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Abstract. This paper presents an evolutionary algorithm for solving the fixed-charge multi-
commodity network design problem (MCNDP), which concerns routing multiple 
commodities from origins to destinations by designing a network through selecting arcs, 
with an objective of minimizing the fixed costs of the selected arcs plus the variable costs 
of the flows on each arc. The proposed algorithm evolves a pool of solutions using 
principles of scatter search, interlinked with an iterated local search as a post-
improvement method. New cycle-based neighbourhood operators are presented which 
enable complete or partial rerouting of multiple commodities. An efficient perturbation 
strategy, inspired by ejection chains, is introduced to perform local compound cycle-based 
moves to explore different parts of the solution space. The algorithm also allows infeasible 
solutions violating arc capacities within the “ejection cycles” and restores feasibility by 
systematically applying correction moves. Computational experiments on benchmark 
MCNDP instances show that the proposed solution method consistently produces high-
quality solutions in reasonable computational times. 
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1 Introduction

The fixed-charge multi-commodity network design problem (MCNDP) consists of design-
ing a network on a given graph by selecting arcs to route a set of commodities between
origin-destination pairs. Each arc of the graph has a predefined capacity specifying the
maximum flow that the arc can accommodate, a fixed cost that is incurred only if the
arc is selected, and a variable cost proportional to the amount of flow along the arc.
Each commodity is defined by an origin and a destination node and the amount to be
transported. The objective is to minimize the total cost of establishing the arcs and
routing the flows.

The MCNDP has attracted much attention in the literature due to both its complex-
ity (the problem is NP-hard in the strong sense), and a wide variety of applications in
the areas of telecommunications, logistics, production and transportation systems (Bal-
akrishnan, Magnanti and Mirchandani, 1997; Magnanti and Wong, 1986; Minoux, 1986).
Despite the significant efforts devoted to the development of exact methodologies for
the MCNDP (Crainic, Frangioni and Gendron, 2001; Holmberg and Yuan, 2000; He-
witt, Nemhauser and Savelsbergh, 2010), the literature still favours heuristic approaches
when large-scale problem instances are involved. One of the most successful local search
strategies for the MCNDP is proposed by Ghamlouche, Crainic and Gendreau (2003),
where new cycle-based neighborhood operators are incorporated in a tabu search frame-
work. The cycle-based operators are subsequently used within a path-relinking algorithm
(Ghamlouche, Crainic and Gendreau, 2004), a multilevel cooperative framework (Crainic,
Li and Toulouse, 2006), and a scatter search (SS) (Crainic and Gendreau, 2007). In the
latter paper, the authors conclude that the proposed SS failed to meet their expectations
and further research is needed to realize the full potential of SS.

Inspired and motivated by the advances in the heuristic approaches for the MCNDP,
this paper contributes to the existing body of work by: (i) proposing an efficient iterated
local search (ILS) that utilizes new and enhanced cycle-based neighbourhood operators,
long and short term memory structures, and an innovative perturbation strategy based
on ejection chains (Glover, 1996) that aims at guiding the search towards unexplored
solution neighbourhoods; (ii) describing an efficient SS that dynamically adjusts the
preferences for inherited solutions based on search history; and (iii) presenting results
of computational experiments conducted on benchmark instances using an algorithm
incorporating the various elements described above. The majority of the heuristics for
the MCNDP utilize a trajectory-based or an evolutionary framework to select arcs for
inclusion in the network and call a commercial optimizer (e.g., CPLEX) to solve the flow
subproblem. As the flow subproblems becomes larger, the solution time for repeatedly
finding minimum cost flows might become significant, even though linear programming
optimizers are relatively efficient. Towards this end, we call CPLEX as few times as
possible in order to reduce the computational time requirements.
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The remainder of this paper is organized as follows. Section 2 provides a brief review
of the recent literature on the MCNDP. Section 3 presents the evolutionary algorithm and
all of its components, namely the initialization phase, the SS, and the ILS. In Section
4, we describe details of the computational experiments including parameters tuning,
and we also present results of applying the proposed algorithm to benchmark MCNDP
instances from the literature. Conclusions are given in Section 5, where future research
directions are also presented.

2 Literature

A number of efficient algorithms have appeared in the literature to address the inherent
complexity of solving the MCNDP. In this section, we provide a brief review of the
available methods but focus on heuristic, as opposed to exact, solution algorithms for
reasons stated earlier.

Crainic, Gendreau and Farvolden (2000) propose a simplex-based tabu search method
for the MCNDP using a path-flow based formulation of the problem. Their method com-
bines column generation with pivot-like moves of single commodity flows to define the
path flow variables. In a similar fashion, Ghamlouche, Crainic and Gendreau (2003)
describe cycle-based neighbourhoods for metaheuristics aimed at solving MCNDPs. The
main idea of the cycle-based local moves is to redirect commodity flows around cycles in
order to remove existing arcs from the network and replace them with new arcs. This
concept helps to enrich the solution neighbourhood, since multiple commodities can be
considered for rerouting and the range of moves is broader because flow redirections are
no longer restricted to paths linking origins and destinations. They use the proposed
neighbourhood structures in a tabu search algorithm, where a commodity flow subprob-
lem is solved to optimality at each iteration.

Ghamlouche, Crainic and Gendreau (2004) propose an evolutionary algorithm for
the MCNDP. Their solution framework is based on path relinking, in which cycle-based
neighbourhoods are used to generate an elite candidate set of solutions in a tabu search
algorithm and for moving from the initial to the guiding solution. Various rules are
presented for choosing the initial and guiding solutions. When updating the pool of
solutions, the dissimilarity of solutions is considered as an additional component in the
solution value. Later, Alvarez, Gonzalez-Velarde and De-Alba (2005) describe an SS
algorithm for the MCNDP. They use GRASP, originally proposed by Feo and Resende
(1995), to produce a diversified initial set of solutions. Each commodity path is subject
to a post improvement process. The solutions are combined by choosing the best path for
each commodity, among the solutions that are being combined. A feasibility restoration
mechanism is also available for solutions that are infeasible. The authors randomly gen-
erate instances to evaluate the performance of the proposed methodology. In contrast to

2
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the recombination process of Alvarez, Gonzalez-Velarde and De-Alba (2005), our SS does
not consider commodity paths to build a solution; instead, independent arcs are combined
to create the solutions. A parallel cooperative strategy to solve the MCNDP is described
by Crainic and Gendreau (2002) using tabu search and various communication strategies.
In a similar fashion, Crainic, Li and Toulouse (2006) propose a multilevel cooperative
search on the basis of local interactions among cooperative searches and controlled in-
formation gathering and diffusion. The focus of their algorithm is on the specification of
the problem instance solved at each level and the definition of the cooperation operators.

Katayama, Chen and Kubo (2009) propose a column and row generation heuristic
for solving the MCNDP. The main idea stems from the relaxation of the arc capacity
constraints, while a column and row generation technique is developed to solve the relaxed
problem. Using similar ideas, Yaghini, Rahbar and Karimi (2012) present a hybrid
simulated annealing (SA) and column generation (CG) algorithm for solving the MCNDP.
SA is used to define the open and closed arcs, while the flow subproblem is solved via
the CG component.

A local branching technique for solving the MCNDP is proposed by Rodrguez-Martin
and Salazar-Gonzalez (2010). Even though the method, originally proposed by Fischetti
and Lodi (2003), is exact by nature, high quality heuristic solutions can be produced
using an MIP solver as a “black box”. A solution framework that employs a combination
of mathematical programming algorithms and heuristic search techniques is introduced
by Hewitt, Nemhauser and Savelsbergh (2010). Their methodology uses very large neigh-
bourhood search in combination with an IP solver on an arc-based formulation of the
MCNDP, and a linear programming relaxation of the path-based formulation using cuts
discovered during the neighbourhood search. A follow-up study by Hewitt, Nemhauser
and Savelsbergh (2012) introduces a generic branch-and-price guided algorithm for inte-
ger programs with an application to the MCNDP.

3 Solution Methodology

In this section, we first present a formal definition of the problem including the notation
that will be used in the rest of the paper and then describe in detail the components of
the main algorithm.

3.1 Problem definition

The MCNDP is defined on a graph G = (N ,A), where N is the set of nodes and A is
the set of arcs. A subset of the arcs of A is to be selected. Each arc (i, j) ∈ A has an

3
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associated fixed cost fij to be paid if it is selected for inclusion in the network, has a cost
per unit of flow cij, and has a capacity uij. A set of commodities denoted by P is given,
where each commodity has an origin, a destination, and a quantity to be shipped from
origin to destination. Problems with more than one origin or destination per commodity
can be reduced to this form by splitting commodities (see Holmberg and Yuan, 2000).

