
 
 

           
  
  
 ____________________________ 
   

Combinatorial Benders’ Cuts for 
the Strip Packing Problem  

      
Jean-François Côté 
Mauro Dell’Amico 
Manuel Iori 
 
 
                                
April 2013 
 
 
CIRRELT-2013-27 
 
 
 
 
 
 

 
 

                              
 
 

G1V 0A6 

Bureaux de Montréal : Bureaux de Québec : 

Université de Montréal Université Laval 
C.P. 6128, succ. Centre-ville 2325, de la Terrasse, bureau  2642 
Montréal (Québec) Québec (Québec) 
Canada H3C 3J7 Canada G1V 0A6 
Téléphone : 514 343-7575 Téléphone : 418 656-2073 
Télécopie  : 514 343-7121 Télécopie  : 418 656-2624 
 

 www.cirrelt.ca 



Combinatorial Benders’ Cuts for the Strip Packing Problem 

Jean-François Côté1,*, Mauro Dell’Amico2, Manuel Iori2 
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and Department of Computer Science and Operations Research, Université de Montréal, P.O. 
Box 6128, Station Centre-Ville, Montréal, Canada H3C 3J7 

2 DISMI, University of Modena and Reggio Emilia, Via Amendola 2, Padiglione Morselli, 42122, 
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Abstract. We study the strip packing problem, in which a set of two-dimensional 
rectangular items has to be packed in a rectangular strip of fixed width and infinite height, 
with the aim of minimizing the height used. The problem is important because it models a 
large number of real-world applications, including cutting operations where stocks of 
materials such as paper or wood come in large rolls and have to be cut with minimum 
waste, scheduling problems in which tasks require a contiguous subset of identical 
resources, and container loading problems arising in the transportation of items that 
cannot be stacked one over the other. The strip packing problem has been attacked in the 
literature with several heuristic and exact algorithms, but, nevertheless, benchmark 
instances of small size remain unsolved to proven optimality since many years. In this 
paper we propose a new exact method that solves a large number of the open benchmark 
instances within a limited computational effort. Our method is based on a Benders' 
decomposition, in which in the master we cut items into unit-width slices and pack them 
contiguously in the strip, and in the slave we attempt to reconstruct the rectangular items 
by fixing the vertical positions of their unit-width slices. If the slave proves that the 
reconstruction of the items is not possible, then a cut is added to the master, and the 
algorithm is re-iterated. We show that both the master and the slave are strongly NP-hard 
problems, and solve them with tailored pre-processing, lower and upper bounding 
techniques, and exact algorithms. We also propose several new techniques to improve 
the standard Benders' cuts, using the so-called combinatorial Benders' cuts, and an 
additional lifting procedure. Extensive computational tests show that the proposed 
algorithm provides a substantial breakthrough with respect to previously published 
algorithms. 

Keywords: Strip packing problem, exact algorithm, Benders’ decomposition, 
combinatorial Benders’ cut. 

 

 

Results and views expressed in this publication are the sole responsibility of the authors and do not 
necessarily reflect those of CIRRELT. 

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
 
_____________________________ 
* Corresponding author: Jean-Francois.Cote@cirrelt.ca 
Dépôt légal – Bibliothèque et Archives nationales du Québec 
                     Bibliothèque et Archives Canada, 2013 

© Copyright  Côté, Dell’Amico, Iori and CIRRELT, 2013 



1 Introduction

In the Strip Packing Problem (SPP) we are given a set N = {1, 2, . . . , n} of rectangu-
lar items of width wj and height hj , and a rectangular strip of width W and infinite
height. The aim is to pack the items in the strip by minimizing the height used for
the packing. Items cannot overlap, must be packed with their edges parallel to the
borders of the strip, and cannot be rotated. A SPP solution is depicted in Figure
1-(a), where a set of seven items is packed in a strip of width W = 10, by using
minimum height z = 9.

The SPP is important because it models a large number of real-world applications.
It models cutting applications in the manufacturing industry, where stock of materials
such as paper, wood, glass and metal come in large rolls and have to be cut by
minimizing waste, see, e.g., Gilmore and Gomory (1965). It also models scheduling
problems in which tasks require a contiguous subset of identical resources, see, e.g.,
Augustine et al. (2009), and packing problems arising in the transportation of items
that cannot be stacked one over the other, see, e.g., Iori et al. (2007).

1

2 3

4 5

6

7

min z

0
0 W

(a)

1

1

2

2

2

2

2

2

3

3

4

4

5

6

6

7

7

7

7

7

7

7

(b)

1 1 1 1 1 1 1

2 2 3 3 3 3

4 4 5

6 6

6

6

6

6 6

7 7 7

(c)

Figure 1: (a) an optimal SPP solution; (b) the 1CBP relaxation; (c) the
P|cont|Cmax relaxation.

The SPP is a challenging combinatorial problem. It is NP-hard in the strong
sense, and also very difficult to solve in practice. Benchmark instances proposed
decades ago and containing just 20 items remain unsolved to proven optimality despite
dozens of attempts. In terms of exact algorithms, the best results for the SPP have
been obtained by the use of combinatorial branch-and-bound algorithms that build
solutions by packing items one at a time in the strip. Among these, we cite the
algorithms by Martello et al. (2003), Lesh et al. (2004), Bekrar et al. (2007), Alvarez-
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Valdes et al. (2009), Kenmochi et al. (2009), Boschetti and Montaletti (2010), and
Arahori et al. (2012, forthcoming). Techniques based on other concepts have also
been developed: Mixed integer linear programs (MILP) were used in Sawaya and
Grossmann (2005), Westerlund et al. (2007), and Castro and Oliveira (2011), whereas
SAT-based algorithms were developed in Grandcolas and Pinto (2010) and Soh et al.
(2010).

