set of problems. In the second step, computational experience is used
to select the starting level of each parameter, the range over which each parameter will
be varied, and the amount by which each parameter should be changed. In the third
step, good parameter settings are selected for each problem in the analysis set using

14

Fleet-Sizing for Multi-Depot and Periodic Vehicle Routing Problems Using a Modular Heuristic Algorithm

CIRRELT-2012-51



Table 1: Parameters of the heuristic algorithm
Symbol Description
γ Maximum size of the reference set
θ Threshold defined in Sections 4.3 and 4.4
ϕ Factor involved in updating wit
λ Number of times that WS is repeated
µ Factor involved in updating bijt
α, β Self-adjusting parameters in the penalty function
Λ Factor involved in updating α and β
σ Number of times that INSERT is repeated
Ψ Maximum allowable number of non-improving iterations

fractional factorial design and response surface optimization. Finally, in the fourth
step, the parameter values obtained in the third step are averaged to obtain high-quality
parameter values. The proposed approach does not use higher-order models (such as
quadratic) since different response surfaces are averaged over all considered instances.
The authors acknowledged that their method will perform poorly if the representative
test problems are not chosen correctly or if the problem class is so broad that it requires
very different parameter settings. For a detailed description, see Coy et al. [2000].

In this paper, we adopt the above four-step calibration method to tune the parame-
ters used in the heuristic algorithm. The calibration results for each class, along with
the final choice of parameter values, are reported in Table 2.

Table 2: Calibration results
Symbol PVRP MDVRP MDPVRP Final choice
γ 30 40 50 40
θ 0.2 0.3 0.4 0.3
ϕ 1 1 1 1
λ dN∗M∗T

5 e dN∗M∗T
5 e dN∗M∗T

5 e dN∗M∗T
5 e

µ 1 1 1 1
α, β 1, 1 1, 1 1, 1 1, 1
Λ 1 1 1 1
σ N N N N
Ψ N*M*T N*M*T N*M*T N*M*T

5.2 Computational results
We tested the proposed modular heuristic algorithm on the problem instances described
at the beginning of this section using the two rules described in Section 2, RulesR1 and
R2. Detailed computational results on each fold are given in the following subsections.

5.2.1 Rule R1

In Rule R1, both the modular heuristic and UTS are run 10 times on each problem
instance. Moreover, the maximum running time of both algorithms for the PVRP and
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MDVRP instances is set to 20 minutes, while for the MDPVRP instances, due to their
greater difficulty, the maximum running time is fixed to 30 minutes.

Results on PVRP instances are presented in Table 3. The first four columns of this
table respectively display instance identifier, number of customers, number of depots
and number of periods. Moreover, in Column 5, different values of the upper bound,
set on the budget constraint, are shown. In this column, ε∗ refers to the total trav-
eled distance of the BKS. The results of the proposed heuristic method are shown in
Columns 6 and 7 as the average fleet size and computational time on 10 independent
runs. We compare the performance of our heuristic algorithm to the results obtained
with the modified version of the UTS implementation of Lahrichi et al. [2011] (UTS in
Columns 8 and 9). Finally, the average percentage gap of the modular heuristic with re-
spect to UTS, on each problem instance and for each value considered for ε, is reported
in Column 10 (a negative value means a better performance of the modular heuristic).

As shown in Table 3, the proposed modular heuristic algorithm always produces
either equivalent or better results compared to UTS. However, the average percentage
gap between two algorithms clearly varies depending on values set as the upper bound
of the budget constraint. In the case where the ε value is set to ε∗, the average per-
centage gap is -3.7% indicating that the modular heuristic performs significantly better
than UTS. On the other hand, in the cases where the budget constraint is tightened by
fixing the ε value to 0.8ε∗ and 0.9ε∗, both algorithms face a more challenging task to
produce good results and, consequently, their performance slightly worsens. However,
the results show that the tighten the budget constraint is, the more the modular heuris-
tic shows its superiority to produce better results. These results reveal this fact that the
proposed heuristic algorithm has better capability, compared to UTS, to solve PVRP
instances, especially for those problems having more restricted search space. The av-
erage percentage gaps between the two algorithms respectively increase to -6.3% and
-5.6%, for 0.8ε∗ and 0.9ε∗ cases. Contrary, increasing the upper bounds to 1.1ε∗ and
1.2ε∗ results in producing better solutions by both algorithms. In these cases, the aver-
age percentage gaps respectively change to -3.1% and -5.8%. Figure 1 schematically
shows how the average percentage gap varies when changing the ε value.