The goal of the problem is to define a set of arcs that are to be included in the final
design of the network along with the commodity flows that these arcs accommodate,
to minimize the total cost of the selected arcs and the optimal flow distribution on the
resulting network. For the sake of simplicity, we will refer to the arcs that are included in
the final design of the network as open arcs; otherwise, the arcs should be considered as
closed. The selection of arcs to be open or closed is represented by the binary variables
yij, where yij = 1 if the arc (i, j) ∈ A is open, and yij = 0 otherwise. The flow on each
arc (i, j) ∈ A that is used for shipping each commodity p ∈ P from its origin to its
destination is denoted by xp

ij. Conservation of flow constraints must be satisfied at each
node, and

∑
p∈P xp

ij ≤ uij for all (i, j) ∈ A. The cost of a solution s that is defined by
variables xp

ij and yij for (i, j) ∈ A and p ∈ P is denoted by:

f(s) =
∑

(i,j)∈A

∑
p∈P

cijx
p
ij +

∑
(i,j)∈A

fijyij. (1)

Two types of mathematical formulations for the problem appear in the literature; an
arc-based and a path-based formulation. We refer to Gendron, Crainic and Frangioni
(1998), Frangioni and Gendron (2001) and Hewitt, Nemhauser and Savelsbergh (2010)
for details on these mathematical formulations.

3.2 Evolutionary algorithm

Our proposed solution methodology is an evolutionary algorithm that evolves a popu-
lation of solutions using the principles of SS (Glover, 1996) and applies ILS (Lourenço,
Martin and Stützle, 2002) as an improvement method. Following the basic template
of the SS framework, our solution approach can be mainly presented in three distinct
phases: (i) an Initialization phase where a population of good and diverse solutions is
produced and the Reference Set (set R) is initialised; (ii) a Scatter Search phase where
a recombination process takes place to produce offspring; and (iii) an Education phase
where these offspring (hosted in set C) are “educated” by attempting to improve their
quality via the proposed ILS. A pseudo-code of the overall solution framework is given
in Algorithm 1. We explain each phase in more detail in the following subsections.
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Algorithm 1: Evolutionary Algorithm

Input: λ (initial population size), µ (Reference Set size), where λ ≥ µ, δ (number
of local search iterations without an improvement), κ (Candidate Set size),
ϑmax (number of CPLEX calls within local search without an
improvement)

Output: R, sbest ∈ R
1. Initialization phase
R← ConstructionHeur(λ, µ);

while termination conditions do
2. Scatter Search phase
C = SolutionCombination(κ, µ);

3. Education phase
for individual s of C do

s′ ← ILS(s, δ, ϑmax);
Update RefSet(R, s′);

Typical termination criteria for evolutionary algorithms include the number of gen-
erations or a computation time limit. To be able to compare the performance of our
solution methodology to the literature, a computation time limit of one hour was used.

3.3 Initialization phase

The initialization phase uses a constructive heuristic to produce a population of diversi-
fied and good-quality solutions. The heuristic is based on three rules that are described
below.

The first rule selects an unrouted commodity that has the largest total demand,
and finds the best path on which the commodity can be routed without splitting. The
procedure iterates in a similar fashion until as many commodities as possible are routed.
Because the procedure does not necessarily route all of the commodities, the next rule
considers splitting the commodity flows into parallel paths as described below.

The second rule selects an unrouted commodity with the smallest demand and
attempts to route as many units of this commodity as possible along the minimum cost
path from origin to destination. More specifically, the procedure starts by routing all
the units of the demand of a particular commodity over the minimum cost path (as
determined by Dijkstra’s algorithm). If the arcs capacity constraints are violated by
routing all the units of this commodity, feasibility is restored by removing the excess
flow. The algorithm then proceeds to route this excess flow by considering alternative
and more expensive paths that are chosen in a non-decreasing order of their total cost.
The procedure iterates until all units of all commodities are routed. The rationale behind
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choosing commodities with smallest demand first is to force the procedure to split the
commodities with a larger demand in preference to those with a smaller demand.

The third rule is the combination of the first two and incorporates randomization
for diversification purposes. In particular, the randomization chooses with equal proba-
bility, at each iteration, one of the two above described rules to route the next unrouted
commodity. This commodity will be the one with the largest demand if the first rule
is chosen, or the one with the smallest demand if the second rule is involved. The so-
lutions produced by this rule should therefore involve some of the commodities routed
as a whole along a single path, while other commodities may be split and routed along
several parallel paths.

In each of the above rules, the paths are determined using Dijkstra’s shortest-path
algorithm. The cost of an arc, considered by Dijkstra, is the sum of the flow cost and the
fixed cost incurred if the arc is open. Given the set of all open arcs, a linear programming
flow subproblem is then solved using an off-the-shelf commercial solver (CPLEX, in
our implementation), to obtain optimum commodity flows. The initialization phase
terminates after λ (different) solutions have been generated. The aim is to select µ
of these solutions to form the initial Reference Set, as described below.

3.4 Scatter Search

The SS phase evolves the Reference Set (Glover, 1996) of solutions using an efficient
recombination method as follows. A subset generation method selects κ solutions from
the Reference Set, and a solution combination method is then applied to produce one
solution. This procedure is repeated until 2µ offspring, which double the number of
parent solutions in the Reference Set, are produced. We choose µ of the 2µ offspring
that have the smallest total cost to proceed to the next phase. In this Education phase,
the ILS then improves the quality of each offspring, before these offspring are tested for
insertion into the Reference Set according to elitist criteria. These phases are explained
further in the following sections.

3.4.1 Reference Set

The goal of using a Reference Set R is to maintain a balance between quality and diversity,
and to avoid a premature convergence of the algorithm. An obvious measure of the quality
of a solution s is its cost f(s). An alternative quality measure that becomes relevant after
the evolutionary process has started is the solvency ratio as defined by

SR(s) = NEO(s)/hits(s), (2)

6
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where hits(s) denotes the number of times that solution s has participated in the recom-
bination process to produce an offspring, and NEO(s) denotes the Number of Educated
Offspring of s, which is the number of times that an offspring of s has been educated
and included in R. The smaller the solvency ratio, the lower the value of the particular
solution s is to the evolution process. In this way, a higher cost solution with respect to
the usual objective function f may be beneficial to the search if it produces well-educated
offspring. Our diversity measure uses the Hamming distance between pairs of solutions.
For solutions s and s′, the Hamming distance is defined by

D(s, s′) =
∑

(i,j)∈A

|ysij − ys
′

ij |. (3)

The total dissimilarity of the reference set is then defined by

TD(R) =
∑
s,s′∈R

D(s, s′), (4)

where the sum is over all µ(µ− 1)/2 pairs of solutions in set R.

The creation of the initial Reference Set proceeds as follows. The first µ solutions
among the λ generated within the Initialization phase are inserted into R. The remaining
λ−µ solutions are then considered sequentially for replacing a solution in R. Specifically,
if such a solution s satisfies the condition f(s) < f(sbest), where sbest is a least cost
solution in R, or if there is a solution r ∈ R for which f(s) < f(r) and D(r, sbest) <
D(s, sbest), then s is inserted into R. Otherwise, s is not included in R and is discarded
from further consideration. To maintain the size of R when s is inserted, solution sworst ∈
R, where sworst has the largest cost among solutions in R, is removed from R.

At each generation of the evolutionary process, µ educated offspring are generated,
and sequential decisions are made on whether to replace a solution in R with the offspring
under consideration. At the later stages of the evolutionary process, this decision depends
on solvency ratios, but a different process is used at the start of the evolutionary process
when solvency ratios cannot be meaningfully computed. Specifically, for the first two
generations of the evolutionary process, an offspring s replaces sworst ∈ R in the reference
set R if either f(s) < f(sbest), or if f(s) < f(sworst) and TD(R) < TD(R\{sworst}∪{s}),
where sbest and sworst are defined above and total dissimilarity values are computed using
equation (4).

After the first two generations of the evolutionary process, decisions about replacing
a solution of the reference set with an educated offspring s use solvency ratios. More
precisely, if either f(s) < f(sbest), or if f(s) < f(s′worst) and TD(R) < TD(R \ {s′worst} ∪
{s}), where s′worst ∈ R has the minimum solvency ratio among solutions in R, then s
replaces s′worst in R. This procedure differs from other studies where the usual practice
is always to remove the worst-cost solution sworst from R without regard to any effect on
the evolutionary process.

7
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3.4.2 Solution combination method

To create a new generation, 2µ offspring are generated, and the best µ of these are
improved, or “educated”, through our ILS. The educated offspring are then considered
for inclusion in R, as explained in Section 3.4.1. We now discuss how our proposed
solution combination method generates each offspring.