In terms of approximation schemes, Harren et al. (2011) presented a 5/3 + ε
polynomial time approximation scheme. Kenyon and Rémila (2000) proposed an
asymptotic fully polynomial time approximation scheme providing a solution of cost
not higher than (1+ ε)opt+O(1/ε2), where opt is the optimal solution value. Jansen
and Solis-Oba (2009) presented an asymptotic polynomial time approximation scheme
giving solutions bounded by (1 + ε)opt+ 1.

For what concerns heuristic algorithms with good practical computational perfor-
mance, almost all metaheuristic paradigms have been applied to the SPP. In recent
years, good results have been obtained with a squeaky wheel optimization methodol-
ogy in Burke et al. (2011), a two-stage heuristic in Leung et al. (2011), and a skyline
heuristic in Wei et al. (2011).

The majority of the exact algorithms for the SPP make use of the two following
relaxations, obtained by “cutting” items into unit-width or unit-height slices, respec-
tively. The first relaxation is based on the well-known bin packing problem, in which
a set of weighted items has to be packed into the minimum number of capacitated
bins.

Definition 1 The Bin Packing Problem with Contiguity Constraints (1CBP) is the
relaxation of the SPP obtained by cutting each item j into hj slices of height 1 and
width wj, and the strip into bins of height 1 and width W . The aim is to pack the slices
into the minimum number of bins, by ensuring that slices derived from the same item
are contiguous one to the other: If the k−th slice of item j (j ∈ N , k = 1, 2, . . . , hj)
is packed in bin i, then the (k + 1)−th slice, if any, must be packed in bin i+ 1.

The second relaxation is based on the standard parallel processor scheduling prob-
lem (P||Cmax), in which a set of jobs having a given processing time has to be scheduled
on a set of processors, so as to minimize the largest total processing time assigned to
a processor (makespan).

Definition 2 The Parallel Processor Scheduling Problem with Contiguity Constraints
(P|cont|Cmax) is the relaxation of the SPP obtained by cutting each item j into wj

slices of width 1 and height hj, and the strip into W vertical slices. We associate each
item slice to a job having processing time hj, and each vertical strip slice to a pro-
cessor. The aim is to assign the slices to the processors, by minimizing the makespan
and ensuring contiguity between the slices of the same item (if the k−th slice of item
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j is assigned to processor i, then the (k + 1)−th slice, if any, must be assigned to
processor i+ 1).

Figure 1-(b) shows an optimal solution for the 1CBP relaxation of the SPP in-
stance of Figure 1-(a): Items have been cut horizontally and packed in 9 bins.
Similarly, Figure 1-(c) gives an optimal solution to the relaxation induced by the
P|cont|Cmax on the same SPP instance: Items have been cut vertically and assigned
to the W processors using minimum makespan 9. (Note that, in the literature, most
graphical representations of bin packing and parallel processing scheduling problems,
when not related to the SPP, draw bins as vertical containers and processors as hor-
izontal lines, so they are “90◦ rotated” with respect to our figures).

Both the 1CBP and the P|cont|Cmax are known to be strongly NP−hard. From
a practical point of view they are, however, easier than the SPP, and the solution
values they provide (that can be different one from the other) are usually tight lower
bounds on the optimal SPP height.

Several algorithms, starting fromMartello et al. (2003), also used the 1CBP and/or
the P|cont|Cmax solution to try to compute a feasible solution for the original SPP
instance. Suppose we are given the P|cont|Cmax solution of Figure 1-(c), we can try
to obtain the feasible SPP solution of Figure 1-(a) by adjusting the y−coordinates of
the slices, so that all slices belonging to the same item are at the same y−coordinate,
always ensuring that there is no overlapping among items. This problem can be
defined as follows.

Definition 3 Given a feasible P|cont|Cmax solution using makespan z, in which the
first slice of an item j ∈ N is packed in processor xj, problem y−check is to determine
if there exists an array yj, with 0 ≤ yj ≤ z − hj, and such that the solution in which
any item j is packed with its bottom left corner in position (xj , yj) is feasible for the
SPP.

Problem y−check is strongly NP−complete (this is proved in Section 3.1), and
most of the attempts developed in the literature for its solution are heuristics. The
approach we propose is very innovative with respect to the literature, because we
solve, instead, problem y−check with an exact algorithm, and, most important, we
use it in a systematic way to optimally solve the SPP.

In particular, we propose a new exact algorithm for the SPP that exploits the full
potentiality of the introduced relaxations by means of a Benders’ decomposition. At
the first step, in the master problem, we solve to optimality the P|cont|Cmax relaxation.
Then we try to obtain a feasible SPP solution, by solving the slave problem y−check.
If a feasible solution is achieved, then it is also optimal, and hence we terminate.
Otherwise a Benders’ cut prohibiting the current P|cont|Cmax solution is added to
the master, and the procedure is re-iterated.
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Benders’ cuts are known to be weak in practice, and hence we try to strengthen
them by borrowing the concept of combinatorial Benders’ cuts, introduced in Codato
and Fischetti (2006). In practice we look for a minimal infeasible subset, i.e., a
minimal subset of items that still causes the infeasibility of the considered solution,
and introduce the cut only for this subset, instead than for the complete set of items.
After this has been done, we further improve the cut by means of a tailored lifting
procedure based on the solution of linear programs.

