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Abstract. We present a branch-and-price-and-cut algorithm for solving large-scale 

instances of the multicommodity capacitated fixed-charge network design problem. The 

restricted master problem solved at each column generation iteration is obtained directly 

from the compact arc-based model by considering only a subset of the commodity flow 

variables. The pricing subproblem corresponds to a Lagrangian relaxation of the flow 

conservation and capacity constraints, leaving in the Lagrangian subproblem only the 

strong inequalities. The column generation procedure is completed by a cut generation 

step based on strong inequalities. The resulting column-and-row generation procedure is 

embedded within an enumerative scheme. Computational experiments on a large set of 

randomly generated instances are presented and analyzed. 
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1 Introduction

In this paper, we present a branch-and-price-and-cut (B&P&C) algorithm for the mul-
ticommodity capacitated fixed-charge network design problem (MCND), an NP-hard
problem [23] defined on a directed graph G = (N,A), where N is the set of nodes and
A is the set of arcs. Each commodity k ∈ K is characterized by a demand dk > 0 to be
routed from an origin O(k) to a destination D(k). On each arc (i, j), there is a capacity
uij > 0 on the flow of all commodities circulating on the arc (we assume uij ≤

∑
k∈K d

k).
The problem is to satisfy the demands at minimum cost, while respecting the capacity
constraints. The objective function consists of the sum of transportation costs and fixed
design costs, the latter being charged whenever an arc is used. The transportation and
fixed design costs on arc (i, j) are denoted cij ≥ 0 and fij ≥ 0, respectively.

We model the MCND as a mixed-integer program (MIP) by using continuous flow
variables xkij that represent the amount of flow on each arc (i, j) for each commodity k,
and 0-1 design variables yij that indicate if arc (i, j) is used or not:

min
∑

(i,j)∈A

∑
k∈K

cijx
k
ij +

∑
(i,j)∈A

fijyij, (1)

∑
j∈Ni(+)

xkij −
∑

j∈Ni(−)

xkji =


dk, if i = O(k),
−dk, if i = D(k), i ∈ N, k ∈ K,

0, otherwise,
(2)

∑
k∈K

xkij ≤ uijyij, (i, j) ∈ A, (3)

xkij ≤ dkyij, (i, j) ∈ A, k ∈ K, (4)

xkij ≥ 0, (i, j) ∈ A, k ∈ K, (5)

yij ∈ {0, 1}, (i, j) ∈ A, (6)

where Ni(+) = {j ∈ N |(i, j) ∈ A} and Ni(−) = {j ∈ N |(j, i) ∈ A}. Equations (2)
are the flow conservation constraints for each node and each commodity. The capacity
constraints for each arc, (3), forbid any flow to circulate through an arc that is not chosen
as part of the design. The so-called strong inequalities, (4), also serve the same purpose
and are therefore redundant; however, they significantly improve the linear programming
(LP) relaxation bounds [7]. Model (1)-(6) is the strong formulation of the MCND, the
weak formulation being obtained by removing constraints (4); their corresponding LP
relaxations are, respectively, the strong and the weak relaxations.

LP-based branch-and-bound (B&B) algorithms can be used to solve the MCND, but
large-scale instances (with hundreds of commodities) remain computationally elusive. On
the one hand, if strong inequalities are removed, the resulting LP relaxation provides too
weak lower bounds to be used within an enumerative approach; on the other hand, if
all strong inequalities are included a priori in the model, the resulting LP relaxation is
not only very large, but also highly degenerate. The obvious alternative is to add these
valid inequalities in a dynamic way within a cutting-plane algorithm [3] that might also

Branch-and-Price-and-Cut for Large-Scale Multicommodity Capacitated Fixed-Charge Network Design

CIRRELT-2012-74



include other well-known valid inequalities for fixed-charge network flow problems, such
as cover and flow cover inequalities. The following key observations can be derived from
the computational results obtained with this cutting-plane algorithm [3]:

• It is essential to add the strong inequalities to obtain effective lower bounds that
can be computed efficiently; more precisely, cover and flow cover inequalities can
be used instead of the strong inequalities to derive equally effective lower bounds,
but with a much greater computational effort.

• Obviously, adding cover and flow cover inequalities to the strong relaxation im-
proves the lower bound, but on large-scale instances (with hundreds of commodi-
ties), this improvement is so small that is does not payoff when the cutting-plane
method is used within B&B.

• Many of these large-scale instances remain difficult to solve.

These findings motivate the development of our B&P&C algorithm: at each node of
the enumeration tree, we solve the strong relaxation by adding in a dynamic way not
only the strong inequalities, but also the flow variables. The resulting column-and-row
generation procedure, when embedded within an enumerative scheme, is able to solve
large-scale instances more efficiently than the standard cutting-plane method, as we will
see in Section 3.

Other decomposition methods have been proposed for solving the MCND, in particu-
lar Benders decomposition [4, 5] and Lagrangian-based procedures [7, 8, 14, 15, 19, 22, 26];
in Section 2.6, we examine the relationships between our approach and some of these
methods. A large number of heuristic methods have also been proposed for computing
high-quality feasible solutions [6, 9, 10, 16, 17, 18, 21, 25]; in practice, near-optimal solu-
tions can be obtained by these heuristics, even for large-scale instances, but the difficulty
is in assessing the quality of these solutions with effective lower bounds and in proving
optimality, which is the focus of our paper.

The paper is organized as follows. Section 2 presents the B&P&C algorithm, while
the results of experiments on a large set of randomly generated instances are reported in
Section 3. We conclude this paper with a discussion of future research avenues.

