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Abstract. The paper introduces a cutting-plane matheuristic for the design-balanced 
capacitated multicommodity network design problem, one of the premier formulations for 
the service network design problem with asset management concerns increasingly faced 
by carriers within their tactical planning processes. The matheuristic combines a cutting-
plane procedure efficiently computing tight lower bounds and a variable-fixing procedure 
feeding a MIP solver. Learning mechanisms embedded into the cutting-plane procedure 
provide the means to identify promising variables and thus, both reduce the dimension of 
the problem instance, making it addressable by a MIP solver, and guide the latter toward 
promising solution spaces. Extensive computational experiments show the efficiency of 
the proposed procedures in obtaining high-quality solutions, outperforming the current 
best methods from the literature. 
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1 Introduction

Network design formulations are used to model a wide variety of problems in several
fields such as transportation, logistics, distribution, production, etc. Surveys on network
design may be found in Magnanti and Wong (1984), Minoux (1989), and Crainic (2000).
We are particularly interested in fixed-cost, multicommodity, capacitated formulations
characterized by a network with link capacities and a set of known demands between
origin-destination nodes. The network design problem then aims to construct a network,
by choosing the arcs to be used, and to satisfy the demand, by determining the flow
distribution on each arc, at minimum cost. A fixed cost is payed as soon as a link is
used, in addition to the usual per-unit routing cost.

Service network design belongs to this broad problem class, where links represent “ser-
vices” to operate within a given system. Service network design is particularly used to
address tactical planning issues for consolidation-based transportation carriers (Crainic,
2003; Crainic and Kim, 2007). More precisely, it relates to the decision problem of select-
ing transportation services to operate over a mid-term planning horizon, together with
their frequencies or schedules as well as the main strategies for moving loads through
the resulting service network, to optimize the economic and service criteria of the car-
rier and achieve an efficient allocation and utilization of its resources, given forecast
origin-to-destination demand. The result of the tactical planning process usually is a
transportation plan and schedule for a given time length, e.g., a day or a week, to be
repeatedly operated over the planning horizon of the “next season” (i.e., from a few
months to a year). One calls such a schedule periodic and circular.

The management of assets, e.g., power units, vehicles, crews, etc., was generally not
detailed in most of the contributions in the literature (Crainic, 2003; Crainic and Kim,
2007), with a few exceptions where the cost of owning and operating particular assets,
planes or ships, for example, was dominating the other cost considerations (e.g., Armacost
et al., 2002; Smilowitz et al., 2003; Lai and Lo, 2004). Constraints requiring that the
same number of assets enter and exit each terminal, called design-balanced constraints
by Pedersen et al. (2009), and ad-hoc solution methods were proposed to better include
resource-management considerations within tactical planning processes and models. Such
approaches are becoming wide spread, as so-called full-asset-utilization policies aiming
to use assets continuously following circular routes (Crainic and Kim, 2007; Bektas and
Crainic, 2008) are being adopted by carriers of all modes. Andersen et al. (2009b,a) give
an up-to-date review of previous contributions to the field and study formulations for
various asset-management considerations within service network design settings.

In this paper, we focus on the design-balanced capacitated multicommodity network
design problem (DBCMND), a generic network design problem with design-balanced
requirements, formally introduced in Pedersen et al. (2009) together with a Tabu Search
meta-heuristic. The DBCMND is NP-Hard, as it is a special case of the well-known
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NP-Hard multicommodity fixed charge network design problem (Magnanti and Wong,
1984) and, thus, exact methods reach their limits rather rapidly (Andersen et al., 2011).
Moreover, even feasible solutions are difficult to obtain for the DBCMND, as shown by
Pedersen et al. (2009) and the recent Tabu Search - Path Relinking meta-heuristic of Vu
et al. (2012).

Our goal is to address these challenges and propose a methodology to efficiently iden-
tify good-quality feasible solutions for realistically-dimensioned instances. We propose a
matheuristic combining an exact lower-bound computing method and a variable-fixing
procedure feeding a MIP solver. We use a well-known commercial software for the latter.
The former method is based on the cutting-plane procedure proposed by Chouman et al.
(2009, 2011) for the capacitated multicommodity fixed charge network design problem
(CMND) and computes tight lower bounds in short computational times. We intro-
duce learning mechanisms embedded into the cutting-plane procedure, which yield the
information used to fix variables and guide the MIP solver toward good-quality solu-
tions. The performance of the proposed matheuristic is evaluated through an extensive
computational study performed on a large set of test instances used in the literature.
Comparisons with leading methods in the literature underlines the quality and efficiency
of the proposed matheuristic.

The contributions of this paper are twofold. First, we propose a new matheuristic
for the DBCMND that efficiently obtains high-quality solutions, outperforming existing
solution methods in solution quality and computational effort, particularly as instance di-
mensions increase. Second, the paper introduces a MIP-based learning process to identify
characteristics of good-quality solutions. More precisely, it shows how to take advantage
of the time spent computing lower bounds to compile statistics characterizing attributes
of already-encountered solutions. These statistics can then be used to identify key vari-
ables that, once fixed, significantly reduce the size of the problem instance providing the
means to rapidly find good feasible solutions.

This paper is organized as follows. We recall the problem formulation in the next sec-
tion. Section 3 describes the proposed matheuristic. Computational results are reported
in Section 4. Conclusions and perspectives are given in Section 5.

2 Problem Formulation

Given a directed graph G = (N ,A), where N is the set of nodes and A is the set of
arcs, and a set of commodities (or origin-destination pairs) K to be routed according
to a known demand dk for each commodity k, the problem is to satisfy the demand at
minimum cost. The cost consists of the sum of transportation costs and fixed design
costs, the latter being charged whenever an arc is included in the optimal design. The
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transportation cost per unit of commodity k on arc (i, j) is noted ckij ≥ 0, while fij ≥ 0
is the fixed design cost for arc (i, j). A limited capacity, uij, is associated to each arc
(i, j). An origin O(k) and a destination D(k) are associated to each commodity k. We
introduce continuous flow variables xkij, which stand for the amount of flow on each arc
(i, j) for each commodity k, and 0-1 design variables yij, which indicate if arc (i, j) is
used or not. With this notation, the mathematical formulation of the Design-Balanced
Multicommodity Capacitated Fixed Charge Network Design problem becomes

min
x,y

∑
(i,j)∈A

fijyij +
∑
k∈K

∑
(i,j)∈A

ckijx
k
ij, (2.1)

∑
j∈N+

i

xkij −
∑
j∈N−

i

xkji = wk, ∀ i ∈ N ,∀ k ∈ K, (2.2)

∑
j∈N+

i

yij −
∑
j∈N−

i

yji = 0, ∀i ∈ N , (2.3)

∑
k∈K

xkij ≤ uijyij, ∀ (i, j) ∈ A, (2.4)

xkij ≥ 0, ∀ (i, j) ∈ A, ∀ k ∈ K, (2.5)

yij ∈ {0, 1}, ∀ (i, j) ∈ A, (2.6)

where N−i = {j ∈ N : (j, i) ∈ A}, N+
i = {j ∈ N : (i, j) ∈ A}, and

wk =


dk, if i = O(k),
−dk, if i = D(k),

0, otherwise.

The objective function (2.1) minimizes the total cost computed as the sum of the total
fixed cost for the arcs included in the optimal design (denoted as open) plus the total
commodity transportation cost. Constraints (2.2) correspond to the flow conservation
equations for each node and each commodity, while Constraints (2.3) are the design-
balanced constraints ensuring that the total number of open arcs entering a node is equal
to the total number of open arcs leaving that node. Relations (2.4) represent capacity
constraints for each arc that also link flow and design variables by forbidding any flow to
pass through an arc not already chosen as part of the design.