The three problems we address (master, slave and search for the minimal infeasible
subset) are all difficult, and possibly need to be solved several times. However, our
resulting algorithm is usually fast in practice and, also due to a large number of
optimization techniques that we propose, obtains very good computational results on
the benchmark sets of instances.

1.1 Main Contributions of this Paper

The main contributions of this work are the following:

• we propose an innovative Benders’ decomposition that models the SPP and
exploits the full potentiality of the P|cont|Cmax relaxation;

• we present several pre-processing, lower bounding, heuristic and exact algo-
rithms for the master problem (derived from the P|cont|Cmax), taken from the
related literature or newly developed;

• we prove that the slave problem in our decomposition (problem y−check) is
strongly NP-hard;

• we solve problem y−check with an algorithm based on new preprocessing tech-
niques and a new enumeration tree enriched with fathoming criteria, and show
that this method is highly efficient in practice;

• we propose non trivial ways to strengthen the Benders’ cuts into combinatorial
Benders’ cuts, and present a new effective lifting procedure based on the solution
of a linear model;

• we design an overall algorithm for the SPP, and test it on the benchmark in-
stances obtaining very good computational results. In particular, we solve for
the first time to proven optimality instances cgcut03 by Christofides and Whit-
lock (1977), and instances gcut04 and gcut11 by Beasley (1985). We provide
34 new proven optimal solutions for the 500 instances proposed by Berkey and
Wang (1987) and Martello and Vigo (1998). We obtain, on average, better
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solutions than all previously published exact algorithms, with a comparable or
smaller computational effort.

2 A Benders’ Decomposition for the Strip Packing

Problem

We first provide the necessary notation, and then describe our decomposition ap-
proach and the prior work in the related literature.

2.1 Notation

We suppose the strip is located in the positive quadrant of the Cartesian coordinate
system, with its bottom left corner located in position (0,0), as shown in Figure 1-
(a). Let H be a valid upper bound on the optimal solution value. For simplicity
we call rows the H unit-height bins obtained by cutting the strip horizontally (see
Figure 1-(b)), and columns the W unit-width processors obtained by cutting the strip
vertically (see Figure 1-(c)). Rows are numbered from 0 to H − 1, and columns from
0 to W − 1. We say that an item covers a row, resp. a column, if the row, resp.
the column, intersects the item in the considered packing (e.g., item 3 in Figure 1-(a)
covers rows 2 and 3, and columns 2, 3, 4, and 5).

We say that an item j is packed in position (pj, rj) if its bottom left corner has
x−coordinate equal to pj and y−coordinate equal to rj (e.g., item 3 in Figure 1-(a) is
packed in (2,2)). For feasibility we have that 0 ≤ pj ≤ W −wj and 0 ≤ rj ≤ H − hj .
This set of feasible positions may be reduced by considering the well-known principle
of normal patterns by Herz (1972) and Christofides and Whitlock (1977), which states
that there is an optimal solution in which each item is moved as down and as left as
possible (hence touching at its left, and at its bottom, either the strip or the border
of another item). To this aim we define

W(j) =
{

pj =
∑

i∈N\{j}wiξi : 0 ≤ pj ≤ W − wj, ξi ∈ {0, 1} ∀i ∈ N \ {j}
}

,(1)

H(j) =
{

rj =
∑

i∈N\{j} hiξi : 0 ≤ rj ≤ H − hj , ξi ∈ {0, 1} ∀i ∈ N \ {j}
}

(2)

the sets of normal patterns for item j along the x− and y−axis, respectively. Sets
W(j) and H(j) are computed using a standard dynamic programming technique, see,
e.g., Christofides and Whitlock (1977). We similarly define

W(j, q) = {pj ∈ W(j) : q − wj + 1 ≤ pj ≤ q} , (3)

H(j, t) = {rj ∈ H(j) : t− hj + 1 ≤ rj ≤ t} (4)
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the subset of normal patterns along the x−axis for which item j occupies column q,
and the subset of normal patterns along the y−axis for which item j occupies row t,
respectively. Finally, let W =

⋃

j∈N W(j) and H =
⋃

j∈N H(j) be the global sets of
normal patterns along the x− and y−axis, respectively.

2.2 A Mathematical-Logic Model

The SPP can be modeled by using two sets of variables: A binary variable xjp taking
value 1 if item j is packed in column p, 0 otherwise, and a continuous non-negative
variable yj giving the height of the bottom border of item j. A single variable z
is then used to define the total height of the solution. The SPP can be described
through the following mathematical-logic model:

(SPP0) min z, (5)
∑

p∈W(j)

xjp = 1 j ∈ N , (6)

∑

j∈N

∑

p∈W(j,q)

hjxjp ≤ z q ∈ W, (7)

yj + hj ≤ z j ∈ N , (8)

non-overlap{[yj, yj + hj], j ∈ N :
∑

p∈W(j,q)

xjp = 1} q ∈ W, (9)

xjp ∈ {0, 1} j ∈ N , p ∈ W(j), (10)

yj ≥ 0 j ∈ N . (11)

Constraints (6) impose that each item is packed in exactly one column. Constraints
(7) force z to be not smaller than the total height of the items that occupy any column
q, whereas constraints (8) force z to be smaller than the upper border of any item j.
Note that constraints (7) are not strictly necessary for the correctness of the model,
but are essential for our decomposition approach. Logical constraints (9) impose that
the vertical intervals [yj, yj + hj ] corresponding to the set of items that occupies the
same column q, do not overlap.

