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problem in an undirected graph. The algorithms are based on two approaches: a Benders 
decomposition algorithm and a branch-and-cut method. We also develop a hybrid 
algorithm that combines these two approaches. Two variants of each of the three resulting 
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1 Introduction

A dominating set in an undirected connected graph G = (V,E) is a set D ⊆ V such
that Γ(D) = V , where Γ(D) = D ∪ {j ∈ V |{i, j} ∈ E, i ∈ D}. The minimum
dominating set problem consists in finding a dominating set of minimum cardinal-
ity. A connected dominating set is a dominating set D such that the subgraph
G(D) = (D,E(D)) is connected, where E(D) = {{i, j} ∈ E|i ∈ D, j ∈ D}. The
minimum connected dominating set problem (MCDSP) consists in identifying a con-
nected dominating set of minimum cardinality.

The MCDSP is closely related to the maximum leaf spanning tree problem (ML-
STP), which consists in finding a spanning tree of G with as many leaves as possible
(see Lucena et al. (2010) for a review of the literature on the MLSTP). Indeed, given
a connected dominating set D, a spanning tree of G(D) can be easily identified. Such
a tree can be enlarged into a spanning tree of G, where all vertices in V \D are leaves.
Thus, for every connected dominating set D of G, a spanning tree of G with at least
|V | − |D| leaves can be efficiently found. In particular, if D is a minimum connected
dominating set, a spanning tree of G with the maximum possible number of leaves
results from the procedure outlined above.

Domination in graphs is a concept behind a growing number of applications found
in the literature. Early applications could be traced back to the location of radar
stations (Berge 1973) and a particular network communication problem described in
Liu (1968). Nowadays, applications can be found in areas as diverse as the spread of
technological innovations (Rogers 2003, Valente 1995), the marketing of new products
(Domingos and Richardson 2001, Goldenberg et al. 2001), failures in power systems
(Asavathiratham et al. 2001), Web graph problems (Cooper et al. 2005), the spread
of communicable diseases (Eubank et al. 2004, Stanley 2006) and helping to alleviate
social problems through social networks (Wang et al. 2011).

Applications that specifically involve MCDSP/MLSTP arise in the design of ad-
hoc wireless sensor networks, where network topologies may change dynamically (Bal-
asundaram and Butenko 2006). They could also be found in the design of defense
strategies against the attack of worms in peer-to-peer networks (Liang and Sencun
2007). Another recent application appears in Chen et al. (2010) and addresses the
design of fiber optics networks where regenerators of information may be required
at some network vertices (Chen et al. 2010). Regenerators, which are expensive
equipments, are necessary to boost information quality, degraded after traveling long
distances in cable. Finally, minimum connected dominating sets are also suggested
as models to investigate protein-protein interactions (Milenković et al. 2011).

For the MLSTP, polyhedral investigations are carried out in Fujie (2004), while
exact algorithms are developed in Fujie (2003) and Lucena et al. (2010). A branch-
and-bound algorithm is presented in Fujie (2003), where clever insights lead to the
efficient computation of the (relatively weak) corresponding linear programming (LP)
relaxation bounds. Two integer programming (IP) formulations are proposed in Lu-
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cena et al. (2010). The first one is based on a Steiner reformulation of the problem.
The second one considers the problem in a directed graph, seeking for a spanning ar-
borescence with as many leaves as possible. Although the lower bounds implied by the
former are stronger, better computational results are obtained with a branch-and-cut
method based on the latter. A heuristic method for the MLSTP is also suggested in
Lucena et al. (2010). This heuristic method and the Steiner reformulation proposed
in Lucena et al. (2010) are similar to those introduced in Chen et al. (2010) for the re-
generator location problem, these contributions being independently developed. For
the MCDSP, approximation algorithms are developed in Guha and Khuller (1998)
and Marathe et al. (1995). Additionally, a preliminary version of a branch-and-cut
algorithm, to be further investigated here, is described in Simonetti et al. (2011).

In this paper, we present two exact algorithms for the MCDSP, which rely on a
general formulation of the problem based on the following binary variables: yi = 1, if
i ∈ V belongs to a dominating set, 0 otherwise. The model can be stated as follows:

z = min
∑
i∈V

yi (1)

∑
j∈Γ({i})

yj ≥ 1, i ∈ V, (2)

connected(y) (3)

yi ∈ {0, 1}, i ∈ V. (4)

The objective function, (1), minimizes the number of vertices in any connected domi-
nating set. The cover inequalities, (2), define a dominating set. The generic constraint
(3) imposes the connectivity of the subgraph induced by y. The two exact algorithms,
a Benders decomposition approach and a branch-and-cut method, differ in the way
they handle the generic constraint (3). The Benders decomposition algorithm iter-
ates between: 1) the solution of a master problem defined by (1), (2) and (4), plus
a number of additional inequalities, thus providing a dominating set D induced by
y; and 2) the solution of a subproblem, represented by the generic constraint (3),
that verifies whether or not D is a connected subgraph and adds cuts to the master
problem accordingly. To represent constraint (3), the branch-and-cut algorithm uses
a classical spanning tree formulation that introduces additional edge-based variables
representing whether or not an edge belongs to a spanning tree for the subgraph
induced by y. In addition to these two methods, we also investigate a hybrid algo-
rithm that applies the Benders decomposition strategy, but builds an initial master
problem at each iteration by adding valid inequalities derived from the spanning tree
formulation, as in the branch-and-cut method.

We further exploit a basic property of connected dominating sets to devise an
iterative probing strategy that can be used in combination with any of the three
algorithms. This property simply states that if no connected dominating set of a given
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cardinality d > 0 exists, then there are no connected dominating set of cardinality
d − 1. We use this property within a simple iterative approach that starts with an
initial connected dominating set of cardinality d and attempts to find a connected
dominating set of cardinality d − 1; if no such set is found, the iterations stop with
the current best solution of cardinality d. At every iteration, we use any of our
three algorithms to find a connected dominating set of cardinality d− 1, thus giving
rise to the iterative probing variants of each of the three algorithms. To summarize,
we present and compare six exact algorithms for the MCDSP: the stand-alone and
iterative probing variants of the Benders decomposition, the branch-and-cut and the
hybrid methods.

The paper is organized as follows. In Section 2, we give the details of the iterative
probing strategy. In Section 3, we present the Benders decomposition method, while
the branch-and-cut algorithm is the topic of Section 4. Section 5 describes the hybrid
algorithm. Computational results are reported in Section 6. We conclude the paper
in Section 7.
Notation. We use the following notation throughout the paper: let G = (V,E) be
a connected undirected graph and P(V ) = {S ⊂ V |S 6= ∅} be the collection of all
proper subsets of V ; for any S ∈ P(V ), we denote by S its complement V \ S and
by Γ(S) = S ∪ {j ∈ V |{i, j} ∈ E, i ∈ S} its closed neighborhood (when S = {i},
we write Γ({i}) = Γ(i)); D = {S ∈ P(V )|Γ(S) = V } and D = P(V ) \ D are the
collections of all dominating sets and all non-dominating sets of G, respectively; for
any S ∈ P(V ), we denote by G(S) = (S,E(S)) the subgraph induced by S, where
E(S) = {{i, j} ∈ E|i ∈ S, j ∈ S}; C ⊆ P(V ) and C = P(V ) \ C are the collections of
all proper subsets of V that induce a connected subgraph and a disconnected subgraph
of G, respectively.

2 Iterative Probing Strategy

The iterative probing strategy is based on the following property:

Proposition 1 If there exists a connected dominating set of cardinality d < |V |, then
there exists a connected dominating set of cardinality d + 1.

This property is trivial to show. Assume there exists a connected dominating set D
of cardinality d < |V |; by adding any vertex in V \ D, we then obtain a connected
dominating set of cardinality d+1. As a direct consequence of this property, we have:

Corollary 2 If there are no connected dominating set of cardinality d + 1 > 1, then
there are no connected dominating set of cardinality d.