2 Branch-and-Price-and-Cut Algorithm

In this section, we present the different components of our B&P&C algorithm: the re-
stricted master problem, in Section 2.1, the pricing subproblem, in Section 2.2, the cut
generation, in Section 2.3, and the variable fixing and branching procedures, in Section
2.4. The overall algorithm is summarized in Section 2.5. We conclude this section by
studying the relationships between our approach and other decomposition methods for
the MCND; in particular, we show that our algorithm can be seen as a special case of
two recently proposed generic B&P&C frameworks [13, 24].

2
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2.1 Restricted Master Problem

To obtain the restricted master problem solved at each column-and-row generation it-
eration, we enlarge the set of arcs with one artificial arc connecting O(k) to D(k) for
each commodity k; this arc is uncapacitated, has no fixed design cost and is given a very
large transportation cost. By adding these arcs, we ensure that every restricted master
problem is always feasible; in addition, if, at any given node of the B&P&C tree, an
optimal solution to the corresponding strong relaxation is obtained that includes at least
one artificial arc, then the node is infeasible and therefore fathomed. We denote by A+

the set containing A along with the artificial arcs.
To define the restricted master problem, we associate with each arc (i, j) in A+ a

commodity subset K̃ij ⊆ K over which the existing flow variables (xkij for k ∈ K̃ij) are

defined (for an artificial arc (i, j) = (O(l), D(l)), we always have K̃ij = {l}). In addition,

we define, for each commodity k, the sets Ãk = {(i, j) ∈ A+|k ∈ K̃ij}, and for each node

i and commodity k, the sets Ñk
i (+) = {j ∈ N |(i, j) ∈ Ãk} and Ñk

i (−) = {j ∈ N |(j, i) ∈
Ãk}. Only the strong inequalities that are generated as cuts are included in the model;
for each arc (i, j), we represent the generated strong inequalities using a subset Kij of

K̃ij. The restricted master problem (RMP) has thus the following form, where the dual
variables are shown in parentheses on the right-hand side of each constraint:

min
∑

(i,j)∈A+

∑
k∈K̃ij

cijx
k
ij +

∑
(i,j)∈A+

fijyij, (7)

∑
j∈Ñk

i (+)

xkij −
∑

j∈Ñk
i (−)

xkji =


dk, if i = O(k),
−dk, if i = D(k), i ∈ N, k ∈ K, (πki )

0, otherwise,
(8)

∑
k∈K̃ij

xkij ≤ uijyij, (i, j) ∈ A+, (αij) (9)

xkij ≤ dkyij, (i, j) ∈ A+, k ∈ Kij ⊆ K̃ij, (βkij) (10)

yij ≤ 1, (i, j) ∈ A+, (γij) (11)

xkij ≥ 0, (i, j) ∈ A+, k ∈ K̃ij, (12)

yij ≥ 0, (i, j) ∈ A+. (13)

At the root node of the B&P&C tree, only the variables associated with the artificial
arcs are handled by the initial RMP. After solving the RMP at each column generation
iteration, flow variables with negative reduced cost are added (see Section 2.2) and the
new RMP is solved. This column generation process ends when there are no more flow
variables with negative reduced cost. At this point, the cut generation step is performed
(see Section 2.3). If cuts are added, the column generation process restarts, with an initial
solution derived by the dual simplex method. At subsequent nodes of the B&P&C tree,
an initial solution is also derived by the dual simplex method, considering the addition
of the branching constraint (see Section 2.4) to the currently available basic solution.

3
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2.2 Pricing Subproblem

To add flow variables with negative reduced cost to the RMP, we need to seek arcs
(i, j) ∈ A and commodities k /∈ K̃ij such that cij − πki + πkj +αij + βkij < 0. We note that
the values of the dual variables are known after solving the RMP, with the exception
of the βkij associated with the strong inequalities (10). One simple way of solving this
issue is to simply forget about them and generate all flow variables corresponding to arcs
(i, j) ∈ A and commodities k /∈ K̃ij such that cij−πki +πkj +αij < 0. The resulting column
generation method would still be valid, but after every pricing iteration, potentially many
flow variables with nonnegative reduced cost could be generated, i.e., those associated
with (i, j) ∈ A and k /∈ K̃ij such that cij−πki +πkj +αij < 0 and βkij ≥ −(cij−πki +πkj +αij).
A more efficient approach consists in computing the values of the βkij variables in order
to add to the RMP only flow variables with negative reduced cost.

To achieve this objective, we first write down the dual and the complementary slack-
ness conditions of the LP relaxation of model (1)-(6):

max
∑
k∈K

dk
(
πkO(k) − πkD(k)

)
−
∑

(i,j)∈A

γij (14)

πki − πkj − αij − βkij ≤ cij, (i, j) ∈ A, k ∈ K, (15)

uijαij +
∑
k∈K

dkβkij − γij ≤ fij, (i, j) ∈ A, (16)

αij ≥ 0, (i, j) ∈ A, (17)

βkij ≥ 0, (i, j) ∈ A, k ∈ K, (18)

γij ≥ 0, (i, j) ∈ A, (19)

xkij
(
cij − πki + πkj + αij + βkij

)
= 0, (i, j) ∈ A, k ∈ K (20)

yij

(
fij + γij − uijαij −

∑
k∈K

dkβkij

)
= 0, (i, j) ∈ A, (21)

αij

(
uijyij −

∑
k∈K

xkij

)
= 0, (i, j) ∈ A, (22)

βkij
(
dkyij − xkij

)
= 0, (i, j) ∈ A, k ∈ K, (23)

γij (1− yij) = 0, (i, j) ∈ A. (24)

