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Abstract. In Vendor-Managed Inventory systems the supplier is responsible for 

replenishing customers and for deciding when and how much to deliver. One of two 

inventory policies is typically employed by the supplier. The first one, called the maximum 

level (ML) policy, gives full freedom to the supplier to deliver any quantity as long as it 

respects customer inventory capacities. The alternative, much more constrained, is called 

the order-up-to (OU) policy. It states that the supplier has to bring the customer inventory 

up to its maximum capacity level upon delivery. We propose a new tactical policy, called 

optimized target level, under which when the supplier visits a customer, the quantity 

delivered is such that the final inventory will always be at the same customer-dependent 

optimized target level. We perform a computational evaluation of this new policy against 

both traditional strategies on benchmark instances. We show that it yields lower costs and 

inventory levels than the OU policy, and is only marginally more expensive than the ML 

policy, while being easier to implement. 
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management. 
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1 Introduction

In Vendor-Managed Inventory (VMI) systems, the supplier is responsible not only for delivering

the products and routing its vehicles to serve its customers, but also for determining when and

how much to deliver to them. The combined optimization of inventory control and vehicle routing

gives rise to the Inventory-Routing Problem (IRP). There exist several real-life applications of

this problem (see, e.g., the recent oil delivery case described by Uzar and Çatay [11]). The

survey paper of Andersson et al. [1] concentrates on the applications of the IRP whereas Coelho

et al. [8] provide an overview more focused on the methodological aspects of the problem.

In the IRP literature, two inventory replenishment policies are traditionally used. The first one,

called maximum level (ML), gives full flexibility to the supplier. The quantity delivered to a

customer only has to comply with its inventory capacity. The other policy, which is much more

constrained, is called order-up-to (OU). Under an OU policy, whenever a customer is visited, its

inventory level is brought up to its maximum capacity.

The OU policy simplifies the solution process since it effectively removes one decision dimension

from the problem. Indeed, whenever a customer is visited, the quantity delivered is automatically

computed as the difference between the inventory capacity and the current inventory level. In a

recent study [7], the application of an OU policy was presented as a way to increase consistency

and predictability within an IRP context. It therefore improves customer satisfaction since the

delivery amounts are then more predictable. An interesting application of consistency in the

context of a parcel distribution network can be found in Bard and Jarrah [4].

While the implementation of an OU policy simplifies the supplier’s decision process and can

increase customer satisfaction, it is not without disadvantages since it leads to cost increases

which can be as high as 20% over an ML policy [2, 7]. An interesting question is therefore

whether one can determine an optimal consistent replenishment level for each customer without

incurring the full cost of an OU policy. This question has already been answered in the context

of traditional (i.e., non-VMI) systems where each customer can individually optimize its replen-

ishment level through the application of an (s, S) policy [3, 5], for example. However, as far as

the authors are aware, the determination of a system-optimal and customer-dependent stable

replenishment level has never been investigated in a VMI context.

Our objective is therefore to propose a new tactical replenishment policy that would combine
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the customer-related advantages of OU and the supplier-related benefit of ML which affords

more flexibility and lower system costs. This new policy, which we call optimized target level

(OTL), determines an optimal replenishment target level for each customer. It can be viewed

as an optimized OU policy, except that instead replenishing up to the customer’s capacity, the

supplier fills the customer’s inventory up to an OTL. In order to take advantage of this new idea,

the OTL of each customer is computed simultaneously with the remaining routing and inventory

decisions, in order to jointly optimize the inventory holding costs and the routing costs.

Figure 1 depicts the three inventory replenishment policies just described. Figure 1a illustrates

the ML policy in which replenishment quantities only have to respect the maximum inventory

capacity; in Figure 1b, all replenishments must bring the inventory level up to the maximum

customer capacity C; finally, in Figure 1c, a target level L is optimized and all deliveries must

ensure that the inventory level L is attained.
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(c) The OTL policy

Figure 1: Different inventory replenishment policies

The remainder of this paper is organized as follows. Section 2 describes the problem at hand.

In Section 3 we provide a formal mathematical model of each of the three inventory policies

under study. In Section 4 we briefly describe the exact algorithm developed for the problem.