Given a connected dominating set of cardinality d + 1 > 1, the iterative probing
strategy simply looks for a connected dominating set of cardinality d. If there is no
such set, the algorithm stops. Otherwise, a connected dominating set of cardinality
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d is obtained; at the next iteration, the algorithm looks for a connected dominating
set of cardinality d − 1. More formally, the iterative probing strategy can be stated
as follows:

1. Find a connected dominating set D; let d + 1 = |D|. If d = 0, then stop: D is
the optimal solution of value d + 1.

2. Probing: Try to find a connected dominating set of cardinality d.

3. If no connected dominating set has been found, then stop: D is the optimal
solution of value d + 1.

4. Let D be the connected dominating set just found; let d + 1 = |D| and return
to step 2.

Under the assumption that the decision problem in step 2 is solved exactly, this
strategy provides an optimal solution to the MCDSP, by virtue of Corollary 2. At
the first step of this strategy, the case d = 0 is easy to verify, prior to the solution
of any problem instance, by checking the condition |Γ(i)| = |V | for some i ∈ V ;
whenever this is the case, the minimum connected dominating set contains only one
element and the problem is trivially solved.

To solve the decision problem in step 2, we add to the general formulation (1)-(4)
the following d-cut equation: ∑

i∈V

yi = d. (5)

The corresponding decision problem, called the d-CDSP, can be solved by any of the
three methods described in the next sections: the Benders decomposition algorithm
(see Section 3), the branch-and-cut algorithm (see Section 4) or the hybrid algorithm
(see Section 5).

3 Benders Decomposition Algorithm

The general strategy in Benders decomposition is to alternate between solving a
master problem and a so-called Benders subproblem. In the master problem, some
constraints of the original problem are relaxed, which induces a lower bound on the
optimal objective function value. In our case, the generic constraint connected(y)
is relaxed and the master problem is defined by (1), (2), (4) and additional con-
straints, called Benders cuts. Given a solution to the master problem, the Benders
subproblem attempts to identify a solution that satisfies all the constraints. Here,
the solution y to the master problem induces a dominating set D and a subgraph
G(D) = (D,E(D)) for which we verify the connectivity, thus attempting to enforce
the constraint connected(y). Determining the connectivity of G(D) can be performed
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in O(|E(D)|) by a graph traversal algorithm. If G(D) is connected, we obtain an up-
per bound on the optimal objective function value and the algorithm stops, since
the lower and upper bounds are equal. Otherwise, the solution y is not feasible and
so-called Benders feasibility cuts are generated and added to the master problem to
be solved at the next iteration.

As mentioned above, the existence of a dominating set of cardinality 1 can be
easily verified by checking the condition |Γ(i)| = |V | for some i ∈ V . Provided such
a set does not exist, the cover inequalities (2) can be strengthened as follows:∑

j∈Γ(i)\{i}

yj ≥ 1, i ∈ V. (6)

This simple modification allows to avoid trivial master problems at the initial stages
of the algorithm.

3.1 Benders Cuts

In Benders decomposition, the classical way of cutting a feasible solution of value zu

is simply to impose the constraint that the objective function value should be strictly
less than zu. In our case, since the objective function value is integer, this constraint
can be written as: ∑

i∈V

yi ≤ zu − 1. (7)

This optimality cut is added to the master problem when solving the MCDSP. The
value zu is determined by the heuristic methods described in Appendix A.

Let D be the dominating set found when solving the Benders master problem;
when the subgraph induced by D is not connected, at least one vertex in D ≡ V \D
must be included in any minimum connected dominating set, yielding the feasibility
cut: ∑

i∈D

yi ≥ 1. (8)

Since there is a finite number of such cuts and, eventually, all disconnected dom-
inating sets would be discarded by adding these cuts, the algorithm converges to an
optimal solution to the MCDSP. This type of feasibility cuts arise naturally in the
so-called logic-based and combinatorial Benders decomposition frameworks (Codato
and Fischetti 2006, Hooker and Ottosson 2003).

Because the resulting algorithm is convergent, it suggests a mathematical pro-
gramming formulation for the MCDSP, obtained by adding to (1), (4) and (6) the
following constraints, called cut inequalities:∑

i∈S

yi ≥ 1, S ∈ C, (9)
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where C, as indicated above, is the collection of all proper subsets of V that induce
disconnected subgraphs. This formulation is similar to one of the models proposed
by Fujie (2004) for the MLSTP.

The cut inequalities are in general weak, since many disconnected sets require
much more than one extra node to become connected. In order to characterize
stronger versions of the cut inequalities, we introduce the notion of a minimally dis-
connected set, which is a set of vertices T ⊂ V that induces a disconnected subgraph,
but such that there exists one vertex j ∈ T for which G(T ∪ {j}) is connected. Any
cut inequality associated to a disconnected, but not minimally disconnected, set S is
dominated by at least one cut inequality associated to a minimally disconnected set
T . Indeed, from any set S ∈ C, it is easy to derive a minimally disconnected set T that
generates a tighter cut inequality. To this purpose, it suffices to solve a shortest chain
problem with unit lengths in the graph obtained by shrinking all connected compo-
nents of S. One of the shrunk nodes (connected components) is arbitrarily declared
as the source, while all other shrunk nodes are the sinks. Solving the shortest chain
problem with unit lengths in this graph (which can be performed in time O(|E|))
provides the minimum number of vertices, say mS, that must be added to S in order
to obtain a connected subgraph of G. By removing any of the added vertices, we
define a minimally disconnected set T . Since

∑
i∈S yi ≥

∑
i∈T yi ≥ 1, the cut inequal-

ity associated to the minimally disconnected set T dominates that associated to the
disconnected set S, i.e.,

∑
i∈T yi ≥ 1 is a lifting of the cut inequality corresponding

to S. This implies a second formulation for the MCDSP, where the cut inequalities
are restricted to minimally disconnected sets. Let C1 = C ∩ {S ∈ P(V )|mS = 1}, the
collection of minimally disconnected sets; the model is then defined by adding to (1),
(4) and (6), the following lifted cut inequalities:∑

i∈S

yi ≥ 1, S ∈ C1. (10)

In the framework of combinatorial Benders decomposition (Codato and Fischetti
2006), our notion of minimally disconnected set corresponds to the concept of minimal
infeasible subsystem.

Thus, given a disconnected dominating set D obtained when solving the Benders
master problem, one can derive a minimally disconnected set through the shortest
chain algorithm outlined above and generate a corresponding lifted cut inequality.
This algorithm would follow the framework of combinatorial Benders decomposition
(Codato and Fischetti 2006). For the MCDSP, we can improve this algorithm by
using the following result, which implies that the lifted cut inequalities can be further
tightened:

Proposition 3 Let S ∈ C and mS be the minimum number of vertices that must be
added to S to obtain a connected subgraph of G. The following inequality is valid for
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the MCDSP: ∑
i∈S

yi ≥ mS. (11)

Proof: There are two possibilities for S:
1) S is a dominating set, in which case mS is the smallest number of vertices required
to enlarge S to obtain a connected, and therefore a connected dominating, set; thus,
the result follows.
2) S is not a dominating set, in which case mS is the smallest number of vertices
required to enlarge S to obtain a connected set; mS is therefore a lower bound on the
number of vertices required to enlarge S to obtain a connected and dominating set
for G. The result thus follows. 2

This proposition implies a third formulation for the MCDSP, obtained by adding
to (1), (4) and (6), the following strengthened cut inequalities:∑

i∈S

yi ≥ mS, S ∈ C. (12)

Given a disconnected dominating set D obtained when solving the Benders master
problem, one can compute mD through the shortest chain algorithm outlined above
and generate a corresponding strengthened cut inequality. Clearly, this inequality
dominates the associated lifted cut inequality. Indeed, let U ⊆ D be the set of
vertices removed from D to obtain a minimally disconnected set D \ U to generate
the lifted cut inequality. By definition of U and mD, we have mD = 1 + |U |. Thus,∑

i∈D yi ≥ mD ≥ 1 +
∑

i∈U yi, which implies
∑

(D\U) yi ≥ 1, the lifted cut inequality.
Thus, for the MCDSP, we are able to generate stronger feasibility cuts than the

ones derived in the combinatorial Benders framework. As seen below, the strength-
ened cut inequalities are instrumental for the algorithm to obtain efficient computa-
tional results. Also, since these cuts can be derived independently of the particular
Benders decomposition algorithm that we developed, they can be used in other meth-
ods; we will use them in our branch-and-cut algorithm presented in Section 4.