The analysis is based on deriving reduced cost optimality conditions from (14)-(24),

for any arc (i, j) ∈ A and for all commodities k ∈ K. If k ∈ K̃ij, these conditions are

automatically satisfied, since the RMP is solved to optimality. Note that, for k ∈ K̃ij\Kij,
the corresponding strong inequality is not in the RMP, which implies that βkij ≡ 0, but
the corresponding flow variable xkij is already in the RMP, so we do not need to consider
this case. The goal is to add to the RMP only the flow variables that correspond to
the commodities k /∈ K̃ij that do not satisfy the reduced cost optimality conditions. We
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denote by y, x and π, α, β, γ, respectively, the optimal solutions to the RMP and to its
dual; the optimal solution to the RMP is completed in the obvious way by setting xkij = 0,

for any (i, j) ∈ A and all k /∈ K̃ij. For any arc (i, j), we distinguish two cases:

• yij > 0. Let k /∈ K̃ij; for the solution to the RMP to be optimal for the LP
relaxation of model (1)-(6), we must have, by complementary slackness condition
(23):

β
k

ij(d
kyij︸︷︷︸
> 0

− xkij︸︷︷︸
=0

) = 0 =⇒ β
k

ij = 0.

The reduced cost optimality condition for k /∈ K̃ij is therefore

cij − πki + πkj + αij ≥ 0,

which implies that we add to the RMP the flow variables associated with arc (i, j)

and commodity k /∈ K̃ij such that

cij − πki + πkj + αij < 0.

• yij = 0. In this case, we have xkij = 0 for all k ∈ K and

γij(1− yij︸ ︷︷ ︸
6=0

) = 0 =⇒ γij = 0.

For the solution to the RMP to be optimal for the LP relaxation of model (1)-(6),
we therefore must have, by the dual constraints (16), the following reduced cost
optimality conditions:

fij − uijαij ≥
∑
k∈K

dkβ
k

ij.

By the dual constraints (15) and (18), we must have β
k

ij ≥ max{0,−(cij − πki +
πkj + αij)} for any k ∈ K. This implies that we add to the RMP the flow variables
associated with arc (i, j) such that

fij − uijαij <
∑
k∈K

dk max{0,−(cij − πki + πkj + αij)},

but only for commodities k /∈ K̃ij such that

cij − πki + πkj + αij < 0.

To summarize, the pricing subproblem consists in performing the following tests for
all arcs (i, j):

1. If yij > 0, then for any k /∈ K̃ij such that cij − πki + πkj + αij < 0, we add the flow
variables xkij to the RMP.

2. If yij = 0 and fij − uijαij <
∑

k∈K d
k max{0,−(cij − πki + πkj + αij)}, then for any

k /∈ K̃ij such that cij−πki +πkj +αij < 0, we add the flow variables xkij to the RMP.

5
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2.3 Cut Generation

To solve the RMP at each column generation iteration, one option is to add a priori
all the strong inequalities (10). However, as mentioned in the Introduction, it is more
efficient to add them in a dynamic way. In particular, the separation problem is trivial:
for each arc (i, j), we generate the strong inequalities for all commodities k ∈ K̃ij such
that xkij > dkyij. The addition of the corresponding constraints makes the current primal
basic solution infeasible, so the dual simplex method is performed until a feasible primal
solution is obtained. The column generation procedure is then restarted. Cut generation
is performed after the column generation procedure, when no more flow variables with
negative reduced cost can be found.

2.4 Variable Fixing and Branching

At any node of the B&P&C algorithm, we apply reduced cost variable fixing at each
iteration of the cut generation procedure. The technique is well-known: given the current
LP relaxation lower bound Z l and the best known upper bound Z∗, we test, for each arc
(i, j), if Z l + |f ij| ≥ Z∗, in which case we can fix yij to yij, where f ij = fij − uijαij −∑

k∈K d
kβ

k

ij.

To show the validity of this test, first note that if 0 < yij < 1, then f ij = 0 by

complementary slackness conditions (21) and (24), which implies that Z l + |f ij| = Z l <
Z∗, otherwise the current node could be fathomed. Then, there are two remaining cases:

• yij = 0. By complementary slackness condition (24), we have γij = 0. Assume
we add the constraint yij ≥ 1 with which we associate a dual variable λij ≥ 0
that is added to the objective (+λij). The dual constraint (16) is then rewritten
as λij ≤ fij − uijαij −

∑
k∈K d

kβkij. A dual feasible solution is obtained by setting

λij = f ij, which implies that Z l + f ij is a lower bound on the problem obtained

by adding the constraint yij ≥ 1. Therefore, if Z l + f ij = Z l + |f ij| ≥ Z∗, we
necessarily have yij < 1, i.e., yij = 0.

• yij = 1. By the objective of the dual (14) and the dual constraints (16) and (19),

we have γij = max{0,−f ij}. Assume we add the constraint yij ≤ 0 with which
we associate a dual variable µij ≥ 0. The dual constraint (16) is then rewritten as
−µij−γij ≤ fij−uijαij−

∑
k∈K d

kβkij. A dual feasible solution is obtained by setting

µij = −f ij and γij = 0, which implies that Z l−f ij is a lower bound on the problem

obtained by adding the constraint yij ≤ 0. Therefore, if Z l− f ij = Z l + |f ij| ≥ Z∗,
we necessarily have yij > 0, i.e., yij = 1.

The column-and-row generation procedure is performed until the node is fathomed
or no more cuts can be generated. In the latter case, branching is performed. At each
node, the LP relaxation of model (1)-(6), with the addition of the variable fixing and
branching constraints, is solved by the column-and-row generation procedure. Branching
occurs only when Z l < Z∗, a condition that implies that the LP optimal solution is

6
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fractional, i.e., there exists at least one arc (i, j) such that 0 < yij < 1 (otherwise, the LP
optimal solution is feasible and if its value, Z l, is less than Z∗, it replaces it as the best
incumbent value). In this case, we select one such arc and create the two nodes with the
added branching constraints yij = 0 and yij = 1. To select the branching variable, we use
reliability branching (as implemented in the SCIP library [1]), certainly one of the most
efficient branching rule available in general-purpose LP-based B&B MIP solvers (our
preliminary tests have confirmed this assessment; for more details on LP-based B&B
branching rules, see [2]).

