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Abstract. Location decisions are frequently subject to dynamic aspects such as changes 

in customer demand. Often, flexibility regarding the geographic location of facilities, as 

well as their capacities, is the only solution to such issues. Even when demand can be 

forecast, finding the optimal schedule for the deployment and dynamic adjustment of 

capacities remains a challenge, especially when the cost structure for these adjustments 

is complex. In this paper, we introduce a unifying model that generalizes existing 

formulations for several dynamic facility location problems and provides stronger linear 

programming relaxations than the specialized formulations. In addition, the model can 

address facility location problems where the costs for capacity changes are based on a 

cost matrix. To the best of our knowledge, this problem has not been addressed in the 

literature. We apply our model to special cases of the problem with capacity expansion 

and reduction or temporary facility closing and reopening. We prove dominance 

relationships between our formulation and existing models for the special cases. 

Computational experiments on a large set of randomly generated instances with up to 100 

facility locations and 1000 customers show that our model can obtain optimal solutions in 

shorter computing times than the existing specialized formulations. 
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1 Introduction

Dynamic facility location consists in deciding where and when to provide capacity to satisfy customer de-
mand at the lowest cost. This demand is rarely stable, but rather increases, decreases or oscillates over time.
Therefore, facility capacities often have to be adjusted dynamically. Many variants of dynamic facility loca-
tion problems have been studied, suggesting different ways to adjust capacities throughout a given planning
horizon. The most common features include capacity expansion and reduction (Luss, 1982; Mirchandani
and Francis, 1990; Peeters and Antunes, 2001; Troncoso and Garrido, 2005; Dias et al., 2007), temporary
facility closing (Chardaire et al., 1996; Canel et al., 2001; Dias et al., 2006), as well as the relocation of
capacities (Melo et al., 2005). Mathematical models that include such features have been applied in both
the private and the public sectors to determine locations and capacities for production facilities, schools,
hospitals, libraries and many more.

Many of these studies also acknowledged the existence of economies of scale (Correia and Captivo, 2003;
Correia et al., 2010). While previous works considered economies of scale mainly for the construction and
production costs, the costs for adjusting the capacities of the facilities have commonly been modeled in
less detail. However, the latter is necessary to ensure a fair representation of the cost structure found in
practice. The costs to adjust capacities often do not only depend on the size of the adjustment, but also on
the current capacity level. This is true in a large class of applications, especially in transportation, logistics
and telecommunications, where additional capacity gets cheaper (or more expensive) when approaching the
maximum capacity limit.

In this work, we introduce a very general dynamic facility location problem, referred to as the Dynamic
Facility Location Problem with Generalized Modular Capacities (DFLPG). The problem allows modular
capacity changes subject to a detailed cost structure and is modeled as a mixed-integer programming (MIP)
formulation. Due to its generality, this model unifies several existing problems found in the literature. The
cost structure used in the model is based on a matrix describing the costs for capacity changes between all
pairs of capacity levels. We are not aware of any other work dealing with facility location with a similar
level of detail in the cost structure.

Our study is motivated by an industrial project with a Canadian logging company that must locate camps
to host workers involved in wood harvest activities while optimizing the overall logistics and transportation
costs (Jena et al., 2012). In this problem, the total capacity of a camp is represented by its number of
hosting units, while additional units provide supporting infrastructure. As the relation between the number
of different units is non-linear, the costs for capacity changes are described in a transition matrix.

The contribution of this work is three-fold. First, we introduce a general dynamic facility location
model that comprises a large set of existing formulations. Second, we analyze the linear programming (LP)
relaxation bound obtained by our model, showing that it is at least as strong as the LP relaxation bound
of existing specialized formulations. Third, we perform a computational study on a large set of randomly
generated instances, showing that our model, when solved with a state-of-the-art MIP solver, can obtain
optimal solutions in shorter computation times than the specialized formulations.

The paper is organized as follows. In Section 2, we present a survey of the relevant literature. Section 3
introduces a linear MIP formulation for the DFLPG and shows how this model can be used to represent two
important special cases. To compare the resulting models with alternative formulations, Section 4 derives
specialized formulations for the two special cases, based on existing models from the literature. We identify
a weak point in one of the existing formulations and suggest a set of valid inequalities to make it as strong
as our model. Dominance relations are proved between all formulations, showing that our model is at least
as strong as each of the specialized formulations. The presented models are then compared by means of
computational experiments in Section 5. Finally, conclusions follow in Section 6.

2 Literature Review

Most dynamic facility location problems can be seen as multi-periodic extensions of classical location prob-
lems, such as the Capacitated Facility Location Problem (CFLP). However, dynamic facility location prob-
lems commonly involve further extensions. As pointed out by Arabani and Farahani (2011), the notion of
what dynamic means may differ when dealing with different areas of facility location. Its definition thus
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strongly depends on the application context. Owen and Daskin (1998) review works that treat either dy-
namic or stochastic facility location problems. A chapter in the textbook of Farahani and Hekmatfar (2009)
deals with dynamic aspects of facility location problems. Several classification criteria are proposed. A
chapter dedicated to multi-period capacitated location models in the textbook of Mirchandani and Francis
(1990) thoroughly discusses models that allow capacity expansion. Luss (1982) focuses on capacity expansion
and reviews the literature and applications in the context of problems with a single facility, two facilities
and multiple facilities. Although not explicitly focusing on dynamic aspects, many other works introduced
classifications for location problems which often also apply to features that can be found in dynamic location
problems. These include, among many others, the works of Hamacher and Nickel (1998), Owen and Daskin
(1998), Klose and Drexl (2005), Daskin (2008) and Melo et al. (2009).

The choice of the facility type or size has also been considered in several works. In particular, Shulman
(1991), Correia and Captivo (2003) and Troncoso and Garrido (2005) consider such choice, which implies
different capacities and costs for each facility type. The last authors apply the model to the forestry sector,
where facilities of different sizes may also be expanded. Dias et al. (2007) focus on modular capacity
expansion and reduction. Wu et al. (2006) present a facility location problem, where the facility set-up costs
depend on the number of facilities placed at a site. To represent economies of scale, all of the cited works use
binary variables to represent the choice of the facility size. Capacity level changes consider only the amount
of capacity added or removed. However, the previous capacity level is not taken into consideration. Some
authors such as Harkness (2003) also recognize the importance of inverse economies of scale, where the unit
price increases as the facility gets larger.

To dynamically adjust capacity to demand changes, the best choice depends on the demand forecast.
When demand temporarily decreases, but is likely to return to its previous level afterwards, it may be
beneficial to avoid high maintenance costs by temporary closing a facility. The closing and reopening of
facilities may be partial or complete. Previous studies focused mostly on temporarily closing entire facilities.
Among the suggested models, certain are limited to a single closing and reopening of each facility, whereas
others allow repeated closing and reopening throughout the planning horizon. The uncapacitated facility
location problem presented by Van Roy and Erlenkotter (1982), as well as the supply chain model of Hinojosa
et al. (2008), allow one-time opening or closing of facilities: new facilities can be opened once and existing
facilities can be closed once. Chardaire et al. (1996) and Canel et al. (2001) propose formulations for opening
and closing facilities more than once. Both works use binary variables to represent the state of the facility.
The objective function contains a bilinear term to represent a state change from open to closed or vice-versa.
A linear formulation for a simplified version of this problem, treating only a single capacity level, has been
proposed by Dias et al. (2006). Binary variables with two time indices indicate the period throughout which
a facility is open. The cited works interpret facility closing either as temporary (i.e., the facility still exists,
but its capacities are temporarily unavailable) or permanent. In most of the cases, there are no maintenance
costs for temporarily closed facilities. Most of the existing formulations therefore do not explicitly distinguish
temporary and permanent facility closing.

When the customer demand permanently changes in a certain region and it is not likely to return to its
previous level, one may want to expand or reduce the facility capacities to permanently adjust to these new
conditions. Luss (1982) observes that models for capacity expansion can be classified into two categories:
capacity expansion at a single facility and capacity expansion via a finite set of projects, each holding a
certain capacity. The first category includes models that allow one facility at a location and increases or
decreases the available capacity along time. The second category consists of models where multiple facilities
are allowed in the same location, each specified by a time interval (a capacity block) of production availability.
Figure 1 illustrates both classes. The first class is shown in (a), where capacities at the same facility are
either increased or decreased. The second class may be illustrated by (b) and (c), representing two extreme
configurations of the capacity blocks. Any configuration between these two is also feasible for the second
class.

Models in the first category include those of Melo et al. (2005) and Behmardi and Lee (2008). Both works
model capacity expansion and reduction by relocating capacity from or to a fictional location. The authors
of the former work model capacities as a continuous flow, but demonstrate how to link the flow to binary
variables to restrict capacity changes to modular sizes. Models in the second category do not allow the
capacity modification of a facility once it is constructed. However, they allow multiple facilities of different
sizes (capacity blocks) at the same location, which is equivalent to the adjustment of the total capacity
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Figure 1: Capacity expansion/reduction by use of a single facility (a), horizontal capacity blocks (b) and
vertical capacity blocks (c).

sum along time. Examples for this class include the works of Shulman (1991), Troncoso and Garrido (2005)
and Dias et al. (2007). More restricted types of capacity expansion or reduction have also been presented.
In the work of Peeters and Antunes (2001), either a facility expands its capacity throughout the entire
planning horizon or it decreases its capacity throughout the entire planning horizon. Capacity expansion
and reduction at the same location is thus not allowed.

3 Mathematical Formulation

In this section, we give a more formal description of the DFLPG and we introduce a MIP model for the
problem. We also explain how the different cases described in Section 2 can be modeled and solved as a
DFLPG.