3.2 Outline of the Algorithm

In this section, we give an outline of the stand-alone variant of the Benders decom-
position algorithm; the iterative probing variant of the same algorithm is described
in Section 3.3. The algorithm solves the model defined by (1), (4), (6) and (12). The
optimality cut (7) is also added.

To initialize the algorithm, we perform the heuristic method described in Appendix
A, followed by the application of the strengthening procedure to be described in
Section 3.3. We thus obtain a connected dominating set D of value zu = |D|, which
is used in the optimality cut (7). The Benders decomposition algorithm can be
outlined as follows:

7

Benders Decomposition, Branch-and-Cut and Hybrid Algorithms for the Minimum Connected Dominating Set Problem

CIRRELT-2012-76



1. Find a connected dominating set D of value zu; if zu = 1, then stop: D is the
optimal solution.

2. Solve the Benders master problem.

3. If no feasible solution has been found, then stop: D is the optimal solution of
value zu.

4. Otherwise, let D be the dominating set just found; if D is a connected domi-
nating set, then stop: D is the optimal solution.

5. If D is not connected, generate a strengthened feasibility cut and return to step
2.

3.3 Iterative Probing Variant

At every step of the iterative probing strategy, we can perform the Benders decompo-
sition algorithm outlined above by simply adding to the master problem formulation
the d-cut equation (5). We can, however, further improve the performance of the
iterative probing variant of Benders decomposition by generating, instead of the cut
on the objective function (7), which is implied by the d-cut equation (5), another
form of optimality cut that mirrors the feasibility cut. If the subgraph induced by D
is connected, then, in order to find an improving connected dominating set, we must
exclude D from further consideration, which can be done by requiring at least one
vertex in D to be excluded from an optimal solution, yielding the following cut:∑

i∈D

yi ≤ |D| − 1. (13)

This constraint is implied by the d-cut equation (5), since d = |D| − 1. Hence, this
weaker version of the optimality cut is never added to the master problem. However,
it is possible to efficiently derive from it a strengthened cut as follows. If, for each
vertex i ∈ D, removing i from D yields a disconnected subgraph, the right-hand side
can then be replaced by |D|−2, since in this case, we know there cannot be a feasible
solution obtained by removing any single vertex in D. Likewise, if, for each vertex
i ∈ D, removing i from D yields a non-dominating subgraph, the right-hand side can
also be replaced by |D|−2, since in this case also, there cannot be an optimal solution
obtained by removing any single vertex in D.

The strengthening procedure thus scans each vertex i ∈ D to verify if D \ {i}
is a connected dominating set; therefore, it can be performed in time O(|D||E|).
After scanning the vertices in D, if we determine that removing i from D yields a
disconnected or a non-dominating subgraph for each vertex i ∈ D, we then generate
the strengthened optimality cut: ∑

i∈D

yi ≤ |D| − 2. (14)
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If, for some vertex i ∈ D, D \ {i} is a connected dominating set, we have identified
a feasible solution of value d = |D| − 1. We immediately stop checking the condition
for the other vertices in D; instead, we restart the strengthening procedure with
D \ {i} in place of D. As a result, the strengthening procedure will always terminate
with a strengthened optimality cut (associated to D or to a subset of D defining a
connected dominating set), potentially generating a series of successively improving
feasible solutions along the way.

It is worth noting that it suffices to maintain at most one strengthened optimality
cut over the whole course of the algorithm. Indeed, let us assume that the Benders
master problem at the current iteration includes the d-cut equation (5), with right-
hand side d = |D| − 1, as well as the strengthened optimality cut (14). Assuming
the problem is feasible, we then obtain a dominating set D′ of cardinality d. If D′ is
disconnected, a feasibility cut is generated, but no optimality cut. If D′ is connected,
we update the d-cut equation

∑
i∈V yi = d− 1 = |D′| − 1 = |D| − 2, which dominates

the strengthened optimality cut
∑

i∈D yi ≤ |D| − 2. The latter can therefore be
removed and possibly replaced by another one of the form

∑
i∈D′′ yi ≤ |D′′| − 2,

where D′′ ⊆ D′.
Note that the strengthened optimality cut (14) dominates the Benders feasibility

cut associated to each disconnected set D \ {i}. Each such set is minimally discon-
nected, since D is connected; the Benders feasibility cut has the form

∑
j∈(D\{i}) yj ≥

1. This inequality is implied by the d-cut equation
∑

j∈V yj = |D| − 1 and the
strengthened optimality cut, since

∑
j∈(D\{i}) yj =

∑
j∈V yj−

∑
j∈D\{i} yj =

∑
j∈V yj−∑

j∈D yj + yi ≥ (|D| − 1)− (|D| − 2) + yi ≥ 1.
The iterative probing variant of the Benders decomposition algorithm follows the

stand-alone variant, with a few exceptions. First, the optimality cut (7) is replaced
by the d-cut equation (5) for which we gradually decrease the right-hand side; a
strengthened optimality cut of the form (14) is also added to the Benders master
problem. The heuristic method described in Appendix A is performed to provide
a connected dominating set D of value |D| = d + 1, which is used to initialize the
d-cut equation (5). In addition, we apply the strengthening procedure to this initial
connected dominating set D. Since D is a feasible solution, but not necessarily a
minimum dominating set, the strengthening procedure might generate an improved
feasible solution, as well as an initial strengthened optimality cut of the form (14),
which is added to the Benders master problem. The initial Benders master prob-
lem thus contains the d-cut equation (5) and the strengthened optimality cut (14)
associated to the best connected dominating set D found so far.

The iterative probing variant of the Benders decomposition algorithm can be
outlined as follows:

1. Find a connected dominating set D; if |D| = 1, then stop: D is the optimal
solution.

2. Apply the strengthening procedure; add the resulting strengthened optimality
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cut to the Benders master problem; if a new connected dominating set D has
been found, let d = |D|−1 and update the right-hand side of the d-cut equation.

3. Solve the Benders master problem.

4. If no feasible solution has been found, then stop: D is the optimal solution.

5. Let D be the dominating set just found; if D is a connected dominating set:

(a) Let d = |D| − 1 and update the right-hand side of the d-cut equation.

(b) Apply the strengthening procedure; add the new strengthened optimality
cut to the Benders master problem; if a new connected dominating set D
has been found, let d = |D|−1 and update the right-hand side of the d-cut
equation.

6. If D is not connected, generate a strengthened feasibility cut and return to step
3.

4 Branch-and-Cut Algorithm

The branch-and-cut algorithm is based on a particular representation of the generic
constraint connected(y) as linear inequalities, namely, a representation that defines a
spanning tree of the subgraph of G induced by y. Denote by G(D) such a subgraph,
D ⊂ V being its vertex set. Additionally, define xe = 1, if edge e ∈ E belongs to a
spanning tree of G(D), 0 otherwise. Finally, consider a polyhedral region P0 defined
by inequalities (2) and the following constraints, that characterize a spanning tree of
G(D): ∑

e∈E

xe =
∑
i∈V

yi − 1, (15)

∑
e∈E(S)

xe ≤
∑

i∈S\{j}

yi, S ∈ P(V ), j ∈ S, (16)

0 ≤ xe ≤ 1, e ∈ E, (17)

0 ≤ yi ≤ 1, i ∈ V. (18)

A formulation for the MCDSP (Simonetti et al. 2011) is thus given by:

z = min {
∑
i∈V

yi|(x, y) ∈ P0 ∩ (R|E|
+ , {0, 1}|V |)}. (19)

One classical approach for strengthening the LP relaxation of an IP model consists
in identifying structures in the formulation and then appending valid inequalities for
each structure into the original model. Our formulation embeds two basic structures.
Denoting by T the polyhedral region defined by (15)-(18), the first one, i.e., the tree
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polytope, is defined as the convex hull of {(x, y) ∈ T ∩ (R|E|
+ , {0, 1}|V |)}. Likewise,

denoting by S the polyhedral region defined by (2) and (18), the second structure,
i.e., the set covering polytope, is defined as the convex hull of {y ∈ S ∩ {0, 1}|V |}.
Facet-defining inequalities for the set covering polytope are notoriously difficult to
separate (Borndörfer, R. 1998). In the sequel, we show how P0 can be strengthened
by other means, using problem specific arguments.