2.5 Summary of the Algorithm

The algorithm is outlined as follows (the steps are commented below):

1. Initialize the upper bound Z∗ and the incumbent solution.

2. Initialize the node pool L with the root node.

3. Selection: Select the next node to evaluate in L and remove it from L.

4. Lower bound: Solve the LP relaxation at the current node:

(a) Find a pair of primal-dual solutions y, x and π, α by solving the RMP with
the dual simplex method.

Column generation:

(b) Pricing: For each arc (i, j), if
yij > 0 or (yij = 0 and fij−uijαij <

∑
k∈K d

k max{0,−(cij−πki +πkj +αij)}),
then for any k /∈ K̃ij such that cij − πki + πkj + αij < 0, add the flow variables
xkij to the RMP.

(c) If flow variables were added to the RMP, solve the new RMP by the primal
simplex method to obtain a pair of primal-dual solutions y, x and π, α; go to
step 4b.

(d) Let Z l be the lower bound obtained after the column generation procedure; if
y is integer and Z l < Z∗, then let Z∗ = Z l and store y, x as the new incumbent
solution.

(e) If Z l ≥ Z∗, then go to step 6.

Cut generation:

(f) Separation:For each arc (i, j) and for any k ∈ K̃ij such that xkij > dkyij, add
the corresponding strong inequalities to the RMP.

(g) If strong inequalities were added to the RMP:

i. Solve the new RMP by the dual simplex method to obtain a solution y, x
and a lower bound Z l.

ii. If y is integer and Z l < Z∗, then let Z∗ = Z l and store y, x as the new
incumbent solution.

7
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iii. If Z l ≥ Z∗, then go to step 6.

iv. Variable fixing: For each arc (i, j), if Z l + |f ij| ≥ Z∗, then fix yij to yij; if
some variables were fixed, go to step 4a.

v. Go to step 4b.

5. Branching: If Z l < Z∗, perform branching to generate two child nodes inserted in
L.

6. If L = ∅, stop the algorithm; otherwise, go to step 3.

In step 1, a feasible solution and an upper bound is obtained by any heuristic method
to solve the MCND; as mentioned in the Introduction, there are several effective heuristic
approaches that identify near-optimal solutions, even for large-scale instances. In step
2, the pool of B&P&C nodes, noted L, is initialized with the root node. In step 3, the
next node to evaluate is selected and removed from L; from our computational results,
we recommend the best-first selection rule (see Section 3). Step 4 contains the details
of the column-and-row generation procedure used at each node. The goal of step 4a is
to find an initial pair of primal-dual solutions to start the column generation procedure;
at the very beginning, artificial arcs are added and flow is sent along these arcs, while
subsequently, the dual simplex method is performed to take into account the effect of
the additional constraints derived by variable fixing and branching. Step 4b implements
the solution of the pricing subproblem to add flow variables with negative reduced cost
to the RMP. In case new flow variables have been added to the RMP, the next column
generation iteration proceeds; otherwise, the column generation procedure has converged,
which allows to identify a lower bound Z l. Steps 4d and 4e are the incumbent update
and the lower bound test, respectively, to be performed after the column generation
procedure. The separation problem for strong inequalities is then solved in step 4f. If
strong inequalities have been generated, the RMP with the added cuts is solved by the
dual simplex method in step 4(g)i, followed by the incumbent update and the lower bound
test in steps 4(g)ii and 4(g)iii, then by variable fixing in step 4(g)iv, after which the control
is transferred to the column generation procedure. In case no more strong inequalities
have been generated, the column-and-row generation procedure stops. Finally, step 5
performs the branching operation and step 6 verifies the termination of the B&P&C
algorithm, i.e., the node pool L is empty; we can also stop the algorithm when a time
limit has been reached.

2.6 Relationships to Other Decomposition Methods

In this section, we discuss the relationships between our B&P&C algorithm for the MCND
and other decomposition methods, both specific to the MCND and general ones. We first
consider the Lagrangian relaxation with respect to the flow conservation equations (2)
and the capacity constraints (3), where we associate with each set of constraints, La-
grange multipliers π and α ≥ 0, respectively. The corresponding Lagrangian subproblem

8
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decomposes by arc and can be written as follows, for each arc (i, j):

Zij(π, α) = min
∑
k∈K

(
cij − πki + πkj + αij

)
xkij + (fij − uijαij) yij (25)

0 ≤ xkij ≤ dkyij, k ∈ K, (26)

yij ∈ {0, 1}. (27)

The associated Lagrangian dual is:

max
π,α≥0

∑
k∈K

dk
(
πkO(k) − πkD(k)

)
+
∑

(i,j)∈A

Zij(π, α). (28)

To solve the Lagrangian subproblem, we consider the two possibilities, yij = 0 and
yij = 1. If yij = 0, the only feasible solution is to set all flow variables to 0, with an
objective function value equal to 0. If yij = 1, an optimal solution is obtained by setting
xkij = dk, if cij − πki + πkj + αij < 0, and xkij = 0, otherwise; the corresponding objective
function value is

∑
k∈K −max{0,−(cij − πki + πkj +αij)}dk + (fij − uijαij) . The optimal

solution is obtained by selecting the alternative with the smallest objective function
value; thus, the structure of any optimal solution ỹ, x̃ to the Lagrangian subproblem for
arc (i, j) is:

ỹij =


1, if

∑
k∈K −max{0,−(cij − πki + πkj + αij)}dk + (fij − uijαij) < 0,

0, if
∑

k∈K −max{0,−(cij − πki + πkj + αij)}dk + (fij − uijαij) > 0,
0 or 1, otherwise,

(29)

x̃kij =


dk, if ỹij = 1 and cij − πki + πkj + αij < 0,
0, if ỹij = 0 or (ỹij = 1 and cij − πki + πkj + αij > 0), k ∈ K.