Figure 1: Average percentage gap for the PVRP instances

Results on MDVRP instances are displayed in Table 4, where, as shown in Table 3,
Columns 2-4 represents respectively instance identifier, number of customers, number
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Table 3: Results on PVRP instances with Rule R1
Heuristic (Ave.) UTS (Ave.)

Instance N M T ε K Time (min) K Time (min) Gap (%)
0.8ε∗ 3 0.19 3 0.37 0
0.9ε∗ 3 0.18 3 0.35 0

pr01 48 4 4 ε∗ 2 0.18 2 0.35 0
1.1ε∗ 2 0.16 2 0.35 0
1.2ε∗ 2 0.16 2 0.33 0
0.8ε∗ 5 0.52 5 0.94 0
0.9ε∗ 5 0.48 5 0.85 0

pr02 96 4 4 ε∗ 4 0.46 4 0.80 0
1.1ε∗ 4 0.42 4 0.75 0
1.2ε∗ 4 0.39 4 0.71 0
0.8ε∗ 7 4.73 7 6.69 0
0.9ε∗ 7 4.27 7 6.13 0

pr03 144 4 4 ε∗ 6 3.81 6 5.56 0
1.1ε∗ 6 3.27 6 5.38 0
1.2ε∗ 5 3.12 6 5.09 -17
0.8ε∗ 9 8.33 10 9.57 -10
0.9ε∗ 9 8.13 9 9.12 0

pr04 192 4 4 ε∗ 7 7.42 8 8.19 -13
1.1ε∗ 7 7.13 8 8.10 -13
1.2ε∗ 7 6.75 8 7.92 -13
0.8ε∗ 12 15.80 14 19.91 -14
0.9ε∗ 12 15.51 14 19.72 -14

pr05 240 4 4 ε∗ 10 14.73 10 18.22 0
1.1ε∗ 10 14.23 10 17.71 0
1.2ε∗ 9 13.79 10 17.24 -10
0.8ε∗ 14 16.45 16 19.36 -13
0.9ε∗ 13 16.02 16 19.29 -19

pr06 288 4 4 ε∗ 12 15.51 14 19.11 -14
1.1ε∗ 12 15.32 13 18.72 -8
1.2ε∗ 12 15.27 13 18.33 -8
0.8ε∗ 4 1.29 4 1.89 0
0.9ε∗ 4 1.21 4 1.84 0

pr07 72 6 6 ε∗ 3 1.15 3 1.72 0
1.1ε∗ 3 1.11 3 1.65 0
1.2ε∗ 3 1.06 3 1.57 0
0.8ε∗ 7 5.64 8 7.50 -13
0.9ε∗ 7 5.12 7 7.39 0

pr08 144 6 6 ε∗ 6 4.76 6 7.23 0
1.1ε∗ 6 4.55 6 7.14 0
1.2ε∗ 6 4.31 6 7.11 0
0.8ε∗ 11 17.12 11 18.99 0
0.9ε∗ 10 16.70 11 18.96 -10

pr09 216 6 6 ε∗ 10 16.22 11 18.89 -10
1.1ε∗ 10 16.17 11 18.69 -10
1.2ε∗ 10 16.09 11 18.44 -10
0.8ε∗ 14 19.02 16 19.54 -13
0.9ε∗ 14 18.95 16 19.23 -13

pr10 288 6 6 ε∗ 12 18.88 12 19.01 0
1.1ε∗ 12 18.75 12 18.86 0
1.2ε∗ 12 18.43 12 18.77 0
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of depots and number of periods. The results obtained by the heuristic algorithm are
compared, once again, to the modified version of the unified tabu search of Lahrichi
et al. [2011], in terms of solution quality and computational time.