Note that, the linear relaxation (LP) of this formulation is obtained by replacing the
integrality constraints (2.6) by 0 ≤ yij ≤ 1, ∀(i, j) ∈ A. Note also that, removing con-
straint set (2.3) yields the well known CMND, which is NP-Hard (Magnanti and Wong,
1984; Balakrishnan et al., 1997) and thus makes the DBCMND NP-hard as well. Practi-
cally, considerable algorithmic challenges are associated with addressing realistically-sized
problem instances. These challenges are due to the trade-offs to be found between vari-
able and fixed costs, and to the competition among commodities for the limited capacity
on the arcs. In addition, by linking the design choices, the design-balanced constraints
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(2.3) make the exploration of the solution/search space defined by the design variables
much more challenging (e.g., CMND classical implicit enumeration and status chang-
ing, from open to close an vice-versa, are no longer possible), adding to the algorithmic
difficulties.

3 Methodological Approach

We now present the matheuristic we propose for the DBCMND. It is motivated essentially
by three observations. First, the cutting-plane procedure proposed by Chouman et al.
(2009, 2011) has proved to be effective in computing tight lower bounds for the CMND, in
relatively short computational times when compared to state-of-the-art software. Given
the similitude between the two design problems, we expect the procedure to be efficient
for the DBCMND as well. Second, various memories characterizing attributes of LP
solutions can be built during the cutting-plane procedure and may then be used to
identify promising solution elements - design arcs - providing means to guide the search
toward good-quality feasible solutions. The same memories can then be used to fix part
of the solution, closing unpromising design arcs, and, thus, reduce the dimensions of
the problem instance, bringing it within the efficiency range of exact MIP solvers. It
was actually interesting to investigate the effectiveness of a commercial MIP solver in
identifying good solutions when the search is guided by a MIP-based learning process.

Algorithm 1 Cut&Fix Matheuristic

Phase I: Lower-bound computation (LB).
Run the cutting-plane algorithm (Algorithm 2) and compile LB memories;

Phase II: Feasible solution (FS ).
Perform the α-fixing heuristic (Algorithm 3) based on the LB memories
Solve the resulting reduced DBCMND with a MIP solver to obtain a feasible solution

Algorithm 1 illustrates the proposed matheuristic combining two algorithmic compo-
nents. The methods starts with a Phase I, which computes lower bounds on the optimal
value of DBCMND using the cutting-plane procedure of Chouman et al. (2009, 2011)
and compiles a number of statistics on solution characteristics. These memories are used
in Phase II to fix a number of design variables and identify a feasible solution by solv-
ing the restricted problem using a MIP solver (e.g., the branch-and-cut of a commercial
software). These components are detailed in the following subsections.
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3.1 Lower bounds and memories

Any valid inequality (VI) that is valid for a relaxation of a problem, is valid for the
problem itself. Therefore, as by dropping constraints (2.3) one obtains a CMND, any
valid inequality for the CMND is valid for the DBCMND. More precisely, the families of
inequalities studied in Chouman et al. (2009) and Chouman et al. (2011) are valid for the
DBCMND and can be used to improve the formulation of the problem and strengthen
the quality of its LP bounds.

The same studies have shown, however, that different VI families display quite differ-
ent behaviors relative to their capability to improve the quality of bounds in reasonable
computation times. Based on those studies and aiming for a combination of VI yielding
a good trade-off between solution quality and computing time, and, thus, an efficient
cutting-plane method, we consider three families of VIs only: the strong, cover, and
flow-pack inequalities. We briefly describe these families of inequalities. More detailed
discussions relative to the associated separation problems and implementation issues are
to be found in the two references above.

Strong Inequalities (SI) are defined as

xkij ≤ dkyij, ∀(i, j) ∈ A, k ∈ K. (3.1)

Adding SI to the model significantly improves the quality of the LP lower bounds
(Crainic et al., 1999; Gendron and Crainic, 1994).

Cover Inequalities (CI) are defined in terms of cutsets of the network. Let S ⊂
N be any non-empty subset of N and S̄ = N\S its complement. We identify the
corresponding cutset by (S, S̄), i.e., the set of arcs that connect a node in S to a node
in S̄. Let d(S,S̄) =

∑
k∈K(S,S̄) d

k where K(S, S̄) ⊆ K, be the set of commodities with

their origin in S and their destination in S̄. d(S,S̄) is then a lower bound on the amount
of flow that must circulate across the cutset in any feasible solution. A set C ⊆ (S, S̄)
is a cover if the total capacity of the arcs in (S, S̄)\C does not cover the demand, i.e.,∑

(i,j)∈(S,S̄)\C uij < d(S,S̄). Moreover, the cover C ⊆ (S, S̄) is minimal if it is sufficient to

open any arc in C to cover the demand. For every cover C ⊆ (S, S̄), the cover inequality∑
(i,j)∈C

yij ≥ 1 (3.2)

is valid for the DBCMND. The basic idea of this inequality is that one has to open at
least one arc from the set C in order to meet the demand. In addition, it has been proven
(Balas, 1975; Wolsey, 1975) that if C is a minimal cover, applying a lifting procedure
yields a stronger inequality.
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Flow Pack Inequalities (FPI). For any L ⊆ K and cutset (S, S̄), let

xLij =
∑
k∈L

xkij, bLij = min{uij,
∑
k∈L

dk}, and dL(S,S̄) =
∑

k∈K(S,S̄)∩L

dk.

A flow pack (C1, C2) is defined by two sets C1 ⊆ (S, S̄) and C2 ⊆ (S̄,S) such that
µ =

∑
(i,j)∈C1 b

L
ij−

∑
(j,i)∈C2 b

L
ji−dL(S,S̄)

< 0. Let D1 ⊂ (S, S̄)\C1. The flow pack inequality

is then defined as (Atamturk, 2001; Stallaert, 97)∑
(i,j)∈C1

xLij +
∑

(i,j)∈D1

(xLij −min{bLij,−µ}yij)) ≤ −
∑

(j,i)∈C2

(bLji + µ)+(1− yji) +

∑
(j,i)∈(S̄,S)\C2

xLji +
∑

(i,j)∈C1

bLij. (3.3)

The cutting-plane procedure then iterates on solving the linear relaxation, LP, of the
DBCMND and generating violated valid inequalities that are added to the LP formula-
tion. Memories are being updated at each such iteration as described bellow. The Phase
I terminates when either the optimal solution is found, which is unlikely to happen very
often, or when the improvement is smaller than ε. With Z̄ and (x̄, ȳ) standing for the
optimal value and solution vector, respectively, of the LP with the currently generated
VIs, Algorithm 2 displays the main steps of the procedure.

Three different statistics characterizing attributes of LP solutions found while running
the cutting plane algorithm are collected in three particular memories for subsequent
utilization:

Design-variable frequencies, F ∈ N|A|, representing how often an arc has been used
in the LP solutions. Set initially to the null vector, F is updated at each LP
solution (x̄, ȳ) by setting Fij = Fij + 1if ȳij > β, ∀(i, j) ∈ A, for a given threshold
β indicating the importance of an arc (i, j) in the current LP solution.

Violated cover inequality frequencies, L ∈ N|A|, counting how often arcs were
included in violated CIs generated during the cutting-plane procedure. Simi-
larly to F , initialized to the null vector, L is updated at each violated CI found
Lij = Lij + 1, ∀(i, j) ∈ C, where C ⊆ A is the minimal cover obtained in the CI.

Accumulated reduced costs, R ∈ R|A|. Similarly to the two previous memories, R
is initialized to the null vector and is updated at each LP solution Rij = Rij +
R̄ij, ∀(i, j) ∈ A, where R̄ is the reduced cost vector associated to the current LP
optimal solution (x̄, ȳ).

6
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Algorithm 2 Lower-bound Computation & Memory Building

ZLast ← 0; F ← 0|A|; L← 0|A|; R← 0|A|;
Solve the LP relaxation;

while Z̄ − ZLast > ε do
ZLast ← Z̄;
if ȳ is integer then
return Z̄ and (x̄, ȳ)

end if
Generate and add violated SIs;
Generate and add violated CIs;
Update the L memory;
Generate and add violated FPIs;
if New inequalities are added then

Solve the LP relaxation;
Update NbLP ;
Update the F and R memories;

end if
end while
return the lower bound Z̄, the corresponding solution (x̄, ȳ), and the memories F,L,
and R.