Section 5 reports on computational experiments carried out to evaluate the performance of the

new policy. This is followed by our conclusions in Section 6.

2 Description of the OTL Problem

We now describe the IRP framework that will be used to introduce the OTL policy. Since

the routing costs are assumed to be symmetric, we define the problem on an undirected graph

G = (V, E), where V = {0, ..., n} is the vertex set and E = {(i, j) : i, j ∈ V, i < j} is the
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edge set. Vertex 0 represents the supplier and the remaining vertices V ′ = V \{0} represent n

customers. A routing cost cij is associated with edge (i, j) ∈ E. Both the supplier and customers

incur unit inventory holding costs hi per period (i ∈ V), and each customer has a maximum

inventory holding capacity Ci. The length of the planning horizon is p and, at each time period

t ∈ T = {1, ..., p}, the supplier holds a quantity rt of a single product. We assume the supplier

has sufficient inventory to meet the full customer demand during the planning horizon, and

all demand also has to be satisfied, i.e., backlogging is not allowed. At the beginning of the

planning horizon the decision maker knows the current inventory level of the supplier and of

the customers (I0
i , i ∈ V), and receives information on the demand dt

i of each customer i for

each time period t. The quantity rt made available at the supplier in period t can be used for

deliveries to customers in the same period, and the delivery amount received by customer i in

period t can be used to meet the demand in that period. A set K = {1, ...,K} of vehicles are

available. We denote by Qk the capacity of vehicle k. Each vehicle can perform one route per

time period, from the supplier to a subset of customers.

The aim is to set an OTL for each customer, to determine vehicle routes for each period and to

compute delivery quantities for each period and each customer, in line with an OTL policy and

so that all constraints are satisfied and the total cost is minimized.

3 Mathematical Formulations

In this section we provide a formal mathematical formulation for the OTL, starting in Section

3.1 with the basic IRP under the ML policy. We then present the OU policy in Section 3.2 and,

in Section 3.3, the adaptations and transformations needed to model the IRP under an OTL

policy as a mixed-integer linear program.

The models work with routing variables xkt
ij equal to the number of times edge (i, j) is used on

the route of vehicle k in period t. We also use binary variables ykt
i equal to one if and only if

node i is visited by vehicle k in period t. Let It
i denote the inventory level at vertex i ∈ V at the

end of period t ∈ T . We denote by qkt
i the product quantity delivered by vehicle k to customer

i in period t.
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3.1 The IRP under an ML policy

The problem can be formulated under an ML inventory policy as follows:

(ML) minimize
∑
i∈V

∑
t∈T

hiI
t
i +

∑
(i,j)∈E

∑
k∈K

∑
t∈T

cijx
kt
ij , (1)

subject to

It
0 = It−1

0 + rt −
∑
k∈K

∑
i∈V ′

qkt
i t ∈ T (2)

It
i = It−1

i +
∑
k∈K

qkt
i − dt

i i ∈ V ′ t ∈ T (3)

It
i ≤ Ci i ∈ V t ∈ T (4)∑

k∈K
qkt
i ≤ Ci − It−1

i i ∈ V ′ t ∈ T (5)

qkt
i ≤ Ciy

kt
i i ∈ V ′ k ∈ K t ∈ T (6)∑

i∈V ′

qkt
i ≤ Qky

kt
0 k ∈ K t ∈ T (7)

∑
j∈V,i<j

xkt
ij +

∑
j∈V,j<i

xkt
ji = 2ykt

i i ∈ V k ∈ K t ∈ T (8)

∑
i∈S

∑
j∈S,i<j

xkt
ij ≤

∑
i∈S

ykt
i − ykt

m S ⊆ V ′ k ∈ K t ∈ T m ∈ S (9)

It
i ≥ 0 i ∈ V t ∈ T (10)

qkt
i ≥ 0 i ∈ V ′ k ∈ K t ∈ T (11)

xkt
i0 ∈ {0, 1, 2} i ∈ V ′ k ∈ K t ∈ T (12)

xkt
ij ∈ {0, 1} i, j ∈ V ′ k ∈ K t ∈ T (13)

ykt
i ∈ {0, 1} i ∈ V k ∈ K t ∈ T . (14)

The objective function (1) minimizes the total inventory and routing costs. Constraints (2)

and (3) define the inventory conservation at the supplier and at the customers. Constraints (4)

impose maximal inventory levels at the customers. Constraints (5) and (6) link the quantities

delivered to the routing variables. In particular, they only allow a vehicle to deliver products to

a customer if the customer is visited by this vehicle. Constraints (7) ensure the vehicle capacities
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are respected, while constraints (8) and (9) are degree constraints and subtour elimination con-

straints, respectively. Constraints (10)−(14) enforce integrality and non-negativity conditions

on the variables.