The main conclusions derived from Table 4 are similar to those stated above for
the PVRP. The modular heuristic clearly outperforms the unified tabu search on the
majority of problem instances. Figure 2 represents how the average percentage gap of
two algorithms changes when varying the ε value.

Figure 2: Average percentage gap for the MDVRP instances

Results on MDPVRP instances are finally summarized in Table 5 whose structure
is similar to that of Tables 3 and 4. Once again, the results produced by the heuristic
algorithm are compared to UTS in order to assess the efficiency of the algorithm, in
terms of solution quality and computational time.

Table 5 show that the proposed modular heuristic algorithm is considered as a com-
petitive solution methodology, able to produce high quality solutions in a reasonable
time. As for the two previous problems, the relative performance of two algorithms,
measured by the average percentage gap, depends upon the on values assigned to ε.
Figure 3 depicts how different ε values affect the average percentage gap.

5.2.2 Rule R2

In Rule R2, we investigate how the algorithm reacts when an upper bound is imposed
on the total distance that all vehicles assigned to each depot are permitted to travel in
each period. The specifications of how the algorithms are applied in the case of RuleR2

is exactly the same as in the case of Rule R1 (i.e., the same number of runs is applied
as well as identical maximum allotted run-times for the algorithms are considered for
each problem).

Tables 6-8 display the results obtained by the heuristic algorithm on the PVRP,
MDVRP and MDPVRP problems, respectively. Each of these tables use the same
structure considered for the tables of the previous subsection. It should be noted that,
in these tables, ε∗ is a T × D matrix, in which εtd corresponds to the total distance
traveled by vehicles assigned to depot d in period t of the BKS. The performance
of the heuristic algorithm is compared, on each set of test problems, to the modified
version of the unified tabu search implementation of Lahrichi et al. [2011].
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Table 4: Results on MDVRP instances with Rule R1
Heuristic (Ave.) UTS (Ave.)

Instance N M T ε K Time (min) K Time (min) Gap (%)
0.8ε∗ 5 0.13 5 0.15 0
0.9ε∗ 5 0.11 5 0.15 0

pr01 48 4 4 ε∗ 4 0.09 4 0.14 0
1.1ε∗ 4 0.08 4 0.14 0
1.2ε∗ 4 0.16 4 0.13 0
0.8ε∗ 8 0.41 9 0.81 -11
0.9ε∗ 8 0.35 9 0.74 -11

pr02 96 4 4 ε∗ 7 0.31 8 0.69 -13
1.1ε∗ 7 0.30 8 0.62 -13
1.2ε∗ 7 0.29 8 0.60 -13
0.8ε∗ 13 1.06 14 1.52 -7
0.9ε∗ 13 1.02 13 1.44 0

pr03 144 4 4 ε∗ 12 0.55 12 1.39 0
1.1ε∗ 12 0.51 12 1.30 0
1.2ε∗ 12 0.48 12 1.26 0
0.8ε∗ 16 3.88 17 4.68 -6
0.9ε∗ 16 3.82 17 4.60 -6

pr04 192 4 4 ε∗ 15 3.77 16 4.51 -6
1.1ε∗ 15 3.70 16 4.46 -6
1.2ε∗ 15 3.64 16 4.39 -6
0.8ε∗ 21 7.50 22 9.51 -5
0.9ε∗ 21 7.44 22 9.32 -5

pr05 240 4 4 ε∗ 20 7.29 20 9.16 0
1.1ε∗ 20 7.22 20 9.09 0
1.2ε∗ 20 7.16 20 9.03 0
0.8ε∗ 25 8.94 27 9.62 -7
0.9ε∗ 25 8.90 27 9.56 -7