Each offspring is generated from a candidate set (CS) comprising κ solutions from the
Reference Set R. The solutions in CS are chosen probabilistically with a bias towards
promising parents as determined by their solvency ratios. Specifically, the probability of
a solution s being included in the candidate set is proportional to SR(s). In this way, a
solution s with a low SR(s) is gradually neglected, and the focus is on new solutions that
produce well-educated offspring. Because the solvency ratio changes as new generations
are created, the scatter search phase has a dynamic character, and premature convergence
is typically averted. Furthermore, to enable diversification, a penalty is used to weaken
the impact of a frequently selected parent as explained below.

The solution elements, which are the arcs of the solutions in CS, are combined to
produce an offspring. For a given solution s, each arc (i, j) is either open if ysij = 1 or
closed if ysij = 0. We associate a value f(s) + αhits(s) with solution s, where f(s) is
the cost of the solution, hits(s) is the number of times that solution s has participated
in the recombination process over all previous iterations, and α is a scaling parameter.
The term αhits(s) is introduced to weaken the impact of a frequently selected parent
and thereby enable diversification. We now introduce a voting procedure to determine
whether each arc (i, j) will be open or closed in the offspring, according to the following
scores:

Opij =
∑
s∈CS

ysij
f(s) + αhits(s)

∀(i, j) ∈ A (5)

Clij =
∑
s∈CS

1− ysij
f(s) + αhits(s)

∀(i, j) ∈ A. (6)

Opij and Clij are the scores for arc (i, j) being open and closed, respectively. Thus, if
Opij > Clij, the preferred status of arc (i, j) is open; otherwise its preferred status is
closed.

The output of the SS phase is a preferred status of open or closed for each arc (i, j).
To build a feasible solution, the commodity flows on each arc of the network, given the
status of the arcs, need to be determined. We adopt the natural approach of solving the
associated capacitated multicommodity network flow problem to find these flows, and the
CPLEX LP optimizer is used for this purpose. Due to the nature of the recombination
process, it might be that the set of arcs that are open according to their preferred status
leads to an infeasible solution. To restore feasibility, a reconstruction mechanism is also
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incorporated, similar to the one described in Section 3.3. The goal is to maintain as
many open arcs as the recombination process suggests. Towards this end, the arcs with a
preferred status of open are each assigned a very small positive fixed and variable costs, so
that the construction heuristic will generally choose them, while other arcs are assigned
their original costs.

3.5 Education phase: the ILS heuristic

The µ elite offspring, chosen among the 2µ produced by the SS phase, are individually
“educated” (i.e., improved) using ILS. The resulting improved solutions are then used to
update the Reference Set according to the criteria discussed in Section 3.4.1.

The proposed ILS has two main components, namely a local search and a perturbation
strategy. The proposed local search uses new neighbourhood operators and short term
memory (represented by memory structure g⃗) to avoid cycling. The perturbation strategy,
namely Ejection Cycles, partially modifies the current solution according to information
gathered during the search (long-term memory represented by memory structure h⃗) in
the spirit of Ejection Chains (Glover 1996). The components of the ILS are given in
Algorithm 2.

Algorithm 2: Iterated Local Search

Input: s (current offspring), δ (number of local search iterations without an
improvement), ϑmax (number of CPLEX calls without an improvement)

Output: s
ϑ← 0, h⃗← 1;
while ϑ < ϑmax do

g⃗ ← 0 ;
(s′, h⃗)← LocalSearch(δ, s, g⃗);
s′ ← CPLEX(s′);
if f(s′) ≥ f(s) then

s∗ ← EjectionCycles(s′ ,⃗h)
s ← s∗;ϑ← ϑ+ 1;

else
ϑ← 0; s← s′;

3.5.1 Neighbourhoods and moves

Our ILS neighbourhood is based on the cycle-based operator, as originally proposed by
Ghamlouche, Crainic and Gendreau (2003). Their approach is to select a pair of nodes
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containing a positive flow and then re-route the flows of the individual commodities be-
tween these nodes. In this paper, we design a more efficient and effective approach based
on the notion of inefficient arcs and inefficient chains, as described below. Further, we
allow a partial re-routing of flow that maintains flow feasibility. In contrast, Ghamlouche,
Crainic and Gendreau (2003) remove all flow between the two selected nodes, and if the
new flows that are added do not result in a feasible solution, then a feasibility restoring
routine is applied.

Consider a solution defined by the variables xp
ij and yij for each arc (i, j) ∈ A and

each commodity p ∈ P . For each open arc (i, j), where yij = 1 and xp
ij > 0 for at least

one commodity p, we define the inefficiency ratio as

Iij =

∑
p∈P cijx

p
ij + fij∑

p∈P xp
ij

, (7)

which is a measure of the cost incurred for each unit of flow that is sent along arc (i, j).
The lower the value of Iij, the more efficient we regard arc (i, j) for accommodating flows.
The average inefficiency ratio is defined as Ī =

∑
(i,j)∈A Iijyij/

∑
(i,j)∈A yij, and we define

a set of inefficient arcs as AI = {(i, j)|yij = 1, Iij > Ī}, so that (i, j) ∈ AI if arc (i, j)
has a higher than average inefficiency ratio. Our aim is to create neighbourhood moves
that remove flows from some of the inefficient arcs in set AI .

We now describe how our inefficient chains are constructed from a subset of the
inefficient arcs. First, an arc is randomly chosen from the set AI of inefficient arcs to
form a component of the first inefficient chain. If the current partial inefficient chain
extends from node i to node j, then an arc (h, i) ∈ AI or (j, k) ∈ AI is added to the
current chain (where nodes h and k are not included in the current chain), where the
added arc is chosen to have an inefficiency ratio that is as large as possible. Whenever
an arc is included in a chain, it is deleted from AI . The process of extending the current
chain continues until no further extension is possible. Unless AI is empty or contains a
single arc, the process iterates with a random arc chosen to start a new chain. When the
process ends, any chains containing a single arc are discarded. The latter have the chance
to be included in inefficient chains in the next ILS iterations, since inefficient chains are
reconstructed from scratch at each ILS iteration.

Having constructed a set K of inefficient chains, we now describe how our neighbour-
hood is formed. Each neighbour is based on a sub-chain of an inefficient chain k ∈ K
and is defined by the starting node i and the ending node j of the sub-chain. If a chain
comprises nodes n1 − n2 − · · · − nm, then the (i, j) values are considered in the order

(n1, n2), (n1, n3), . . . , (n1, nm), (n2, n3), (n2, n4), . . . , (n2, nm), . . . , (nm−1, nm).

However, based on our initial computational tests, we restrict our attention to sub-chains
between i and j comprising at most 4 arcs, which helps to reduce computation times while
not significantly restricting the diversity of potential neighbourhood moves.

10

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2013-08



The key aspect of our neighbourhood is the re-routing of flow from arcs of the sub-
chain to other arcs of the network. An initial random decision is made as to whether a full
re-routing or a partial re-routing is to be attempted for this sub-chain. First, a list PI of
commodities is formed that have a positive flow through at least one arc of the sub-chain,
and this list is ordered in non-increasing order of amount commodity flow in the sub-
chain. To obtain a neighbour, the list of commodities is scanned and a re-routing of flow
is attempted for each commodity p of PI in turn. Suppose that the flow enters the sub-
chain at node ip, leaves the sub-chain at node jp and the amount of flow is vp. Dijkstra’s
algorithm is then applied to find a shortest path from node ip to node jp with the goal
of finding a suitable re-routing of flow. The arc costs for the shortest path problem are
set to infinity for the arcs between ip and jp in the sub-chain to prevent them from being
selected to receive flow. For the full re-routing neighbourhood, the arc cost is set to
infinity for any arc (i, j) that cannot accommodate an additional vp units of flow, is set
to cijv

p for other arcs (i, j) that are open in the current solution and is set to cijv
p+fij for

other arcs (i, j) that are closed in the current solution. Further, for partial re-routing, the
arc cost is set to infinity for any arc (i, j) that cannot accommodate any additional flow,
is set to cij min{ūij, v

p} for other arcs (i, j) that are open in the current solution, where
ūij is the unused capacity in arc (i, j), and is set to cij min{ūij, v

p}+fij for arcs (i, j) that
are closed in the current solution. If, in either neighbourhood, Dijkstra’s algorithm does
not find a shortest path with value less than infinity, then the flow remains unchanged
in the trial solution being constructed and the procedure turns its attention to the next
commodity in the list. When Dijkstra’s algorithm finds a shortest path with cost less
than infinity, we proceed as follows. For full re-routing, a flow of value vp is added to each
arc of the shortest path in the trial solution and is removed from the arcs of the sub-chain.
For partial re-routing, the maximum flow zp that can be sent along the shortest path is
first determined. The change of flow is then min{vp, zp} with this flow being added to
the arcs in the shortest path in the trial solution and deleted from the flows in the sub-
chain. When all of the commodities of PI are considered, the trial solution is a potential
candidate for being selected as the preferred neighbour. Additional trial solutions are
created by removing the first element of list PI and repeating the process, starting with
a random decision as to whether a full or partial re-routing is to be attempted, until PI

is empty. The completed procedure is executed for every possible sub-chain.