0 or dk, otherwise,
(30)

We claim that the solution to the pricing subproblem presented in Section 2.2 corre-
sponds to one of these optimal solutions for π = π and α = α, in the sense that a flow
variable xkij is added to the RMP when this optimal solution satisfies x̃kij = dk.

Indeed, consider first the case yij > 0. We then have, for any k ∈ K, β
k

ij = −(cij −
πki +πkj +αij) ≥ 0 if xkij > 0, or β

k

ij = 0 if xkij = 0, by complementary slackness conditions

(20) and (23); this implies that β
k

ij = max{0,−(cij −πki +πkj +αij)}. By complementary
slackness condition (21), it follows that

fij − uijαij =
∑

k∈K d
kβ

k

ij − γij
=
∑

k∈K d
k max{0,−(cij − πki + πkj + αij)} − γij

≤
∑

k∈K d
k max{0,−(cij − πki + πkj + αij)}.

Therefore, when yij > 0, an optimal solution to the corresponding Lagrangian subprob-
lem with π = π and α = α is ỹij = 1 and, for any k ∈ K, x̃kij = dk, if cij−πki +πkj +αij < 0,
and 0, otherwise.
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Now, consider the case yij = 0; an optimal solution to the corresponding Lagrangian
subproblem with π = π and α = α is 1) ỹij = 1, if (fij−uijαij) <

∑
k∈K d

k max{0,−(cij−
πki + πkj +αij)} and, for any k ∈ K, x̃kij = dk, if cij − πki + πkj +αij < 0, and 0, otherwise;
or 2) ỹij = 0, if (fij − uijαij) ≥

∑
k∈K d

k max{0,−(cij − πki + πkj + αij)} and x̃kij = 0, for
all k ∈ K.

In both cases, we conclude that the pricing subproblem is equivalent to solving the
Lagrangian subproblem with π = π and α = α. Thus, the column-and-row generation
procedure can be interpreted as a solution method for the Lagrangian dual (28), where
the Lagrange multipliers are obtained by solving the restricted master problem (7)-(13).
While this approach is similar to Dantzig-Wolfe (DW) decomposition, it is fundamentally
different, in that DW decomposition is based on a reformulation of the problem in terms
of the (exponentially many) extreme points of the convex hull of the feasible solution set to
the Lagrangian subproblem. Our column-and-row generation procedure is in fact a special
case of the structured DW (SDW) decomposition framework presented in [13], which
encompasses DW decomposition by allowing other reformulations than the standard DW
one. The network design example used to illustrate the SDW decomposition in [13] is
based on reformulating general integer variables with binary variables, thus increasing
the size of the variable space from a polynomial number to a pseudo-polynomial number.
In contrast, our application of SDW to the MCND is working on the same formulation
as the original one, i.e., the “reformulation” is the original formulation itself, which has
a polynomial number of variables.

Our column-and-row generation procedure can also be seen as a special case of the
framework presented in [24] for solving large-scale LPs with so-called column-dependent-
rows, which are linking constraints (between two types of variables) that are “too many”
to be included in the model directly or that can only be known when all variables are
explicitly generated. Clearly, the strong inequalities (4) correspond to the first category
of column-dependent-rows, since they are linking the flow and the design variables, and
they are “too many”, although not exponentially many, as in most applications presented
in [24].

The Lagrangian interpretation of our column-and-row generation procedure allows us
to clarify its relationships to existing Lagrangian methods for the MCND. These methods
are based on two different Lagrangian relaxations: the so-called shortest path (or flow)
and knapsack relaxations. The first one relaxes both the capacity constraints (3) and the
strong inequalities (4), leading to a Lagrangian subproblem that decomposes into a set
of shortest path problems for each commodity and a problem in y variables solvable by
inspection [7, 8, 14, 15]. The second Lagrangian approach relaxes the flow conservation
equations (2); the corresponding Lagrangian subproblem decomposes by arc and, for
each arc, it consists in solving a continuous knapsack problem [7, 8, 15, 19, 22, 26].
In all these references, the Lagrangian dual is solved either by a subgradient approach
or by a bundle method, which is a generalized form of DW decomposition, where the
master problem is “stabilized” with the addition of a convex (usually quadratic) term
to the objective function [11]. Thus, our column-and-row generation procedure differs
from the existing Lagrangian methods in two aspects: first, both the flow conservation
equations (2) and the capacity constraints (3) are relaxed, so the resulting Lagrangian
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subproblem differs significantly from the shortest path relaxation, while it is similar to
the knapsack relaxation, but simpler, since it does not contain the capacity constraints;
second, the Lagrangian dual is solved by the column-and-row generation procedure, not
by subgradient or bundle methods. It is noteworthy that the master problem used in
bundle methods can be seen as a generalized form of the standard DW reformulation,
with exponentially many variables, while the master problem in our approach is nothing
but the original, compact, formulation.

Column(-and-row) generation methods for multicommodity flow problems are often
identified with the classical path-based model, where flow variables are represented by
paths between each O-D pair. In fact, for the MCND, the DW master problem associated
with the shortest path relaxation corresponds to the path-based model; thus, solving the
associated Lagrangian dual by a bundle method implicitly makes use of the path-based
formulation. The path-based model has also been used for solving the multicommodity
flow subproblems derived from fixing the design variables [22, 26], but also in sophisti-
cated heuristic methods [6, 21]. In particular, the column-and-row generation procedure
embedded in the capacity scaling approach of [21] is similar to ours, in that it uses a
cutting-plane procedure to generate strong inequalities, but is also different, since the
flow variables are represented by paths, not by arcs as in our approach.