3.2 α-fixing heuristic

Almost all the metaheuristics and approximate methods in the literature are based on the
availability of a first feasible solution. Contrary to the CMND, it is not obvious to find a
feasible initial solution for the DBCMND. The classical approach of first solving a linear
relaxation and then rounding-up all design variables corresponding to used arcs in the LP
solution (often used for the CMND) is not appropriate for the DBCMND. Indeed, except
for some special cases, the integral solution obtained does not satisfy the design-balanced
constraints (2.3). Figure 1 illustrates the infeasibility of such a rounding-up method for
a small graph consisting of four nodes and five arcs. Notice that the LP solution satisfies
the design-balanced requirements while the round-up solution does not (for nodes 3 and
4). We therefore introduce the first generic procedure providing the means to obtain
efficiently good initial solutions for the DBCMND.

To obtain a good starting feasible solution that might be embedded into any explo-
ration heuristic, we propose to first reduce the size of the DBCMND instance, by closing
a suitable subset of arcs and, then, solve the resulting reduced DBCMND problem using
any available exact MIP code. The challenge is in selecting the suitable subset of arcs to
close. On the one hand, one desires to close a sufficiently high number to yield a reduced
design problem “easy” to address with a good MIP solver. On the other hand, closing
too many arcs may yield an easily addressed problem but a network too small to carry
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LP Solution Round-up Solution

y13 = 0.5 y13 = 1
y23 = 0.5 y23 = 1

y34 = 1
Round Up

=⇒ y34 = 1
y41 = 0.5 y41 = 1
y42 = 0.5 y42 = 1

Figure 1: Infeasibility of rounding-up LP solutions

all the demand and, thus, inappropriate for the task at hand.

To efficiently address this challenge, we propose the α-fixing heuristic, which selects
based on the compiled memories F,L, and R (Section 3.1) two suitable complementary

sets Ã and A\Ã of arcs to keep and close, respectively. As illustrated in Algorithm 3, the

heuristic starts with an empty Ã set, and gradually adds arcs that are attractive given
the information gathered while executing the cutting-plane algorithm, and that provide
sufficient connectivity and capacity to the resulting network.

Algorithm 3 α-Fixing Heuristic

Require: F,L,R as given by the cutting-plane Algorithm 2
Ã = ∅;

Selection step based on F ;
Add to Ã all arcs with frequency ≥ αNbLP ;

Connectivity step based on F + L;
Add arcs to Ã to ensure each transshipment node has at least one incoming and

one outgoing arc;

Feasibility step based on R;
Add arcs to Ã to provide sufficient capacity for flows out of and into demand and

supply nodes, respectively.

Arcs are added in three consecutive steps. The selection step aims to select attractive
arcs as defined by F , the utilization frequency in cutting-plane LP solutions. The idea

8
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is that arcs that are repeatedly used in optimal LP solutions are most likely to also
be part of good, hopefully optimal, feasible solutions. Thus, given a threshold α, arc
(i, j) is added to Ã if Fij ≥ αNbLP , where NbLP is the number of LPs solved by the
cutting-plane.

The connectivity step aims to provide the means for commodities to pass through
each selected transshipment node in the network. This means that each transshipment
node already in Ã, i.e., with at least an incoming/outgoing arc open, must have at least

an outgoing/incoming arc open. Because the choice has to be made among arcs in A\Ã,
which did not appear often in cutting-plane LP solutions, we combine the measures of
frequency F and the CI-frequency L. In fact, a frequent appearance of an arc in minimal
covers of violated CIs means the arc has a good chance to be open and used in feasible
solutions, and is therefore a good candidate for the fixing heuristic. Consequently, for
each node i ∈ N with at least one

• Incoming arc, i.e.,
∑

j∈Ñ−
i
yji ≥ 1, and no outgoing arc, i.e.,

∑
j∈Ñ+

i
yij = 0, add to

Ã the arc (i, j) = argmaxj∈N+
i \Ñ

+
i

(Fij + Lij);

• Outgoing arc, i.e.,
∑

j∈Ñ+
i
yij ≥ 1, and no incoming arc, i.e.,

∑
j∈Ñ−

i
yji = 0, add

to Ã the arc (j, i) = argmaxj∈N−
i \Ñ

−
i

(Fji + Lji).

Finally, the feasibility step opens enough arcs at origins and destinations to provide
sufficient capacity to satisfy the demand requirements. Because the previous step used
the L memory, we aim for a certain degree of diversification in our selection and, thus,
we use information based on the reduced costs R in this step. Therefore, for any supply
or demand node such that∑

j∈Ñ+
i

uij < wk, i = O(k), ∀k ∈ K ⇒ Add the arc (i, j) = argminj∈N+
i \Ñ

+
i

(Rij),

∑
j∈Ñ−

i

uji < wk, i = D(k), ∀k ∈ K ⇒ Add the arc (j, i) = argminj∈N−
i \Ñ

−
i

(Rji).

Once the set Ã is determined using the α-fixing heuristic, we consider the restriction
DBCMNDÃ where all arcs in Ã are free and all arcs in A\Ã are closed. DBCMNDÃ
is then solved using a MIP solver until optimality or a time or node limit is reached,
the latter limits aiming to achieve the goal of obtaining a solution as good as possible
in a short computational time. If the reduced problem is feasible, we stop. Otherwise,
we decrease the value of α and repeat the α-fixing heuristic to find a larger set Ã. We
iterate until a feasible solution is found.

9
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4 Computational Results

The objectives of the computational experiments are twofold: 1) to test the effectiveness
of the cutting-plane procedure, developed originally for the CMND, in the context of
DBCMND; and 2) to evaluate the quality of the solutions obtained by the Cut&Fix
matheuristic we propose. We compare our results with those obtained by the meta-
heuristic of Pedersen et al. (2009), the matheuristic of Vu et al. (2012), as well as to the
best solutions obtained by the Branch-and-Cut method (B&C) of CPLEX (version 12)
after one hour and 10 hours of computing time. A computational time limit of 10 hours
was imposed to all the methods.

The procedures were coded in C++. The LP relaxations within the cutting-plane
procedure were solved to optimality using the option Dualopt of CPLEX (version 12).
The cutting-plane procedure was stopped on a ε = 0.05 precision (a higher precision
increases the computing time without a significant improvement in solution quality). All
the restrictions DBCMNDÃ were solved using the B&C of CPLEX with a time limit of
one hour and a node limit of 200. Experiments were performed on a network of Dual-Core
AMD Opteron (using a single thread) workstations with 8 Gigabytes of RAM operating
under SunOS 5.1.

The performance of the proposed matheuristic is evaluated on a set of network design
instances with various characteristics used in several papers (Ghamlouche et al., 2003;
Pedersen et al., 2009; Vu et al., 2012; Chouman et al., 2011) and described in Crainic
et al. (2001). These problem instances, identified as Sets C and R, consist of general
transshipment networks with one commodity per origin-destination pair and no parallel
arcs. Positive transportation cost, fixed cost, and capacity are associated with each arc.
Note that the transportation costs on any given arc are the same for all commodities.

Set C consists of 43 instances characterized by their number of nodes, arcs, and
commodities, noted |N |, |A|, and |K|, respectively. Two additional letters are used to
characterize the fixed cost level, “F” for high and “V” for low, relatively to the trans-
portation cost, and the capacity level, “T” for tight and “L” for loose, compared to the
total demand. The set of instances R consists of 81 problems, nine sets of nine instances
each. Each set is characterized by the same number of nodes, arcs, and commodities,
instances displaying various levels of fixed cost and capacity ratios. Thus, “F01” for low,
“F05” for medium, and “F10” for high, are used to qualify the importance of the fixed
cost with respect to the transportation cost, while “C1” for loose, “C2” for medium, and
“C8” for tight, to qualify the tightness of the capacity compared to the total demand.
To facilitate comparisons, we present the results for the 24 C instances and the 54 R
instances used in Pedersen et al. (2009) and Vu et al. (2012). These are medium to
large-size instances with various levels of cost and capacity ratios.

Our primary measure of performance is the gap between the reference solution z∗ and
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a given solution z computed as:

∆z∗/z =
100(z∗ − z)

z∗
(4.1)

In order not to overload the paper, we report average results over the C and R instances.
Detailed results for each instance are included in the Appendix. The next subsections
address the objectives stated above.