4.1 Valid Inequalities

The cover inequalities (2) can be lifted to∑
j∈Γ(i)

yj −
∑

e∈E(Γ(i))

xe ≥ 1, i ∈ V. (20)

To show that (20) is valid for the MCDSP, consider a connected dominating set D
and a vertex i ∈ V . Since |D ∩ Γ(i)| ≥ 1 and since the edges in E(D) selected to
span the set form a tree, we have that the number of selected edges in E(Γ(i)) must
be at most |Γ(i)| − 1 (otherwise, there would be at least one cycle in the solution).
Note that this strengthened version of (2) implies the cover constraints (6) used in
the Benders decomposition approach.

From another standpoint, constraints (20) can be viewed as a strengthened ver-
sion of the generalized subtour elimination constraints, or GSECs, (16). To verify
that, let S = Γ(i), for which the corresponding GSEC reads as:

∑
e∈E(Γ(i)) xe ≤∑

j∈Γ(i)\{k} yj, k ∈ Γ(i). Since at least one vertex in Γ(i) must be chosen, the latter

can be replaced by the stronger form
∑

e∈E(Γ(i)) xe ≤
∑

j∈Γ(i) yj−1, which is precisely

(20).
Replacing inequalities (2) with those in (20) lead to substantial improvements in

LP relaxation bounds. For some test instances, particularly those defined over very
sparse graphs, LP bounds increased by as much as 90%.

Let us now introduce a lifting for another type of GSEC that follows from the
same type of arguments used above to obtain stronger cover inequalities. Assume
that, among the vertices in a particular set S ∈ P(V ), at least one vertex must be
included in a connected dominating set. In particular, this is true whenever S is
non-dominating or disconnected, i.e., S ∈ D or S ∈ C. Thus, GSECs (16) can be
replaced by the stronger version:∑

e∈E(S)

xe ≤
∑
j∈S

yj − 1, S ∈ D ∪ C. (21)

For S ∈ C, we also make use of the strengthened cut inequalities (12), derived as
Benders feasibility cuts in Section 3.1.

Another valid inequality for the MCDSP can be derived by observing that, when-
ever S and its complement S are both non-dominating, at least one edge in E(S, S) =
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{{i, j} ∈ E|i ∈ S, j ∈ S} (i.e., the edges in the cut implied by S) must be chosen.
This is true since the vertices in a connected dominating set cannot be exclusively
confined to S or to S. More formally, we have:∑

e∈E(S,S)

xe ≥ 1, S ∈ D, S ∈ D. (22)

A particular case of inequalities (22) arises when Γ(i) ∩ Γ(j) = ∅ for a given pair of
vertices i, j ∈ V . Under these conditions, it is immediate to verify that any cutset
E(S, S) separating Γ(i) and Γ(j) implies a valid inequality of the type (22).

Separating (22) for the particular case highlighted above is not difficult. To il-
lustrate it, assume that an LP relaxation of formulation (19) is available together
with its corresponding support graph. After gluing together the vertices respectively
found in Γ(i) and Γ(j), super vertices i and j would result in the support graph. In
doing so, when applicable, multiple edges between two given end nodes are replaced
by a single edge. Additionally, the weight of that edge is set equal to the sum of the
weights of the edges that imply it. It thus follows that determining the maximum
flow between super vertices i and j identifies a minimum capacity cut between Γ(i)
and Γ(j) and therefore solves the separation problem.

In order to evaluate the benefits of such separation scheme, we keep a list with
all pairs of vertices i and j such that Γ(i) ∩ Γ(j) = ∅. During each LP relaxation at
the root node of the enumeration tree, we identify, as described above, the minimum
cut separating Γ(i) and Γ(j), for each pair i, j in the list. The impact of adding cuts
identified this way into the LP relaxation at the root node is, however, quite small.
Therefore, we actually do not use such a separation procedure in the final version of
our branch-and-cut algorithm.

Finally, inequalities (22) can be generalized whenever V is partitioned into sub-
sets (S1, . . . , Sk), for k ≥ 2, where Sl, for any l ∈ {1, . . . , k}, satisfies the following
conditions: (1) Sl ∈ D and (2) Sl ∩ S 6= ∅, for any S ∈ D. Under these conditions,
the following inequality is valid for P0:∑

e∈E(S1,...,Sk)

xe ≥ k − 1, (23)

where E(S1, . . . , Sk) is the set of edges with endpoints in different partition sets.
These inequalities relate to the Steiner partition facets introduced in Chopra and
Rao (1994a,b) and are not easy to separate exactly. However, as described below, we
have devised a simple separation heuristic for them.

Preliminary computational results for the formulations described in this section
appeared in Simonetti et al. (2011). In that reference, the LP relaxation bounds are
obtained by optimizing the objective function over polytope P1 = P+

0 ∩{(22)}, where
P+

0 corresponds to P0 with the stronger cover inequalities (20) being used instead
of (2). In Section 6, these results are compared with stronger bounds obtained by
optimizing over polytope P+

1 = P1 ∩ {(12), (21) and (23)}.
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4.2 Outline of the Algorithm

The branch-and-cut algorithm is initialized by generating an upper bound with the
heuristic described in Appendix A. The strengthening procedure of Section 3.3 is
then applied in an attempt to improve the feasible solution thus obtained and to
generate a strengthened optimality cut (14). In addition, the strengthening procedure
is called every time the branch-and-cut algorithm generates a feasible solution. A
new strengthened optimality cut (14) is then added to the model. Furthermore, this
optimality cut is also stored in a cut pool to ensure that the cut is available for use
at the nodes to be explored after backtracking.

Valid dual bounds are obtained by first solving the LP relaxation of

min {
∑
i∈V

yi|(x, y) ∈ P ∩ (R|E|
+ , {0, 1}|V |)}, (24)

P being the polyhedral region defined by (15), (20) and

xe ≤ yi, xe ≤ yj, e = {i, j} ∈ E, (25)

where (25) naturally follow from the GSECs corresponding to S = {i, j}, i, j ∈ V ,
i 6= j. Let (x, y) be an optimal solution to this model and G = (V ,E) be the support
subgraph it implies for G, i.e., V = {i ∈ V |yi > 0} and E = {e ∈ E|xe > 0}. If (x, y)
is integer and there is no GSEC (16) violated by it, the solution is optimal for the
MCDSP. Otherwise, one should attempt to reinforce the relaxation by appending to
it valid inequalities that are violated by (x, y).

The exact separation of GSECs can be efficiently carried out in O(n4) time com-
plexity Padberg and Wolsey (1983), via a maximum flow-minimum cut algorithm.
However, for the solution algorithms investigated in this paper, GSECs are not sep-
arated exactly, since in terms of overall branch-and-cut running times, it proves
more advantageous to only separate GSECs heuristically, through a procedure de-
scribed below. In spite of that, for comparison purposes, corresponding values of
min{

∑
i∈V yi|(x, y) ∈ P+

0 }, min{
∑

i∈V yi|(x, y) ∈ P1} and min{
∑

i∈V yi|(x, y) ∈ P+
1 }

obtained under the exact separation of GSECs, are reported in Section 6.1.
Our heuristic separation of GSECs is carried out as follows. First, the edges in E

are sorted in non-increasing order of their xe values. Then, a maximum cardinality
forest of G is computed through Kruskal algorithm Kruskal (1956). Preference for
entering the solution is given to edges with higher xe values. In accordance with
Kruskal algorithm, each edge entering the solution merges two connected components
into a larger one. In this process, for every new connected component being formed,
their vertices are checked for GSEC violation. The procedure stops after a maximum
cardinality forest is obtained.

Although driven for separating GSECs, the heuristic outlined above is also used
to separate additional families of valid inequalities. This is carried out right after
an edge inclusion operation is performed by the heuristic. Accordingly, let S be the
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vertex set for the connected component thus obtained, where S is its complement
in V . Sets S and S are then checked for violation of strengthened GSECs (21),
strengthened feasibility cuts (12), and cutsets (22). More precisely, if S ∈ D, at least
one vertex in S must be part of any connected dominating set and therefore S implies
a valid lifted GSEC inequality (21) that should be checked for violation. Moreover,
if S ∈ C, the value of mS should be computed and the inequality (12) implied by S
should be checked for violation. Finally, if S and S belong to D, violation of (22)
should be checked. Furthermore, if S ∈ C also applies, the cut inequality is lifted
into a k-partition inequality (23). If no violated inequality is found by the heuristic,
branching on variables is implemented.