3 Computational Results

This section presents computational results obtained by the B&P&C algorithm on a
publicly available set of 196 instances (the so-called “Canad” instances, see [12]) used
in several papers on the MCND (for instance [16, 18, 22]) and described in detail in
[8]. These problem instances consist of general transshipment networks with one com-
modity per origin-destination and no parallel arcs. Associated with each arc are three
positive quantities: the capacity, the transportation cost and the fixed design cost. These
instances are characterized by various degrees of capacity tightness, with regard to the
total demand, and importance of the fixed design cost, with respect to the transportation
cost.

The instances are divided into three classes. Class I (the “C” instances in [12]) consists
of 31 problem instances with many commodities compared to the number of nodes, while
Class II (the “C+” instances in [12]) contains 12 problem instances with few commodities
compared to the number of nodes. Class III (the “R” instances in [12]) is divided into two
categories, A and B, each containing nine sets of nine problem instances each. Each set
is characterized by the numbers of nodes, arcs, and commodities, which are the same for
the nine instances, and by instance-specific levels of capacity tightness and importance
of the fixed design cost. Class III-A (instances “R01” to “R09”) contains 72 small size
problem instances with 10 nodes (nine infeasible instances have been discarded), while
Class III-B (instances “R10” to “R18”) contains 81 medium to large size instances with
20 nodes. Table 1 gives the size of the instances in each class.

The B&P&C method is compared against two competitors: a state-of-the-art MIP
solver, CPLEX (version 12.3), and the B&C algorithm obtained by performing, at each
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Class I (31) Class II (12) Class III-A (72) Class III-B (81)
|N |, |A|, |K| |N |, |A|, |K| |N |, |A|, |K| |N |, |A|, |K|

20,230,40 (3) 25,100,10 (3) 10,35,10 (6) 20,120,40 (9)
20,230,200 (4) 25,100,30 (3) 10,35,25 (6) 20,120,100 (9)
20,300,40 (4) 100,400,10 (3) 10,35,50 (6) 20,120,200 (9)
20,300,200 (4) 100,400,30 (3) 10,60,10 (9) 20,220,40 (9)
30,520,100 (4) 10,60,25 (9) 20,220,100 (9)
30,520,400 (4) 10,60,50 (9) 20,220,200 (9)
30,700,100 (4) 10,85,10 (9) 20,320,40 (9)
30,700,400 (4) 10,85,25 (9) 20,320,100 (9)

10,85,50 (9) 20,320,200 (9)

Table 1: Classes and problem dimensions (number of instances in parentheses)

node of the B&C tree, a cutting-plane procedure that includes only the strong inequali-
ties as cuts. Each competing method is tested to verify two hypotheses: 1) the B&P&C
algorithm is competitive with a state-of-the-art MIP solver; 2) the column-and-row gen-
eration procedure is at least as efficient as the cutting-plane procedure, and more efficient
on large-scale instances with many commodities (in the order of 100). The initial model
given to CPLEX is the weak formulation, i.e., model (1)-(6) without the strong inequal-
ities (4), since including these inequalities in advance would give very poor performance.
CPLEX then generates its own cuts, which include, not surprisingly, flow cover inequal-
ities, but also other types of cuts. Both the B&C and the B&P&C algorithms are
implemented in C++ using the SCIP library [1]; the LP solver used in both algorithms is
also CPLEX (version 12.3). In both B&C and B&P&C, we use reliability branching, as
implemented in SCIP, while CPLEX uses its own default branching rule. All experiments
are performed on an Intel Xeon X5660 operating at 2.80 GHz under the Linux operating
system.

The goal of our experiments is to evaluate the performance of the B&P&C algorithm
in providing effective lower bounds; in particular, we wish to evaluate the efficiency of
the algorithm for proving the optimality of an already known optimal solution. Thus,
for both the B&P&C method and its competitors, we give as initial incumbent the best
known feasible solution for each problem instance, which is an optimal one for most of
them. When performing CPLEX, we consequently deactivate all features related to the
computation of feasible solutions. For all methods, we fix a “reasonable” CPU time limit
of 3 hours.

We first look at the results obtained at the root node. We expect CPLEX to deliver
better lower bounds than the strong relaxation bound computed by B&C and B&P&C,
because CPLEX can generate a large number of cuts of different types. This is indeed
the case, but it is interesting to assess the quality of the strong relaxation for various
types of instances; thus, for each problem instance, we measure the gap between the
strong relaxation bound and CPLEX lower bound. We are also interested in assessing
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Class Method Gap (%) CPU (s) CPU gain (%)

I
CPLEX 0 26.2 0

B&C 0.2 23.3 11
B&P&C 0.2 6.3 76

II
CPLEX 0 2.3 0

B&C 2.5 0.6 74
B&P&C 2.5 0.6 74

III-A
CPLEX 0 0.09 0

B&C 0.9 0.02 77
B&P&C 0.9 0.02 77

III-B
CPLEX 0 6.3 0

B&C 0.2 5.4 14
B&P&C 0.2 2.6 59

Table 2: Comparison of the methods at the root node

the efficiency of the three bounding methods, the cutting-plane procedure in CPLEX,
the cutting-plane approach that generates only the strong inequalities and our column-
and-row generation method; we therefore measure the CPU times obtained by the three
methods. We expect the last two approaches to be faster than CPLEX, which is indeed
the case. The average results for each class of problem instances are presented in Table 2.
Column “Class” corresponds to the class of problem instances; column “Method” relates
to the three methods, CPLEX, B&C and B&P&C; column “Gap” provides the average
percentage gap between the strong relaxation bound and CPLEX lower bound, which is
the best of the two for all problem instances; column “CPU” gives the average CPU time
in seconds for each method; finally, column “CPU gain” displays the average relative
gain in CPU time obtained by B&C and B&P&C over CPLEX.