This model can be strengthened through the inclusion of the following families of valid inequal-

ities [2, 6]:

xkt
i0 ≤ 2ykt

i i ∈ V k ∈ K t ∈ T (15)

xkt
ij ≤ ykt

i i, j ∈ V k ∈ K t ∈ T (16)

ykt
i ≤ ykt

0 i ∈ V ′ k ∈ K t ∈ T (17)

ykt
0 ≤ yk−1,t

0 k ∈ K\{1} t ∈ T (18)

ykt
i ≤

∑
j<i

yk−1,t
j i ∈ V k ∈ K\{1} t ∈ T (19)

∑
k∈K

t∑
l=1

ykl
i ≥

⌈( t∑
l=1

dl
i − I0

i

)
/Ci

⌉
i ∈ V t ∈ T . (20)

Constraints (15) and (16) enforce the condition that if the supplier is the immediate successor

of a customer in the route of vehicle k in period t, then i must be visited by the same vehicle.

A similar reasoning is applied to customer j in inequalities (16). Constraints (17) ensure that

the supplier is visited if any customer i is visited by vehicle k in period t.

When the fleet is homogeneous, one can break some vehicle symmetry by constraints (18), thus

ensuring that vehicle k cannot leave the depot if vehicle k − 1 is not used. This symmetry

breaking rule is then extended to the customer vertices by constraints (19) which state that if

customer i is assigned to vehicle k in period t, then vehicle k− 1 must serve a customer with an

index smaller than i in the same period.

Finally, constraints (20) ensure that customer i is visited at least the number of times corre-

sponding to the right-hand side of the inequality. For each customer i, the supplier has to deliver

until time t at least the total demand of customer i up to period t, minus its initial inventory.

Since the maximum delivery quantity to customer i is its inventory capacity Ci, the minimum

number of visits to i is determined by the right-hand side of (20). Again, this inequality is only

valid if the fleet is homogeneous.
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3.2 The IRP under an OU policy

In order to model the problem under an OU policy, it suffices the add the following constraints

to the ML model. These ensure that a delivery should fill the customer’s inventory capacity:

qkt
i ≥ Ciy

kt
i − It−1

i i ∈ V ′ k ∈ K t ∈ T . (21)

The valid inequalities (15)−(20) described for the ML formulation are also valid for the OU

policy.

3.3 The IRP under an OTL policy

The most straightforward way of adapting the ML and OU formulations to OTL is to introduce

a variable target level to be attained whenever a customer is visited. To this end, the right-hand

sides of constraints (5), (6) and (21) are defined as functions of a target level for customer i,

denoted by an integer continuous variable Li, which replaces Ci. One also needs to set the

bounds on the new variables. The following constraints are therefore introduced:

∑
k∈K

qkt
i ≤ Li − It−1

i i ∈ V ′ t ∈ T (22)

qkt
i ≤ Liy

kt
i i ∈ V ′ k ∈ K t ∈ T (23)

qkt
i ≥ Liy

kt
i − It−1

i i ∈ V ′ k ∈ K t ∈ T (24)

0 ≤ Li ≤ Ci i ∈ V ′. (25)

The difficulty of this problem lies of course in constraints (23) and (24) which are non-linear

since they contain products of a continuous and binary variables. These constraints state that

the quantity delivered is that needed to bring the customer’s inventory up to level Li if there

is a visit, and zero otherwise. Constraints (25) ensure that the optimized target level Li is at

most the customer’s maximum inventory level Ci. Setting Li = Ci means that the OTL and

OU policies coincide.