2.3 The Decomposition Approach

In the classical decomposition approach by Benders (1962), the aim is to solve a MILP
problem P : min{cTy + f(x) : Ay + g(x) ≥ b, y ≥ 0, x ∈ Dx}. The method starts
by finding a vector x ∈ Dx, and considers the linear slave problem SP : min{cTy +
f(x) : Ay + g(x) ≥ b, y ≥ 0}, which can be solved by means of the dual slave SD:
max{uT (b − g(x)) + f(x) : uTA ≤ c, u ≥ 0}. A solution u of SD induces a linear
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constraint z ≥ uT (b−g(x))+f(x), the so-called Benders’ cut, that is used to populate
the master problem MP : min{z : z ≥ uT

k (b− g(x)) + f(x), k = 1, 2, . . . , K, x ∈ Dx},
where u1, u2, . . . , uK are the solutions of K dual problems obtained by iterating the
above procedure.

A special case occurs when c = 0 and we start by optimally solving the master
problem obtained by removing variables y from P , i.e., by setting x = argmin{f(x) :
g(x) ≥ b, x ∈ Dx}. The slave SP then becomes a feasibility check on the system
{Ay + g(x) ≥ b, y ≥ 0}. If SP has a solution y, then (x, y) is an optimal solution to
P . If, instead, SP has no feasible solution, then x is not feasible for P and we know
that at least one of the xj variables must take a value different from xj. We write
this condition as a linear constraint and add it to the master problem.

A better implementation does not add the cut containing all the x variables, but
finds a smaller (possibly minimal) subset of variables that still induces infeasibility
in the slave problem, and uses this set to derive the cut. The resulting constraint is
called combinatorial Benders’ Cut in Codato and Fischetti (2006), but the method
can also be seen as an implementation of the Logic-based Benders’ decomposition
approach presented in Hooker (2000), Jain and Grossmann (2001), and Hooker and
Ottosson (2003). We finally observe that, in the case of combinatorial Benders’ cuts,
it is not necessary that the slave is a continuous linear model.

For the SPP, when we remove variables y from model (5)–(11), we obtain a MILP
that models the P|cont|Cmax problem, namely:

(P|cont|Cmax) min z, (12)
∑

p∈W(j)

xjp = 1 j ∈ N , (13)

∑

j∈N

∑

p∈W(j,q)

hjxjp ≤ z q ∈ W, (14)

xjp ∈ {0, 1} j ∈ N , p ∈ W(j). (15)

Suppose now an integer solution S = {zs, xs
jp} to (12)–(15) has been computed:

the slave is then to find a feasible solution, if any, to problem

(y−check) yj + hj ≤ zs j ∈ N , (16)

non-overlap{[yj , yj + hj ], j ∈ N :
∑

p∈W(j,q)

xs
jp = 1} q ∈ W, (17)

yj ≥ 0 j ∈ N . (18)

If y−check returns a feasible solution, then we obtained an optimal solution of the
original SPP instance. Otherwise we forbid the current P|cont|Cmax solution S, by
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adding a cut to the master problem. To this aim, let

psj =
∑

p∈W(j)

p xs
jp (19)

denote the x−coordinate of the first slice of item j in solution S. The Benders’ cut
is then

∑

j∈N

xj,ps
j
≤ n− 1. (20)

Suppose now we can find a reduced subset of items Cs ⊆ N , such that, if we pack all
its items in position psj , then problem y−check still has infeasible solution (the way
in which we look for Cs is discussed in Section 4). Then, we obtain the combinatorial
Benders’ cut

∑

j∈Cs

xj,ps
j
≤ |Cs| − 1. (21)

We can then model the SPP as the following master problem:

(SPP) min z, (22)
∑

p∈W(j)

xjp = 1 j ∈ N , (23)

∑

j∈N

∑

p∈W(j,q)

hjxjp ≤ z q ∈ W, (24)

∑

j∈Cs

xj,ps
j
≤ |Cs| − 1 ∀ Cs infeasible to y−check, (25)

xjp ∈ {0, 1} j ∈ N , p ∈ W(j). (26)

The good aspect of this decomposition is the fact that it allows to develop tailored
optimization techniques both for the master and the slave, taking advantage of their
combinatorial structures.

In particular, we solve the slave with preprocessing techniques and an enumer-
ation tree enriched with fathoming criteria, obtaining an algorithm (see Section 3)
that is very fast in practice. For the master, we found computationally convenient
to develop an iterative procedure that attempts different tentative strip heights, in
an interval given by valid lower and upper bounds. At each attempt it solves the
recognition version of the master, and updates the tentative strip height accordingly.
The procedure is described in details in Section 5, and is based on preprocessing tech-
niques, a large set of lower and upper bounding algorithms, and the direct solution
of the MILP (22)–(26) with delayed cut generation.