These results show that the strong relaxation bound is very close (within 1% on
average) to the lower bound computed by CPLEX for problem instances in Classes I,
III-A and III-B. For Class II, the average gap between the strong relaxation bound and
CPLEX attains 2.5%. This is consistent with the results reported in [3], who show
that other inequalities than the strong ones, namely cover and flow cover inequalities,
are really useful only for instances in Class II, providing only minor improvements for
instances in the other classes. Note that, while Class II instances have few commodities
(no more than 30), most instances in Classes I and III-B have many commodities (at
least 100). For these two classes, the strong relaxation bound and CPLEX lower bound
are almost equal, with an average gap of 0.2%; the CPU times, however, are significantly
different: while the average relative gain for B&C is relatively modest (slightly more than
10%), it reaches more than 60% for B&P&C. These results are promising for the B&P&C
algorithm, since they suggest significant gains in efficiency for instances in Classes I and
III-B, especially for large-scale instances with hundreds of commodities. We verify this
hypothesis in the remainder of this section.
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To analyze the performance of the different approaches when branching is performed
and the enumeration trees are explored, we examine the impact of two classical selec-
tion rules, best-first and depth-first. In general, for any B&B algorithm, the best-first
search selection rule provides reliable results, independently of the problem instance be-
ing tested, since it displays two interesting features: 1) when the algorithm proves the
optimality of the solution within the time limit, the total number of nodes is generally
smaller than with other selection rules; 2) otherwise, if the algorithm is stopped pre-
maturely without proving the optimality of the solution, the lower bound is generally
tighter than with other selection rules. The first advantage vanishes, however, under two
conditions: a) the initial incumbent is an optimal solution; b) branching and bounding
operations provide the same output, irrespective of the selection rule; indeed, under con-
ditions a) and b), the total number of nodes is the same, independently of the selection
rule [20]. Thus, when the initial incumbent is close to an optimal solution, as in our
experiments, other selection rules become interesting alternatives to best-first search. In
particular, depth-first search has one advantage, when compared to best-first search: it
performs less backtracks, which implies faster reoptimization. Therefore, we have tested
the two selection rules, best-first and depth-first, for the three approaches, CPLEX, B&C
and B&P&C.

The performance analysis depends on the results obtained by the resulting six methods
for each problem instance. Table 3 presents the results obtained for the “Easy” instances,
which are those that are solved to optimality by the six methods, within the CPU time
limit of 3 hours. Column “Class” corresponds to the class of problem instances; column
“Method” relates to the six methods that result in combining CPLEX, B&C and B&P&C
with depth-first and best-first; columns “CPU”, “Nodes” and “Variables” display for each
method, respectively, the average CPU time in seconds, the total number of nodes and
the number of variables in the models.

These results show that depth-first search performs better than best-first search when
used with CPLEX, since the models generated by CPLEX do not vary with the selection
rule, as CPLEX generates cuts only at the root node of the tree. The assumption that
branching and bounding operations provide the same output, irrespective of the selection
rule, is then verified, which is confirmed by the fact that the number of nodes is almost
the same for the two selection rules. Because depth-first search performs less backtracks,
reoptimization is faster and the CPU times are better for depth-first search. For B&C and
B&C&P, the situation is different, since the formulations vary significantly depending on
the selection rule. For B&C, the two selection rules give similar results, while for B&P&C,
best-first search emerges as a clear winner.

For Class I instances, B&P&C-best is clearly better than any variant of CPLEX
and B&C; even though the total number of nodes is larger for B&P&C-best, the small
number of variables generated by the method (four times less than the others) more than
compensates, translating into an overall algorithm that is about two times faster than
the others, on average. For Class II instances, the situation is completely different: the
significantly better lower bounds computed by CPLEX lead to an enumerative approach
that is an order of magnitude faster than B&C and B&P&C. In addition, the reduction in
the number of variables does not payoff this time, since B&P&C is slower than B&C. For
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Class III-A instances, all methods are equally efficient with average CPU times around 2
seconds. Finally, for Class III-B instances, B&P&C-best is competitive with CPLEX: it
is slightly slower than CPLEX-depth, but faster than CPLEX-best. As observed for Class
I instances, the large number of nodes incurred by B&P&C is more than compensated by
the small number of variables generated by the method. Overall, these results point to the
conclusion that B&P&C performs well for large-scale problem instances with hundreds
of commodities.

Class Method CPU (s) Nodes Variables

I (12)

CPLEX-depth 845 1487 28942
CPLEX-best 1204 1487 28942
B&C-depth 1017 1657 29031
B&C-best 1013 1756 29031

B&P&C-depth 474 2352 6692
B&P&C-best 419 2062 6662

II (8)

CPLEX-depth 26 630 2676
CPLEX-best 30 627 2676
B&C-depth 327 6080 2693
B&C-best 322 5767 2693

B&P&C-depth 687 7966 1573
B&P&C-best 496 5870 1557

III-A (72)

CPLEX-depth 2 213 1822
CPLEX-best 2 215 1822
B&C-depth 2 285 1850
B&C-best 3 303 1850

B&P&C-depth 2 421 745
B&P&C-best 3 396 743

III-B (60)

CPLEX-depth 766 3516 19409
CPLEX-best 1051 3507 19409
B&C-depth 1114 15874 19510
B&C-best 1213 15926 19510

B&P&C-depth 901 21131 7739
B&P&C-best 855 16829 7733

Table 3: Results on “Easy” instances (number of instances in parentheses)

To verify this hypothesis, we focus on the “Easy” instances with at least 100 com-
modities, which are all taken from Classes I and III-B. Table 4 presents the average
results obtained on these instances; the columns have the same meanings as in Table 3.
On these 41 instances, we see that the total number of nodes is slightly increased when
B&P&C-best is performed, compared to CPLEX and B&C methods, but that the CPU
time is better, due to the fact that the number of variables is about three times less.