We illustrate the idea of re-routing flows by an example shown in Figure 1. The
example shows three commodities each with different line pattern, and a graph where an
origin node 3 and a destination node 8 define part of the inefficient chain. The re-routing
of the flows between nodes 3 and 8 causes individual commodity flow disconnections.
The flow re-routings take place independently for each different commodity between
its origin and destination nodes that the flow is disconnected. In particular, the solid
black line commodity must travel from node 4 to node 7, the dotted must travel from
node 6 to node 8, and the dashed one from node 3 to node 8. The gray solid lines are
possible alternative re-routing paths within the network. The three reroutings take place
separately as described above, although they result in a single neighbour.
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Figure 1: A typical Inefficient Chain and a Cycle operator

Another important component of our ILS is a frequency-based memory feature follow-
ing the suggestions of Paraskevopoulos, Tarantilis and Ioannou (2012). For this purpose,
a vector g⃗ of size equal to the number of arcs in a given instance is used to store each
value gij, which is the number of times that arc (i, j) has participated in a local move.
We re-initialize g⃗ to 0 each time a new best solution is found.

Using equation (8) below, the local move cost from solution s to a trial solution s′ is
computed as

∆fmove = f(s′)− f(s) + β
∑

(i,j)∈A

bijgij, (8)

where β is a scaling parameter, and bij a binary parameter with value equal to 1 if
the arc (i, j) participates in the current local move from s to s′, and 0 otherwise. The
component β

∑
(i,j)∈A bijgij is added to the cost of the local move, to penalize moves that

involve frequently selected arcs.

Trial solutions with smaller values of ∆fmove are generally preferred. However, it may
happen that this number is large enough to prevent the search from selecting a high-
quality neighbour s′. To avert such cases, an aspiration criterion is used according to
which if f(s′) < f(sbest) the penalty component is ignored so that ∆fmove = f(s′)− f(s).
The trial solution s′ with the smallest value of ∆fmove is then selected by ILS to be
improved by CPLEX (see Algorithm 2 for details on the ILS framework).

The neighbourhood search procedure is described by Algorithm 3. The function
IdentifyDifferentCommodities forms the list PI by identifying the different commodities
that have positive flows between the nodes i and j of an inefficient chain and arranging
the list in non-increasing order of these flows. EvaluateMove calculates the total cost of
the local move, and RemoveFirstElement removes the first element of the list. Recall
that the list is ordered in descending order of the flows of the different commodities. The
isFeasible function is a boolean function that returns “true” if a particular combination
(k, i, j) leads to some re-routing of flow, and lastly StoreBestNeighbour stores the current
neighbour found in the solution s′.
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Algorithm 3: Neighborhood Search

Input: s (current solution), M a large number
Output: s′ (best neighbor)
min = M ;
for All inefficient chains k and for all combinations of nodes i, j in k do
PI ← IdentifyDifferentCommodities(k, i, j);
while PI is not empty do

if isFeasible(k, i, j,PI) then
move=EvaluateMove(k, i, j,PI);

else
RemoveFirstElement(PI);Continue;

if move < min then
s′ ← StoreBestNeighbour(k, i, j,PI); min = move;

RemoveFirstElement(PI);

3.5.2 Ejection Cycles

A major component of an ILS algorithm is its perturbation strategy (Lourenço, Martin
and Stützle 2002). The goal is to partially rebuild the current local optimum solution,
such that the new diversified solution preserves some information from the local optimum.
The proposed perturbation strategy in this paper, namely Ejection Cycles (EC), applies
multiple cycle-based moves in the spirit of ejection chains (Glover 1996). The main idea
of the ejection-chains strategy is to apply a compound move consisting of a series of
consecutive local moves. Adopting this idea, our EC comprise a series of consecutive
cycle moves of the type described in Section 3.5.1, which aim at perturbing the structure
of the current solution to achieve diversification, but with the perturbation removing
some of the inefficient arcs from the solution.

We now present the details of how our sequence of local moves is found. As in
Section 3.5.1, we first find a set of inefficient chains and focus on sub-chains containing
4 arcs or fewer. For a given sub-chain, the list PI is formed, and ip, jp and vp are
computed. The list of commodities is scanned and a re-routing of flow is performed for
each commodity p of PI in turn. However, in this re-routing, infeasibilities may occur due
to flows exceeding arc capacities. A full re-routing is performed by applying Dijkstra’s
algorithm to find a shortest path from ip to jp. For all applications of Dijkstra’s algorithm
that are based on this sub-chain, the arc costs for the shortest path problem are set to
infinity for the arcs between ip and jp in the sub-chain. For each of the other arcs (i, j),
the cost in the shortest path problem is set to cijhij for arcs that are open in the current
solution and is set to cijhij + fij for arcs that are closed, where hij − 1 is the number
of times that arc (i, j) has participated in a local move, and initialization sets hij = 1.
The value hij is similar to gij of Section 3.5.1 except that it is initialized differently and,
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unlike gij is never re-initialized. If Dijkstra’s algorithm returns a shortest path length
of infinity, then the current sub-chain is not considered further and another is selected.
Otherwise, a flow of value vp is added to each arc of the shortest path in the trial solution
and is removed from the arcs of the sub-chain.

When rerouting of flow between nodes ip and jp of the sub-chain is complete for each
p ∈ PI , we check if any arc has a flow that violates its capacity constraint. If there is
no capacity violation, then a new feasible solution is found and the EC strategy termi-
nates because a perturbed solution has been found. When there some flows violate arc
capacities, we proceed as follows. For each arc with a capacity violation, that comprises
the set of violated arcs AV , a set of commodities is selected whose removal from the arc
restores feasibility but keeps the capacity utilization of the arc as high as possible. Thus,
each arc (i, j) with a capacity violation has an associated set of commodities Pij whose
flows should be removed to restore feasibility. For each commodity p, the set of arcs
{(i, j)|p ∈ Pij} is found, and a series of infeasibility chains is formed in the same way as
for inefficient chains, as described in Section 3.5.1.

The aim now is to re-route the flow in the each infeasibility chain using the method
described above incorporating Dijkstra’s algorithm to find a shortest path from the the
starting node ip of the sub-chain to the ending node jp. If a suitable path for re-routing
is found, then the trial solution is updated and a cost of infinity is assigned to each
arc of the infeasibility chain in all subsequent shortest path problems. The process or
re-routing flow in other infeasibility chains continues, until no capacity violations at arcs
occurs. If this is the case, then the EC strategy terminates because a feasible perturbed
solution has been found. Since at each rerouting a cost of infinity is assigned to each arc,
it happens all the possible paths to be penalised and no feasible solution to be found. In
such case, the EC procedure returns to the initial feasible solution, the first commodity
of set PI is deleted and EC takes place for the remaining commodities in the set. As in
Section 3.5.1, additional trial solutions are created by removing the first element of list
PI and repeating the process until PI is empty. The complete procedure is applied to all
subchains, and terminates when the first feasible perturbed solution is found.

The pseudo code of the EC is given in Algorithm 4, which has a close resemblance
to Algorithm 3. The function IdentifyInefficientArcs initialises the set of violated
arcs AV with the inefficient arcs that are associated with the commodities in set PI .
The function NeighbourExists is a boolean function that returns “true” if there exist
an alternative path that the flow can be re-routed, regardless the capacity constraints at
arcs. If no alternative paths are found (in case all neighbouring arcs have been assigned
a cost of infinity), then NeighbourExists returns “false”. The function Update identifies
which of the arcs of the re-routed paths are violate in terms of capacity constraints and
updates the set of violated arcs AV .
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Algorithm 4: Ejection Cycles

Input: s (current solution), M a large number
Output: s′ (best neighbor)
min = M
for All inefficient chains k and for all combinations of nodes i, j do
PI ← IdentifyDifferentCommodities(i, j);
while PI is not empty do
AV ←IdentifyInefficientArcs(PI);
while AV is not empty do

if NeighbourExists(k, i, j,AV ) then

move = move + EvaluateMove(k, i, j,AV , g⃗, h⃗); Update(AV );

else
goto another (k, i, j);

if move < min then
s′ ← StoreBestNeighbour(k, i, j); min = move;

if move ̸= M then
EndAlgorithm;

RemoveFirstElement(PI);

4 Computational Results

This section summarises the experiments conducted to evaluate the performance of the
proposed algorithm. First, we describe the benchmark sets that we used as a test bed for
our experimentation, followed by a parameter tuning and sensitivity analysis. Next, the
impact the inefficiency ratio (Equation 7) and the solvency ratio (Equation 2) have on
the solution quality is illustrated. EC’s performance is questioned next and the section
is completed by providing extensive comparisons of our computational results to the
state-of-the-art of the literature.