In order to linearize this model and ease its resolution, we replace constraints (23) and (24) with

0 ≤ qkt
i ≤ Li − It

i i ∈ V ′ k ∈ K t ∈ T (26)
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qkt
i ≤ Ciy

kt
i i ∈ V ′ k ∈ K t ∈ T (27)

qkt
i ≥ Li − It

i − (1− ykt
i )Ci i ∈ V ′ k ∈ K t ∈ T . (28)

The role of these constraints is to ensure that if a delivery is made to customer i by vehicle k in

period t, i.e., ykt
i = 1, then the quantity delivered should be that to bring the inventory of i up

to level Li, i.e., qkt
i = Li − It

i ; if, on the other hand, no delivery takes place, i.e., ykt
i = 0, then

the associated quantity should be zero as well, i.e., qkt
i = 0. This is achieved by the combination

of the proposed linear constraints. If ykt
i = 0, then constraints (28) state that the associated

quantity has to be larger than a negative value, and constraints (27) state that it has to be less

than or equal to zero. Coupled with the left-hand side of constraints (26), they will force the

quantity delivered to be equal to zero. Note that the left-hand side of (26) is presented here for

the sake of completeness, since it was already stated by constraints (11). If ykt
i = 1, then (27) is

superseded by the right-hand side of (26), stating that the quantity delivered has to be smaller

than or equal to Li− It
i which, coupled with constraints (28), ensures that exactly this quantity

will be delivered to the customer. Note that rewriting these constraints in this way eliminates

all non-linearities.

Finally, the model can be further strengthened by changing (4) to

It
i ≤ Li i ∈ V t ∈ T . (29)

Thus, the OTL model is finally defined as (1)−(3), (7)−(14), (22), (25)−(29), and can be further

improved through the inclusion of the valid inequalities (15)−(20).

4 Exact branch-and-cut algorithm

We now sketch the branch-and-cut scheme we have implemented to solve the model. At any

given node of the search tree, the linear program defining the problem, without the subtour

elimination constraints, is solved. At every node we perform a search for violated subtour

elimination constraints (9), and some of these constraints are added to the current node which

is then reoptimized. This process is repeated until a solution is found, or until there are no

more cuts to be added. At this point branching on a fractional variable occurs in a typical

branch-and-bound fashion.
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We provide a sketch of the branch-and-bound-and-cut scheme in Algorithm 1.

Algorithm 1 Branch-and-cut algorithm
1: At the root node of the search tree, generate and insert all valid inequalities into the program.

2: Subproblem solution. Solve the LP relaxation of the node.

3: Termination check:

4: if there are no more nodes to evaluate then

5: Stop.

6: else

7: Select one node from the branch-and-cut tree.

8: end if

9: while the solution of the current LP relaxation contains subtours do

10: Identify connected components as in Padberg and Rinaldi [10].

11: Determine whether the component containing the supplier is weakly connected as in Gen-

dreau et al. [9].

12: Add all violated subtour elimination constraints (9).

13: Subproblem solution. Solve the LP relaxation of the node.

14: end while

15: if the solution of the current LP relaxation is integer then

16: Go to the termination check.

17: else

18: Branching: branch on one of the fractional variables.

19: Go to the termination check.

20: end if

5 Computational Experiments

In order to evaluate the impact of the new OTL inventory policy in the IRP, we have assessed its

performance on benchmark instances. In particular, we have measured the impact of the OTL policy on

cost, inventory levels, and computing time with respect to the classical ML and OU policies. To this end,

we have solved the models of Section 3 with the algorithm described in Section 4, coded in C++, and

using IBM Concert Technology and CPLEX 12.5 running in parallel with six threads. All computations

were executed on a grid of Intel Xeon� processors running at 2.66 GHz with up to 96 GB of RAM

installed per node, with the Scientific Linux 6.1 operating system.
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We have used the instance set designed by Archetti et al. [2] for the IRP to evaluate the OTL pol-

icy. It is composed of 160 instances with up to three time periods and 50 customers, and six time

periods and 30 customers, under two levels of inventory holding cost. These instances will be referred

to as low-p and high-p, corresponding to low and high inventory costs, respectively, p being the num-

ber of periods. Optimal solutions for the the ML and OU policies with single and multiple vehicles

are known for these instances. All instances and detailed computational results are available from

http://www.leandro-coelho.com/instances.