4.1 Evaluation of the lower bound procedure

The scope of this section is to analyze the performance of the cutting-plane method in
the context of the DBCMND. We aim to examine, in particular, the effectiveness of this
algorithm in improving the lower bound of the DBCMND while compiling characteristics
and attributes of good solutions.

Table 1 displays the results obtained by the cutting-plane algorithm for the C and R
sets averaged according to the problem dimensions in terms of numbers of nodes, arcs,
and commodities. For each such group of instances (Column Description), the table
indicates the number of instances in the group (Column Nb), the gaps between the lower
bound obtained by the cutting-plane and the first LP bound (Column GapLB) and
the upper bound identified by CPLEX after 10 hours of CPU time (Column GapUB),
respectively, the total number of cuts generated in the cutting-plane (Column Cuts), the
total number of LPs solved (Column NbLP), and the CPU computational time required
by the lower bound procedure.

Set C
Description Nb GapLB GapUB Cuts NbLP CpuLB

20,230,200 (4) 30.85% 3.43% 3168 14 301
20,300,200 (4) 21.59% 2.84% 2371 16 176
30,520,100 (4) 21.10% 2.87% 2022 13 137
30,520,400 (4) 16.18% 1.48% 3616 12 2221
30,700,100 (4) 18.99% 1.91% 1784 13 74
30,700,400 (4) 18.70% 2.40% 3974 13 2950
Average (24) 21.23% 2.49% 2822 13 976

Set R
Description Nb GapLB GapUB Cuts NbLP CpuLB

20,220,40 (9) 38.87% 4.19% 1101 12 12
20,220,100 (9) 33.60% 3.93% 1703 15 82
20,220,200 (9) 28.86% 2.36% 2080 11 318
20,320,40 (9) 45.05% 4.12% 1872 17 80
20,320,100 (9) 39.62% 4.64% 2607 14 424
20,320,200 (9) 34.67% 3.54% 3312 15 1166
Average (54) 36.78% 3.80% 2113 14 347

Table 1: Evaluation of the Cutting-Plane Algorithm

The results show clearly the effectiveness of the cutting-plane algorithm in improving
the quality of the LP bounds. The overall averaged gap improvement for the C instances
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reaches 21.23%, while it is 36.78% for the R instance set. Moreover, the cutting-plane
algorithm efficiently closes most of the gap with the best feasible solution identified by
CPLEX in 10 hours of CPU time. Although the average numbers of cuts generated and
LP solved may seem relatively high, the associated computational effort is low reaching
an average of 976 and 347 CPU seconds (equivalent to 16 and 5 minutes) for the C and
R sets, respectively. We actually observe very short solving times for the first LP, with
averages of 5.75 and 2.45 CPU seconds on average for the C and R sets, respectively.
We also observe that the time required for the cut generations is almost negligible, while
solving the LP relaxation after each round of cut generation is more efficient than for the
first LP, because it consists in re-optimizing from a previous optimal basis (the simplex
method of CPLEX is applied with the Dualopt option).

These results support our claim that the cutting-plane algorithm is effective in improv-
ing the bounds within a short computing effort, even when repetitively solving different
LP models: 13 and 14 on average for the C and R instance sets, respectively. As dis-
cussed in Section 3.2, these multiple solutions of LP formulations provide the means to
compile the memories that are then used in the α-fixing heuristic to guide the search
towards good feasible solutions.

4.2 Evaluation of the Cut&Fix matheuristic

This section is dedicated to the evaluation of the performance of the proposed Cut&Fix
matheuristic, which is strongly linked to the capability of the α-fixing heuristic to effi-
ciently identify high-quality feasible solutions based on the information compiled during
the computation of the cutting-plane algorithm. We first present comparative results for
the Cut&Fix matheuristic and the B&C of CPLEX, version 12, collected after 1 hour
and 10 hours of computing time. We then compare to meta-heuristics in the literature,
namely, the Tabu Search of Pedersen et al. (2009) and the matheuristic of Vu et al.
(2012).

The value of the parameters in the implementation of the α-fixing procedure are
α = 0.45 and β = 0.3. These values were selected based on computational experiments
where, with the objective of including a suitable number of arcs in the network, the
median values of the F and L memories were first computed, then several values around
these medians were tested. The values of 100 and 200 were also tested to limit the
number of nodes allowed to the MIP solver to work on the DBCMNDÃ. The value 200
was selected since experimental results indicated small improvements, of 0.36% on average
obtained on 19 instances, for an extra 5 minutes of computational time. Moreover, we
observed that the heuristic was not finding a feasible solution for one of the R instances
with a 100-node limit.
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4.2.1 Comparing to CPLEX

Tables 2 and 3 display the results for the C and R instance sets, respectively, averaged
according to problem dimensions. In addition to the Description and Nb columns,
Columns C&F/CPLEX1h and C&F/CPLEX10h display the gaps between the solu-
tion found by the Cut&Fix and those identified by CPLEX after 1 and 10 CPU hours,
respectively, while Columns C&F/LB CPLEX10h and C&F/LB indicate the gaps
of the C&F solution with respect to the best lower bound found by the B&C of CPLEX
after 10 hours of CPU time and the lower bound found by the cutting-plane, respectively.
Note that negative values in any of these columns indicate that the Cut&Fix matheuris-
tic outperforms the method in the corresponding column for the designated group of
instances. The last three columns indicate the computational time of the two CPLEX
results and that of the proposed matheuristic.

Description Nb
C&F/ C&F/ C&F/ C&F/ cpu cpu cpu

CPLEX1h CPLEX10h LB CPLEX10h LB CPLEX1h CPLEX10h C&F
20,230,200 (4) 0.73% 1.81% 4.15% 5.19% 3600 36000 710
20,300,200 (4) 1.26% 1.45% 3.37% 4.25% 3600 29108 675
30,520,100 (4) 2.37% 2.97% 5.13% 5.72% 3600 36000 702
30,520,400 (4) -0.18% 0.45% 1.83% 1.93% 3600 36001 8367
30,700,100 (4) 1.31% 1.40% 2.49% 3.28% 3600 28474 292
30,700,400 (4) -1.26% 0.20% 2.53% 2.59% 3600 40754 10743
Average (24) 0.19% 2.07% 4.11% 5.40% 3600 34389 3581

Table 2: Performance comparisons to CPLEX - C instance set

Description Nb
C&F/ C&F/ C&F/ C&F/ cpu cpu cpu

CPLEX1h CPLEX10h LB CPLEX10h LB CPLEX1h CPLEX10h C&F
20,220,40 (9) 3.00% 3.08% 3.33% 7.09% 2292 12337 25
20,220,100 (9) 0.88% 1.35% 3.01% 5.21% 2942 25797 593
20,220,200 (9) -0.30% 0.64% 2.18% 2.98% 3069 24183 991
20,320,40 (9) 4.56% 5.08% 5.77% 8.99% 2803 16904 234
20,320,100 (9) 0.87% 2.19% 5.23% 6.70% 3171 28371 1293
20,320,200 (9) -6.44% 0.78% 3.39% 4.29% 3600 36000 2889
Average (54) 0.43% 2.19% 3.82% 5.88% 2980 23932 1004

Table 3: Performance comparisons to CPLEX - R instance set

The proposed method compares very well with the B&C of CPLEX (version 12). It
identifies better solutions for 8 of the 24 C instances and for 13 of the 54 R instances. It
is very competitive for instances characterized by a small to medium number of commodi-
ties, while outperforming CPLEX when the number of commodities increases. Indeed,
CPLEX cannot find feasible solutions for 4 out of the 8 instances with 400 commodities,
while the method we propose provides solutions with optimality gaps ranging from 1.83%
to 2.53% for those hard instances. Indeed, even comparing with the CPLEX results after
10 hours of computational effort, the proposed matheuristic is competitive in solution
quality, with overall gap differences as low as 2.07% and 2.19% for the C and R sets,
respectively, in a fraction of CPU time. The improvement is actually more important
for difficult problem instances characterized by large numbers of commodities. Notice
finally that, only instances for which CPLEX found a feasible solution (within one or ten
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hours of CPU time) are included in the figures of Tables 2 and 3, which underestimates
the performance of the proposed matheuristic.