The latter algorithm largely benefits from techniques aimed at finding improved
Benders’ cuts, that we describe in Section 4. The literature on this area of research
is quite new, so we briefly summarize it in the next section.
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2.4 Prior Work

The concept of primal decomposition of a MILP was originally proposed by Benders
(1962), who studied the case in which the master results in a MILP and the slave in
a LP. Later, Geoffrion (1972) generalized it to the case in which also the slave is a
MILP.

In recent years, Hooker and Ottosson (2003) presented the concept of logic-based
Benders’ decomposition, a general framework in which both master and slave are
MILPs, and the slave is solved by logical deduction methods, whose outcome is used
to produce valid cuts. An interesting use of this approach is the one in which the
master is solved by using standard MILP optimization, and the slave with a Constraint
Program (CP). Successful examples of this type of decomposition have been proposed
by, e.g., Jain and Grossmann (2001) and Hooker (2007). Jain and Grossmann (2001)
present hybrid MILP/CP decomposition methods to solve a class of problems where
the variables in the slave have zero coefficient in the original objective function, and
apply them to the problem of scheduling jobs on parallel machines with release and
due dates, while minimizing the sum of input processing costs. The master is a MILP
that produces an assignment of jobs to machines and is solved with IBM Ilog Cplex.
The slave is a CP that checks the feasibility of each assignment of jobs to a machine,
and is solved with IBM Ilog Scheduler. Hooker (2007) proposes a similar approach
to solve again a class of scheduling problems on parallel machines, but with the aim
of minimizing either cost, makespan, or total tardiness.

Note that our algorithm differs from the ones by Jain and Grossmann (2001)
and Hooker (2007), because it solves master and slave with dedicated combinatorial
algorithms, and considers the more general case in which the activities of the machines
are not independent one from the other, but strictly related among them (intuitively,
an item j must be assigned to wj machines).

The name “combinatorial Benders’ cuts” was introduced by Codato and Fischetti
(2006), who studied a decomposition in which the master is an ILP involving binary
variables x, and the slave is a LP involving continuous variables y. Whenever a
solution to the master is infeasible for the slave, they look for a minimal infeasible
subsystem (MIS) of the LP associated to the slave, and then introduce in the master
the corresponding cut. Since the problem of determining a MIS is NP-hard, they
make use of a greedy algorithm. Moreover, they limit their study to the case in which
the constraints relating x and y are given by linear inequalities, each containing
a single entry for the x array. Our approach differs from the one by Codato and
Fischetti (2006) in several aspects, the most important being the fact that the slave
is not a LP, but a strongly NP−complete problem.
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3 Solution of the Slave Problem

We are given the input of the SPP, plus a tentative strip height zs and a vector psj that
gives the x−coordinate (i.e., column) in which item j is packed. In our decomposition
vector psj is obtained from a starting solution S = {zs, xs

jp} to (12)–(15), by using
(19). In this section we describe how to solve the resulting y−check problem, see
Definition 3, which calls for the determination of the y−coordinates to be assigned
to each item so as to obtain a feasible SPP solution of height zs, if any exists. We
first discuss the problem complexity, and then present our solution algorithm.

3.1 Complexity

Let us consider the SPP solution depicted in Figure 2, where 9 items are packed
in a strip of height zs = 2B + 3, with B a given integer positive value. All items
have width 1, with the exception of items 3, 4, and 5, that have width 3. They
are packed in the x−coordinates ps = [0, 4, 0, 1, 2, 1, 3, 3, 1], and have heights h =
[2B + 2, 2B + 2, 1, 1, 1, B + 1, B + 1, B, B].

0

1

. . .

B + 1

B + 2

. . .

2B + 2

2B + 3

1

3

9

7 2

4

8

5

6

Figure 2: A framework to reduce Partition to y−check.

Items 3 and 5 cannot be packed at the same y-coordinate, because they would
overlap, so, due to the presence of items 1 and 2, item 3 must be assigned at the
bottom of the strip and item 5 at the top (the obvious symmetric solution where 3
is at the top and 5 at the bottom is also possible). A further examination of the
remaining items shows that the only feasible y−check solution for items 4, 6, 7, 8,
and 9 is the one depicted in the figure. This solutions leaves two empty buckets of
width 1 and height B. These buckets can be used to prove the NP−completeness of
y−check, by using a transformation from the following problem.
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Definition 4 Partition: Given n items, each having weight sj ∈ Z+ (j = 1, 2, . . . , n),
find a subset S ⊆ {1, 2, . . . , n} such that

∑

j∈S sj =
∑n

j=1 sj/2, if any.

Lemma 1 Problem y−check is NP−complete.

Proof We construct an instance of y−check with n = n + 9 items. The first 9
items are those depicted in Figure 2, with B =

∑n

j=1 sj/2. The remaining items have
psj = 2, wj = 1 and hj = sj−9, for j = 10, 11, . . . , n. All the items 10, 11, . . . , n have
to be packed inside the two buckets, so y−check has a feasible solution if and only if
Partition has. Since Partition is NP−complete, the same holds for y−check. �

By using an extension of the above Lemma, we can prove the following stronger
result.

Theorem 1 Problem y−check is strongly NP−complete.

The proof is given in Appendix 8.1.