4.1 Data sets

To evaluate the performance of the proposed algorithm, computational experiments are
conducted on the benchmark instances described in Crainic, Gendreau and Farvolden
(2000), and in particular the C and C+ instances. These sets include instances with 25,
30 and 100 nodes, 10 to 400 commodities and 100 to 700 arcs. These instances differ
with respect to the nature of the arc capacities, which are either loose or tight, and the
relative weight of the fixed costs and the costs per unit of flow. There is also a set R
of the benchmarks described in Crainic, Gendreau and Farvolden (2000), which were
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not considered here as they are all solved to optimality (Katayama, Chen and Kubo,
2009) and are not as challenging as the C and C+ instances. The proposed algorithm
was implemented in a Visual Studio 2010 environment using the C++ programming
language and run on an Intel i-5 2.5 GHz PC, under MS Windows 7.

4.2 Calibration

The proposed evolutionary algorithm uses five parameters; the number λ of initial solu-
tions examined to produce the Reference Set R, the cardinality µ of R, the cardinality κ
of CS, the maximum number δ of local search iterations without an improvement in the
solution quality, and the maximum number ϑmax of CPLEX calls for which an improve-
ment in the current solution is not observed. The termination criterion for the algorithm
is a computational time limit of 1 hour.

Scaling parameters α and β are self-defined during the solution process, equal to the
average cost of an arc in the current best solution found, i.e., α=β=f(sbest)/

∑
(i,j)∈A ysbestij .

The parameter λ does not appear to have a significant impact to the quality of the so-
lutions; however, to have an adequate initial population size, we set λ = 1500. We set
κ = 3: to preserve the SS character of the proposed algorithm, κ needed to be larger than
2 to enhance the recombination process, but on the other hand κ should be relatively
small to ensure that a large number of possible combinations among the solutions of the
reference set is considered.

Parameters δ and ϑmax are interrelated in a way to keep the total number of local
search iterations balanced with the number of generations produced within the available
computation time limit. In particular, our experiments indicate that values of ϑmax equal
to 6, 7, and 8 are appropriate. Values below 6 deteriorated the solution quality, while
values greater than 8 slowed down the solution process without a significant increase in
the solution quality. In an effort to maintain a balance between the number of CPLEX
calls and the local search oscillations, δ is defined with respect to ϑmax values (as Table
1 shows and will be discussed in the following).

The impact of each algorithmic component on the solution quality varied according
to the size of the problem instance. In small to medium scale instances, the evolutionary
strategy had more impact than local search, since the cardinality of the neighbourhood is
relatively small and local search fails to adequately explore the search space. In contrast,
the solution neighbourhood is enriched with more solutions and the local search impact
is dominant in the solution process as the size of the problem instance increases. Driven
by these observations, the size µ of the reference set takes large values for small-medium
scale problems, and relatively small values for large scale instances, as Table 1 shows.
The goal is to obtain the best quality solutions within the predefined limit on running
time.
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Table 1 shows the computational experiments conducted to investigate on the algo-
rithm’s behaviour with respect to different sets of parameters. Different parameter sets
were used for different groups of problems, i.e., for large scale problems the reference set
was given relatively small sizes and δ was assigned high values, while on the small to
medium scale the opposite settings were used, for reasons described above.

Table 1: Calibration of the algorithm’s parameters

Group 25-100-(10,30) 20-(230,300)-40 20-(230,300)-200
ϑmax, δ, µ 25-100-30FT ϑmax, δ, µ 20,230,40FT ϑmax, δ, µ 20,230,200VT
6,40,40 86102 6,50,30 644180 6,70,20 98209
6,40,50 85969 6,50,40 644995 6,70,30 98338
6,40,80 85530 6,50,50 643187 6,70,40 98486

Parameter 7,30,40 85996 7,40,30 644413 7,50,20 98584
Sets 7,30,50 85948 7,40,40 644265 7,50,30 98767

7,30,80 86089 7,40,50 643253 7,50,40 98945
8,20,40 86059 8,30,30 644085 8,40,20 98451
8,20,50 85932 8,30,40 643649 8,40,30 98767
8,20,80 85535 8,30,50 643538 8,40,40 98807

Best 6,40,80 85530 6,50,50 643187 6,70,20 98209

Group 100-400-(10,30) 30-(520,720)-100 30-(520,720)-400
ϑmax, δ, µ 100-400-30FT ϑmax, δ, µ 30,700,100FL ϑmax, δ, µ 30,700,400FT
6,80,20 139661 6,80,20 61085 6,80,10 133822
6,80,30 139805 6,80,30 61106 6,80,20 133889
6,80,40 140503 6,80,40 61089 6,80,30 133861

Parameter 7,70,20 139995 7,70,20 60596 7,70,10 133245
Sets 7,70,30 140878 7,70,30 61054 7,70,20 133478

7,70,40 140976 7,70,40 61188 7,70,30 133966
8,50,20 140878 8,50,20 61284 8,60,10 133596
8,50,30 139943 8,50,30 61266 8,60,20 133954
8,50,40 140760 8,50,40 61176 8,60,30 133870

Best 6,80,20 139661 7,70,20 60596 7,70,10 133245

The C and C+ benchmark instances are classified into 6 groups according to their
size. The label for each group is a vector depicting the number of nodes, the number of
arcs and the number of commodities. The problem instances within each group differ in
the tightness of the arcs’ capacity constraints and the relative importance of the fixed
costs for the arcs and the costs per unit of flow. The calibration was conducted by using
one problem from each group, shown in the headings of the three main columns of Table
1. A single run of the algorithm was used and the solution cost derived for each instance
is indicated within the second column of the three main columns. The parameter set
that produces the best result for each different group is chosen to be fixed and is applied
to solve the rest of the problems in the group using a single run of the algorithm.

As expected, small to medium scale problems favour a smaller number of local search
iterations and a large Reference Set, while large scale problems needed more local search
iterations with a relatively small reference set to produce the best results. Furthermore,
it is easily observed that there is no significant variation of the solution costs derived
from different parameter sets, concerning the same problem.
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4.3 Network efficiency vs total cost

The local search introduced herein is guided by rerouting commodities flows from ineffi-
cient to more efficient chains. Nevertheless, the original objective function of the problem
is used throughout the solution process and the solutions are evaluated according this
objective function and to dissimilarity criteria. To illustrate the impact of the efficiency
guidance on the solution cost, we present in Figure 2 the evolution of performance mea-
sures for two problem instances.

Figure 2 shows the relation between the efficiency of the network, that is the efficiency
of the arcs that are open according to equation (7), and the total cost of the solution
during the search. Two instances, 20,230,200VT and 30,700,400VL, were chosen for
this analysis. The first two figures, (a) and (b), show the evolution of the total cost
for the best solutions found for the 20,230,200VT and 30,700,400VL problem instances,
respectively. The next two figures (c) and (d) give the maximum inefficiency of an open
arc for the different solutions found during the algorithm’s iterations. We observe that as
the algorithm iterates, the maximum arc inefficiency is dramatically reduced and follows
a logarithmic trend. On another note, the 20,230,200VT graph appears to be steeper
than 30,700,400VL, which can be attributed to the different characteristics of the problem
instances. Conversely, the last two subfigures (e) and (f) show the average efficiency of
the arcs as the search progresses, which illustrate an increase in the efficiency of the
network as the solution quality improves.

4.4 Solvency ratio vs random parent selection

The solvency ratio (introduced in Section 3.4.1) informs the parent selection procedure
during the SS recombination, such that solutions producing offspring which have been
subsequently “educated”, (i.e., inserted into the Reference Set), are favoured during the
parent selection procedure. To illustrate the effectiveness of the solvency ratio, tests
were conducted and results are presented on two benchmark instances, which typically
present the general behaviour of the algorithm, namely 100-400-30-FT and 20,300,200FT,
considering solvency-based and random parent selection strategies.