3.1 DFLPG Formulation

We denote by J the set of potential facility locations and by L = {0, 1, 2, . . . , q} the set of possible capacity
levels for each facility. We also denote by I the set of customer demand points and by T = {1, 2, . . . , |T |}
the set of time periods in the planning horizon. We assume throughout that the beginning of period t + 1
corresponds to the end of period t. The demand of customer i in period t is denoted by dit, while the cost
to serve one unit from facility j operating at capacity level ` to customer i during period t is denoted by
gij`t. The capacity of a facility of size ` at location j is given by uj` (with uj0 = 0). The cost matrix
fj`1`2t describes the combined cost to change the capacity level of a facility at location j from `1 to `2 at the
beginning of period t and to operate the facility at capacity level `2 throughout time period t. Furthermore,
we let `j be the capacity level of an existing facility at location j.

To formulate the problem, we use binary variables yj`1`2t equal to 1 if and only if the facility at location
j changes its capacity level from `1 to `2 at the beginning of period t. The allocation variables xij`t denote
the fraction of the demand of customer i in period t that is served from a facility of size ` located at j. Based
on these definitions, we define the following MIP model, referred to as the Generalized Modular Capacities
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(GMC) formulation:

(GMC) min
∑
j∈J

∑
`1∈L

∑
`2∈L

∑
t∈T

fj`1`2tyj`1`2t +
∑
i∈I

∑
j∈J

∑
`∈L

∑
t∈T

gij`tditxij`t (1)

s.t.
∑
j∈J

∑
`∈L

xij`t = 1 ∀i ∈ I, ∀t ∈ T (2)

∑
i∈I

ditxij`t ≤
∑
`1∈L

uj`yj`1`t ∀j ∈ J, ∀` ∈ L, ∀t ∈ T (3)

∑
`1∈L

yj`1`(t−1) =
∑
`2∈L

yj``2t ∀j ∈ J, ∀` ∈ L, ∀t ∈ T\ {1} (4)

∑
`2∈L

yj`j`21 = 1 ∀j ∈ J (5)

xij`t ≥ 0 ∀i ∈ I, ∀j ∈ J, ∀` ∈ L, ∀t ∈ T (6)

yj`1`2t ∈ {0, 1} ∀j ∈ J, ∀`1 ∈ L, ∀`2 ∈ L, ∀t ∈ T. (7)

The objective function (1) minimizes the total cost for changing the capacity levels and allocating the
demand. Constraints (2) are the demand constraints for the customers. Constraints (3) are the capacity
constraints at the facilities. Constraints (4) link the capacity change variables in consecutive time periods.
Finally, constraints (5) specify that exactly one capacity level must be chosen at the beginning of the planning
horizon. Note that the flow constraints (4) further guarantee that, at each time period, exactly one capacity
change variable is selected.

Valid Inequalities. To facilitate the solution of the GMC, we may additionally use two types of valid
inequalities. The Strong Inequalities (SI) used in facility location and network design problems (see, for
instance, Gendron and Crainic, 1994) are known to provide a tight upper bound for the demand assignment
variables. These inequalities can be adapted to our model as follows:

xij`t ≤
∑
`1∈L

yj`1`t ∀i ∈ I, ∀j ∈ J, ∀` ∈ L, ∀t ∈ T. (8)

The SIs may be added to the model either a priori or in a branch-and-cut manner only when they are violated
in the solution of the LP relaxation. The second set of valid inequalities is referred to as the Aggregated
Demand Constraints (ADC). Although they are redundant for the LP relaxation, adding them to the model
enables MIP solvers to generate cover cuts that further strengthen the formulation:∑

j∈J

∑
`1∈L

∑
`2∈L

uj`2yj`1`2t ≥
∑
i∈I

dit ∀t ∈ T. (9)

3.2 DFLPG Based Models for the Special Cases

We now explain how two important special cases can be modeled with the GMC formulation: first, Facility
closing and reopening and, second, Capacity expansion and reduction.

The first problem considered here allows the construction of at most one facility per location. The size
of the facility is chosen from a discrete set of capacity levels. Existing facilities may be closed and reopened
multiple times. Note that, in this problem, facility closing does not refer to permanent closing, but only
to the temporary closing of a facility. We therefore distinguish costs for the construction of a facility, for
temporarily closing an open facility, for reopening a closed facility and for maintenance of open facilities.
As most of the previous literature, we do not consider maintenance costs for temporarily closed facilities.
We denote this problem as the Dynamic Modular Capacitated Facility Location Problem with Closing and
Reopening (DMCFLP CR).

In the second problem considered, production capacities can be adjusted by the use of a single facility at
each location. At each facility, the capacity can be expanded or reduced from one capacity level to another.
We assume that an expansion of ` capacity levels has always the same costs, regardless of the previous
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capacity level. We assume the same for the reduction of capacities. We denote this problem as the Dynamic
Modular Capacitated Facility Location Problem with Capacity Expansion and Reduction (DMCFLP ER).

In addition to the input data already defined for the DFLPG, we define the following parameters to
characterize these two special cases:

• ccj` and coj` are the costs to temporarily close and reopen a facility of size `, respectively;

• f cj` and foj` are the costs to reduce and to expand the capacity of a facility at location j by ` capacity
levels, respectively;

• F o
j` is the cost to maintain an open facility of size ` throughout one time period.

For the sake of simplicity and without loss of generality, we assume that all these costs do not change
during the planning horizon.

In the GMC, capacity level changes are represented by the yj`1`2t variables. These transitions from one
capacity level to another can be represented in a graph, where each node represents a capacity level and
each arc a capacity level transition. To model the special cases, we choose a certain subset of arcs, as well as
their corresponding objective function coefficients fj`1`2t. For the problem variant involving facility closing
and reopening, we create an artificial capacity level ` for each capacity level ` ∈ L\{0}. Capacity level `
represents the state in which a facility of size ` is temporarily closed. At each time period t ∈ T and location
j ∈ J , we may find different arc types yj`1`2t to model capacity level changes (note that the cost for an arc
is usually composed by the cost to perform the capacity transition, as well as the maintenance costs for the
new capacity level):

1. Facility construction and capacity expansion. The expansion of the capacity is represented by an arc
from capacity level `1 to any other capacity level `2 > `1. If the arc represents a facility construction,
then `1 is 0. The capacity is thus expanded by `2 − `1 capacity levels. The cost for this arc is set to
fj`1`2t = foj(`2−`1) + F o

j`2
.

2. Capacity reduction. The reduction of the capacity is represented by an arc from capacity level `1 to
any other capacity level `2 < `1. The capacity is thus reduced by `1 − `2 capacity levels. The cost for
this arc is set to fj`1`2t = f cj(`1−`2) + F o

j`2
.

3. Maintaining the current capacity level. A facility may neither expand nor reduce the current capacity
level. The cost of this arc is thus only composed of the maintenance cost, i.e., fj`1`1t = F o

j`1
if the

capacity level represents an open facility, fj`1`1t = 0 if the capacity level represents a temporarily
closed facility and fj00t = 0 if no facility exists.

4. Temporary closing. An open facility of size ` can be temporarily closed, i.e., it changes to capacity
level `. The total cost is fj`1`1t = ccj`1 .

5. Reopening a closed facility. A temporarily closed facility of size ` can be reopened, i.e., it changes its
capacity level from ` to `. The total cost for this arc is fj`1`1t = coj`1 + F o

j`1
.

0

1

2

3

0

1

2

3

1

2

3 b)
DMCFLP_ER

a)
DMCFLP_CR

Figure 2: Capacity level changes to model the two special cases.

The DMCFLP CR is represented by arcs of type 1 (for construction only), 3, 4 and 5. We denote the
resulting model as the CR-GMC formulation. The resulting graph is shown in Figure 2 (a) for the case of
three capacity levels. The DMCFLP ER is represented by arcs of type 1, 2 and 3. The resulting model is
denoted as the ER-GMC formulation. Its resulting graph is shown in Figure 2 (b).
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4 Comparisons with Specialized Formulations

We now present alternative formulations for the two special cases discussed in Section 3.2. These formulations
are adaptations of existing models previously proposed in the literature. For each problem, we present
formulations based on two different modeling approaches as presented in Section 2: location variables with
one time index and location variables with two time indices.

4.1 Facility Closing and Reopening

We consider models for the problem with facility closing and reopening, the DMCFLP CR.

4.1.1 Single Time Index Flow Formulation

This model can be seen as an extension of existing dynamic facility location problems (Shulman, 1991).
Flow conservation constraints such as those used in the relocation model of Wesolowsky and Truscott (1975)
are adapted to model facility closing and reopening. The model is based on the following variables. The
demand allocation from facilities to customers is given by xij`t. Binary variable sj`t is 1 if a facility of size
` is constructed at the beginning of period t, while binary flow variable yj`t indicates whether a facility of
size ` is available at location j during time period t. Finally, binary variables voj`t and vcj`t are equal to 1 if
an temporarily closed facility at location j of size ` is reopened at the beginning of period t and if an open
facility at location j of size ` is temporarily closed at the beginning of period t, respectively. The input data
is as defined in Section 3.2. The single time index flow formulation (CR-1I) is given by:

(CR-1I) min
∑
j∈J

∑
`∈L

∑
t∈T

(
foj`sj`t + F o

j`yj`t + coj`v
o
j`t + ccj`v

c
j`t

)
+
∑
i∈I

∑
j∈J

∑
`∈L

∑
t∈T

ditgij`txij`t (10)

s.t.
∑
j∈J

∑
`∈L

xij`t = 1 ∀i ∈ I, ∀t ∈ T (11)

∑
i∈I

ditxij`t ≤ uj`yj`t ∀j ∈ J, ∀` ∈ L, ∀t ∈ T (12)

yj`t = yj`(t−1) + sj`t + voj`t − vcj`t ∀j ∈ J, ∀` ∈ L, ∀t ∈ T (13)

t∑
t′=1

voj`t′ ≤
t∑

t′=1

vcj`t′ ∀j ∈ J, ∀` ∈ L, ∀t ∈ T (14)∑
`∈L

∑
t∈T

sj`t ≤ 1 ∀j ∈ J (15)

xij`t ≥ 0 ∀i ∈ I, ∀j ∈ J, ∀` ∈ L, ∀t ∈ T (16)

sj`t, v
o
j`t, v

c
j`t, yj`t ∈ {0, 1} ∀j ∈ J, ∀` ∈ L, ∀t ∈ T. (17)

Constraints (11) are the demand constraints. Constraints (12) are the capacity constraints. The flow
constraints (13) manage the state of a facility of a certain size, either open or closed. Constraints (14) ensure
that a facility has to be temporarily closed before it can be reopened. Finally, constraints (15) state that at
most one facility can be constructed at each location.