3.2 Algorithms for Problem y−check

For the solution of y−check we developed several algorithms, and obtained the best
computational performance by using a combinatorial enumeration tree, enriched by
reduction and fathoming criteria. The resulting algorithm, called y−check algorithm
in the remaining of the paper, starts with the three new preprocessing techniques,
invoked in sequence one after the other.

Preprocessing 1: Merge items.

For any item j, let us define L(j), resp. R(j), the subset of items that can be packed
at the left, resp. right, of j. Formally,

L(j) = {i ∈ N \ {j} : psi + wi ≤ psj}, (27)

R(j) = {i ∈ N \ {j} : psi ≥ psj + wj}. (28)

We consider items one at a time, for non-increasing order of psj. For a given item
j, if hi ≤ hj holds for all i ∈ L(j), then we attempt packing the items of L(j) in
the substrip of width psj and height hj , by invoking the y−check enumeration tree
described at the end of this section. If all items in L(j) fit into the substrip, then
we merge j and L(j) into a unique item, say k, having wk = psj + wj , height hk = hj

and psk = 0. This preserves the optimality of the solution, because no other item can
enter the induced substrip.

If not all the items in L(j) fit into the substrip, or there are some items i having
hi > hj, then we remove items from L(j) in an iterative way. We proceed from left to
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right: Let p̄ be the first column occupied by an item in L(j) and w̄ be the largest width
of an item in L(j) being packed in p̄. We check if L(j) can be exactly partitioned into
two subsets, one completely contained in the columns [0, 1, . . . , p̄ + w̄ − 1], and one
completely contained in the columns [p̄+ w̄, p̄+ w̄+ 1, . . . , psj − 1]. If this is possible,
then we focus our search on the latter group of columns. Formally, we check if there
are no items i ∈ L(j) having psi < p̄ + w̄ and psi + wi > p̄ + w̄. If no items with this
property exist, then we set L(j) = {i ∈ N \ {j} : p̄+ w̄ < psi +wi ≤ psj}. In this way,
we are left with a reduced set of items and a reduced substrip of width psj − (p̄+ w̄)
and height hj . Once again, no item outside L(j) may enter this reduced substrip at
the left of j, and hence we invoke the enumeration tree to try to merge j and the
reduced set L(j). If instead L(j) cannot be partitioned, then we increase p̄ to be the
next column where an item of L(j) is packed, and re-attempt the partition.

We re-iterate until a merging is obtained or L(j) is empty. We then repeat the
process with R(j), for which we iterate from right to left. For an example, consider
Figure 1-(c) and j = 4. At the left, L(4) = {2} and no merging is possible. At the
right, R(4) = {5, 7} at the first iteration and no merging is possible. At the second
iteration R(4) = {5}, and 4 and 5 are merged into a unique item of width 3 and
height 2.

Preprocessing 2: Lift item widths.

We consider items one at a time, by non-decreasing width, breaking ties by non-
decreasing height. For any item j, we compute L(j) and R(j) using (27) and (28),
respectively. Let ℓj = maxi∈L(j){pi + wi} if L(j) is not empty, and ℓj = 0 otherwise.
Similarly, let rj = mini∈R(j){pi} if R(j) is not empty, and rj = W otherwise. We
move item j to its left as much as possible, by setting psj = ℓj , and then enlarge its
width as much as possible, by setting wj = rj − ℓj . We then re-iterate with the next
item.

Note that this preserves the optimality of the solution, because no item can be
packed side-by-side with j in the columns between ℓj and rj. Consider again Figure
1-(c). This second preprocessing would produce w3 = 5, w4 = 5 (recall items 4 and 5
were merged by the previous preprocessing) and w6 = 8. The outcome is depicted in
Figure 3-(a).

Preprocessing 3: Shrink the strip.

This technique is based on the following simple idea. Suppose that a column p is
occupied by a set S of items, and that a feasible packing for these items exists. A
consequence is that, if no item outside S occupies column p+ 1, then the packing of
the items in S is also feasible for column p+ 1. In practice, it is enough to check the
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feasibility only for those columns where the left border of an item is packed. Thus we
remove all other columns from the instance and reduce the widths of the items and
of the strip accordingly. Consider for example the instance of Figure 3-(a). The only
columns that we keep are column 0 (ps1 = ps2 = 0), column 2 (ps3 = ps4 = ps6 = 2), and
column 7 (ps7 = 7). The instance that is given to the successive y−check enumeration
tree in depicted in Figure 3-(b).

1 1 1 1 1 1 1

2 2 3 3 3 3 3

4 4 4 4 4

6 6 6 6 6

6 6 6

7 7 7

(a)

1 1

2 3

4

6

6

7

(b)

1 1

2

7

skyline

niche

(c)

Figure 3: (a) instance of Figure 1-(c) modified by preprocessing 1 and 2; (b) further
modification by preprocessing 3; (c) a partial packing.

Note that these y−check preprocessing techniques consistently reduce the size of
the addressed instances, and are much more effective that the standard techniques for
the SPP (see, e.g., Boschetti and Montaletti 2010, and references therein), because
largely benefit from the additional information given by the vector psj.

At the end of the preprocessing phase, all items having width equal to the width of
the strip are packed at the bottom of the strip, and then removed from the instance.
The packing of the remaining items is attempted with the following exact algorithm.

Enumeration tree for problem y−check.