4.3 Iterative Probing Variant

At each step of the iterative probing strategy, the branch-and-cut algorithm is per-
formed to solve the decision problem obtained by appending the d-cut equation (5)
to the model. When a feasible solution of value d is obtained, the branch-and-cut
algorithm is stopped. A new step of the iterative probing strategy is then performed.
First, the strengthening procedure is applied in an attempt to improve the current
feasible solution of value d. Then, the model is initialized with the updated d-cut
equation and all the cuts generated so far, except GSECs (16). Finally, the branch-
and-cut algorithm for solving the new decision problem is performed.

Valid inequalities used to strengthen the formulation are the same as those used
in the stand-alone version of the branch-and-cut algorithm. Accordingly, at every
iterative probing solution round, inequalities (12), (16), and (21) to (23) are separated
as described above.

5 Hybrid Algorithm

Our computational results, to be presented in Section 6, show that the branch-and-
cut algorithm outperforms the Benders decomposition method on sparse instances,
while the Benders decomposition algorithm is much faster on dense instances. This
observation motivated the development of a hybrid algorithm that attempts to com-
bine the best features of the two approaches. Indeed, the relaxations built by the
branch-and-cut algorithm for sparse instances are extremely good, while the Benders
decomposition algorithm improves the feasible solutions quickly for dense instances.

The hybrid algorithm therefore implements a Benders decomposition algorithm,
but builds stronger restricted master problems by performing the separation of valid
inequalities (12), (16), and (21) to (23), when solving the root node of every Benders
master problem. More precisely, from one Benders iteration to the next, all the cuts
generated so far are kept in the Benders master problem, while additional cuts can
be generated at the root node. Thus, at each iteration of the hybrid algorithm,
the Benders master problem is solved by a cut-and-branch algorithm, where the
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master problem at the root node is initialized with all the cuts generated at previous
iterations. In the stand-alone version of the hybrid algorithm, the main loop of the
Benders decomposition algorithm is performed until an optimal solution is found (see
Section 3.2).

The iterative probing version of the hybrid algorithm proceeds in a similar way.
The separation of valid inequalities is conducted at the root node of every Benders
master problem and the generated cuts are kept for subsequent master problems. The
main loop of the iterative probing variant of the Benders decomposition method is
then performed (see Section 3.3).

6 Computational Experiments

In this section, we empirically evaluate the six exact solution algorithms presented
in this paper: the stand-alone (SABC) and iterative probing (IPBC) branch-and-cut
algorithms, the stand-alone (SABE) and iterative probing (IPBE) Benders decompo-
sition algorithms and the stand-alone (SAHY) and iterative probing (IPHY) hybrid
algorithms. All algorithms were implemented in C and computational experiments
were carried out on a 2.0 GHz Intel XEON E5405 machine with 8 Gbytes of RAM
memory. Search tree management for SABC and IPBC was enforced via the callback
routines of the mixed-IP solver XPRESS, release 19.00. The enumeration strategy
implemented for these two algorithms was best-first search. For the Benders decom-
position algorithms, the MIP module of XPRESS was used, under default settings, to
solve the Benders master problems.

The MLSTP/MCDSP instances used in our experiments were introduced in Lu-
cena et al. (2010). They are associated with graphs G = (V,E) with densities ranging
from 5% to 70% and number of vertices n ∈ {30, 50, 70, 100, 120, 150, 200}. At most
one test instance exists for every possible combination of n and d and therefore any
given instance is clearly identified in our tables as n d. For each of these instances,
every solution algorithm was allowed to run for at most 3600 CPU seconds. When-
ever that limit was reached and optimality had not been proven, the instance was left
unsolved by the corresponding algorithm.

6.1 Linear Programming Lower Bounds

Table 1 presents a number of different LP relaxation bounds for the MCDSP and
the MLSTP. Entries in the first column identify the test instances. This is followed,
in the next three columns, by MCDSP LP relaxation bounds respectively implied
by polytopes P+

0 , P1 and P+
1 . For the computation of these three bounds, we first

call the separation heuristic for GSECs outlined above. Therefore, not only GSECs,
but also inequalities (12) and (21)-(23) are separated. If no violated cut is found by
the heuristic, the exact separation of GSECs, through minimum cut algorithms, is
carried out next. During the application of the GSEC exact separation procedure in
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Padberg and Wolsey (1983), each vertex set (and its complement) that results from
a minimum cut computation is checked (when applicable) for the violation of (12)
and (21)-(23). Therefore, the LP relaxation bounds quoted for P1 and P+

1 represent
a lower bound on the values that would otherwise be obtained if exact separation
were used. Entries in the following two columns give LP relaxation bounds for the
two different MLSTP reformulations investigated in Lucena et al. (2010), namely,
the directed graph (DGR) reformulation and the Steiner tree reformulation (STR).
MLSTP bounds, in this case, are expressed in terms of their corresponding MCDSP
bounds. Finally, optimal MCDSP integer solution values are presented in the last
table column. For any given instance, whenever a particular LP relaxation bound
could not be computed within the 3600 CPU seconds time limit imposed, character
“-” appears in the corresponding entry.

These results show that the bounds for P+
1 are always better than or equal to

corresponding DGR bounds and are, most of the time, weaker than their STR coun-
terparts. However, STR bounds are typically very expensive to compute, with the
time limit being exceeded for that formulation for 13 out of the 41 tested instances.
Bounds for P1 significantly improve on those obtained for P+

0 . However, only marginal
gains are obtained while going from P1 to P+

1 . This fact, as we will see below, par-
tially explains why, with a very few exceptions, neither SABC nor IPBC significantly
improve on the results obtained in Simonetti et al. (2011).

6.2 Comparison of Algorithms

In Table 2, we compare the CPU times needed by each of the six proposed algorithms
and by the branch-and-cut methods in Simonetti et al. (2011) and Lucena et al.
(2010). Whenever an algorithm attains the imposed time limit of 3600 seconds, a
character “-” appears in the columns associated to that algorithm. Detailed compu-
tational results for the branch-and-cut, Benders decomposition and hybrid algorithms
are presented, respectively, in Tables 3, 4 and 5 in Appendix B.

These results show that SABC and IPBC manage to solve, respectively, 33 and
31 out of the 41 tested instances (120 d20 and 150 d30 are solved by SABC, but not
by IPBC). When we focus on those instances that both algorithms manage to solve,
it appears that IPBC outperforms SABC when densities d ≥ 50% apply. Conversely,
SABC outperforms IPBC when d ≤ 30% holds. However, this somewhat general
trend does not always hold; for example, for instance 120 d5, where CPU times for
SABC and IPBC are respectively 705.85 and 105.86 seconds. For that instance, since
initial upper bounds are already very close to optimal solution values, just a few
probing iterations are required for IPBC to find a proven optimal solution.