The Strong Inequalities (8) can be adapted by replacing the right hand side by yj`t, while the Aggregated
Demand Constraints (9) can be used by replacing the left hand side by

∑
j∈J

∑
`∈L uj`yj`t.

4.1.2 Double Time Index Block Formulations

Dias et al. (2006) presented a linear MIP model that allows the repeated closing and reopening of facilities.
The model uses binary decision variables with two time indices, one for the opening and one for the closing of
a facility. We extend this model by adding the choice of different facility capacity levels (note that we remove
the constraints that require a minimum availability of open facilities). We also use a different notation to
be consistent with our previously introduced notations. Binary variable sj`t1t2 is 1 if a facility of size ` is
constructed at location j at the beginning of time period t1 and stays open until the end of period t2. Binary
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variable yj`t1t2 is 1 if an existing facility of size `, located at j, is reopened at the beginning of time period

t1 and stays open until the end of period t2. We let f̂Cj`t1t2 denote the aggregated cost to construct a facility
of size ` at location j at time period t1, its maintenance costs from the beginning of period t1 to the end
of period t2, and the costs to temporarily close it at the end of period t2. We also let f̂Rj`t1t2 denote the
same type of cost for reopening an existing facility of size ` instead of its construction. These constants are
computed as follows:

f̂Cj`t1t2 = foj` + ccj` + (t2 − t1 + 1)F o
j` and f̂Rj`t1t2 = coj` + ccj` + (t2 − t1 + 1)F o

j`.

Since the binary variables with two time indices describe capacity blocks through time, we refer to this
formulation as the double time index block formulation (CR-2I):

(CR-2I) min
∑
j∈J

∑
`∈L

∑
t1∈T

|T |∑
t2=t1

(
f̂Cj`t1t2sj`t1t2 + f̂Rj`t1t2yj`t1t2

)
+
∑
i∈I

∑
j∈J

∑
`∈L

∑
t∈T

gij`tditxij`t (18)

s.t.
∑
j∈J

∑
`∈L

xij`t = 1 ∀i ∈ I, ∀t ∈ T (19)

|T |∑
t2=t

yj`tt2 ≤
t−1∑
t1=1

t−1∑
t2=t1

sj`t1t2 ∀j ∈ J, ∀` ∈ L, ∀t ∈ T (20)

∑
`∈L

∑
t1∈T

|T |∑
t2=t1

sj`t1t2 ≤ 1 ∀j ∈ J (21)

∑
`∈L

t∑
t1=1

|T |∑
t2=t

(sj`t1t2 + yj`t1t2) ≤ 1 ∀j ∈ J, ∀t ∈ T (22)

∑
i∈I

ditxij`t ≤
t∑

t1=1

|T |∑
t2=t

uj`(sj`t1t2 + yj`t1t2) ∀j ∈ J, ∀` ∈ L, ∀t ∈ T (23)

xij`t ≥ 0 ∀i ∈ I, ∀j ∈ J, ∀` ∈ L, ∀t ∈ T (24)

sj`t1t2 , yj`t1t2 ∈ {0, 1} ∀j ∈ J, ∀` ∈ L, ∀t1 ∈ T, ∀t2 ∈ T. (25)

Constraints (19) are the demand constraints. Constraints (20) guarantee that a facility can only be reopened
if it has been constructed and temporarily closed in an earlier period. Inequalities (21) impose that a facility
can be constructed only once throughout the entire planning horizon. Constraints (22) guarantee that the
intervals of open facilities (i.e., the capacity blocks) at the same location do not intersect. In other words,
a facility can only be reopened if it is currently closed. In addition, these constraints also require that only
one facility size ` is selected at each location. Constraints (23) are the facility capacity constraints.

The Strong Inequalities (8) can be adapted by replacing the right hand side by
∑t

t1=1

∑|T |
t2=t sj`t1t2 +

yj`t1t2 . The Aggregated Demand Constraints (9) can be used by replacing the left hand side by∑
j∈J

∑
`∈L

∑
t1∈T

∑|T |
t2=t1

uj`(sj`t1t2 + yj`t1t2).

Strengthening the CR-2I formulation. Constraints (20) specify that, at each time period t, the
capacity that is reopened at this period cannot be greater than the capacity that has been previously
constructed. Consider the following LP relaxation solution scenario, where demands exist for three time
periods t1, t2 and t3. A facility construction variable is selected with solution value 0.5, opening at the
beginning of t1 and closed at the end of t1 (i.e., yj`t1t1 = 0.5). Facility reopening variables are then selected
twice, each time with the same solution value 0.5. The first reopening spans the time interval from the
beginning of t2 until the end of t3 (i.e., yj`t2t3 = 0.5), whereas the second reopening spans the time interval
from the beginning of t3 until the end of t3 (i.e., yj`t3t3 = 0.5). Separately, each of the last two reopenings
is feasible in constraints (20). However, in total the solution reopens more capacity than has been made
available through construction. To avoid such behaviour in the LP relaxation solution, we may replace
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constraints (20) with the tighter set of constraints:

t∑
t1=1

|T |∑
t2=t

yj`t1t2 ≤
t∑

t1=1

t∑
t2=t1

sj`t1t2 ∀j ∈ J, ∀` ∈ L, ∀t ∈ T. (26)

We denote the formulation composed by (18) - (26) as the CR-2I+ formulation.

4.1.3 Dominance Relationships

For any integer linear programming model P , let P be the corresponding LP relaxation. For any model P ,
we denote by v(P ) its optimal value. For the three models presented for the DMCFLP CR, the following
relationships hold:

Theorem 4.1 v(CR-GMC) = v(CR-1I) ≥ v(CR-2I).

Proof. See Appendices A.1.1 and A.1.2. If the strengthening constraints (26) are added to the CR-2I
formulation, all formulations are equally strong:

Theorem 4.2 v(CR-GMC) = v(CR-1I) = v(CR-2I+).

Proof. See Appendices A.1.3 and A.1.3.

4.2 Capacity Expansion and Reduction

We consider models for the facility location problem with capacity expansion and reduction, the DM-
CFLP ER.

4.2.1 Single Time Index Flow Formulation

We modify the CR-1I as follows. Binary variables sj`t now represent the total capacity expansion. A variable
sj`t is 1 if the capacity of the facility located at j is expanded by ` capacity levels in the beginning of period
t. Binary variable wj`t is 1 if the capacity of a facility located at j is reduced by ` capacity levels at the
beginning of period t. We refer to this formulation as the single time index flow formulation (ER-1I):

(ER-1I) min
∑
j∈J

∑
`∈L

∑
t∈T

(
foj`sj`t + f cj`wj`t + F o

j`yj`t
)

+
∑
i∈I

∑
j∈J

∑
`∈L

∑
t∈T

ditgij`txij`t (27)

s.t. (11), (12)∑
`∈L

`yj`t =
∑
`∈L

(
`yj`(t−1) + `sj`t − `wj`t

)
∀j ∈ J, ∀t ∈ T (28)

xij`t ≥ 0 ∀i ∈ I, ∀j ∈ J, ∀` ∈ L, ∀t ∈ T (29)

sj`t, wj`t, yj`t ∈ {0, 1} ∀j ∈ J, ∀` ∈ L, ∀t ∈ T. (30)

Now, the flow conservation constraints (28) manage the size of the facilities throughout the planning periods.
The model may be seen as an adaptation of the relocation model of Wesolowsky and Truscott (1975),

where capacity is expanded or reduced instead of relocated. It is also similar to the model presented by
Mirchandani and Francis (1990) and to simplifications of the models presented by Melo et al. (2005) and
Behmardi and Lee (2008).

If the costs for facility maintenance, capacity expansion and capacity reduction include economies of
scale, the optimal solution contains at most one active y, s and w variable for each location and time period.
However, if the cost structure does not necessarily consider economies of scale, we need to add constraints
to ensure that at most one variable of each type is active at each location j ∈ J and time period t ∈ T . We
refer to these constraints as the limiting constraints:

∑
`∈L yj`t ≤ 1 for the y variables,

∑
`∈L sj`t ≤ 1 for

the s variables and
∑

`∈L wj`t ≤ 1 for the w variables.
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4.2.2 Double Time Index Block Formulations

Dias et al. (2007) allow multiple capacity blocks of different sizes at the same location. For each block,
binary variables define the exact time interval in that the block is active. This accumulation of capacity
blocks allows flexible capacity expansion and reduction as previously discussed and exemplified in Figure 1
(b) and (c). We extend this formulation to model the DMCFLP ER.