This procedure constructs partial solutions by adding one item at a time, starting from
an empty solution. For the sake of simplicity we continue using the standard notation
adopted so far, i.e, n, W , H , wj, hj , . . . , but recall that these values may have been
modified by preprocessing. Moreover, let hused(p) be the sum of the heights of the
items already packed at a given node, and covering column p, for p = 0, 1, . . . ,W −1.

Following a notation common in two-dimensional packing, we define the skyline as
the line that touches the top of the packed items, see the dashed line in Figure 3-(c).
In each column p the height of the skyline is given by hused(p). Let us also define the
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niche as the horizontal segment of the skyline that has the smallest value of hused,
see again Figure 3-(c). If more horizontal segments having the same smallest value of
hused exist, then the niche is the leftmost one. In the following we suppose that the
niche starts in column ℓ and ends in column r (with r included in the niche).

We define hleft and hright as the heights of the left and right border of the niche,
respectively, and compute them as follows. If ℓ = 0 then hleft = zs, else hleft =
hused(ℓ− 1). If r = W − 1 then hright = zs, else hright = hused(r+ 1). For example, in
Figure 3-(b) we have ℓ = r = 1, hleft = 8 and hright = 7. Let N ′ ⊆ N be the set of
items still to be packed at a given node, and N ′(ℓ, r) ⊆ N ′ the set of items that can
be packed in the niche, i.e., N ′(ℓ, r) = {j ∈ N ′ : psj ≥ ℓ and psj + wj ≤ r + 1}.

The enumeration tree has one node for each partial solution and branches on
the items that can be packed in the associated niche. At the root node the strip is
empty and the niche corresponds to the whole strip. We sort items in N ′(ℓ, r) by
non-decreasing value of psj, and create |N ′(ℓ, r)|+ 1 nodes. The first |N ′(ℓ, r)| nodes
are created by selecting an item j ∈ N ′(ℓ, r), in order, and packing it in position psj .
The last node is obtained by packing no item at all in the niche, and, in this case,
we close the whole niche and lift the skyline by setting hused(p) = min{hleft, hright}
for p = ℓ, ℓ + 1, . . . , r. When an item j is packed, if psj > ℓ, then we close the
rectangular space of height hj , starting in ℓ and terminating in psj − 1, by setting
hused(p) = min{hleft, hused(p) + hj} for all p = ℓ, ℓ+ 1, . . . , psj − 1. This is done to kill
symmetries, because the solutions in which an item was packed in this rectangular
space were already explored by previous nodes, due to the sorting. The resulting tree
is explored in depth-first search.

At each node the following fathoming criteria are used:

1. let hpack(p) be the total height of the items in N ′ that cover column p, for
p = 0, 1, . . .W −1. If hused(p)+hpack(p) > zs holds for a certain column p, then
the current node is fathomed;

2. ifN ′(ℓ, r) contains a unique item, say j, such that hused(p
s
j)+hj ≤ min{hleft, hright},

then we create a single descendant node by packing j in psj , and skip the (dom-
inated) node in which no item is packed in the niche;

3. if there are two items j and k in N ′(ℓ, r), with j < k, having wj = wk, hj = hk

and psj = psk, then we fathom those nodes that attempt packing k before j
(because the same solution is found by the ’twin’ node that packs first j and
then k);

4. when packing item j, we check if there is an item k having wk = wj, k > j
and being already packed in psj at height hused(p

s
j) − hk, i.e., at the top of the

skyline. If this is the case, then the node is fathomed (again, the same solution
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is found by the ’twin’ node that packs first j and then k, note that in this case
hj can be different from hk);

5. when packing item j, if psj > ℓ holds, then we check if there exists an item
k ∈ N ′(ℓ, r), k 6= j, that enters completely in the rectangle at the left of j that
would be closed by the packing of j, i.e., an item k having psk ≥ ℓ, psk+wk ≤ psj ,
and hk ≤ min{hleft − hused(ℓ), hj}. If such k exists, then we fathom the node
(because the same solution is found by packing first k and then j).

4 Improving and Lifting the Benders’ Cuts

In the following, we suppose we are given a solution S = {zs, xs
jp}, which is infeasible

to y−check and has to be cut from the master problem. To improve the standard
Benders’ cuts (20), we developed a procedure that uses four steps (all newly developed
ideas). In the first three steps, described in Section 4.1, we look for minimal infeasible
subsets, i.e., minimal subsets of items still producing an infeasible y−check instance,
and use them to derive the stronger cuts (21). In the last step, described in Section
4.2, we try to further lift the cut by adding xjp variables through the solution of linear
models. In the following, recall that vector ps gives the x−coordinates in which items
are packed in S.

4.1 Finding Minimal Infeasible Subsets of Items

The problem of determining a minimal infeasible subset is NP–hard, because the
underlying recognition problem, y−check, is NP–complete, thus we content us to
solve it in a greedy fashion.

The first step of our procedure looks for vertical cuts in the packing induced by
S, i.e., for columns p ∈ W such that N can be partitioned into two sets, N1 = {j ∈
N : psj + wj ≤ p} and N2 = {j ∈ N : psj ≥ p}, with N1 ∪ N2 = N . If such a column
exists, then the packing of the items in N1 is not influenced by the packing of the
items in N2, and viceversa. Thus, we re-execute the y−check algorithm on both N1

and N2 and determine which subset is infeasible (at least one is infeasible because S
is so). Clearly, if k vertical cuts are found, the set of items is partitioned into k + 1
subsets accordingly. Then, the successive steps of our procedure are executed on the
resulting infeasible subset(s) of items.