We now focus on comparing SABC and a preliminary version of the same algo-
rithm investigated in Simonetti et al. (2011). Although the algorithm in Simonetti
et al. (2011) already attempts to heuristically separate lifted GSECs (21), SABC goes
further in that direction and additionally attempts to separate strengthened feasibil-
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Table 1: Linear programming lower bounds
Instance P+

0 P1 P+
1 DGR STR OPT

30 d10 8.60 14.40 14.50 14.12 14.34 15
30 d20 5.09 6.18 6.18 5.68 6.49 7
30 d30 2.92 3.60 3.60 3.05 3.50 4
30 d50 1.95 2.38 2.38 1.86 2.11 3
30 d70 1.36 1.83 1.83 1.30 2.00 2
50 d5 15.55 31.00 31.00 31.00 31.00 31
50 d10 9.17 10.68 10.73 10.37 11.15 12
50 d20 4.76 5.24 5.25 4.88 5.52 7
50 d30 3.28 3.69 3.69 3.26 3.93 5
50 d50 1.98 2.44 2.44 1.82 2.20 3
50 d70 1.45 1.84 1.84 1.31 2.00 2
70 d5 17.10 26.31 26.31 25.29 26.44 27
70 d10 9.82 11.23 11.24 10.90 11.40 13
70 d20 4.92 5.37 5.37 5.12 5.63 7
70 d30 3.27 3.62 3.62 3.20 3.86 5
70 d50 2.05 2.44 2.44 1.95 2.05 3
70 d70 1.43 1.91 1.91 1.35 2.00 2
100 d5 18.00 21.63 21.63 20.79 22.04 24
100 d10 10.05 10.98 10.98 10.62 11.07 13
100 d20 5.24 5.52 5.52 5.15 5.62 8
100 d30 3.37 3.74 3.74 3.33 - 6
100 d50 2.10 2.51 2.51 1.97 - 4
100 d70 1.45 1.94 1.94 1.36 2.05 3
120 d5 19.12 22.74 22.74 22.48 22.87 25
120 d10 9.79 10.66 10.66 10.33 10.87 13
120 d20 5.14 5.35 5.35 5.07 - 8
120 d30 3.40 3.76 3.76 3.31 - 6
120 d50 1.99 2.49 2.49 1.37 2.15 4
120 d70 1.44 1.92 1.92 - - 3
150 d5 19.60 21.72 21.73 21.35 21.94 26
150 d10 10.27 10.69 10.65 10.56 10.84 14
150 d20 5.05 5.37 5.37 4.95 - 9
150 d30 3.42 3.81 3.81 3.33 - 6
150 d50 1.98 2.47 2.47 1.90 - 4
150 d70 1.44 1.99 1.99 1.37 - 3
200 d5 20.35 22.52 22.52 22.17 22.69 27
200 d10 10.16 10.53 10.56 10.39 - 16
200 d20 4.95 5.26 5.26 4.87 - 9
200 d30 3.35 3.77 3.77 3.23 - 7
200 d50 2.01 2.53 2.53 1.93 - 4
200 d70 1.44 2.00 2.00 1.37 2.03 3

Character “-” indicates that the LP relaxation could not be evaluated within 3600
seconds
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ity cuts (12) and cutset inequalities (22)-(23). In spite of that, the two algorithms
appear to perform similarly and the additional inequalities separated by SABC do
not seem to pay off computationally.

Before comparing SABC to DGR, we remark that the DGR algorithm in Lucena
et al. (2010) was tested on a 3.00Ghz Intel XEON X5472 based machine with 16
GBytes of RAM memory. Nevertheless, for comparison purposes, the differences in
the machines used here and in Lucena et al. (2010) do not favor our computational
results. Therefore, for any test instance that could not be solved in less than 3600 time
seconds by DGR, with the machine considered in Lucena et al. (2010), a character “-”
also appears in its corresponding CPU time entry. From the computational results
shown in Table 2, the two algorithms provide optimality certificates for essentially
the same set of instances. Indeed, there are only three instances solved by DGR that
SABC could not solve. However, DGR tends to be faster than SABC, sometimes
much faster, for low density instances, while the reverse is true for high density ones.
In some cases, one algorithm turns out to be one order of magnitude faster than the
other (see, for example, results for instances 120 d5 and 200 d50).

We now discuss how the two Benders decomposition algorithms compare between
each other. Optimality certificates are produced by SABE and IPBE, respectively, for
37 and 38 out of the 41 tested instances. This translates into the highest success rates
attained for the algorithms investigated in this study. Only 50 d5, 70 d5 and 200 d10

cannot be solved to optimality by either algorithm, while only SABE fails to solve
200 d5. As one may observe from the results in Table 4, and as it is normally the case
for Benders decomposition algorithms, SABE and IPBE usually perform well if just a
few feasibility cuts are required to attain optimality. For the instances in our test bed,
IPBE is usually faster than SABE. Additionally, four new optimality certificates are
attained by IPBE for instances where n = 200 and d ≤ 30. Although 200 d10 is not
solved by neither IPBE nor by SABE within the time limit imposed, these algorithms
respectively require 29450 and 24550 CPU seconds to find the proven optimal solution
(z = 16). Instance 200 d5, which is not solved by SABE within the time limit, is
actually solved by that algorithm after 4460 seconds. These two instances cannot
be solved by branch-and-cut algorithms, including those found in the literature, even
after relaxing the time limit constraints.

In this study, with five exceptions, namely instances 30 d10, 50 d5, 50 d10,
70 d5 and 100 d5, Benders decomposition algorithms outperform branch-and-cut al-
gorithms. Although the Benders decomposition algorithms are, in many cases, up to
four orders of magnitude faster than branch-and-cut algorithms, they require far more
time to solve three of these five instances and do not manage to solve the other two.
Instances 30 d10, 50 d5, 50 d10 and 70 d5, however, are solved quite easily, within
two seconds, by the branch-and-cut algorithms. On the other hand, larger previ-
ously unsolved MCDSP instances can now be solved to optimality by our Benders
decomposition algorithms.

We now discuss the computational results obtained by the hybrid algorithms.
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SAHY and IPHY solve similar sets of instances with, respectively, 35 and 36 in-
stances out of the 41 tested instances (instance v70 d5 was solved by IPHY, but not
by SAHY). Considering the instances solved to optimality, once again, the iterative
probing strategy produces much better results, in terms of average CPU times. For
the instances that are not solved within the time limit by at least one of the two
approaches, IPHY always finds a better or at least equal upper bound (see the results
for instances v70 d5, v150 d5 and v200 d5 in Table 5, for which the upper bounds
are better for IPHY).

Although the Benders algorithms solve more instances to optimality than the
hybrid algorithms, the latter usually perform better for the instances with 100 vertices
or less for which the Benders methods need a large number of iterations. When the
number of vertices is larger, the hybrid algorithms struggle, in a similar way, but
not to the same extent, as the branch-and-cut algorithms do. This is explained by
the fact that the cutting-plane phase at the root node is, by itself, computationally
heavy. For such large instances, the benefits implied by the stronger lower bounds
provided by the master problems under the hybrid framework do not pay off, given
the additional amount of CPU time needed to solve the separation problems and to
deal with the increase in model size.

It is noteworthy that, sometimes, when the initial upper bounds provided by the
heuristic method are already the optimal values, the Benders algorithms need less
iterations than the hybrid methods, despite the fact that each master problem in
SAHY and IPHY separates constraints that reinforce connectivity. For example, the
results for instance v70d 30 in Tables 4 and 5 show that SABE and IPBE need just
one iteration to solve this instance, while SAHY and IPHY require two iterations.

During our computational experiments, we also evaluated another variant of the
hybrid algorithms discussed here. This variant performs the same cutting-plane pro-
cedure, but only at the root node of the first Benders master problem. Subsequent
Benders master problems are initialized with the cuts generated when solving the first
Benders master problem, but no additional inequalities are generated. Compared to
SAHY and IPHY, the stand-alone and iterative probing implementations of this vari-
ant obtain slightly better results for the instances with more than 100 vertices, but are
dominated by SAHY and IPHY for the instances with 100 vertices or less for which
Benders algorithms typically perform poorly, namely instances v50d 5, v70d 5 and
100d 5.

To summarize, our computational experiments show that our stand-alone branch-
and-cut algorithm is competitive with other branch-and-cut algorithms in the liter-
ature, while better overall results are obtained by the iterative probing variant of
Benders decomposition, although very sparse instances are solved much faster by
the branch-and-cut method. The iterative probing version of the hybrid algorithm
provides a robust method: although it is rarely the fastest algorithm for any given
instance, it is rarely the worst. In fact, for instances with up to 120 vertices, it is
the only algorithm among the six we suggested that proves optimality for all the
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instances. For instances with 150 and 200 vertices, the iterative probing version of
the Benders algorithm gives the best results among all algorithms, including those
proposed in the literature.