Figure 3 presents the comparisons between the two strategies. Note that the two first
generations are used as a warm up for the solvency strategy, which is enabled from the
third generation onwards and this is apparent from the subfigures. Subfigures (a) and
(b) show how the best solution values evolve over time. For 100,400,40FT we can easily
observe that solutions from the random-based strategy become prematurely trapped in a
local optimum, whereas the solvency-based strategy is slower to improve the best solution
initially, but a pay-off is observed in the middle of the horizon, and finally terminates
with an overall better solution. The 20,300,200FT problem instance exhibits a similar
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(a) Total cost vs time (b) Total cost vs time

(c) Maximum arc inefficiency vs time (d) Maximum arc inefficiency vs time

(e) Average arc efficiency vs time (f) Average arc efficiency vs time

Figure 2: Arc efficiency and total cost tracked over time for instances 20,230,200VT and
30,700,400VL
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pattern, i.e., the solvency strategy provides a large improvement in the early generations
and then follows a less steep path as the algorithm improves the total cost. The random
strategy is again trapped in a local optimum, in this case at the 12th generation. The
next two subfigures (c) and (d) display the average solution cost in the Reference Set
throughout the generations. The main observations are similar to the first two subfigures;
the solvency strategy exhibits a smooth descending path and ends up with a better
population in the last generations.

A “healthy” evolutionary process should typically produce a decent number of edu-
cated offspring per each generation. Figures 4(e) and 4(f) show this characteristic. In
the middle of the evolution process, the random strategy has difficulties in producing
educated offspring resulting in premature convergence. On the contrary, the solvency
strategy keeps updating the Reference Set with educated offspring until the very last
generations, and this is a desirable characteristic of our proposed evolutionary algorithm.

4.5 Ejection Cycles impact on the solution quality

Experimentation was conducted on different versions of the proposed Cycle-based Evo-
lutionary Algorithm (CEA) to investigate the effect of EC on the final solution quality.
Two versions of CEA were thus considered. The first is a SS-ILS version, where the local
search is iterated with a random perturbation strategy, according to which 25% of the
commodities are selected at random, removed and rerouted via the construction mech-
anism discussed in Section 3.3, and the second is the full version of the CEA algorithm
with EC. Table 2 presents the results of these experiments. The letters appended to
the instance name are linked with the relative weightings of fixed (F) and variable (V)
costs, and of tight (T) and loose (L) capacity constraints. The second column named
OPT/LB reports either the optimal (OPT) or the best known lower bound (LB) as iden-
tified for each of the instances by Katayama, Chen and Kubo (2009). The entries in the
% Dev columns are given by formula 100(v(EC)− v(SSILS))/v(EC), where v(SSILS) is
the cost obtained by using the SS+ILS version of the algorithm, while v(EC) indicates
the solution cost obtained by the full version of the algorithm, including EC. It can be
easily observed that the impact of the EC in the final solution quality is significant, as
it achieves up to a 6.34% improvement in the solution cost.

4.6 Comparative analysis

The performance of the proposed algorithm was compared with the solutions reported in
Ghamlouche, Crainic and Gendreau (2003), Ghamlouche, Crainic and Gendreau (2004),
Crainic, Li and Toulouse (2006), Katayama, Chen and Kubo (2009), Hewitt, Nemhauser
and Savelsbergh (2010), Yaghini, Rahbar and Karimi (2012) and Rodrguez-Martin and
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(a) Total cost: 100-400-30FT (b) Total cost: 20,300,200FT

(c) Average cost for R: 100-400-30FT (d) Average cost for R: 20,300,200FT

(e) Educated offspring: 100-400-30FT (f) Educated offspring: 20,300,200FT

Figure 3: Solvency-based vs random-based strategies for instances 100-400-30FT and
20,300,200FT

21

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2013-08



Table 2: Comparative results among different versions of the proposed CEA

Instances OPT/LB
CEA

% Dev Instances OPT/LB
CEA

% Dev
SS+ILS +EC SS+ILS +EC

25,100,10VL 14712 O 14712 14712 0.00 100,400,10FL 23949 O 24244 23949 −1.23
25,100,10FL 14941 O 14941 14941 0.00 100,400,10FT 59470 L 70437 66240 −6.34
25,100,10FT 49899 O 49899 49899 0.00 100,400,30VT 384560 L 385916 385163 −0.20
25,100,30VT 365272 O 365272 365272 0.00 100,400,30FL 47459 L 51068 49577 −3.01
25,100,30FL 37055 O 37690 37324 −0.98 100,400,30FT 127825 L 142153 139661 −1.78
25,100,30FT 85530 O 86089 85530 −0.65 30,520,100VL 53958 L 54642 54109 −0.99
20,230,40VL 423848 O 424075 423848 −0.05 30,520,100FL 91285 L 95439 95302 −0.14
20,230,40VT 371475 O 375844 371475 −1.18 30,520,100VT 51825 L 52541 52284 −0.49
20,230,40FT 643036 O 644619 643187 −0.22 30,520,100FT 94646 L 99159 98525 −0.64
20,300,40VL 429398 O 430643 429398 −0.29 30,700,100VL 47603 O 47905 47619 −0.60
20,300,40FL 586077 O 588939 586077 −0.49 30,700,100FL 58772 L 61365 60596 −1.27
20,300,40VT 464509 O 466984 464509 −0.53 30,700,100VT 45552 L 46582 46084 −1.08
20,300,40FT 604198 O 605912 604198 −0.28 30,700,100FT 54233 L 55954 55271 −1.24
20,230,200VL 92598 L 95181 94468 −0.75 30,520,400VL 111992 L 115305 113694 −1.42
20,230,200FL 133512 L 141631 139002 −1.89 30,520,400FL 146809 L 154517 151688 −1.87
20,230,200VT 97344 L 99292 98209 −1.10 30,520,400VT 114237 L 117132 116322 −0.70
20,230,200FT 132432 L 142105 137131 −3.62 30,520,400FT 150009 L 157355 154425 −1.90
20,300,200VL 73759 L 76202 75288 −1.21 30,700,400VL 96741 L 99899 99222 −0.68
20,300,200FL 111655 L 118305 117320 −0.84 30,700,400FL 130724 L 139916 137112 −2.05
20,300,200VT 74991 O 76355 75607 −0.99 30,700,400VT 94118 L 97810 96388 −1.48
20,300,200FT 104334 L 108764 108459 −0.28 30,700,400FT 127666 L 134690 133245 −1.08
100,400,10VL 28423 O 28476 28426 −0.18

Salazar-Gonzalez (2010). The algorithm of Alvarez, Gonzalez-Velarde and De-Alba
(2005) could not be included in the comparisons as the authors do not report any results
with the instances tested here.

Table 3 shows the results of the proposed algorithm in comparison with the afore-
mentioned algorithms for solving the MCNDP. The first column of Table 3 shows the
name of the instance as characterized by the number of nodes, the number of arcs and
the number of commodities. The values of the solutions produced by the proposed al-
gorithm are reported in column CEA. The remaining five columns report the relative
percentage deviations of the solutions found by CEA from those of the quoted studies
and is calculated as 100(v(CEA)− v(Alg))/v(CEA), where v(Alg) indicates the solution
value produced by the corresponding algorithm and v(CEA) the solution value produced
by the proposed CEA. A negative value indicates that the solution found by the CEA is
better. The following abbreviations are used:

• CTS: the Cycle-based Tabu Search of Ghamlouche, Crainic and Gendreau (2003);

• PR: the Path Relinking of Ghamlouche, Crainic and Gendreau (2004);

• MCA: the Multilevel Cooperative Algorithm of Crainic, Li and Toulouse (2006);

• CSH: the Capacity Scaling Heuristic of Katayama, Chen and Kubo (2009);

• IPS: the IP Search of Hewitt, Nemhauser and Savelsbergh (2010);
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Table 3: Comparison results on the C and C+ sets of benchmark instances of Crainic,
Gendreau and Farvolden (2000)