Cost Cap Nb
C&F/ C&F/ C&F/ C&F/ cpu cpu cpu

CPLEX1h CPLEX10h LB CPLEX10h LB CPLEX1h CPLEX10h C&F
V L (6) 0.56% 1.27% 2.57% 3.27% 3600 30982 2686
V T (6) 0.45% 0.71% 1.39% 2.03% 3600 31406 2475
F L (6) 1.79% 1.60% 4.88% 5.37% 3600 39169 5094
F T (6) 1.64% 1.93% 4.16% 4.63% 3600 36000 4070
Average (24) 0.19% 2.07% 4.11% 5.40% 3600 34389 3581

Table 4: Aggregated comparative results to CPLEX by fixed cost and capacity ratios -
C instances

Cost Cap Nb
C&F/ C&F/ C&F/ C&F/ cpu cpu cpu

CPLEX1h CPLEX10h LB CPLEX10h LB CPLEX1h CPLEX10h C&F
C1 (6) 0.73% 0.75% 0.93% 1.62% 1586 7083 92

F01 C2 (6) 2.33% 2.39% 2.61% 3.38% 1593 12393 224
C8 (6) 0.55% 1.26% 1.68% 3.16% 3184 20959 249

C1 (6) 2.98% 4.53% 6.52% 9.50% 3600 27313 1300
F05 C2 (6) -1.17% 2.24% 4.10% 6.47% 3259 25272 802

C8 (6) -0.46% 0.82% 2.06% 4.04% 3342 30342 337

C1 (6) 0.12% 3.45% 7.12% 10.20% 3591 27867 4634
F10 C2 (6) -0.54% 2.88% 6.49% 9.02% 3600 36000 968

C8 (6) -0.70% 1.37% 2.85% 5.52% 3061 28161 432
Average (54) 0.43% 2.19% 3.82% 5.88% 2980 23932 1004

Table 5: Aggregated comparative results to CPLEX by fixed cost and capacity ratios -
R instances

Tables 4 and 5 display the same results averaged according to the different levels of
fixed cost (first column) and capacity (second column) ratios. These figures indicate that
the performance of the proposed method increases with the problem difficulty. Indeed,
the gaps of the best solution obtained by the Cut&Fix matheuristic with respect to the
lower bounds provided by CPLEX (columns 6 and 7) are smaller when, for the same level
of cost ratio, the level of the capacity ratio increases from loose (C1) to tight (C8). We
take these results to support the claim that the proposed heuristic is suitable for hard
real-world problems characterized by large size and limited resources.

4.2.2 Comparing to meta-heuristics in the literature

We now turn to the literature and compare the performance of the proposed Cut&Fix
matheuristic to those of the Tabu Search of Pedersen et al. (2009) (columns marked TS in
the following tables) and the matheuristic of Vu et al. (2012) (columns marked TS-PR).
Tables 6 to 9 display the analysis results following the same aggregations as previously
for the comparisons to CPLEX.

The results indicate clearly the competitivity of the proposed Cut&Fix matheuristic,
relative to the other meta-heuristics in the literature, in identifying high-quality feasible
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Description Nb C&F/TS C&F/TS-PR cpu TS cpu TS-PR cpu C&F

20,230,200 (4) -4.01% 2.00% 3600 5175 710
20,300,200 (4) -3.72% 1.34% 3600 7545 675
30,520,100 (4) -0.52% 2.65% 3600 7065 702
30,520,400 (4) -4.07% -0.04% 3600 10695 8367
30,700,100 (4) -1.63% 1.27% 3600 7710 292
30,700,400 (4) -7.32% -0.73% 3600 8520 10743
Average (24) -3.40% 1.73% 3600 7785 3581

Table 6: Meta-heuristics performance comparisons - C instance set

Description Nb C&F/TS C&F/TS-PR cpu TS cpu TS-PR cpu C&F

20,220,40 (9) -1.52% 2.76% 3600 3813 25
20,220,100 (9) -3.62% 1.11% 3600 5573 593
20,220,200 (9) -5.42% 0.43% 3600 7067 991
20,320,40 (9) -0.76% 4.54% 3600 3900 234
20,320,100 (9) -3.78% 2.11% 3600 6733 1293
20,320,200 (9) -4.91% 0.31% 3600 7180 2889
Average (54) -3.33% 1.87% 3600 5711 1004

Table 7: Meta-heuristics performance comparisons - R instance set

solutions in short computational times. It significantly outperforms the meta-heuristic of
Pedersen et al. (2009), improving the results for 23 out of 24 C instances and for 46 out
of 54 R instances, within a generally significantly less computational effort. Moreover,
the improvement gap increases for difficult problems characterized by large number of
commodities, reaching a maximum gap improvement of 7.32% on average for the instances
with 700 arcs and 400 commodities.

The results indicate that the Cut&Fix matheuristic is also very competitive with the
current best heuristic method known in the literature, namely the matheuristic of Vu
et al. (2012). The proposed matheuristic reduces the computation time for most in-
stances tested, while still succeeding in achieving high-quality feasible solutions with an
average gap of 1.73% and 1.87% for the C and R instances, respectively. The Cut&Fix
performance in solution quality appears to improve with the increase in problem in-
stance dimensions, as measured by the number of arcs and, particularly, the number of
commodities, while the time advantage seems to become less important.

Cost Cap Nb C&F/TS C&F/TS-PR cpu TS cpu TS-PR cpu C&F

V L (6) -2.78% 0.94% 3600 7690 2686
V T (6) -2.73% 0.46% 3600 8380 2475
F L (6) -5.63% 1.17% 3600 6990 5094
F T (6) -3.04% 1.75% 3600 8080 4070
Average (24) -3.40% 1.73% 3600 7785 3581

Table 8: Meta-heuristics aggregated comparative results by fixed cost and capacity ratios
- C instances

To further illustrate this last observation, we detail the comparative results between
the two methods for the large C instances with 400 commodities. Figure 2 displays for
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Cost Cap Nb C&F/TS C&F/TS-PR cpu TS cpu TS-PR cpu C&F

C1 (6) -1.10% 0.73% 3600 4670 92
F01 C2 (6) -0.12% 2.10% 3600 5770 224

C8 (6) -2.05% 1.06% 3600 5940 249

C1 (6) 0.48% 4.37% 3600 5340 1300
F05 C2 (6) -3.41% 1.95% 3600 5240 802

C8 (6) -6.10% 0.38% 3600 7070 337

C1 (6) -3.42% 2.73% 3600 5270 4634
F10 C2 (6) -4.72% 2.56% 3600 6150 968

C8 (6) -9.55% 0.99% 3600 5950 432
Average (54) -3.33% 1.87% 3600 5711 1004

Table 9: Meta-heuristics aggregated comparative results by fixed cost and capacity ratios
- R instances

each of these instances the improvement gap in solution quality (left hashed bar) and the
CPU time ratio (right full bar) between C&F and TS-PR, the latter being computed as
cpu C&F/cpu TS-PR, when cpu C&F ≥ cpu TS-PR, and−cpu C&F/cpu TS-PR,
otherwise.
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Figure 2: Comparative Results of C&F and TS-PR for Large Instances with 400 Com-
modities

The detailed results show that the Cut&Fix method requires more CPU time for
the instances with a dominating fixed cost (relative to the flow cost). This follows,
most certainly, from the increased difficulty in approximating fixed costs through linear
relaxations of the MIP formulation.

On the other hand, the Cut&Fix matheuristic outperforms TS-PR in terms of solu-
tion quality for all instances (except an almost tie for C30,520,400,F,L). Moreover, for
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the same number of of commodities, this advantage increases as the number of arcs in-
creases, the best results being obtained for instances with 700 arcs (notice that instance
C30,700,400,F,L is particularly difficult as it is one of the four instances for which CPLEX
did not find a feasible solution within 1 hour). This last analysis indicates the benefits
of applying the Cut&Fix method to large instances with large number of commodities,
which characterize most real-world instances.

5 Conclusions and Perspectives

We introduced Cut&Fix, a new matheuristic for the design-balanced capacitated mul-
ticommodity network design problem, one of the premier formulations for the service
network design problem with asset management concerns increasingly faced by carriers
within their tactical planning processes.