pr06 288 4 4 ε∗ 24 8.77 24 9.44 0
1.1ε∗ 24 8.71 24 9.37 0
1.2ε∗ 24 8.63 24 9.28 0
0.8ε∗ 7 0.30 7 0.55 0
0.9ε∗ 7 0.28 7 0.54 0

pr07 72 6 6 ε∗ 6 0.26 6 0.51 0
1.1ε∗ 6 0.24 6 0.47 0
1.2ε∗ 6 0.22 6 0.41 0
0.8ε∗ 13 1.68 13 1.97 0
0.9ε∗ 13 1.66 13 1.93 0

pr08 144 6 6 ε∗ 12 1.57 12 1.89 0
1.1ε∗ 12 1.51 12 1.83 0
1.2ε∗ 12 1.47 12 1.79 0
0.8ε∗ 20 7.77 22 8.84 -9
0.9ε∗ 20 7.73 22 8.78 -9

pr09 216 6 6 ε∗ 19 7.68 20 8.71 -5
1.1ε∗ 19 7.60 20 8.64 -5
1.2ε∗ 19 7.55 20 8.59 -5
0.8ε∗ 25 8.80 26 9.73 -4
0.9ε∗ 25 8.72 26 9.64 -4

pr10 288 6 6 ε∗ 24 8.65 24 9.57 0
1.1ε∗ 24 8.60 24 9.51 0
1.2ε∗ 24 8.53 24 9.46 0

19

Fleet-Sizing for Multi-Depot and Periodic Vehicle Routing Problems Using a Modular Heuristic Algorithm

CIRRELT-2012-51



Table 5: Results on MDPVRP instances with Rule R1
Heuristic (Ave.) UTS (Ave.)

Instance N M T ε K Time (min) K Time (min) Gap (%)
0.8ε∗ 5 0.32 5 0.43 0
0.9ε∗ 5 0.29 5 0.42 0

pr01 48 4 4 ε∗ 4 0.25 4 0.40 0
1.1ε∗ 4 0.22 4 0.38 0
1.2ε∗ 4 0.20 4 0.36 0
0.8ε∗ 5 0.86 5 1.39 0
0.9ε∗ 5 0.81 5 1.34 0

pr02 96 4 4 ε∗ 4 0.73 4 1.28 0
1.1ε∗ 4 0.69 4 1.26 0
1.2ε∗ 4 0.64 4 1.19 0
0.8ε∗ 9 4.88 9 6.41 0
0.9ε∗ 9 4.79 9 6.33 0

pr03 144 4 4 ε∗ 8 4.72 8 6.23 0
1.1ε∗ 8 4.55 8 6.13 0
1.2ε∗ 7 4.48 8 6.09 -13
0.8ε∗ 9 13.73 10 15.66 -10
0.9ε∗ 8 13.62 9 15.58 -10

pr04 192 4 4 ε∗ 7 13.56 8 15.52 -13
1.1ε∗ 7 13.50 8 15.44 -13
1.2ε∗ 7 13.41 8 15.37 -13
0.8ε∗ 13 20.58 14 24.33 -7
0.9ε∗ 13 20.53 14 24.17 -7

pr05 240 4 4 ε∗ 12 20.44 12 24.09 0
1.1ε∗ 12 20.37 12 23.88 0
1.2ε∗ 12 20.29 12 23.82 0
0.8ε∗ 14 17.41 16 21.45 -13
0.9ε∗ 13 17.32 15 21.34 -13

pr06 288 4 4 ε∗ 12 17.22 14 21.25 -14
1.1ε∗ 12 17.16 13 21.20 -8
1.2ε∗ 12 17.08 13 21.11 -8
0.8ε∗ 7 1.46 7 2.06 0
0.9ε∗ 7 1.39 7 1.98 0

pr07 72 6 6 ε∗ 6 1.35 6 1.96 0
1.1ε∗ 6 1.30 6 1.91 0
1.2ε∗ 6 1.24 6 1.84 0
0.8ε∗ 7 5.25 8 8.04 -13
0.9ε∗ 7 5.14 7 7.97 0