We provide in Table 1 average computational results for the IRP instances under the OTL policy. Optimal

solutions were computed within 12 hours of CPU time for all instances with one vehicle, and for 129 out

of the 160 instances for two vehicles. For the instances without proven optimality, the remaining gap

is small. From a computational perspective, solving the problem under an OTL policy is much more

difficult than under either of the other two policies. To provide a comparison, under the ML and the OU

policies and one vehicle, no instance took more than one hour of computing time, and most instances

were solved within a few seconds. Under the OTL policy, the average running time becomes much higher

and one particular instance required more than eight hours of computing time before optimality was

proved. However, this can be expected given the complexity of the problem, but once the OTL levels

have been computed, they are fixed and the remaining problem can then be solved relatively easily at an

operational level.

Table 1: Summary of the computational results for the IRP under an OTL policy

Vehicles Instance Cost Gap (%) Time (s)

K = 1

low-3 2968.92 0.00 23.08

low-6 5937.99 0.00 2782.46

high-3 9234.07 0.00 16.98

high-6 13060.76 0.00 2077.90

Average 7375.70 0.00 923.83

K = 2

low-3 3309.30 0.01 1626.22

low-6 7012.81 5.68 25066.33

high-3 9576.18 0.00 1439.66

high-6 14115.41 2.76 23726.46

Average 7988.25 1.58 10106.73

In addition to comparing CPU times, we have assessed the effect of the OTL policy on cost and inventory
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levels. The results of these experiments are summarized in Table 2. Specifically, we provide average

solution cost increases of the OU policy with respect to the ML policy, and of the OTL over the ML

policy. We also report the average cost decrease of the OTL policy with respect to OU, and the average

ratio of inventory levels under the OTL and OU policies.

Table 2: Comparison of the computational results for the IRP under the OTL, the OU and the ML

policies

Vehicles Instance
% Cost increase % Cost increase % Cost decrease Average ratio of

OU over ML OTL over ML OTL over OU inventory levels Li/Ci

K = 1

low-3 12.30 0.00 12.30 0.82

low-6 3.07 2.48 0.57 0.93

high-3 4.29 0.04 4.27 0.82

high-6 1.80 1.21 0.58 0.92

Average 6.09 0.70 5.39 0.85

K = 2

low-3 11.65 0.00 11.64 0.81

low-6 5.35 4.57 0.75 0.92

high-3 4.31 0.01 4.30 0.81

high-6 2.88 2.09 0.77 0.92

Average 6.53 1.25 5.26 0.85

From Table 2 one can see that the OTL policy costs slightly more than the ML policy but tends to provide

larger cost reductions with respect to the OU policy. Over all instances, the average increase of the OTL

with respect to the ML is less than 1% for the instances with one vehicle, and 1.25% for the instances

with two vehicles. The average replenishment level under an OTL policy goes down by approximately

15% compared with the OU policy. Note that when K = 2, the cost increases presented in Table 2 are

overestimated since not all instances were solved optimally and the costs associated with the OTL policy

correspond to heuristic solutions when the optimum is not known. Similarly, the cost decreases and the

inventory level reductions are underestimated.

A deeper analysis of the solutions shows that on instances with a shorter planning horizon, the OTL and

ML policies yield about the same results. This is due to the fact that under an ML policy, the inventory

at the end of horizon is zero because of the minimization of the inventory costs, and thus the supplier

delivers only the amount needed to satisfy the demand. When the planning horizon is short, customers

typically receive only one delivery each. It is then possible to set the OTL to the exact quantity needed to

satisfy future demand without surplus. The benefits of the OTL really start being felt on longer planning

horizons over which more deliveries are made.
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6 Conclusions

We have introduced a new inventory replenishment policy, called OTL, within the framework of the IRP.

We have developed a mathematical model corresponding to this policy, and we have solved it through an

exact branch-and-cut algorithm. Our results have shown that the OTL policy yields less costly solutions

than the classical OU policy, at the expense of an increased computational time. Computational results

on benchmark instances confirm the managerial interest of the proposed policy both in terms of costs

and inventory levels. We hope this study will stimulate further research into the proposed OTL policy.
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