Binary variables y′j`t1t2 indicate whether a capacity block of size ` is available at location j from the
beginning of time period t1 until the end of time period t2. Each capacity block may thus represent economies
of scale in function of its own size. However, in contrast to the ER-1I, the total capacity available at
a location can now be composed by several capacity blocks. To consider economies of scale on the entire
capacity involved at each location, we introduce additional binary variables yj`t to represent the total capacity
summed over all capacity blocks at location ` available at time period t. In the same manner, we introduce
variables sj`t and wj`t to represent the total capacity that is added at a location (i.e., the construction of
capacity blocks) or removed at a location (i.e., the closing of capacity blocks), respectively. Finally, as in the
previous models, xij`t is the fraction of customer i’s demand that is served by a facility of size ` at location
j. The double time index block formulation (ER-2I) is given by:

(ER-2I) min
∑
j∈J

∑
`∈L

∑
t∈T

(
foj`sj`t + f cj`wj`t + F o

j`yj`t
)

+
∑
i∈I

∑
j∈J

∑
`∈L

∑
t∈T

ditgij`txij`t (31)

s.t. (11), (12)∑
`∈L

`sj`t =
∑
`∈L

|T |∑
t2=t

`y′j`tt2 ∀j ∈ J, ∀t ∈ T (32)

∑
`∈L

`wj`t =
∑
`∈L

t−1∑
t1=1

`y′j`t1(t−1) ∀j ∈ J, ∀t ∈ T (33)

∑
`∈L

`yj`t =
∑
`∈L

t∑
t1=1

|T |∑
t2=t

`y′j`t1t2 ∀j ∈ J, ∀t ∈ T (34)

xij`t ≥ 0 ∀i ∈ I, ∀j ∈ J, ∀` ∈ L, ∀t ∈ T (35)

y′j`t1t2 , sj`t, wj`t, yj`t ∈ {0, 1} ∀j ∈ J, ∀` ∈ L, ∀t1 ∈ T, ∀t2 ∈ T. (36)

We adapt the demand and capacity constraints (11) and (12), respectively, from the previous models. Con-
straints (32), (33) and (34) are the linking constraints that set the binary variables to benefit from economies
of scale in function of the total capacity involved in each operation and location. As for the ER-1I formula-
tion, we also add the limiting constraints as introduced in Section 4.2. The limiting constraints are necessary
to ensure that feasible solutions use only one active variable of each type y, s and w for each location and
time period. These constraints have also proved to facilitate the solution process. We may also add the
Strong Inequalities and the Aggregated Demand Constraints.

4.2.3 Dominance Relationships

For the DMCFLP ER, the ER-GMC formulation is stronger (strictly stronger for some instances) than the
other two formulations:

Theorem 4.3 v(ER-GMC) ≥ v(ER-1I) = v(ER-2I).

Proof. See Appendices A.2.2 and A.2.1.

5 Computational Experiments

In this section, we explain how the problem instances used in the computational experiments were generated.
Then, computational results are given to illustrate the strength of the different formulations and their
performance when using a state-of-the-art MIP solver to find optimal integer solutions. All computational
experiments were performed for the two problem variants, DMCFLP CR and DMCFLP ER.
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5.1 Problem Instances

Instances have been generated to evaluate the performance of the proposed formulations. The key parameters
that were found to affect the difficulty of the problem are:

• Problem dimension. Instances have been generated with the following dimensions (#facility loca-
tions/#customers): (10/20), (10/50), (50/50), (50/100), (50/250), (100/250), (100/500) and
(100/1000). The problem dimension clearly impacts the size of the models.

• Number of capacity levels. The number of capacity levels q also impacts the size of the models.
Instances are generated with a maximum of 3, 5 and 10 capacity levels. Within each of these three cases,
the difference of the capacity between two capacity levels ` and `+1 is constant, i.e. uj`−uj(`+1) = uj1
for all j ∈ J and ` = 0, . . . , (q − 1).

• Distances and transportation costs. For each of the problem sizes, three different networks have
been randomly generated on squares of the following sizes: 300 × 300, 380 × 380 and 450 × 450.
Coordinates for customers and facilities have been generated randomly following a uniform distribution.
Transportation costs have been computed based on the Euclidean distance between the points.

• Demand distribution. Demands are randomly generated. We consider two different demand sce-
narios. In the first scenario, the total demand summed over all customers is the same in each time
period. However, the demand for each customer is randomly distributed over time. The second sce-
nario assumes that the total demand in each period is not stable, but instead follows strong variations.
In this distribution, the total demand in each period for all customers is randomly generated. Then,
the demand for each customer is randomly generated and distributed over time.

• Cost distribution. The proportion between facility construction and transportation costs is gener-
ated based on different ratios. The transportation costs were set to 100% and 500% of the original
transportation costs.

All generated instances contain ten time periods. Construction and operational costs follow concave cost
functions, i.e., they involve economies of scale. Note that we assume that the problem instances do not
contain initially existing facilities. The final test set contains a total of 288 instances, 96 for each capacity
level.

All mathematical models have been implemented in C/C++ using the IBM CPLEX 12.4.0 Callable
Library. The code has been compiled and executed on openSUSE 11.3. Each problem instance has been run
on a single Intel Xeon X5650 processor (2.67GHz), limited to 24GB of RAM.

5.2 Linear Relaxation Solution and Integrality Gaps

We now compare the different formulations for the two problem variants by means of their LP relaxation
bounds as well as the time necessary to solve the LP relaxations. All SIs have been added a priori. The
Aggregated Demand Constraints have not been added to these models, since they do not have any impact
on the strength of the LP relaxation. For all instances, the LP relaxation has been solved to optimality.
Table 1 shows the average times to solve the LP relaxation as well as the average integrality gaps, for each
problem dimension and each number of maximum capacity levels q.

As previously shown, the CR-1I, the CR-2I+ and the CR-GMC formulations provide the same LP
relaxation bound and thus the same integrality gap. However, the CR-1I and the CR-GMC formulations
solve the relaxation in much shorter computation times than the CR-2I+ formulation.

For the DMCFLP ER, the ER-1I and ER-2I formulations provide the same integrality gaps. The ER-
GMC formulation provides a significantly smaller integrality gap than the previous two formulations, while
having similar computation times.

5.3 CPLEX Optimization

We now compare the performance of the different formulations to find optimal integer solutions. We used
the MIP branch-and-cut algorithm of CPLEX 12.4.0 with standard parameters. Computation times have
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DMCFLP CR DMCFLP ER
ER-1I ER-2I ER-GMC

q Instance Time (sec) Integr. Time Integr. Time Integr. Time Integr.
size 1I 2I+ GMC Gap % (sec) Gap % (sec) Gap % (sec) Gap %

3 10/20 0.2 0.3 0.0 0.90 0.0 2.29 0.0 2.29 0.1 0.83
10/50 0.0 0.2 0.1 0.18 0.0 0.79 0.0 0.79 0.0 0.21
50/50 0.3 0.8 0.2 0.09 0.3 2.32 0.1 2.32 0.5 0.14
50/100 0.5 1.5 0.6 0.02 0.4 1.13 0.8 1.13 0.6 0.00
50/250 1.2 2.8 1.0 0.00 0.7 0.62 1.1 0.62 1.3 0.00
100/250 4.3 8.3 4.5 0.01 2.8 0.93 3.6 0.93 3.9 0.01
100/500 11.2 20.0 11.3 0.03 7.8 0.60 9.3 0.60 8.8 0.02
100/1000 16.0 29.8 17.4 0.00 13.6 0.42 12.6 0.42 14.3 0.00
Avg All 4.2 8.0 4.4 0.15 3.2 1.14 3.4 1.14 3.7 0.15

5 10/20 1.6 0.2 0.3 1.85 0.9 4.67 0.2 4.67 0.2 1.45
10/50 0.2 0.4 0.3 0.70 0.3 2.05 0.1 2.05 0.2 0.64
50/50 1.8 3.1 1.9 0.67 2.0 5.09 1.7 5.09 1.8 0.56
50/100 1.8 4.1 2.0 0.08 1.8 2.30 1.7 2.30 2.1 0.06
50/250 2.3 5.1 2.7 0.01 4.0 1.20 2.5 1.20 2.7 0.00
100/250 8.4 18.2 9.2 0.02 8.4 1.84 8.2 1.84 8.5 0.01
100/500 16.5 35.2 17.7 0.03 16.6 1.15 18.0 1.15 16.1 0.02
100/1000 21.8 51.3 23.6 0.00 31.3 0.80 30.5 0.80 27.5 0.00
Avg All 6.8 14.7 7.2 0.42 8.2 2.39 7.8 2.39 7.4 0.34

10 10/20 2.3 1.4 1.0 2.89 0.3 9.63 0.5 9.63 1.2 1.89
10/50 2.7 3.5 2.1 1.46 0.8 4.92 0.7 4.92 1.6 0.88
50/50 19.0 27.8 15.9 2.47 9.8 14.11 10.3 14.11 30.9 2.11
50/100 29.1 52.1 25.1 0.72 16.7 6.19 17.4 6.19 26.7 0.66
50/250 22.8 63.3 24.8 0.20 22.1 2.91 16.8 2.91 24.8 0.19
100/250 185.2 382.9 169.8 0.21 115.6 4.41 122.1 4.41 196.7 0.26
100/500 91.8 182.6 94.8 0.03 88.8 2.40 83.7 2.40 80.7 0.04
100/1000 51.8 123.8 56.2 0.00 55.8 1.61 62.9 1.61 64.2 0.00
Avg All 50.6 104.7 48.7 1.00 38.7 5.77 39.3 5.77 53.3 0.75

Table 1: LP relaxation and integrality gaps for all formulations.
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been limited to six hours. In all CPLEX experiments, all Strong Inequalities have been added a priori to
the models. Even though the number of SIs may increase significantly, adding them a priori (instead of
as CPLEX user cuts or even not at all) significantly facilitates the solution of the problems. Experiments
showed that, for most of the problem instances, a large number of SIs are violated. CPLEX thus spends
much time identifying and adding violated SIs when treated as CPLEX user cuts. Although redundant to the
LP relaxation of the presented formulations, the Aggregated Demand Constraints tend to slightly facilitate
the solution of the problems. Therefore, they also have been added to the formulations. For some models,
the limiting constraints as shown in Section 4.2 may not change the set of feasible integer solutions, but still
facilitate the solution of the problem. For example, for the ER-1I formulation, the average solution time for
our test instances decreased by around 35%. The constraints are thus added to the models even if they are
redundant.