pr08 144 6 6 ε∗ 6 5.06 6 7.91 0
1.1ε∗ 6 5.03 6 7.88 0
1.2ε∗ 6 4.98 6 7.82 0
0.8ε∗ 13 20.42 13 24.19 0
0.9ε∗ 13 20.31 14 24.12 -7

pr09 216 6 6 ε∗ 12 20.19 13 23.96 -8
1.1ε∗ 12 20.10 13 23.89 -8
1.2ε∗ 12 19.89 13 23.81 -8
0.8ε∗ 19 23.14 20 26.79 -5
0.9ε∗ 19 23.04 20 26.71 -5

pr10 288 6 6 ε∗ 18 22.88 18 26.53 0
1.1ε∗ 18 22.76 18 26.49 0
1.2ε∗ 18 22.70 18 26.41 0
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Table 6: Results on PVRP instances with Rule R2
Heuristic (Ave.) UTS (Ave.)

Instance N M T ε K Time (min) K Time (min) Gap (%)
0.8ε∗ 3 0.20 3 0.39 0
0.9ε∗ 3 0.19 3 0.36 0

pr01 48 4 4 ε∗ 2 0.19 2 0.35 0
1.1ε∗ 2 0.17 2 0.34 0
1.2ε∗ 2 0.17 2 0.33 0
0.8ε∗ 5 0.54 5 0.94 0
0.9ε∗ 5 0.49 5 0.85 0

pr02 96 4 4 ε∗ 4 0.47 4 0.82 0
1.1ε∗ 4 0.44 4 0.77 0
1.2ε∗ 4 0.40 4 0.73 0
0.8ε∗ 7 4.12 8 6.38 -13
0.9ε∗ 7 3.92 8 6.16 -13

pr03 144 4 4 ε∗ 6 3.83 6 5.59 0
1.1ε∗ 6 3.70 6 5.48 0
1.2ε∗ 6 3.43 6 5.32 0
0.8ε∗ 9 8.39 10 9.61 -10
0.9ε∗ 9 8.19 10 9.24 -10

pr04 192 4 4 ε∗ 8 7.44 8 8.25 0
1.1ε∗ 7 7.31 8 8.19 -13
1.2ε∗ 7 7.08 8 7.95 -13
0.8ε∗ 12 15.93 14 20.19 -14
0.9ε∗ 12 15.24 14 18.95 -14

pr05 240 4 4 ε∗ 10 14.82 11 18.39 -9
1.1ε∗ 10 14.73 11 18.11 -9
1.2ε∗ 10 14.22 11 17.78 -9
0.8ε∗ 14 16.54 16 19.50 -13
0.9ε∗ 14 16.09 16 19.42 -13

pr06 288 4 4 ε∗ 13 15.61 14 19.32 -7
1.1ε∗ 13 15.45 14 18.80 -7
1.2ε∗ 12 15.39 13 18.53 -7
0.8ε∗ 4 1.29 4 1.93 0
0.9ε∗ 4 1.24 4 1.86 0

pr07 72 6 6 ε∗ 3 1.18 3 1.77 0
1.1ε∗ 3 1.14 3 1.69 0
1.2ε∗ 3 1.11 3 1.60 0
0.8ε∗ 7 5.79 8 7.53 -13
0.9ε∗ 7 5.19 7 7.44 0

pr08 144 6 6 ε∗ 6 4.82 6 7.39 0
1.1ε∗ 6 4.60 6 7.22 0
1.2ε∗ 6 4.49 6 7.16 0
0.8ε∗ 11 17.19 12 19.12 0
0.9ε∗ 10 16.76 12 19.04 -17

pr09 216 6 6 ε∗ 10 16.29 11 18.96 -10
1.1ε∗ 10 16.20 11 18.78 -10
1.2ε∗ 10 16.11 11 18.53 -10
0.8ε∗ 14 19.07 16 19.61 -13
0.9ε∗ 14 18.99 16 19.44 -13

pr10 288 6 6 ε∗ 12 18.94 13 19.10 -8
1.1ε∗ 12 18.83 13 18.97 -8
1.2ε∗ 12 18.53 13 18.86 -8
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Table 7: Results on MDVRP instances with Rule R2
Heuristic (Ave.) UTS (Ave.)