7 Conclusions

In this paper, we presented exact algorithms for solving the minimum connected
dominating set problem (MCDSP). Two fundamental approaches were described:
Benders decomposition and branch-and-cut algorithms. Hybrid algorithms were also
developed to take advantage of the best features of both methods. Two variants of
the resulting three approaches were designed: a stand-alone version and an iterative
probing variant. The latter variant is based on a simple property of the MCDSP,
which states that if no connected dominating set of a given cardinality d > 0 exists,
then there are no connected dominating set of cardinality d − 1. Overall, six exact
algorithms were developed and tested: the stand-alone and iterative probing variants
of the Benders decomposition, the branch-and-cut and the hybrid methods. Our
computational experiments showed that the iterative probing variant of Benders and
hybrid algorithms performed well on our set of tested instances: for instances with
120 vertices or less, the iterative probing hybrid method is the only algorithm among
the six suggested ones that proved optimality for all the instances, while for instances
with more than 120 vertices, the iterative probing Benders approach provided the
best results among the six algorithms.

Future work include the development of specialized separation algorithms for
strengthened GSECs (21), cut constraints (22) and k-partition inequalities (23),
which, in the current version of the branch-and-cut algorithm, are generated during
the separation procedures for GSECs (16). We also want to investigate the possibil-
ity of strengthening the formulation of the Benders master problems by incorporating
valid inequalities from the set covering polytope. Finally, the Benders algorithm, es-
pecially in its iterative probing variant, provided very good results on our tested
instances, being extremely effective on dense instances. It would be interesting to
explore the behavior of a similar approach on other graph optimization problems.
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Appendix A: Heuristic Method

All algorithms introduced in this paper, as well as those they are compared to, are
initialized with an MCDSP upper bound provided by the dynamic greedy heuristic
introduced in Lucena et al. (2010). That heuristic, in spite of being part of a MLSTP
paper, is actually geared into solving the MCDSP. It works with two sets: D, to
represent vertices in a connected dominating set and L, to represent those vertices
which have at least one neighbor in D. The procedure is initialized by setting D = {v}
and L = Γv \ {v} for any v ∈ V . Then, the basic operation performed at each
iteration is to try to push vertices from L into D, until a connected dominating set
is found. Assuming that i is moved from L to D, in the next iteration we have:
L ← L \ {i} ∪ (Γi \ (D ∪ L)) and D ← D ∪ {i}. Preference is given to include in
D vertices with as many neighbors as possible, not already included in D ∪ L. The
heuristic stops when V = L ∪ D. At that point, D defines a connected dominating
set.

In our implementation, the heuristic is executed n times. In each one, set D
is initialized with a different vertex v ∈ V . Therefore the procedure we actually
implemented could be cast as a multi-start version of the greedy heuristic in Lucena
et al. (2010).

Appendix B: Detailed Computational Results

First column entries in Table 3 identify the tested instances. Initial upper bounds,
under the heading IUB, appear in the second column. These bounds, computed
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with the heuristic method described in Appendix A, are used to initialize all exact
algorithms considered here. For the next two columns, respectively under the headings
UB and t(s), the following computational results are presented for SABC: the best
upper bound available on termination and the CPU time spent, in seconds. Whenever
the time limit is reached and the instance is left unsolved, character “-” appears in the
corresponding t(s) entry. The next three columns apply to IPBC. The first of them
shows, under the heading Iter, the number of probing iterations carried out, i.e., the
number of times a new best incumbent feasible solution was found and, consequently,
the right-hand-side of the d-cut equation (5) had to be reduced. Finally, the last two
columns in Table 3, respectively, apply to the branch-and-cut algorithm in Simonetti
et al. (2011) and the DGR algorithm in Lucena et al. (2010). They indicate the
CPU time, in seconds, taken by these algorithms to find proven optimal solutions,
respectively for the MCDSP and the MLSTP. Given that the same machine was used
here and in Simonetti et al. (2011), the previously defined CPU time limit directly
applies to the algorithm in Simonetti et al. (2011).

Computational results for Benders decomposition algorithms SABE and IPBE
appear in Table 4. For that table, with the single exception of the Iter heading,
definitions previously introduced for Tables 1 and 3 apply. Entries under that heading
now accumulate the number of Benders master problems (BMP) that had to be solved
before the incumbent solution was proven to be optimal or else when the time limit
was reached. Additionally, they also accumulate the number of times a feasibility
cut had to be appended to the master problem. Table 5 presents the computational
results for the hybrid algorithms SAHY and IPHY; the format is identical to that of
Table 4, as well as the meanings of each column entries.
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Table 2: Computational results: CPU time comparisons, in seconds

Instance Benders Branch-and-cut Hybrid Literature
SABE IPBE SABC IPBC SAHY IPHY prev. SABC DGR

v30 d10 41.84 24.84 0.02 0.02 12.79 8.14 0.01 0.01
v30 d20 0.01 0.00 0.02 0.03 0.00 0.02 0.02 0.10
v30 d30 0.02 0.02 0.05 0.05 0.04 0.02 0.05 0.03
v30 d50 0.00 0.00 0.01 0.01 0.01 0.01 0.04 0.08
v30 d70 0.01 0.00 0.02 0.01 0.01 0.00 0.02 0.01
v50 d5 - - 0.02 0.01 22.32 9.44 0.02 0.01
v50 d10 12.42 1.66 0.58 0.20 2.67 1.64 0.42 0.36
v50 d20 0.21 0.08 0.74 0.86 0.41 0.20 0.66 1.32
v50 d30 0.19 0.10 0.24 0.23 0.47 0.30 0.25 1.21
v50 d50 0.00 0.00 0.23 0.06 0.01 0.01 0.25 0.51
v50 d70 0.00 0.00 0.25 0.02 0.01 0.02 0.29 0.04
v70 d5 - - 1.10 0.26 - 290.36 1.42 0.26
v70 d10 1.05 1.38 14.23 5.42 25.11 1.26 34.29 4.73
v70 d20 0.37 0.18 2.01 1.74 1.16 0.58 2.16 16.30
v70 d30 0.54 0.22 1.13 0.93 0.84 0.36 1.00 2.90
v70 d50 0.01 0.02 0.63 0.40 0.02 0.02 0.70 1.33
v70 d70 0.01 0.01 0.99 0.04 0.03 0.02 0.79 1.92
v100 d5 2542.09 1963.44 38.74 65.05 970.48 35.89 342.25 12.50
v100 d10 0.50 0.33 17.15 35.84 2.67 1.70 32.11 9.36
v100 d20 1.88 1.28 205.92 534.00 6.48 2.67 174.93 86.16
v100 d30 3.83 2.48 209.20 275.29 11.16 4.45 193.65 258.15
v100 d50 1.57 0.77 40.28 27.42 3.27 1.60 35.41 132.55
v100 d70 1.57 0.03 12.93 12.46 1.58 0.92 12.03 154.10
v120 d5 3.38 10.44 705.85 105.86 1118.58 27.90 - 2.65
v120 d10 3.74 3.44 - - 56.25 18.67 - 65.49
v120 d20 5.02 3.78 828.28 - 16.46 8.34 610.89 393.47
v120 d30 5.26 4.43 496.42 1039.94 14.14 7.62 475.54 653.70
v120 d50 4.19 2.54 161.80 153.47 8.73 4.60 168.55 815.64
v120 d70 2.26 0.04 34.39 26.18 2.84 2.21 31.67 356.31
v150 d5 1047.98 259.40 - - - - - 2954.00
v150 d10 51.11 28.39 - - 651.85 195.35 - 3247.89
v150 d20 366.37 273.03 - - 2117.74 902.43 - -
v150 d30 21.13 11.27 2077.29 - 34.62 24.71 1954.00 2317.35
v150 d50 7.84 5.78 535.38 342.95 17.54 10.81 481.61 2756.36
v150 d70 4.28 0.06 51.18 45.94 5.05 2.95 43.75 1828.86
v200 d5 - 1901.71 - - - - - -
v200 d10 - - - - - - - -
v200 d20 1687.24 1943.93 - - - - - -
v200 d30 3208.45 1848.78 - - - - - -
v200 d50 24.79 19.31 2247.33 1279.91 41.00 28.55 2249.43 20155.00
v200 d70 10.52 0.13 334.21 261.65 9.00 5.61 271.91 8154.13
Note: “prev. SABC” stands for the branch-and-cut algorithm in Simonetti et al.