For each problem, the results have been separated into two groups: instances that have been solved
to optimality by all formulations and instances where at least one formulation could not prove optimality
within the given time limit. Table 2 summarizes the results for the instances that have been solved by
all formulations for each problem. The table reports the number of instances that have been solved to
optimality, as well as the average computation times to solve the instances for each of the formulations. For
both problem variants, we observe that the 2I formulation performs worst. Among the 1I and the GMC
based formulations, the GMC based models provide substantially better results.

Tables 3 and 4 summarize the results for instances where at least one of the formulations did not solve
the instance in the given time limit. The table reports average and maximum optimality gaps as well as the
number of instances where no feasible solution has been found (#ns). For q = 5, one particular instance has
been found to be difficult to solve. All other instances are for q = 10. The average optimality gaps provided
by the GMC based models are always better than those provided by the other formulations. The maximum
optimality gap is similar for the 1I and GMC based formulations and worse for the 2I formulations.

CPLEX root node solution. For the problem variant involving capacity expansion and reduction,
the DMCFLP ER, the GMC formulation provides much stronger LP relaxation bounds than the 1I and 2I
formulations. While the integrality gap of the GMC solution is only a fraction of those provided by the 1I
and 2I formulations, this advantage is not translated into the optimization results. Even though the GMC
formulation is still faster than the other two formulations, the difference is much smaller. The main reason
for that is CPLEX strong cut generation at the root node. Table 5 summarizes the average values (for
q = 10) regarding the integrality gaps after the LP relaxation and after the root node solution, as well as
the standard CPLEX optimization (with cut generation at the root node). The average values are given for
all instances that have been solved to optimality. In addition, the last three columns of the table indicate
the results obtained by CPLEX when no cuts are generated at the root node. As the 1I and 2I formulations
had difficulties to find optimal solutions within the given time limit, these average values include the results
for all instances, solved and unsolved. After the LP relaxation, the advantage of a 0.75% integrality gap for
the ER-GMC formulation is obvious when compared to the 6.09% integrality gap for the ER-1I formulation.
When turning off CPLEX cut generation at the root node, the optimization results directly translate this
advantage into faster computation times to solve the problems. However, after solving the root node (with
cut generation), the improved 0.52% average integrality gap competes with a 0.79% average integrality gap.
This small difference is then directly translated into the optimization results, where the ER-GMC is only
slightly faster than the ER-1I. These results demonstrate the efficiency of the GMC formulation for standard
branch-and-bound methods, in particular when the MIP solver cut generation is less elaborated than that
of CPLEX.

Facility Closing and Reopening with Capacity Expansion and Reduction. The two problem vari-
ants treated above consider either facility closing/reopening or capacity expansion/reduction. Experiments
have also been performed for a third problem variant combining both features. The problem is modeled by
the use of the DFLPG by using the transition arcs for both problems as shown in Section 3.2. Additionally,
arcs are added representing combined decisions such as facility reopening with subsequent capacity expansion
(in the same time period), as well as capacity reduction with subsequent facility closing. Alternatively, a
specialized flow formulation can be used with two types of flow constraints: one to manage the capacity of
open facilities and one to manage the capacity of closed facilities. The observations made above regarding
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DMCFLP CR DMCFLP ER
q Instance # CR- CR- CR- # ER- ER- ER-

size Inst 1I 2I+ GMC Inst 1I 2I+ GMC
3 10/20 12 0.5 1.3 0.3 12 0.1 0.5 0.3

10/50 12 0.6 1.6 0.3 12 0.3 0.7 0.6
50/50 12 3.0 6.9 2.4 12 4.3 9.0 4.3
50/100 12 3.3 10.5 3.6 12 3.5 5.3 2.6
50/250 12 5.8 23.9 6.6 12 9.7 9.3 6.4
100/250 12 17.9 69.3 25.0 12 24.3 32.3 23.1
100/500 12 67.4 307.4 100.8 11 68.0 100.8 73.4
100/1000 12 64.4 310.3 66.8 12 101.7 125.7 82.0
Avg All 96 20.4 91.4 25.7 95 26.0 35.4 23.5

5 10/20 12 7.9 62.3 4.6 12 2.3 17.1 1.4
10/50 12 6.4 66.2 5.7 12 3.2 17.3 2.5
50/50 11 184.2 130.2 37.4 11 57.0 99.3 33.0
50/100 12 25.8 76.3 25.7 12 18.3 33.4 13.5
50/250 12 14.2 51.9 16.3 12 16.8 20.3 19.4
100/250 12 43.6 189.0 87.5 12 71.6 90.1 58.9
100/500 12 145.8 732.7 233.3 12 188.3 261.6 158.4
100/1000 12 149.1 889.8 305.0 12 283.2 347.8 197.8
Avg All 95 70.9 276.3 90.0 95 80.3 111.0 60.9

10 10/20 9 982.3 3,322.6 360.1 11 1,447.5 4,136.1 1,019.5
10/50 4 15.5 694.5 11.0 6 677.8 2,452.3 466.8
50/50 5 4,280.0 1,599.8 71.8 10 1,945.3 3,495.1 1,251.8
50/100 8 2,002.8 1,111.1 1,837.1 10 520.3 1,037.4 260.2
50/250 10 897.1 3,429.7 1,066.2 9 2,467.6 6,708.0 2,479.2
100/250 8 1,146.1 864.9 2,383.4 10 1,325.8 4,903.0 528.1
100/500 7 189.3 4,035.3 866.4 7 539.6 842.3 501.3
100/1000 11 406.0 2,037.0 438.2 11 1,097.4 3,392.4 605.5
Avg All 62 1,133.2 2,281.3 950.9 74 1,296.7 3,488.5 904.0

Table 2: CPLEX branch-and-bound results for instances solved to optimality by all formulations for each
problem.

CR-1I CR-2I CR-GMC
q Instance # Gap % # Gap % # Gap % #

size Inst Avg Max ns Avg Max ns Avg Max ns
5 50/50 1 1.73 1.73 0 2.01 2.01 0 1.24 1.24 0
10 10/20 3 0.01 0.01 0 0.50 0.71 0 0.01 0.01 0

10/50 8 0.01 0.01 0 1.21 3.33 0 0.01 0.01 0
50/50 7 1.63 2.74 0 0.43 1.57 0 1.25 2.58 0
50/100 4 0.51 1.18 0 0.90 1.50 0 0.42 1.25 0
50/250 2 0.13 0.26 0 0.04 0.08 0 0.09 0.18 0
100/250 4 0.27 0.83 0 0.27 1.07 0 0.26 0.74 0
100/500 5 0.01 0.01 0 1.19 1.42 2 0.01 0.01 0
100/1000 1 0.00 0.00 0 1.38 1.38 0 0.01 0.01 0
Avg All 34 0.44 2.74 0 0.75 3.33 2 0.35 2.58 0

Table 3: CPLEX branch-and-bound results for unsolved instances of the DMCFLP CR.
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ER-1I ER-2I ER-GMC
q Instance # Gap % # Gap % # Gap % #

size Inst Avg Max ns Avg Max ns Avg Max ns
5 50/50 1 0.61 0.61 0 0.77 0.77 0 0.01 0.01 0
10 10/20 1 0.01 0.01 0 0.45 0.45 0 0.01 0.01 0

10/50 6 1.18 3.33 0 1.85 4.83 0 0.80 3.55 0
50/50 2 1.21 1.47 0 1.59 1.76 0 0.90 1.36 0
50/100 2 0.48 0.56 0 6.95 13.04 0 0.42 0.43 0
50/250 3 0.00 0.01 0 3.33 6.36 1 0.00 0.01 0
100/250 2 0.42 0.83 0 1.40 1.53 0 0.13 0.24 0
100/500 5 0.63 1.88 2 1.50 3.75 2 0.09 0.41 0
100/1000 1 0.01 0.01 0 0.56 0.56 0 0.01 0.01 0
Avg All 22 0.66 3.33 2 2.27 13.04 3 0.37 3.55 0

Table 4: CPLEX branch-and-bound results for unsolved instances of the DMCFLP ER.

LP Relaxation Root Node CPLEX CPLEX
Integr. Time Integr. Time w/ root cuts w/o root cuts

Formulation Gap % (sec) Gap % (sec) Time (sec) Gap % Time (sec) # ns
ER-1I 6.09 30.7 0.79 353.9 1,296.7 3.07 20,219.4 3
ER-2I 6.09 32.3 1.03 695.6 3,488.5 3.36 20,047.6 4
ER-GMC 0.75 46.9 0.52 379.3 904.0 0.08 3,215.8 0

Table 5: Results for LP relaxation, root node and integer problem (q = 10).

the CPLEX root node solution were also confirmed for this more complex problem variant. In addition, the
advantage of the GMC model for this variant is even more obvious than what was observed for the DM-
CFLP ER. We proved that the GMC based model provides a stronger LP relaxation than the specialized
flow formulation. Computationally, the average integrality gap (for q = 10) improved from 6.10% to 0.92%
when using the GMC based model instead of the specialized formulation. In the CPLEX optimization, the
GMC based formulation is, on average, more than twice as fast as the specialized formulation, improving
the average computation time from 2, 709 to 1, 273 seconds.