Instance N M T ε K Time (min) K Time (min) Gap (%)
0.8ε∗ 5 0.14 5 0.17 0
0.9ε∗ 5 0.12 5 0.17 0

pr01 48 4 4 ε∗ 4 0.10 4 0.16 0
1.1ε∗ 4 0.09 4 0.14 0
1.2ε∗ 4 0.07 4 0.14 0
0.8ε∗ 9 0.43 10 0.84 0
0.9ε∗ 9 0.36 9 0.77 -10

pr02 96 4 4 ε∗ 8 0.33 8 0.72 0
1.1ε∗ 8 0.31 8 0.66 0
1.2ε∗ 8 0.30 8 0.62 0
0.8ε∗ 13 1.08 14 1.55 -7
0.9ε∗ 13 1.04 13 1.45 0

pr03 144 4 4 ε∗ 12 0.59 12 1.44 0
1.1ε∗ 12 0.59 12 1.35 0
1.2ε∗ 12 0.48 12 1.29 0
0.8ε∗ 17 3.90 18 4.72 -6
0.9ε∗ 17 3.85 18 4.66 -6

pr04 192 4 4 ε∗ 16 3.80 17 4.60 -6
1.1ε∗ 16 3.74 17 4.52 -6
1.2ε∗ 16 3.70 17 4.47 -6
0.8ε∗ 21 7.53 22 9.59 -5
0.9ε∗ 21 7.49 22 9.35 -5

pr05 240 4 4 ε∗ 20 7.34 21 9.33 -5
1.1ε∗ 20 7.29 21 9.19 -5
1.2ε∗ 20 7.22 21 9.14 -5
0.8ε∗ 25 9.01 27 9.84 -7
0.9ε∗ 25 8.97 27 9.60 -7

pr06 288 4 4 ε∗ 24 8.80 25 9.49 -4
1.1ε∗ 24 8.75 25 9.40 -4
1.2ε∗ 24 8.69 25 9.33 -4
0.8ε∗ 7 0.33 7 0.64 0
0.9ε∗ 7 0.29 7 0.59 0

pr07 72 6 6 ε∗ 6 0.27 6 0.54 0
1.1ε∗ 6 0.25 6 0.49 0
1.2ε∗ 6 0.24 6 0.46 0
0.8ε∗ 13 1.73 13 2.04 0
0.9ε∗ 13 1.69 13 1.99 0

pr08 144 6 6 ε∗ 12 1.62 12 1.95 0
1.1ε∗ 12 1.56 12 1.88 0
1.2ε∗ 12 1.50 12 1.84 0
0.8ε∗ 20 7.88 22 8.91 -9
0.9ε∗ 20 7.79 22 8.84 -9

pr09 216 6 6 ε∗ 19 7.77 21 8.79 -10
1.1ε∗ 19 7.66 21 8.74 -10
1.2ε∗ 19 7.59 21 8.63 -10
0.8ε∗ 25 8.85 26 9.82 -4
0.9ε∗ 25 8.80 26 9.72 -4

pr10 288 6 6 ε∗ 24 8.70 25 9.65 -4
1.1ε∗ 24 8.64 25 9.55 -4
1.2ε∗ 24 8.59 25 9.48 -4
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Table 8: Results on MDPVRP instances with Rule R2
Heuristic (Ave.) UTS (Ave.)