The matheuristic combines a cutting-plane procedure efficiently computing tight lower
bounds and a variable-fixing heuristic reducing the problem size and feeding an exact
MIP solver. Learning mechanisms embedded into the cutting-plane procedure are used
to identify characteristics of good solutions and guide the variable-fixing heuristic.

An extensive computational study first showed that the cutting-plane procedure, ini-
tially proposed for the fixed-charge, multicommodity capacitated network design prob-
lem, is also very efficient for the special structure of DBCMND, cutset-based inequalities
in particular.

The computational study also shown the merit of the Cut&Fix idea of combining this
cutting-plane procedure, together with appropriate learning mechanisms, and variable-
fixing techniques into an efficient algorithm able to rapidly identify high-quality feasible
solutions. This capability of the proposed Cut&Fix method is by itself remarkable as
identifying feasible solutions to the DBCMND was previously shown to be difficult. Yet,
the numerical experiments shown that the proposed Cut&Fix matheuristic yields high-
quality solutions, outperforming or being very competitive with the best methods in
the literature and the state-of-the-art MIP solver CPLEX. This performance appears
even more remarkable when comparing the computational efforts required by each of
the methods. It thus currently stands as the best, or one of the best, heuristic for the
DBCMND.

The fundamental ideas on which the new matheuristic is built are general in nature
and open interesting research perspectives in hybridizing mathematical programming and
meta-heuristics for network design problems. We are currently following some of these
avenues, including adapting these ideas for other hard transportation planning problems,
such as the management of power-unit fleets (e.g., locomotives in rail transportation).
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We plan to report on these developments in the near future.
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M. Chouman, T.G. Crainic, and B. Gendron. Commodity Representations and Cutset-
Based Inequalities for Multicommodity Capacitated Fixed Charge Network Design.
Technical Report CIRRELT-2011-56, Centre interuniversitaire de recherche sur les
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Appendix

Tables 10 and 11 display the detailed results for the instances of sets C and R, respec-
tively. For each instance, the respective table gives its description, the best feasible
solution obtained by the Tabu Search of Pedersen et al. (2009) (Column TS), the best
feasible solution obtained by the Tabu-Search Path Relinking matheuristic of Vu et al.
(2012), the best feasible solutions of the B&C of CPLEX obtained after 1 hour and
10 hours, and the lower bound obtained by the B&C of CPLEX (Columns CPLEX1h,
CPLEX10h, and LB CPLEX10h, respectively), the feasible solution obtained by the
Cut&Fix matheuristic (Column C&F), and the lower bound and the number of cuts
generated by the cutting-plane algorithm (Columns LB and Cuts, respectively).

Instance TS TS-PR
CPLEX C&F

CPLEX1h CPLEX10h LB CPLEX10h C&F LB Cuts
C20,230,200,V,L 102919 97274 98512 97274 94993 98699 93774 3291
C20,230,200,F,L 150764 139395 140843 140843 135107 141744 134043 3495
C20,230,200,V,T 103371 100720 101089 100221 99525 103103 98383 2779
C20,230,200,F,T 149942 138962 142452 139252 135941 142638 134415 3108
C20,300,200,V,L 82533 77584 77570 77570 75986 79953 75267 2250
C20,300,200,F,L 128757 119987 119945 119890 115992 120979 114762 2812
C20,300,200,V,T 78571 76450 76350 76208 76201 76545 75507 2099
C20,300,200,F,T 116338 111776 112358 111743 108920 113412 108154 2323
C30,520,100,V,L 55981 54783 54810 54683 54390 55733 53906 1569
C30,520,100,F,L 104533 100098 99717 98871 94079 104235 93625 3251
C30,520,100,V,T 54493 53035 53034 53032 52871 53224 52493 1042
C30,520,100,F,T 105167 101412 102919 101495 98072 106251 97684 2225
C30,520,400,V,L 119735 115528 115487 114730 113469 115220 113294 3303
C30,520,400,F,L 162360 153409 na 152891 149910 153737 149757 4260
C30,520,400,V,T 120421 117226 117214 116763 115859 117056 115738 2886
C30,520,400,F,T 161978 155906 na 155025 152375 155942 152317 4013
C30,700,100,V,L 49429 48807 48693 48693 48688 49268 48187 1442
C30,700,100,F,L 63889 61408 61430 61408 59834 62267 59442 2527
C30,700,100,V,T 48202 46812 46750 46750 46531 46928 46091 1478
C30,700,100,F,T 58204 56237 56337 56169 55372 57701 55042 1690
C30,700,400,V,L 103932 100589 101866 99716 97888 99458 97814 4180
C30,700,400,F,L 157043 141037 na 138229 133536 139607 133503 4888
C30,700,400,V,T 103085 97875 97838 97694 95885 97737 95807 3140
C30,700,400,F,T 141917 133686 na 132827 129807 132855 129717 3686

Table 10: Results for the 24 instances of Set C
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Instance TS TS-PR
CPLEX C&F

CPLEX1h CPLEX10h LB CPLEX10h C&F LB Cuts
r13,F01,C1 147837 147349 147349 147349 147349 148494 147089 642
r13,F05,C1 281668 279389 277944 277891 277864 298494 260671 1838
r13,F10,C1 404434 385396 385396 385396 385358 417877 358674 2317
r13,F01,C2 159852 156616 155887 155887 155881 155887 154156 643
r13,F05,C2 311209 295180 295180 295180 295152 298582 280919 1194
r13,F10,C2 470034 434383 434383 431140 425171 454625 397156 1572
r13,F01,C8 225339 218787 218787 218787 218765 224632 213542 293
r13,F05,C8 512027 491959 491804 491560 487012 497877 471640 615
r13,F10,C8 875984 791213 782049 782049 781971 798947 749575 792
r14,F01,C1 431562 422709 422709 422709 422667 423538 418358 1313
r14,F05,C1 811102 784626 790716 784626 780474 812423 744067 2752
r14,F10,C1 1193950 1137820 1145783 1123130 1070240 1156950 1032480 3524
r14,F01,C2 465762 453434 452591 452591 452546 457421 449359 1061
r14,F05,C2 942678 891138 884673 884673 862760 890673 845183 1757
r14,F10,C2 1401880 1307770 1317261 1316857 1246421 1336490 1234430 2313
r14,F01,C8 720882 702614 702781 702614 702544 708444 692487 582
r14,F05,C8 1795650 1693240 1695949 1690451 1668787 1706840 1629040 1042
r14,F10,C8 2997290 2769360 2787042 2755700 2732725 2772750 2629770 983
r15,F01,C1 1039440 1017740 1017740 1017740 1017642 1019180 1008050 1791
r15,F05,C1 2170310 2055803 2024138 2024138 1963704 2028140 1943490 3707
r15,F10,C1 3194270 2971500 3028908 2986773 2845332 3003990 2819330 4407
r15,F01,C2 1205790 1174520 1176047 1174518 1172816 1182020 1163080 1475
r15,F05,C2 2698680 2561060 2681189 2571081 2492512 2574700 2476560 2477
r15,F10,C2 4447950 4045030 4125923 4016242 3892952 4176330 3839540 2697
r15,F01,C8 2472860 2408210 2401176 2401115 2400875 2403330 2378240 551
r15,F05,C8 6067350 5796510 5795320 5795320 5794821 5797170 5766980 789
r15,F10,C8 10263600 9129360 9105014 9105014 9104291 9115830 9082920 830
r16,F01,C1 142692 140082 140082 140082 140077 142797 139829 1045
r16,F05,C1 261775 248703 251554 248703 248679 277712 237068 3122
r16,F10,C1 374819 350958 348805 340641 340610 359648 320039 3712
r16,F01,C2 145266 142607 142381 142381 142367 159168 141588 1004
r16,F05,C2 277307 260822 259639 259313 259287 285509 246645 2244
r16,F10,C2 391386 368572 368753 365001 357878 376114 338684 2610
r16,F01,C8 187176 180228 180132 179639 179621 183475 174549 489
r16,F05,C8 423320 388180 387580 387580 381166 393541 369945 1229
r16,F10,C8 649121 598835 599513 599513 582877 610267 562970 1392
r17,F01,C1 374016 365788 364784 364784 364750 368841 361737 2054
r17,F05,C1 718135 676528 693562 686149 648769 717089 635288 4183
r17,F10,C1 1041450 966116 1006780 964373 890301 991205 872746 5310
r17,F01,C2 393608 384579 382593 382593 382555 388625 379451 1559
r17,F05,C2 786198 741744 739859 739041 717796 744146 702961 3135
r17,F10,C2 1162290 1086640 1138826 1082684 1015353 1126380 999737 3496
r17,F01,C8 539817 529876 530029 529350 523241 535474 518813 819
r17,F05,C8 1348750 1230910 1229810 1226834 1198304 1241990 1185310 1379
r17,F10,C8 2227780 1999950 2024019 2000342 1951428 2064630 1894980 1528
r18,F01,C1 864425 844260 846152 845529 836211 848636 828063 2930
r18,F05,C1 1640200 1588890 1689474 1585372 1533535 1615730 1523250 5958
r18,F10,C1 2399230 2264470 2484100 2253909 2133408 2286290 2122450 6623
r18,F01,C2 962402 944708 942674 940628 929343 945562 923086 2420
r18,F05,C2 1958160 1883870 2178442 1873785 1821051 1904830 1812830 3993
r18,F10,C2 2986000 2806020 3123686 2809646 2689857 2809030 2680660 3977
r18,F01,C8 1617320 1542500 1593899 1534865 1513808 1547430 1504740 1150
r18,F05,C8 4268580 4039410 4243216 3965429 3910784 3961280 3829710 1436
r18,F10,C8 7440780 6603500 7238683 6570234 6375563 6602450 6243600 1321