6 Conclusions and Future Research

We have introduced a new general facility location problem that unifies several existing multi-period facility
location problems. We showed the flexibility of this generalization by focusing on two problem variants:
facility closing and reopening and capacity expansion and reduction. In addition, we also reported results on
a variant that combines both of these features. For the two first cases, we derived specialized models based on
two well-known formulation approaches. We formally proved that, even though our model is more general, it
provides LP relaxation bounds as strong as the other formulations for the case of facility closing/reopening
and stronger LP relaxation bounds than the formulations for the other two cases. Computational experiments
showed that, for the two variants involving capacity expansion and reduction, the integrality gap of our model
is up to 6-7 times smaller than the integrality gaps of the specialized formulations. While solving the root
node, CPLEX effectively strengthens the specialized, but weaker formulations by adding cuts. However, as
the cut generation by CPLEX is not easily reproducible, our model holds many advantages when compared
to the alternative formulations: it is more general, stronger and, on average up to twice as fast to find optimal
solutions. We also emphasize that CPLEX possesses one of the strongest pre-processing and cut generation
methods among all general-purpose MIP solvers. It is very likely that the dominance of our general model
over the specialized formulations would be more obvious when using another MIP solver.

The general model may also be used to model other problem variants not addressed in this work, e.g.,
the uncapacitated location problem with facility opening and closing of Van Roy and Erlenkotter (1982),
the closing and reopening model of Chardaire et al. (1996) or the dynamic location problem of Sridharan
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(1995). In addition, problem variants that involve capacity changes may benefit from the proposed modeling
technique to strengthen the existing models. Problems such as those presented by Shulman (1991) and
Correia and Captivo (2003) can be modeled by the DFLPG when adding individual constraints such as
minimum production bounds for the facilities. Finally, as the general model is already very strong, it may
also be an ideal candidate for decomposition techniques such as Lagrangean relaxation to find good quality
solutions in short computation times.
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Dias, J., M. E. Captivo, J. Cĺımaco. 2006. Capacitated dynamic location problems with opening, closure
and reopening of facilities. IMA Journal of Management Mathematics 17(4) 317–348.
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A Theoretical Results

A.1 Theoretical Results for the DMCFLP CR formulations

We now prove the dominance relationships between the three formulations presented for the DMCFLP CR.
For any integer linear programming model P , let P be the corresponding LP relaxation. For any model P ,
we denote by v(P ) its optimal value.

A.1.1 CR-GMC and CR-1I are equally strong

We prove that the LP relaxations of the formulations CR-GMC and CR-1I provide the same lower bound.

Theorem A.1 v(CR-GMC) = v(CR-1I).

Proof. The proof consists of two parts: First, we show how to construct a feasible solution for CR-1I
from any feasible solution for CR-GMC and that both solutions have the same objective function value.
Then, we show the same, constructing an equivalent and feasible CR-GMC solution from any feasible CR-1I
solution.

To facilitate the proof, we first write the CR-GMC in its explicit form as it is defined in Section 3.2. As
previously defined, let L = {0, 1, 2, .., q} be the set of available capacity levels to define the facility size. In
the same manner, let L′ =

{
1, 2, .., q

}
be the set of closed capacity levels:

(CR-GMC) min
∑
j∈J

∑
`2∈L

∑
t∈T

(foj`2 + F o
j`2)yj(`1=0)`2t +

∑
i∈I

∑
j∈J

∑
`∈L

∑
t∈T

gij`tditxij`t

+
∑
j∈J

∑
`1∈L

∑
t∈T

(ccj`1t + F c
j`1t)yj`1`1t +

∑
j∈J

∑
`1∈L

∑
t∈T

(coj`1t + F o
j`1)yj`1`1t

+
∑
j∈J

∑
`∈L

∑
t∈T

F o
j`yj`t

s.t.
∑
j∈J

∑
`∈L

xij`t = 1 ∀i ∈ I, ∀p ∈ P, ∀t ∈ T (37)

∑
i∈I

ditxij`t ≤
∑
`1∈L

uj`yj`1`t ∀j ∈ J, ∀` ∈ L, ∀t ∈ T (38)

yj0`(t−1) + yj``(t−1) + yj``(t−1) = yj``t + yj``t ∀j ∈ J, ∀` ∈ L, ∀t ∈ T (39)

yj``(t−1) + yj``(t−1) = yj``t + yj``t ∀j ∈ J, ∀` ∈ L
′, ∀t ∈ T (40)∑

`1∈L∪L′

∑
`2∈L∪L′

yj`1`2t ≤ 1 ∀j ∈ J, ∀t ∈ T (41)

xij`t ≥ 0 ∀i ∈ I, ∀j ∈ J, ∀` ∈ L, ∀t ∈ T (42)

yj`1`2t ∈ {0, 1} ∀j ∈ J, ∀`1 ∈ L, ∀`2 ∈ L, ∀t ∈ T. (43)

(A) Construction of a feasible CR-1I solution from any CR-GMC solution

Consider any solution {xij`t, yj`1`2t} that is feasible in CR-GMC. We now construct an equivalent solution{
xij`t, yj`t, sj`t, v

o
j`t, v

c
j`t

}
that is feasible in CR-1I and has the same objective function value.

We set the values for the xij`t variables identical to those in the CR-GMC solution. The values for the
variables yj`t, sj`t, v

o
j`t and vcj`t are set by establishing the following relations ∀j ∈ J, ∀` ∈ L,∀t ∈ T :

sj`t = yj0kt (CR.R1)

voj`t = yj``t (CR.R2)

vcj`t = yj``t (CR.R3)

yj`t = yj0`t + yj``t + yj``t. (CR.R4)
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According to these relations and the way the objective function coefficients are composed (see Section 3.2),
it can be easily verified that both solutions have the same objective function value. Constraints (11) and
(12) are satisfied, as they contain the same variables with the same values in both models. We show that
constraints (13) hold by using the relationships defined above:

yj`t = yj`(t−1) + sj`t + voj`t − vcj`t (13)

(CR.R1) - (CR.R4)⇔ yj0`t + yj``t + yj``t = yj0`(t−1) + yj``(t−1) + yj``(t−1) + yj0`t + yj``t − yj``t
cancel yj0`t & yj``t⇔ yj``t = yj0`(t−1) + yj``(t−1) + yj``(t−1) − yj``t. (39)

As equalities (39) necessarily hold, constraints (13) are also satisfied. In a similar way, we show that
constraints (14) hold:

t∑
t′=1

voj`t′ ≤
t∑

t′=1

vcj`t′ (14)

(CR.R2) & (CR.R3)⇔
t∑

t′=1

yj``t′ ≤
t∑

t′=1

yj``t′

replace LHS by (40)⇔
t∑

t′=1

yj``(t′−1) +
t∑

t′=1

yj``(t′−1) +
t∑

t′=1

yj``t′ ≤
t∑

t′=1

yj``t′

cancel yj``t & yj``t⇔ −yj``t ≤ yj``t,

which is true, since the y variables are strictly non-negative. Finally, to show that constraints (15) are also
satisfied, it is sufficient to observe that at each location j and capacity level `, the total flow in the flow
conservation constraints (39) and (40) is limited to 1 throughout all time periods. If, for any j and `, we
tried to construct more than 1 facility, this would violate constraints (41) and is thus not possible. Therefore,
constraints (15) are satisfied.

If the SIs are used, they are also feasible in the CR-1I model. They can be deduced by replacing (CR.R4)
in the SIs of the CR-GMC.

(B) Construction of a feasible CR-GMC solution from any CR-1I solution

Consider any solution
{
xij`t, yj`t, sj`t, v

o
j`t, v

c
j`t

}
that is feasible in CR-1I. We now construct an equivalent

solution {xij`t, yj`1`2t} that is feasible in CR-GMC and has the same objective function value.
The values for the xij`t variables are set identical to those in the CR-1I solution. The arcs for constructing

a facility (yj0`t), closing an open facility (yj``t) and reopening a closed facility (yj``t) are set by using the
equalities (CR.R1) - (CR.R3) and therefore satisfy their domain constraints. The solution values for the
arcs to keep a facility open (yj``t) are set by replacing (CR.R1) and (CR.R2) in equality (CR.R4):

yj`t = yj0`t + yj``t + yj`kt (CR.R4)

(CR.R1),(CR.R2)⇔ yj`t = sj`t + yj``t + voj`t

⇔ yj``t = yj`t − sj`t − voj`t.

The variables are non-negative, as can be verified in equalities (13). Also, due to (41), their values never
exceed 1. Constraints (37) and (38) are satisfied, as they contain the same variables with the same values
in both models. As shown above in part (A), we can transform equalities (13) into equalities (39), and
vice-versa, by using (CR.R1)-(CR.R2). This proves the feasibility of constraints (39). Finally, we compute
the values for yj``t by using equalities (40), sequentially from time period 1 to |T |:

yj``t = yj``(t−1) + yj``(t−1) − yj``t (40)

(CR.R2),(CR.R3)⇔ yj``t = yj``(t−1) + vcj`(t−1) − v
o
j`t.
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Note that, due to (14), the variables have non-negative values. Furthermore, their sum never exceeds 1,
because the only way how to insert flow into the vo and vc variables is by using the s variables, whose total
sum is strictly limited to 1 by inequalities (15).

We note that the constructed solution has the same value, as can be verified by the used relationships
(CR.R1)-(CR.R4) as well as the way the variables’ coefficients are composed (see Section 3.2).

From the two parts (A) and (B) above, it follows that v(CR−GMC) = v(CR− 1I).

A.1.2 CR-GMC and CR-1I are stronger than CR-2I

We next prove that the CR-GMC and CR-1I formulations provide stronger LP bounds than the CR-2I
formulation.

Theorem A.2 v(CR-1I) ≥ v(CR-2I).

Proof. The proof consists of two parts: First, we show how to construct a feasible solution for CR-2I
from any feasible solution of CR-1I and that both solutions have the same objective function value. Then,
we identify a small example instance where the ER-1I formulation provides a better LP relaxation bound
than the ER-2I formulation.