Instances OPT/LB CEA
% Deviation

CTS PR MCA CSH IPS
25,100,10VL 14712 O 14712 0.00 0.00 0.00 0.00 n/a
25,100,10FL 14941 O 14941 0.00 0.00 0.00 −0.64 n/a
25,100,10FT 49899 O 49899 0.00 0.00 −0.08 −1.75 n/a
25,100,30VT 365272 O 365272 −0.03 −0.03 −0.03 0.00 n/a
25,100,30FL 37055 O 37324 −0.69 −0.88 −0.76 −0.39 n/a
25,100,30FT 85530 O 85530 −0.90 −1.05 −1.09 −0.32 n/a
20,230,40VL 423848 O 423848 −0.22 −0.13 −0.67 −0.05 −0.13
20,230,40VT 371475 O 371475 −0.11 −0.09 0.00 −0.12 −0.08
20,230,40FT 643036 O 643187 −0.41 −0.37 −1.51 −0.20 0.00
20,300,40VL 429398 O 429398 −0.03 0.00 −0.10 0.00 0.00
20,300,40FL 586077 O 586077 −1.24 −0.74 −1.27 −0.29 0.00
20,300,40VT 464509 O 464509 −0.05 0.00 −0.32 −0.01 0.00
20,300,40FT 604198 O 604198 −0.48 −0.96 −2.48 0.00 0.00
20,230,200VL 92598 L 94468 −4.79 −6.28 −4.35 0.23 −0.67
20,230,200FL 133512 L 139002 −5.42 −6.46 −2.98 0.98 −1.62
20,230,200VT 97344 L 98209 −6.66 −6.60 −3.89 0.25 −1.22
20,230,200FT 132432 L 137131 −7.48 −7.60 −2.96 0.73 −2.29
20,300,200VL 73759 L 75288 −7.35 −3.85 −3.88 0.50 −0.04
20,300,200FL 111655 L 117320 −5.14 −5.25 −3.95 1.31 −0.19
20,300,200VT 74991 O 75607 −5.31 −4.31 −2.17 0.40 −0.78
20,300,200FT 104334 L 108459 −5.56 −4.73 −2.50 0.55 −1.74
100,400,10VL 28423 O 28426 −0.88 −0.21 −0.45 0.00 0.01
100,400,10FL 23949 O 23949 0.00 −0.30 −0.30 −2.13 0.00
100,400,10FT 59470 L 66240 −1.17 1.45 −0.07 −11.06 0.54
100,400,30VT 384560 L 385163 −0.09 0.06 −0.03 0.07 0.08
100,400,30FL 47459 L 49577 −3.98 −3.53 −1.77 −4.80 −0.24
100,400,30FT 127825 L 139661 −3.93 −1.22 −4.34 −3.33 −1.22
30,520,100VL 53958 L 54109 −1.57 −1.47 −3.04 0.04 −0.01
30,520,100FL 91285 L 95302 −4.50 −7.08 −4.74 0.53 0.96
30,520,100VT 51825 L 52284 −1.34 −1.40 −2.35 0.00 0.21
30,520,100FT 94646 L 98525 −7.10 −7.72 −4.01 −0.32 −0.36
30,700,100VL 47603 O 47619 −1.64 −2.32 −2.63 −0.03 0.01
30,700,100FL 58772 L 60596 −3.09 −4.12 −5.21 0.66 −0.17
30,700,100VT 45552 L 46084 −2.04 −2.44 −2.98 −0.18 0.08
30,700,100FT 54233 L 55271 −4.73 −2.36 −2.97 −0.16 −0.61
30,520,400VL 111992 L 113694 −6.12 −5.03 −1.74 0.75 −0.31
30,520,400FL 146809 L 151688 −6.20 −7.53 −3.24 1.48 −1.67
30,520,400VT 114237 L 116322 −4.53 −3.31 −4.00 1.45 1.20
30,520,400FT 150009 L 154425 −8.75 −5.99 −3.75 1.09 −0.12
30,700,400VL 96741 L 99222 −7.61 −5.94 −3.44 1.26 0.51
30,700,400FL 130724 L 137112 −8.63 −5.77 −5.01 1.49 −11.28
30,700,400VT 94118 L 96388 −5.48 −5.00 −2.91 1.12 0.23
30,700,400FT 127666 L 133245 −7.15 −5.83 −3.77 2.32 1.21

MAX 0.00 1.45 0.00 2.32 1.21
MIN −8.75 −7.72 −5.21 −11.06 −11.28
AVG −3.31 −2.94 −2.27 −0.20 −0.53

• SACG: the Simulated Annealing Column Generation of Yaghini, Rahbar and Karimi
(2012);

• LocB: the Local Branching approach of Rodrguez-Martin and Salazar-Gonzalez
(2010).

As the results shown in Table 3 indicate, the proposed CEA is competitive relatively to
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the state-of-the-art approaches. In particular, CEA is able to produce optimal solutions
for the 25,100,10, and 20,300,40 instances as well as for 100,400,10FL. Furthermore, it
produced optimal solutions for 25,100,30FT and 20,230,40VL which could not be found
by any of the heuristics used for comparisons. Similarly, CEA produced a better solution
than the state-of-the-art for the 25,100,30FL problem instance with total cost of 37324.

The performance of CEA as compared with the heuristics that form the basis of our
comparison, is very competitive. The maximum improvement provided by CEA as com-
pared to the CTS of Ghamlouche, Crainic and Gendreau (2003) is up to 8.75%, compared
to the PR of Ghamlouche, Crainic and Gendreau (2004) is up to 7.72%, compared to
the MCA of Crainic, Li and Toulouse (2006) is up to 5.21%, compared to the CSH of
Katayama, Chen and Kubo (2009) is up to 11.06%, and finally compared to the IPS of
Hewitt, Nemhauser and Savelsbergh (2010) is up to 11.28%. On average, CEA manages
to perform better than all above heuristics. With regard to large scale problem instances
100,400,30FT and 30,520,100FT, new best solutions were obtained with values 139661
and 98525, respectively. These instances have up to 100 nodes, 520 arcs and 100 com-
modities, and the new best solutions improve by 1.22% and 0.32% over the previous best
known solutions, respectively.

To be able to conduct objective comparisons with the state-of-the-art, CEA was run
and compared to the SACG and the LocB under a time limit of 600 sec and to the
IPS under a time limit of 900 sec, while these time limits are taken from the respective
papers. The results are shown in Table 4. In particular, as in Table 3 the first column
reports the instance name and the second the Optimum/Lower Bound as reported by
Katayama, Chen and Kubo (2009). The next multicolumn compares CEA’s performance
on 600 sec running time to SACG’s and LocB’s in 600 sec running time. Note that,
Yaghini, Rahbar and Karimi (2012) report two sets of results; one derived by 600 sec
and one by 18000 sec. The latter column of results was not included here since it could
not be compared neither to other studies nor to CEA, given that the results reported by
Rodrguez-Martin and Salazar-Gonzalez (2010) are derived with a 600 sec time limit. The
final three columns report on test with a 900 sec running time and CEA’s performance
was compared to IPS’s 900 sec results.

As shown in Table 4, CEA remains competitive even when lower running time limits
are considered, although as a typical evolutionary algorithm needs a considerable run-
ning time to converge and present its best performance. In particular, CEA is able to
achieve improvements of up to 13.90%, 20.45% and 9.21% over SACG, LocB and IPS,
respectively. On average, CEA is able to produce solutions that are 0.16% better than
SACG and 0.89% better than LocB. As for IPS, the performance of CEA is competitive.

Table 5 presents the computation times in seconds reported for the best results ob-
tained by CEA and by the comparator heuristics. The computation times for CTS and
PR are for a SUN Enterprise 10000 with 400 MHz 64CPUs (one CPU use), while MCA
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Table 4: Comparison results on 600 and 900 sec running time limits