Table 11: Results for the 54 instances of Set R

22

Cutting-Plane Matheuristic for Service Network Design with Design-Balanced Requirements

CIRRELT-2013-24



Tables 12 and 13 display the detailed comparative results for instances in sets C and
R, respectively. Columns C&F/TS, C&F/TS-PR, C&F/CPLEX1h, and C&F/CPLEX10h
correspond to the improvement gaps of the fixing matheuristic solution with respect to
the Tabu Search of Pedersen et al. (2009), the Tabu Search Path Relinking of Vu et al.
(2012), and CPLEX after 1 hour and 10 hours, respectively. The last two columns display
the gaps between C&F and the lower bounds computed by CPLEX and the cutting-plane
procedure, respectively.

Instance
C&F C&F C&F C&F C&F C&F
/TS /TS-PR /CPLEX1h /CPLEX10h /LB CPLEX10h /LB

C20,230,200,V,L -4.28% 1.44% 0.19% 1.44% 3.75% 4.99%
C20,230,200,F,L -6.36% 1.66% 0.64% 0.64% 4.68% 5.43%
C20,230,200,V,T -0.26% 2.31% 1.95% 2.80% 3.47% 4.58%
C20,230,200,F,T -5.12% 2.58% 0.13% 2.37% 4.69% 5.76%
C20,300,200,V,L -3.23% 2.96% 2.98% 2.98% 4.96% 5.86%
C20,300,200,F,L -6.43% 0.82% 0.85% 0.90% 4.12% 5.14%
C20,300,200,V,T -2.65% 0.12% 0.26% 0.44% 0.45% 1.36%
C20,300,200,F,T -2.58% 1.44% 0.93% 1.47% 3.96% 4.64%
C30,520,100,V,L -0.44% 1.70% 1.66% 1.88% 2.41% 3.28%
C30,520,100,F,L -0.29% 3.97% 4.33% 5.15% 9.74% 10.18%
C30,520,100,V,T -2.38% 0.36% 0.36% 0.36% 0.66% 1.37%
C30,520,100,F,T 1.02% 4.55% 3.14% 4.48% 7.70% 8.06%
C30,520,400,V,L -3.92% -0.27% -0.23% 0.43% 1.52% 1.67%
C30,520,400,F,L -5.61% 0.21% na 0.55% 2.49% 2.59%
C30,520,400,V,T -2.87% -0.15% -0.14% 0.25% 1.02% 1.13%
C30,520,400,F,T -3.87% 0.02% na 0.59% 2.29% 2.32%
C30,700,100,V,L -0.33% 0.94% 1.17% 1.17% 1.18% 2.19%
C30,700,100,F,L -2.61% 1.38% 1.34% 1.38% 3.91% 4.54%
C30,700,100,V,T -2.71% 0.25% 0.38% 0.38% 0.85% 1.78%
C30,700,100,F,T -0.87% 2.54% 2.36% 2.66% 4.04% 4.61%
C30,700,400,V,L -4.50% -1.14% -2.42% -0.26% 1.58% 1.65%
C30,700,400,F,L -12.49% -1.02% na 0.99% 4.35% 4.37%
C30,700,400,V,T -5.47% -0.14% -0.10% 0.04% 1.89% 1.97%
C30,700,400,F,T -6.82% -0.63% na 0.02% 2.29% 2.36%

Average -3.40% 1.73% 0.19% 2.07% 4.11% 5.40%

Table 12: Comparison with other methods, C instances

Tables 14 and 15 display for each instance in sets C and R, respectively, the CPU
computational time for each of the methods TS-PR, CPLEX1h, CPLEX10h, the cutting-
plane (Column LB), the α-fixing heuristicc (Column αF), and the total time of the
Cut&Fix matheuristic (Column C&F).
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Instance
C&F C&F C&F C&F C&F C&F
/TS /TS-PR /CPLEX1h /CPLEX10h /LB CPLEX10h /LB