(2011) and “DGR” for the branch-and-cut algorithm in Lucena et al. (2010), based
on formulation DGR; character “-” indicates that the time limit of 3600 seconds was

achieved and the instance was not solved
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Table 3: Detailed computational results: branch-and-cut algorithms
Current study CPU time (s) - Literature

SABC IPBC prev. SABC DGR
Instance IUB UB t(s) Iter UB t(s)

30 d10 15 15 0.02 1 15 0.02 0.01 0.01
30 d20 7 7 0.02 1 7 0.03 0.02 0.1
30 d30 5 4 0.05 2 4 0.05 0.05 0.03
30 d50 3 3 0.01 1 3 0.01 0.04 0.08
30 d70 2 2 0.02 1 2 0.01 0.02 0.01
50 d5 31 31 0.02 1 31 0.01 0.02 0.01
50 d10 13 12 0.58 2 12 0.20 0.42 0.36
50 d20 7 7 0.74 1 7 0.86 0.66 1.32
50 d30 5 5 0.24 1 5 0.23 0.25 1.21
50 d50 3 3 0.23 1 3 0.06 0.25 0.51
50 d70 2 2 0.25 1 2 0.02 0.29 0.04
70 d5 29 27 1.1 3 27 0.26 1.42 0.26
70 d10 14 13 14.23 2 13 5.42 34.29 4.73
70 d20 7 7 2.01 1 7 1.74 2.16 16.3
70 d30 5 5 1.13 1 5 0.93 1 2.9
70 d50 3 3 0.63 1 3 0.40 0.7 1.33
70 d70 2 2 0.99 1 2 0.04 0.79 1.92
100 d5 25 24 38.74 2 24 65.05 342.25 12.5
100 d10 13 13 17.15 1 13 35.84 32.11 9.36
100 d20 8 8 205.92 1 8 534.00 174.93 86.16
100 d30 6 6 209.2 1 6 275.29 193.65 258.15
100 d50 4 4 40.28 1 4 27.42 35.41 132.55
100 d70 3 3 12.93 1 3 12.46 12.03 154.1
120 d5 26 25 705.85 2 25 105.86 - 2.65
120 d10 15 13 - 1 15 - - 65.49
120 d20 8 8 828.28 1 8 - 610.89 393.47
120 d30 6 6 496.42 1 6 1039.94 475.54 653.7
120 d50 4 4 161.8 1 4 153.47 168.55 815.64
120 d70 3 3 34.39 1 3 26.18 31.67 356.31
150 d5 27 27 - 1 27 - - 2954
150 d10 15 15 - 1 15 - - 3247.89
150 d20 9 9 - 1 9 - - -
150 d30 6 6 2077.29 1 6 - 1954 2317.35
150 d50 4 4 535.38 1 4 342.95 481.61 2756.36
150 d70 3 3 51.18 1 3 45.94 43.75 1828.86
200 d5 29 29 - 1 29 - - -
200 d10 16 16 - 1 16 - - -
200 d20 9 9 - 1 9 - - -
200 d30 7 7 - 1 7 - - -
200 d50 4 4 2247.33 1 4 1279.91 2249.43 20155
200 d70 3 3 334.21 1 3 261.65 271.91 8154.13
Note: “prev. SABC” stands for the branch-and-cut algorithm in Simonetti et al.

(2011) and DGR for the branch-and-cut algorithm in Lucena et al. (2010), based on
formulation DGR
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Table 4: Detailed computational results: Benders decomposition algorithms
SABE IPBE

Instance IUB Iter UB t(s) Iter UB t(s)

30 d10 15 230 15 41.84 328 15 24.84
30 d20 7 2 7 0.01 2 7 0
30 d30 5 5 4 0.02 3 4 0.02
30 d50 3 1 3 0 1 3 0
30 d70 2 1 2 0.01 1 2 0
50 d5 31 439 31 - 724 31 -
50 d10 13 68 12 12.42 37 12 1.66
50 d20 7 1 7 0.21 1 7 0.08
50 d30 5 1 5 0.19 1 5 0.1
50 d50 3 1 3 0 1 3 0
50 d70 2 1 2 0 1 2 0
70 d5 29 379 29 - 2383 29 -
70 d10 14 5 13 1.05 17 13 1.38
70 d20 7 1 7 0.37 1 7 0.18
70 d30 5 1 5 0.54 1 5 0.22
70 d50 3 1 3 0.01 1 3 0.02
70 d70 2 1 2 0.01 1 2 0.01
100 d5 25 367 24 2542.09 723 24 1963.44
100 d10 13 1 13 0.5 1 13 0.33
100 d20 8 1 8 1.88 1 8 1.28
100 d30 6 1 6 3.83 1 6 2.48
100 d50 4 1 4 1.57 1 4 0.77
100 d70 3 1 3 1.57 1 3 0.03
120 d5 26 5 25 3.38 49 25 10.44
120 d10 15 3 13 3.74 6 13 3.44
120 d20 8 1 8 5.02 1 8 3.78
120 d30 6 1 6 5.26 1 6 4.43
120 d50 4 1 4 4.19 1 4 2.54
120 d70 3 1 3 2.26 1 3 0.04
150 d5 27 58 26 1047.98 55 26 259.4
150 d10 15 3 14 51.11 5 14 28.39
150 d20 9 3 9 366.37 3 9 273.03
150 d30 6 1 6 21.13 1 6 11.27
150 d50 4 1 4 7.84 1 4 5.78
150 d70 3 1 3 4.28 1 3 0.06
200 d5 29 13 29 - 49 27 1901.71
200 d10 16 1 16 - 1 16 -
200 d20 9 1 9 1687.24 1 9 1943.93
200 d30 7 2 7 3208.45 2 7 1848.78
200 d50 4 1 4 24.79 1 4 19.31
200 d70 3 1 3 10.52 1 3 0.13
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Table 5: Detailed computational results: hybrid algorithms
SAHY IPHY

Instance IUB Iter UB t(s) Iter UB t(s)

v30 d10 15 15 15 12.79 37 15 8.14
v30 d20 7 3 7 0.00 3 7 0.02
v30 d30 5 6 4 0.04 3 4 0.02
v30 d50 3 2 3 0.01 2 3 0.01
v30 d70 2 2 2 0.01 2 2 0.00
v50 d5 31 11 31 22.32 12 31 9.44
v50 d10 13 6 12 2.67 13 12 1.64
v50 d20 7 2 7 0.41 2 7 0.20
v50 d30 5 2 5 0.47 2 5 0.30
v50 d50 3 2 3 0.01 2 3 0.01
v50 d70 2 2 2 0.01 2 2 0.02
v70 d5 29 66 29 - 89 27 290.36
v70 d10 14 8 13 25.11 4 13 1.26
v70 d20 7 2 7 1.16 2 7 0.58
v70 d30 5 2 5 0.84 2 5 0.36
v70 d50 3 2 3 0.02 2 3 0.02
v70 d70 2 2 2 0.03 2 2 0.02
v100 d5 25 22 24 970.48 24 24 35.89
v100 d10 13 2 13 2.67 2 13 1.70
v100 d20 8 2 8 6.48 2 8 2.67
v100 d30 6 2 6 11.16 2 6 4.45
v100 d50 4 2 4 3.27 2 4 1.60
v100 d70 3 2 3 1.58 2 3 0.92
v120 d5 26 26 25 1118.58 15 25 27.90
v120 d10 15 6 13 56.25 6 13 18.67
v120 d20 8 2 8 16.46 2 8 8.34
v120 d30 6 2 6 14.14 2 6 7.62
v120 d50 4 2 4 8.73 2 4 4.60
v120 d70 3 2 3 2.84 2 3 2.21
v150 d5 27 19 27 - 38 26 -
v150 d10 15 4 14 651.85 4 14 195.35
v150 d20 9 4 9 2117.74 4 9 902.43
v150 d30 6 2 6 34.62 2 6 24.71
v150 d50 4 2 4 17.54 2 4 10.81
v150 d70 3 2 3 5.05 2 3 2.95
v200 d5 29 2 29 - 7 28 -
v200 d10 16 1 16 - 1 16 -
v200 d20 1 9 - 1 9 -
v200 d30 7 2 7 - 2 7 -
v200 d50 4 2 4 41.00 2 4 28.55
v200 d70 3 2 3 9.00 2 3 5.61
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