(A) Construction of a feasible CR-2I solution from any feasible CR-1I solution

We now set the solution values for the sj`t1t2 and yj`t1t2 variables. For each j and `, we consider the diagram
that describes the opening schedule of a facility of size ` in the CR-1I solution. We separate the opening
schedules for each capacity level ` into blocks, as described by the following algorithm:

Algorithm 1.
Input: A facility opening schedule, consisting of a value between 0 and 1, indicating the fraction at
which the facility is open for each of the |T | time periods (indicated by the value of yj`t).
Output: The opening schedule horizontally cut into blocks. Each block is defined by a starting
and ending period as well as a value between 0 and 1, indicating the fraction at which the block
represents the open facility.
Description: The opening schedule, as shown in Figure 1 (a), is horizontally cut into blocks
whenever the value of the opening fraction increases or decreases. Doing this, the increase and/or
decrease of capacity may be split into several increases and/or decreases, respectively. This results
in a representation as in Figure 1 (b). In this example, the capacity increase at the beginning of
period 3 is split into two capacity increases of half size each, while the capacity decrease at the
beginning of period 6 is split into two capacity decreases. It is easy to see that this kind of division
is unambiguous, i.e. there is only one way to separate into blocks. The design of an algorithm to
find this division is straightforward. We therefore do not explicitly state such an algorithm.

Note that, in the opening schedule, a capacity increase at time period t is always caused by the use of
the variables sj`t or voj`t. A capacity decrease at time period t is caused by the use of variable vcj`t.

After division, we have a number of separated blocks (each spanning over one or more time periods).
We divide these blocks into two groups: blocks where the capacity increase is originated from a variable sj`t
and blocks where the capacity increase is originated from reopening variables voj`t. Each block originated
from a variable sj`t represents a sj`t1t2 variable and each block originated from a voj`t variable represents a
variable yj`t1t2 . The value for these variables is set equivalent to the fraction of value represented by the
corresponding variables sj`t and voj`t.

The following relationship then holds, since the solution value of yj`t is the sum of all capacity blocks at
time period t:

t∑
t1=1

|T |∑
t2=t

sj`t1t2 + yj`t1t2 = yj`t ∀j ∈ J, ∀` ∈ L, ∀t ∈ T. (CR.R5)
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Furthermore, the following relationships hold, since the solution value of sj`t is distributed over all sj`t1t2
variables that initiate at t1 = t. The same relation is valid between the variables voj`t and yj`t1t2 :

|T |∑
t2=t

siktt2 = sj`t ∀j ∈ J, ∀` ∈ L, ∀t ∈ T. (CR.R6)

All xij`t variables are set as given in the CR-1I solution. Thus, constraints (11) are satisfied. Equalities
(14) guarantee that, at any time period t, variable voj`t does not hold more capacity than has been previously
constructed. Thus, constraints (20) also hold. Using (CR.R6) in (15) shows that constraints (21) are satisfied.
Inequalities (22) are also satisfied. To show this, first replace the terms by (CR.R5). Then, recognize that
(15) limits the entire facility construction to 1. As yj`t is linked to the facility construction in equalities (13),
its sum over all capacity levels can never exceed 1. Finally, the capacity constraints (23) are feasible. This
is shown by replacing (CR.R5) in constraints (23), which then equal the capacity constraints of the CR-1I.
If SIs are used, the feasibility of the SIs in the CR-2I formulation can be shown by replacing its RHS terms
by (CR.R5).

We note that the constructed solution has the same value as the CR-1I solution. This can be seen by
recognizing that the sj`t1t2 and yj`t1t2 blocks in the CR-2I solution have been constructed following the
corresponding solution values of sj`t and yj`t and the way how the cost coefficients are set as described in
Section 4.1.2.

(B) Problem instance where CR-1I is stronger

Consider the following example instance. We consider a planning over three time periods. A single customer
exists with demands of 15, 15 and 20 units for each of the time periods, respectively. Two locations can be
used to construct facilities. A single capacity level is available, providing a capacity of 10 units. Construction
costs are 100$. Facility closing and reopening is free. The same holds for the production and transportation
of the commodity. For the given instance, the CR-1I provides a better bound than the CR-2I formulation:
the cost of the solution for the CR-1I model is 2700, whereas the cost of the solution for the CR-2I model is
2650.

From the two parts (A) and (B) above follows that v(CR-1I) ≥ v(CR-2I).

Theorem A.3 v(CR-GMC) ≥ v(CR-2I).

Proof. The result follows by transitivity from Theorems A.1 and A.2.

A.1.3 CR-2I+ is equally strong as CR-GMC and CR-1I

Theorem A.4 v(CR-1I) = v(CR-2I+).

Proof. It has already been shown that we can construct an equivalent and feasible CR-2I solution from
any CR-1I solution. Due to the way the described algorithm attributes the values to the sj`t1t2 and yj`t1t2
variables as well as the direct relationship between these variables and the vc and vo variables, it can be
shown that the new constraints (26) are also satisfied.

(A) Construction of a feasible CR-1I solution from any feasible CR-2I+ solution

Consider any solution {xij`t, sj`1t1t2 , yj`1t1t2} that is feasible in CR-2I+. We now construct an equivalent

solution
{
xij`t, yj`t, sj`t, v

o
j`t, v

c
j`t

}
that is feasible in CR-1I and that has the same value.

We set the values for the xij`t variables identical to those in the CR-2I+ solution. The values for the
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variables yj`t, sj`t, v
o
j`t and vcj`t are set by establishing the following relations ∀j ∈ J, ∀` ∈ L,∀t ∈ T :

sj`t =

|T |∑
t2=t

sj`tt2 (CR.R7)

yj`t =
t∑

t1=1

|T |∑
t2=t

sj`t1t2 +
t∑

t1=1

|T |∑
t2=t

yj`t1t2 (CR.R8)

voj`t =

|T |∑
t2=t

yj`tt2 (CR.R9)

vcj`t =
t−1∑
t1=1

sj`t1(t−1) +
t−1∑
t1=1

yj`t1(t−1) (CR.R10a)

⇔ vcj`(t+1) =
t∑

t1=1

sj`t1t +
t∑

t1=1

yj`t1t (CR.R10)

Constraints (11) are equivalent to constraints (19) and are thus satisfied. By using (CR.R8), constraints
(12) correspond to constraints (23). Constraints (15) correspond to constraints (22) by using (CR.R7).

Replacing (CR.R9) and (CR.R10) in constraints (14) gives, ∀j ∈ J, ∀` ∈ L,∀t ∈ T :

t∑
t′=1

voj`t′ ≤
t∑

t′=1

vcj`t′ (14)

⇔
t∑

t′=1

voj`t′ ≤
t−1∑
t′=0

vcj`(t′+1)

(CR.R9)&(CR.R10)⇔
t∑

t′=1

|T |∑
t2=t′

yj`t′t2 ≤
t−1∑
t′=0

t′∑
t1=1

sj`t1t′ +
t−1∑
t′=0

t′∑
t1=1

yj`t1t′

⇔
t∑

t′=1

|T |∑
t2=t′

yj`t′t2 ≤
t−1∑
t1=1

t−1∑
t′=t1

sj`t1t′ +

t−1∑
t1=1

t−1∑
t′=t1

yj`t1t′ ,

which is true due to constraints (26). Thus, constraints (14) also hold. The feasibility of the flow conservation
constraints (13) can be shown by replacing the variables by the terms given in the relations (CR.R7), (CR.R9)
and (CR.R10a). By doing so, all terms on the LHS and RHS will cancel each other.

Given the relations (CR.R7)-(CR.10a) and the way the variable coefficients are composed in both formu-
lations, it can easily be verified that both solutions have the same value. Both formulations are thus equally
strong.

Theorem A.5 v(CR-GMC) = v(CR-2I+).

Proof. The result follows by transitivity from Theorems A.1 and A.4.

A.2 Theoretical Results for the DMCFLP ER formulations

We now prove the dominance relationships for the three formulations presented for the DMCFLP ER. Let
ER-GMC be the linear programming relaxation of ER-GMC. In the same way, we denote ER-1I the linear
programming relaxation of ER-1I and ER-2I the linear programming relaxation of ER-2I.

A.2.1 ER-1I and ER-2I are equally strong

We next prove that the LP relaxations of the formulations ER-1I and ER-2I provide the same lower bound.

Theorem A.6 v(ER-1I) = v(ER-2I).
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Proof. The proof consists of two parts: First, we show how to construct a feasible solution for ER-1I
from any feasible solution of ER-2I and that both solutions have the same objective function value. Then,
we show the same, constructing an equivalent ER-2I solution based on any feasible ER-1I solution.

(A) Construction of a feasible ER-1I solution from any ER-2I solution

Consider any solution {xij`t, yj`t1t2 , yj`t, sj`t, wj`t} that is feasible in ER-2I. We now construct an equivalent
solution {xij`t, yj`t, sj`t, wj`t} that is feasible in ER-1I and has the same objective function value.