r13,F01,C1 0.44% 0.77% 0.77% 0.77% 0.77% 0.95%
r13,F05,C1 5.64% 6.40% 6.88% 6.90% 6.91% 12.67%
r13,F10,C1 3.22% 7.77% 7.77% 7.77% 7.78% 14.17%
r13,F01,C2 -2.54% -0.47% 0.00% 0.00% 0.00% 1.11%
r13,F05,C2 -4.23% 1.14% 1.14% 1.14% 1.15% 5.92%
r13,F10,C2 -3.39% 4.45% 4.45% 5.17% 6.48% 12.64%
r13,F01,C8 -0.31% 2.60% 2.60% 2.60% 2.61% 4.94%
r13,F05,C8 -2.84% 1.19% 1.22% 1.27% 2.18% 5.27%
r13,F10,C8 -9.64% 0.97% 2.12% 2.12% 2.12% 6.18%
r14,F01,C1 -1.89% 0.20% 0.20% 0.20% 0.21% 1.22%
r14,F05,C1 0.16% 3.42% 2.67% 3.42% 3.93% 8.41%
r14,F10,C1 -3.20% 1.65% 0.97% 2.92% 7.49% 10.76%
r14,F01,C2 -1.82% 0.87% 1.06% 1.06% 1.07% 1.76%
r14,F05,C2 -5.84% -0.05% 0.67% 0.67% 3.13% 5.11%
r14,F10,C2 -4.89% 2.15% 1.44% 1.47% 6.74% 7.64%
r14,F01,C8 -1.76% 0.82% 0.80% 0.82% 0.83% 2.25%
r14,F05,C8 -5.20% 0.80% 0.64% 0.96% 2.23% 4.56%
r14,F10,C8 -8.10% 0.12% -0.52% 0.61% 1.44% 5.16%
r15,F01,C1 -1.99% 0.14% 0.14% 0.14% 0.15% 1.09%
r15,F05,C1 -7.01% -1.36% 0.20% 0.20% 3.18% 4.17%
r15,F10,C1 -6.33% 1.08% -0.83% 0.57% 5.28% 6.15%
r15,F01,C2 -2.01% 0.63% 0.51% 0.63% 0.78% 1.60%
r15,F05,C2 -4.82% 0.53% -4.14% 0.14% 3.19% 3.81%
r15,F10,C2 -6.50% 3.14% 1.21% 3.83% 6.79% 8.06%
r15,F01,C8 -2.89% -0.20% 0.09% 0.09% 0.10% 1.04%
r15,F05,C8 -4.66% 0.01% 0.03% 0.03% 0.04% 0.52%
r15,F10,C8 -12.59% -0.15% 0.12% 0.12% 0.13% 0.36%
r16,F01,C1 0.07% 1.90% 1.90% 1.90% 1.91% 2.08%
r16,F05,C1 5.74% 10.45% 9.42% 10.45% 10.45% 14.64%
r16,F10,C1 -4.22% 2.42% 3.01% 5.28% 5.29% 11.01%
r16,F01,C2 8.73% 10.40% 10.55% 10.55% 10.56% 11.04%
r16,F05,C2 2.87% 8.65% 9.06% 9.18% 9.18% 13.61%
r16,F10,C2 -4.06% 2.01% 1.96% 2.95% 4.85% 9.95%
r16,F01,C8 -2.02% 1.77% 1.82% 2.09% 2.10% 4.86%
r16,F05,C8 -7.57% 1.36% 1.51% 1.51% 3.14% 6.00%
r16,F10,C8 -6.37% 1.87% 1.76% 1.76% 4.49% 7.75%
r17,F01,C1 -1.40% 0.83% 1.10% 1.10% 1.11% 1.93%
r17,F05,C1 -0.15% 5.66% 3.28% 4.31% 9.53% 11.41%
r17,F10,C1 -5.07% 2.53% -1.57% 2.71% 10.18% 11.95%
r17,F01,C2 -1.28% 1.04% 1.55% 1.55% 1.56% 2.36%
r17,F05,C2 -5.65% 0.32% 0.58% 0.69% 3.54% 5.53%
r17,F10,C2 -3.19% 3.53% -1.10% 3.88% 9.86% 11.24%
r17,F01,C8 -0.81% 1.05% 1.02% 1.14% 2.28% 3.11%
r17,F05,C8 -8.60% 0.89% 0.98% 1.22% 3.52% 4.56%
r17,F10,C8 -7.90% 3.13% 1.97% 3.11% 5.48% 8.22%
r18,F01,C1 -1.86% 0.52% 0.29% 0.37% 1.46% 2.42%
r18,F05,C1 -1.51% 1.66% -4.56% 1.88% 5.09% 5.72%
r18,F10,C1 -4.94% 0.95% -8.65% 1.42% 6.69% 7.17%
r18,F01,C2 -1.78% 0.09% 0.31% 0.52% 1.72% 2.38%
r18,F05,C2 -2.80% 1.10% -14.36% 1.63% 4.40% 4.83%
r18,F10,C2 -6.30% 0.11% -11.20% -0.02% 4.24% 4.57%
r18,F01,C8 -4.52% 0.32% -3.00% 0.81% 2.17% 2.76%
r18,F05,C8 -7.76% -1.97% -7.12% -0.10% 1.27% 3.32%
r18,F10,C8 -12.70% -0.02% -9.64% 0.49% 3.44% 5.44%

Average -3.33% 1.87% 0.43% 2.19% 3.82% 5.88%

Table 13: Comparison with other methods, R instances
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Instance TS-PR
Cplex C&F Total

CPLEX1h CPLEX10h LB αF C&F
C20,230,200,V,L 5460 3600 36000 294 346 635
C20,230,200,F,L 5520 3600 36000 421 614 1026
C20,230,200,V,T 4680 3600 36000 189 359 544
C20,230,200,F,T 5040 3600 36000 301 346 634
C20,300,200,V,L 9720 3600 36000 125 313 432
C20,300,200,F,L 6600 3600 36000 247 787 1027
C20,300,200,V,T 5400 3600 8433 136 148 283
C20,300,200,F,T 8460 3600 36000 195 766 958
C30,520,100,V,L 5100 3600 36000 31 191 225
C30,520,100,F,L 7080 3600 36000 389 1243 1630
C30,520,100,V,T 6180 3600 36000 18 65 82
C30,520,100,F,T 9900 3600 36000 112 756 870
C30,520,400,V,L 13260 3600 36000 1316 5333 6830
C30,520,400,F,L 8760 3600 36000 3034 7182 10529
C30,520,400,V,T 12600 3600 36000 942 4456 5413
C30,520,400,F,T 8160 3601 36002 3592 7148 10696
C30,700,100,V,L 4440 3600 5894 29 72 101
C30,700,100,F,L 9180 3600 36000 175 437 631
C30,700,100,V,T 8100 3600 36000 37 89 125
C30,700,100,F,T 9120 3600 36000 55 245 309
C30,700,400,V,L 8160 3600 36000 2547 5127 7893
C30,700,400,F,L 4800 3600 55015 4513 8101 15723
C30,700,400,V,T 13320 3600 36001 1565 6873 8405
C30,700,400,F,T 7800 3600 36000 3174 8067 10953

Average 7785 3600 34389 976 2461 3581

Table 14: CPU time per procedure, C instances
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Instance TS-PR
Cplex C&F Total

CPLEX1h CPLEX10h LB αF C&F
r13,F01,C1 3720 2 2 1 0 1
r13,F05,C1 3780 3600 8210 16 22 39
r13,F10,C1 3780 3548 3548 47 11 57
r13,F01,C2 3720 19 19 1 1 2
r13,F05,C2 3780 1553 1553 7 31 38
r13,F10,C2 3780 3600 36000 18 25 44
r13,F01,C8 3720 1103 1103 1 4 6
r13,F05,C8 4260 3600 36000 4 10 14
r13,F10,C8 3780 3600 24595 8 13 21
r14,F01,C1 4140 863 863 9 11 21
r14,F05,C1 3900 3600 36000 86 168 251
r14,F10,C1 4380 3600 36000 330 3276 3672
r14,F01,C2 3900 416 416 9 11 20
r14,F05,C2 5700 3600 36000 41 80 121
r14,F10,C2 5100 3600 36000 124 122 243
r14,F01,C8 6420 3600 14896 12 21 33
r14,F05,C8 6480 3600 36000 75 360 434
r14,F10,C8 10140 3600 36000 49 496 545
r15,F01,C1 4020 3600 4177 53 108 159
r15,F05,C1 6840 3600 36000 495 701 1199
r15,F10,C1 7500 3600 36000 1543 2981 4399
r15,F01,C2 5220 3600 36000 43 388 431
r15,F05,C2 8760 3600 36000 244 1132 1364
r15,F10,C2 10200 3600 36000 350 257 645
r15,F01,C8 7020 3600 31051 53 430 482
r15,F05,C8 8940 2050 2050 50 132 178
r15,F10,C8 5100 368 368 33 27 59
r16,F01,C1 3720 7 7 5 3 8
r16,F05,C1 3780 3600 11667 88 63 146
r16,F10,C1 3780 3600 19652 301 615 916
r16,F01,C2 3840 23 23 4 5 9
r16,F05,C2 3780 3600 6081 76 81 165
r16,F10,C2 4020 3600 36000 194 570 766
r16,F01,C8 3960 3600 6703 3 5 8
r16,F05,C8 3840 3600 36000 18 27 45
r16,F10,C8 4380 3600 36000 29 13 42
r17,F01,C1 4260 1446 1446 26 16 42
r17,F05,C1 7980 3600 36000 466 48 486
r17,F10,C1 7860 3600 36000 2157 6530 8579
r17,F01,C2 4800 1897 1897 21 28 48
r17,F05,C2 3960 3600 36000 331 377 695
r17,F10,C2 5400 3600 36000 682 617 1321
r17,F01,C8 6900 3600 36000 13 126 139
r17,F05,C8 11220 3600 36000 41 118 159
r17,F10,C8 8220 3600 36000 80 92 170
r18,F01,C1 8160 3600 36000 155 164 320
r18,F05,C1 5760 3600 36000 4002 1708 5677
r18,F10,C1 4320 3600 36000 3092 7290 10184
r18,F01,C2 13140 3600 36000 96 730 831
r18,F05,C2 5460 3600 36000 1497 1056 2428
r18,F10,C2 8400 3600 36000 1188 1392 2787
r18,F01,C8 7620 3600 36000 93 733 827
r18,F05,C8 7680 3600 36000 209 985 1191
r18,F10,C8 4080 3600 36000 158 1601 1756

Average 5711 2980 23932 347 663 1004

Table 15: CPU time per procedure, R instances
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