Instance N M T ε K Time (min) K Time (min) Gap (%)
0.8ε∗ 5 0.35 5 0.50 0
0.9ε∗ 5 0.31 5 0.47 0

pr01 48 4 4 ε∗ 4 0.28 4 0.44 0
1.1ε∗ 4 0.25 4 0.41 0
1.2ε∗ 4 0.22 4 0.37 0
0.8ε∗ 5 0.89 5 1.43 0
0.9ε∗ 5 0.84 5 1.38 0

pr02 96 4 4 ε∗ 4 0.77 4 1.31 0
1.1ε∗ 4 0.71 4 1.28 0
1.2ε∗ 4 0.67 4 1.22 0
0.8ε∗ 9 4.89 10 6.46 0
0.9ε∗ 9 4.83 10 6.41 -10

pr03 144 4 4 ε∗ 8 4.75 9 6.29 -11
1.1ε∗ 8 4.62 9 6.18 -11
1.2ε∗ 8 4.53 9 6.11 -11
0.8ε∗ 9 13.76 9 15.70 0
0.9ε∗ 9 13.69 9 15.66 0

pr04 192 4 4 ε∗ 8 13.62 8 15.64 0
1.1ε∗ 7 13.56 8 15.49 -13
1.2ε∗ 7 13.45 8 15.53 -13
0.8ε∗ 13 20.65 14 24.55 -7
0.9ε∗ 13 20.59 14 24.48 -7

pr05 240 4 4 ε∗ 12 20.53 13 24.33 -8
1.1ε∗ 12 20.42 13 23.94 -8
1.2ε∗ 12 20.35 13 23.85 -8
0.8ε∗ 14 17.47 16 21.51 -13
0.9ε∗ 14 17.35 16 21.40 -13

pr06 288 4 4 ε∗ 13 17.30 14 21.34 -7
1.1ε∗ 13 17.41 14 21.29 -7
1.2ε∗ 13 17.23 14 21.20 -7
0.8ε∗ 7 1.49 7 2.09 0
0.9ε∗ 7 1.44 7 2.06 0

pr07 72 6 6 ε∗ 6 1.40 6 2.01 0
1.1ε∗ 6 1.34 6 1.97 0
1.2ε∗ 6 1.29 6 1.89 0
0.8ε∗ 7 5.28 8 8.09 -13
0.9ε∗ 7 5.19 7 8.04 0

pr08 144 6 6 ε∗ 6 5.18 6 7.95 0
1.1ε∗ 6 5.11 6 7.94 0
1.2ε∗ 6 5.04 6 7.88 0
0.8ε∗ 14 20.45 15 24.22 -7
0.9ε∗ 14 20.35 15 24.17 -7

pr09 216 6 6 ε∗ 13 20.31 13 24.12 0
1.1ε∗ 13 20.23 13 23.95 0
1.2ε∗ 13 20.07 13 23.87 0
0.8ε∗ 19 23.19 20 26.86 -5
0.9ε∗ 19 23.12 19 26.76 0

pr10 288 6 6 ε∗ 18 22.94 18 26.69 0
1.1ε∗ 18 22.83 18 26.57 0
1.2ε∗ 18 22.77 18 26.46 0
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Figure 3: Average percentage gap for the MDPVRP instances

As shown in Tables 6-8, the proposed modular heuristic algorithm performs im-
pressively well relative to the UTS, in terms of solution quality and computational
time. For each of the problems considered, we investigated how the existing average
percentage gap of two algorithms is affected by different ε values. The results obtained
are shown by Figure 4.

Figure 4: Average percentage gap

The results of Tables show that restricting the search space through bounding the
total distance allowed to be traveled by vehicles assigned to a depot in each period may
result in a decrease of the quality of the heuristic algorithm.

6 Conclusions
This paper presented a new modular heuristic algorithm for addressing several classes
of multi-depot and periodic vehicle routing problems. In each of the considered prob-
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lem classes, the goal is to determine the optimal fleet size when three constraints, i.e.,
vehicle capacity, route duration and budget constraints, are to be satisfied.

This paper introduced several methodological contributions, particularly, a self-
learning mechanism that leads the algorithm to assign better visit patterns to customers,
and also to assign customers to better depots as the solution process evolves. This
learning mechanism, in addition to other components of the algorithm, provided the
capability of the heuristic algorithm to reach high quality solutions.

To validate the efficiency of the proposed heuristic algorithm, different test prob-
lems, existing in the literature, were solved. The computational results showed that the
proposed algorithm performs very well, for all problem instances.
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