Next, we look at the results obtained with the “Difficult” instances, which are those
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Instances Method CPU (s) Nodes Variables

|K| ≥ 100 (41)

CPLEX-depth 1246 3150 29983
CPLEX-best 1733 3020 29983
B&C-depth 1580 2847 30128
B&C-best 1669 2826 30128

B&P&C-depth 1087 3722 11024
B&P&C-best 1015 3317 11013

Table 4: Results on Large-Scale “Easy” instances (number of instances in parentheses)

that are not solved by any of the six methods, within the 3-hour CPU time limit. Table 5
presents the results obtained for these instances. Only the best-first search variants of the
methods are presented, since depth-first search is not competitive in this case. Indeed,
because the enumeration is stopped within the time limit without proving optimality,
any selection rule that tends to explore the trees in a breadth-first manner, like best-
first search does, would deliver final lower bounds that are tighter than those obtained
by depth-first search. Thus, in column “Method”, we show only the three methods,
CPLEX, B&C and B&P&C with best-first search; columns “Gap”, “Nodes” and “Vari-
ables” display for each method, respectively, the average gap in percentage between the
lower and the upper bounds, the total number of nodes and the number of variables in
the formulations.

For instances in Classes I and III-B, B&P&C-best provides slightly better lower
bounds and final gaps, on average, than the other approaches. Indeed, within the 3-
hour time limit, the method explores about twice the number of nodes than CPLEX
does, which explains why the final gaps are smaller, in spite of the slightly less tight
lower bounds computed at the root node. The small number of generated variables ex-
plains the efficiency of the B&P&C method: the number of variables is roughly divided
by four for Class I instances and by two for Class III-B instances. For Class II instances,
CPLEX-best outperforms the other methods because of the quality of its lower bounds,
which is reflected in the final gaps. This is in spite of the fact that CPLEX-best explores
much less nodes (an order of magnitude less) than the other methods. B&C-best is more
efficient than B&P&C-best for these instances, since it is able to explore three times the
number of nodes and to reduce the final gaps. Again, these results suggest that B&P&C
performs well on instances with hundreds of commodities.

In Table 6, we focus on “Difficult” instances with at least 100 commodities, which
are all taken from Classes I and III-B; the columns have the same meanings as in Table
5. On these 31 instances, we see that the final gap is slightly better when B&P&C-best
is performed, compared to CPLEX-best and B&C-best, given that the total number of
nodes explored within the 3-hour time limit is significantly increased with B&P&C-best:
two times more than CPLEX-best and three times more than B&C-best. The number
of variables in the models is roughly divided by three when B&P&C is used.

In addition to the “Easy” and “Difficult” instances, there are nine other instances
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Class Method Gap (%) Nodes Variables

I (16)
CPLEX-best 0.9 6792 130563

B&C-best 0.9 3545 130805
B&P&C-best 0.7 14640 30364

II (2)
CPLEX-best 3.2 16517 8401

B&C-best 7.2 429172 8420
B&P&C-best 7.7 169185 6790

III-B (17)
CPLEX-best 1.3 9900 44966

B&C-best 1.4 10280 45123
B&P&C-best 1.3 18550 22353

Table 5: Results on “Difficult” instances (number of instances in parentheses)

Instances Method Gap (%) Nodes Variables

|K| ≥ 100 (31)
CPLEX-best 1.1 6065 91215

B&C-best 1.2 4004 91424
B&P&C-best 1.0 12235 27390

Table 6: Results on Large-Scale “Difficult” instances (number of instances in parentheses)

that are solved by at least one, but not all methods, within the 3-hour CPU time limit.
Of these nine instances, CPLEX-depth is able to solve to optimality seven of them, B&C-
depth two of them and B&P&C-depth three of them. Among these three instances solved
by B&P&C-depth, two of them are large-scale Class I instances that cannot be solved by
CPLEX-depth. These results confirm the efficiency of the B&P&C algorithm for solving
large-scale instances with hundreds of commodities.

4 Conclusions

In this paper, we have presented a B&P&C algorithm for the multicommodity capac-
itated fixed-charge network design problem. The restricted master problem solved at
each column generation iteration is obtained directly from the compact arc-based model
by considering only a subset of the commodity flow variables. The pricing subproblem
corresponds to a Lagrangian relaxation of the flow conservation and capacity constraints,
leaving in the Lagrangian subproblem only the strong inequalities. A cut generation step
based on strong inequalities is also performed. The resulting column-and-row generation
procedure is embedded within an enumerative scheme, giving rise to the overall B&P&C
algorithm. Our computational experiments show that the B&P&C performs well on
large-scale instances with hundreds of commodities. On such instances, the B&P&C
algorithm is generally more efficient than a state-of-the-art MIP solver and a B&C algo-
rithm that does not incorporate column generation.
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We have explored the relationships between our B&P&C algorithm and other de-
composition methods for the problem. Although we have clearly shown the interest of
our method by comparing it to a state-of-the-art MIP solver and a B&C algorithm,
it would be interesting to perform an extensive analysis of the relative performance of
the B&P&C algorithm when compared to other decomposition approaches, in particular
Lagrangian-based methods. As mentioned in Section 2.6, our algorithm is a special case
of the structured Dantzig-Wolfe framework, which has been applied to another multi-
commodity network design problem [13]. It would be interesting to extend the approach
further to other network design formulations.
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