We set all variables xij`t, yj`t, sj`t and wj`t in the ER-1I formulation as given in the ER-2I solution. Given
that both formulations have the same objective function, the solution value is also the same. Also observe
that the formulations have the same constraints except for constraints (28) in the ER-1I and constraints
(32) - (34) in the ER-2I formulation. The constraints that are part of both models (including the SIs) have
the same variables in both models with the same solution values in both solutions and are thus feasible.
Therefore, we only have to show that constraints (28) are also feasible. We do so by replacing (32) - (34) in
(28) for ∀j ∈ J,∀t ∈ T :

∑
`∈L

`yj`t =
∑
`∈L

`yj`(t−1) +
∑
`∈L

`sj`t −
∑
`∈L

`wj`t (28)

(32)−(34)⇔
∑
`∈L

t∑
t1=1

|T |∑
t2=t

`y′j`t1t2 =
∑
`∈L

t−1∑
t1=1

|T |∑
t2=t−1

`y′j`t1t2 +
∑
`∈L

|T |∑
t2=t

`y′i`(t1=t)t2
−
∑
`∈L

t−1∑
t1=1

`y′i`t1(t2=t−1)

⇔
∑
`∈L

t−1∑
t1=1

|T |∑
t2=t

`y′j`t1t2 +
∑
`∈L

|T |∑
t2=t

`y′j`(t1=t)t2

=
∑
`∈L

t−1∑
t1=1

|T |∑
t2=t−1

`y′j`t1t2 +
∑
`∈L

|T |∑
t2=t

`y′i`(t1=t)t2
−
∑
`∈L

t−1∑
t1=1

`y′i`t1(t2=t−1).

The remaining terms now cancel each other and therefore constraints (28) hold.

(B) Construction of a feasible ER-2I solution from any ER-1I solution

Consider any solution {xij`t, yj`t, sj`t, wj`t} that is feasible in ER-2I. We now construct an equivalent solution
{xij`t, yj`t1t2 , yj`t, sj`t, wj`t} that is feasible in ER-1I and has the same objective function value.

We set the values for the xij`t, yj`t, sj`t and wj`t variables in the ER-2I formulation as given in the ER-1I
solution. Given that both formulations have the same objective function, the solution value in the objective
function is also the same. All constraints (including the SIs), except for constraints (32) - (34) are the same
as in formulation ER-1I and are therefore feasible.

We now set the solution values for the yj`t1t2 variables. For each ` ∈ L, we consider the diagram that
describes the opening schedule of a facility of size `. Each opening schedule is horizontally cut into blocks as
described by Algorithm 1. Note that in the optimal solution, due to (28), an increase in yj`t by an amount
of α necessarily means that sj`t = α and wj`t = 0, whereas a decrease in yj`t by an amount of α necessarily
means that wj`t = α and sj`t = 0. After separation, each of the separated blocks represents a variable yj`t1t2
with a solution value greater than 0. The solution value of sj`t will be distributed over all yj`t1t2 variables
that start at t1 = t, the solution value of wj`t will be distributed over all yj`t1t2 variables that terminate at
the end of t2 = t and the solution value of yj`t will be distributed over all yj`t1t2 variables that start at or
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before t and terminate at or after t. Therefore, the following relationships hold:

|T |∑
t2=t

y′i`tt2 = sj`t ∀j ∈ J, ∀` ∈ L, ∀t ∈ T

t−1∑
t1=1

y′i`t1(t−1) = wj`t ∀j ∈ J, ∀` ∈ L, ∀t ∈ T

t∑
t1=1

|T |∑
t2=t

y′j`t1t2 = yj`t ∀j ∈ J, ∀` ∈ L, ∀t ∈ T.

Replacing these relationships in the constraints (32) - (34), respectively, shows that these constraints remain
feasible.

From the two parts (A) and (B) above follows that v(ER− 1I) = v(ER− 2I).

A.2.2 ER-GMC is stronger than ER-1I and ER-2I

We now compare the strength of the ER-GMC and ER-1I formulations. We will prove that the ER-GMC
formulation is at least as strong (strictly stronger for some instances) as the ER-1I formulation in the sense
that its linear programming relaxations provides a better bound. By transitivity, the same result follows for
the relation between the ER-GMC and ER-2I.

Theorem A.7 v(ER-GMC) ≥ v(ER-1I).

Proof. The proof consists of two parts: First, we show how to construct a feasible solution for ER-1I
from any feasible solution of ER-GMC and that both solutions have the same objective function value.
Second, we provide a problem instance where ER-GMC provides a better bound than ER-1I.

(A) Construction of a feasible ER-1I solution from any ER-GMC solution

Consider any solution {xij`t, yj`1`2t} that is feasible in ER-GMC. We now construct an equivalent solution
{xij`t, yj`t, sj`t, wj`t} that is feasible in ER-1I and has the same objective function value.

We deduce the values for the new variables from the ones of the existing solution variables yj`1`2t.
Equalities (4) in the ER-GMC formulation conserve the flow for open facilities as it is found at the end of
each planning period. It can be used to deduce the values for the y variables ∀j ∈ J, ∀` ∈ L,∀t ∈ T :

yj`t =
∑
`1∈L

yj`1`t. (ER.R1)

The same equalities (4) also lead to the following result:

yj`(t−1)
(ER.R1)

=
∑
`1∈L

yj`1`(t−1)
(4)
=
∑
`2∈L

yj``2t. (ER.R2)

Furthermore, we set sj`t and wj`t as follows:

sj`t =
∑
`1∈L

yj`1(`2=`1+`)t (ER.R3)

wj`t =
∑
`1∈L

yj`1(`2=`1−`)t. (ER.R4)
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Having set the variables for the ER-1I formulation, we now show that the equalities (28) still hold. We
replace the variables by the deduced values according to (ER.R1)-(ER.R4):∑

`∈L

`yj`t +
∑
`∈L

`wj`t =
∑
`∈L

`yj`(t−1) +
∑
`∈L

`sj`t ∀j ∈ J, ∀t ∈ T (28)

(ER.R1)−(ER.R4)⇔
∑
`1∈L

∑
`2∈L

`2yj`1`2t +
∑
`1∈L

∑
`∈L

`yj`1(`2=`1−`)t

=
∑
`1∈L

∑
`2∈L

`1yj`1`2t +
∑
`1∈L

∑
`∈L

`yj`1(`2=`1+`)t ∀j ∈ J, ∀t ∈ T. (44)

In the following, we prove that (44) is true by using the principle of induction:

Proposition: Equalities (44) are true for all sizes of L.

Basic cases: We start with the trivial case of q = 1, i.e., L = {0, 1}. Note that, for the sake of
simplicity, we suppress the variable indices j and t, but indicate only the values for the indices `1
and `2:

LHS :
∑
`1∈L

∑
`2∈L

`2yj`1`2t → 0y00 + 1y01 + 0y10 + 1y11

∑
`1∈L

∑
`∈L

`yj`1(`2=`1−`)t → 1y10

RHS :
∑
`1∈L

∑
`1∈L

`1yj`1kt → 0y00 + 0y01 + 1y10 + 1y11

∑
`1∈L

∑
`∈L

`yj`1(`2=`1+`)t → 1y01

It can be easily verified that the terms on the LHS equal the terms on the RHS. The proposition is
thus true for q = 1.

Inductive step: We now show that the proposition also holds for q = q+1. For q+1, the LHS and
RHS include the same terms as in the previous step. In addition, the following terms are added:

LHS :

q+1∑
`2=0

`2yj(`1=q+1)`2t +

q∑
`1=0

(q + 1)yj`1(`2=q+1)t

q+1∑
`2=0

(q + 1− `2)yj(`1=q+1)`2t

RHS :

q+1∑
`2=0

(q + 1)yj(`1=q+1)`2t +

q∑
`1=0

`1yj`1(`2=q+1)t

q+1∑
`1=0

(q + 1− `1)yj`1(`2=q+1)t

Summing up all terms on the LHS and all terms on the RHS shows that both sides are equivalent.
Hence the result follows by induction.

Therefore, constraints (28) are satisfied. For the xij`t variables, we choose the same solution values as in
the ER-GMC solution. Constraints (11) are therefore necessarily satisfied. In addition, the demand allocation
contributes equally to the objective function in both formulations. Constraints (12) are also satisfied, as can
be verified by replacing the yj`1`2t variables in constraints (3) by (ER.R1). The limiting constraints (see
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Section 4.2) are also satisfied by noting that each of the variables can be replaced by corresponding yj`1`2t
variables and the sum of all yj`1`2t variables never exceeds 1. Finally, the SIs are feasible due to relationship
(ER.R1).

The contribution of the variables yj`t, sj`t and wj`t to the total solution costs is equivalent to the one
of the yj`1`2t variables. This can be easily shown by verifying the equalities (ER.R1)-(ER.R4) and the costs
attributed to the yj`1`2t in Section 3.2.

(B) Problem instance where ER-GMC is stronger

We now explain, by the use of a small problem instance, under which circumstances the ER-GMC provides
a better LP bound than the ER-1I and ER-2I formulations.

The example instance we explore here contains one potential facility location and one client. The planning
horizon contains one single-time period. The client has a demand of 10 units in time period 1 and 2 units in
time period 2. Production and transportation of the demanded commodities is free. The maximum capacity
level is 2. The capacity expansion costs 200$ for one capacity level and 350$ for two capacity levels. Capacity
reduction costs 20$ for one capacity level and 35$ for two capacity levels. Maintenance costs for a facility
is 300$ at capacity level 1 and 500$ at capacity level 2. The facility capacity is 10 at level 1 and 11 at level
2. Therefore, the costs to provide and maintain a certain amount of capacity do not follow the principle of
economies of scale.

The ER-GMC formulation provides a better bound than the other formulations. Consider the solution
we found before for the ER-GMC formulation: yj0`0`1t0 = 1.0 and xi0j0`2t0 = 1.0. The solution value is 500.
Now, adding the SIs, we yj0`0`1t0 = 1.0 and xi0j0`1t0 = 1.0. For the ER-1I and ER-2I formulations, with our
without the SIs, we still have the possibility to construct half a level 2 facility, while maintaining a full level 1
facility. That is, the decision variables linked to the objective function have the solution values: yj0`1t0 = 1.0
and sj0`2t0 = 0.5. The objective function value is then 475.

From the two parts (A) and (B) above, it follows: v(ER-GMC) ≥ v(ER-1I).

Theorem A.8 v(ER-GMC) ≥ v(M-ER-I2).

Proof. The result follows by transitivity from Theorems A.6 and A.7.
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