Instances OPT/LB
600 sec 900 sec

CEA SACG LocB
% Dev

CEA IPS % Dev
SACG LocB

25,100,10VL 14712 O 14712 14712 14712 0.00 0.00 14712 n/a n/a
25,100,10FL 14941 O 14941 14941 14941 0.00 0.00 14941 n/a n/a
25,100,10FT 49899 O 49899 49899 49899 0.00 0.00 49899 n/a n/a
25,100,30VT 365272 O 365272 365272 365272 0.00 0.00 365272 n/a n/a
25,100,30FL 37055 O 37522 37055 37326 1.23 0.52 37359 n/a n/a
25,100,30FT 85530 O 85535 85530 85530 0.01 0.01 85535 n/a n/a
20,230,40VL 423848 O 424075 423848 423848 0.05 0.05 424075 424385 −0.07
20,230,40VT 371475 O 371475 371475 371475 0.00 0.00 371475 371779 −0.08
20,230,40FT 643036 O 643253 643036 643036 0.03 0.03 643253 643187 0.01
20,300,40VL 429398 O 429398 429398 429398 0.00 0.00 429398 429398 0.00
20,300,40FL 586077 O 586077 586077 586077 0.00 0.00 586077 586077 0.00
20,300,40VT 464509 O 464885 464509 464509 0.06 0.08 464885 464509 0.08
20,300,40FT 604198 O 604198 604198 604198 0.00 0.00 604198 604198 0.00
20,230,200VL 92598 L 95213 95802 95295 −0.09 −0.09 95075 95097 −0.02
20,230,200FL 133512 L 140199 150489 143446 0.31 −2.32 139831 141253 −1.02
20,230,200VT 97344 L 99800 98291 98039 1.82 1.76 98933 99410 −0.48
20,230,200FT 132432 L 140008 149398 141128 −0.54 −0.80 139162 140273 −0.80
20,300,200VL 73759 L 76873 79084 76375 1.13 0.65 75723 75319 0.53
20,300,200FL 111655 L 118559 137387 119142 0.52 −0.49 117838 117543 0.25
20,300,200VT 74991 O 75928 75091 76167 0.67 −0.31 75879 76198 −0.42
20,300,200FT 104334 L 109889 114947 109808 0.16 0.07 109134 110344 −1.11
100,400,10VL 28423 O 28430 28423 28423 0.02 0.02 28430 28423 0.02
100,400,10FL 23949 O 24022 23949 24690 0.30 −2.78 24022 23949 0.30
100,400,10FT 59470 L 67497 65017 67357 3.44 0.21 67497 65885 2.39
100,400,30VT 384560 L 385971 384802 384809 0.30 0.30 385971 384836 0.29
100,400,30FL 47459 L 50567 49945 49872 1.83 1.37 49720 49694 0.05
100,400,30FT 127825 L 142234 141812 141633 0.49 0.42 142234 141365 0.61
30,520,100VL 53958 L 54412 53958 54026 0.79 0.71 54412 54113 0.55
30,520,100FL 91285 L 95829 94524 96255 1.59 −0.44 95495 94388 1.16
30,520,100VT 51825 L 52483 52046 52129 0.18 0.67 52416 52174 0.46
30,520,100FT 94646 L 99635 107807 101102 −0.55 −1.47 99129 98883 0.25
30,700,100VL 47603 O 47809 47603 47603 −0.40 0.43 47736 47612 0.26
30,700,100FL 58772 L 61278 60248 60272 1.14 1.64 61184 60700 0.79
30,700,100VT 45552 L 46264 45880 45905 0.25 0.78 46264 46046 0.47
30,700,100FT 54233 L 55523 54919 55104 0.92 0.75 55523 55609 −0.15
30,520,400VL 111992 L 114805 117052 114367 0.53 0.38 114761 114042 0.63
30,520,400FL 146809 L 154726 177653 157725 −0.72 −1.94 153954 154218 −0.17
30,520,400VT 114237 L 116768 117071 115240 0.99 1.31 116768 114922 1.58
30,520,400FT 150009 L 156263 177653 168561 −2.38 −7.87 156263 154606 1.06
30,700,400VL 96741 L 99914 102094 103787 −1.81 −3.88 99887 98718 1.17
30,700,400FL 130724 L 140934 200005 169759 −13.90 −20.45 139705 152576 −9.21
30,700,400VT 94118 L 97262 97441 96680 0.22 0.60 97106 96168 0.97
30,700,400FT 127666 L 134181 154630 144926 −5.45 −8.01 134181 131629 1.90

MAX 3.44 1.76 2.39
MIN −13.90 −20.45 −9.21
AVG −0.16 −0.89 0.06

uses the same machine but takes advantage of the cluster architecture. CSH is run on
a Pentium 3.2 GHz CPU, while CEA is run on an i-5 2.5 GHz PC. IPS is not included
in this table since the authors do not report specific individual running times, but use
a termination criterion of 900 seconds per instance. Ideally in computation times com-
parisons, appropriate adjustments should be made that account for the speed of the
machines. Due to the lack of information regarding the computer architectures, no ad-
justments have been made in Table 5; the running times are reported as they appear in
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Table 5: Computational times (in sec) and comparisons with the state-of-the-art

Instances CTS PR MCA CSH CEA Instances CTS PR MCA CSH CEA
25,100,10VL 5.6 48.9 12.5 1.3 6.1 100,400,10FL 33.0 306.8 82.9 93.3 362.6
25,100,10FL 8.4 53.8 14.1 7.1 16.1 100,400,10FT 81.2 626.5 209.9 55.6 2640.9
25,100,10FT 17.1 51.2 24.1 3.7 587.3 100,400,30VT 277.5 1975.3 492.8 17.8 1388.3
25,100,30VT 16.6 223.7 101.4 3.2 74.6 100,400,30FL 100.2 1300.6 315.0 621.5 3445.2
25,100,30FL 33.0 215.4 75.2 14.7 704.6 100,400,30FT 215.7 1870.0 480.9 153.9 2048.4
25,100,30FT 71.8 224.6 97.0 10.0 27.5 30,520,100VL 995.6 3356.0 1194.1 26.9 3505.2
20,230,40VL 71.3 370.3 148.8 3.0 1938.3 30,520,100FL 939.2 4032.4 1460.0 406.5 3403.1
20,230,40VT 90.3 435.6 156.9 3.3 71.9 30,520,100VT 1218.5 3481.1 1513.7 37.3 3536.6
20,230,40FT 121.8 423.3 172.2 3.8 705.2 30,520,100FT 670.3 3927.4 1522.7 199.7 2915.7
20,300,40VL 71.1 611.5 224.9 3.2 66.4 30,700,100VL 1265.1 4396.4 1860.6 38.5 3313.9
20,300,40FL 113.4 581.9 228.3 6.2 726.1 30,700,100FL 1479.6 4755.0 1837.5 114.5 3456.3
20,300,40VT 145.3 589.6 247.9 3.8 3487.6 30,700,100VT 2426.0 4560.1 1894.1 46.3 3601.2
20,300,40FT 123.4 560.4 214.4 4.4 2856.5 30,700,100FT 1735.7 4866.1 1706.1 96.8 2235.7
20,230,200VL 504.5 2663.2 2494.9 442.1 2621.3 30,520,400VL 5789.3 36530.8 27477.4 568.0 3598.1
20,230,200FL 491.6 2718.3 2878.3 1658.0 1421.1 30,520,400FL 6406.6 42929.6 36669.3 2610.4 3423.7
20,230,200VT 548.4 2565.7 2210.9 523.5 2345.5 30,520,400VT 6522.2 28214.0 23089.1 230.0 3212.0
20,230,200FT 889.7 3120.1 3385.8 1943.8 3123.5 30,520,400FT 8415.2 40010.9 52173.2 1673.9 3521.4
20,300,200VL 982.2 4086.8 3566.0 347.7 3576.7 30,700,400VL 12636.2 24816.8 22314.8 474.8 3338.4
20,300,200FL 1316.8 4367.9 4012.6 1289.9 3521.2 30,700,400FL 11367.7 69540.1 75664.9 1782.9 3601.2
20,300,200VT 938.3 3807.9 3924.2 428.7 2290.1 30,700,400VT 15879.5 34974.9 24288.9 749.1 2458.5
20,300,200FT 1065.9 4657.5 3857.1 1721.7 3512.7 30,700,400FT 11660.4 51877.9 44936.4 1487.1 2854.1
100,400,10VL 32.7 336.3 89.2 5.8 65.1

the original papers. Nevertheless, one could derive some general conclusions regarding
the effectiveness of the proposed CEA. In general terms, CEA produces high quality
solutions in reasonable computational times. It is worth noting that the computational
times of Hewitt, Nemhauser and Savelsbergh (2010) and Katayama, Chen and Kubo
(2009) algorithms are very competitive.

5 Conclusions and Further Research

This paper has presented an evolutionary algorithm for the Multi-Commodity Network
Design Problem. The proposed methodology evolves a pool of solutions using Scatter
Search principles, and an Iterated Local Search as an improvement method. The lat-
ter introduces new cycle-based neighbourhood structures, short and long term memory
structures for guiding the search, and an efficient perturbation strategy, inspired by Ejec-
tion Chains, to enable the search escape from local optima. An efficient recombination
strategy is introduced which dynamically adjusts the preferences for inherited solutions
based on the search history.

Computational experiments on the benchmark instances of Crainic, Gendreau and
Farvolden (2000) show that the proposed CEA is quite competitive compared to state-
of-the-art approaches. In particular, CEA is able to reproduce the 12 out of 17 optimum
solutions for 17 problem instances, which have previously been solved by exact algorithms.
On average, CEA performs better than all the heuristics in the literature, while remaining

26

A Cycle-Based Evolutionary Algorithm for the Fixed-Charge Capacitated Multi-Commodity Network Design Problem

CIRRELT-2013-08



competitive when compared to the IPS algorithm by Hewitt, Nemhauser and Savelsbergh
(2010). It is also able to produce two new best solutions, with regard to the best known
solutions obtained by heuristics, which refer to large-scale problem instances. In general
terms, CEA’s performance is strong, thus placing it among the most efficient algorithms
for solving the MCNDP.

In terms of further research, a promising research direction is the use of a knowledge
base where favourable paths for the commodities would be stored not only for speeding up
the algorithm but also for guiding the algorithm towards producing unexplored solution
structures. Another direction is to look at decomposition techniques to solve the flow
subproblems with a view to reducing the computational times. Finally, it is worthwhile
to explore the proposed evolutionary algorithm for solving other variants of the MCNDP
or even to other problems that share common features with MCNDP.
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