The second step tries to remove one column at a time from the strip. It first
removes from S column 0 and all items j having psj = 0. If the reduced instance
is infeasible for y−check , then it continues by removing the next column from the
left in which at least one item is packed, and all items packed in that column. It
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re-iterates as long as the reduced instance remains infeasible. Then, it starts from
the right, by selecting column W − 1 and all items that occupy it, removing them
from the instance and invoking the y−check algorithm. Again, it re-iterates as long
as the reduced instance remains infeasible.

The third step considers the items one at a time according to a given ordering. It
removes the current item from S and re-executes the y−check algorithm on the re-
duced instance. If the outcome is feasible, then the item is re-inserted in S, otherwise
we found a reduced cause of infeasibility and keep the current item out of S. In any
case, we re-iterate with the next item until all items have been scanned. At the end
of the scan, we are left with a reduced subset of items, that still induces an infeasi-
bility. The result of this step depends on the order in which items are selected. For
this reason we perform several attempts with different orderings. The first attempt
selects items according to non-decreasing value of area. In the second attempt we
assign a success score with each item. This is initially set to 0 at the beginning of the
solution of the current SPP instance, and then increased by one unit if the removal of
the item from S was successful in previous iterations of the decomposition algorithm
(i.e., if it led to a reduced instance that was still infeasible). The second attempt we
perform then selects items according to non-decreasing value of success score. The
third attempt simply selects items randomly, and is executed ten times.

A simple hash list is used to keep track of the reduced instances for which the
y−check algorithm was invoked, so as to avoid duplicate calls. At the end of these
three steps we typically obtain a few minimal infeasible subsets of items, Cs ⊆ N ,
that can be used for the cuts of type (21).

4.2 Lifting the Cut

The fourth and last step of our procedure aims at lifting (21), for a certain Cs ⊆ N , as
follows. For each item j, let us define Ks(j) the subset of items that vertically overlap
with j in solution S, i.e., the set of items that have at least one column in common
with j in S. Suppose now that we move j from psj to a different position at its left or
at its right, keeping all other items in their original position in S. As long as Ks(j)
remains the same, then we know that S is still infeasible for y−check. Without the
need of supplementary calls to y−check, we can thus obtain a set of x−coordinates
for the left border of j that keep S infeasible. In terms of binary variables, we
can add to the left-hand side of the cut all the xjp variables corresponding to the
selected x−coordinates, without affecting the right-hand side (because just one of the
coordinates can be selected for packing j), thus lifting the original cut.

To obtain the most effective lifting we proceed in the following way. For each item
j ∈ Cs we introduce two non-negative variables, lsj and rsj , and denote with [lsj , r

s
j ] the

interval along the x−axis in which we look for the x−coordinate of j. Let also Ks
p(j)
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be the subset of items that vertically overlap with j, when j is packed in column
p ∈ [lsj , r

s
j ]. If Ks

p(j) = Ks(j) for all j ∈ Cs, then problem y−check is still infeasible.
We can thus find the largest lifting by solving the LP:

(Cs–lift) max
∑

j∈Cs

(

rsj − lsj
)

, (29)

lsj + wj ≥ rsi + 1 j ∈ Cs, i ∈ Ks(j), (30)

0 ≤ lsj ≤ psj j ∈ Cs, (31)

psj ≤ rsj ≤ W − wj j ∈ Cs. (32)

Constraints (30) impose that items j and i overlap in any solution in which j is
packed in any column of [lsj , r

s
j ] and i in any column of [lsi , r

s
i ] (to this aim, note that,

if i ∈ Ks(j), then j ∈ Ks(i)). Constraints (31) and (32) are used to state that, for
any item j, the selected interval [lsj , r

s
j ] is such that (i) the item always lies inside the

strip, and (ii) the original position psj of the item in S is inside the interval.
We then use the optimal solution (l̄sj , r̄

s
j) to (29)–(32), to obtain the following

lifted combinatorial Benders’ cut:

∑

j∈Cs

∑

p∈[l̄s
j
,r̄s

j
]

xjp ≤ |Cs| − 1. (33)

Summarizing, starting from the original Benders’ cut (20), we obtain several (much
stronger) lifted combinatorial Benders’ cuts (33) and add all of them to the master
problem. The computational effectiveness of this procedure is shown in Section 6.

5 An Exact Algorithm for the Strip Packing Prob-

lem

The mathematical models and the algorithms presented in the previous sections have
been inserted into an overall algorithm for the solution of the SPP. This algorithm
also makes use of several additional techniques to speed up its convergence to the
optimum, either best practises coming from the related literature, or newly developed
procedures. For this reason we called it BLUE, from Benders’ decomposition with
Lower and Upper bound Enhancements.

An informal pseudo-code is outlined in Algorithm 1. Intuitively, BLUE first pre-
processes the instance and computes an upper bound U and a lower bound L on the
optimal solution value. Then, as long as L is strictly smaller than U , it solves the
recognition version of the SPP, called SPP(L), in which the height of the strip is
fixed to L, and the aim is to find a feasible packing of the items not exceeding L,
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if any (the problem is also known in the literature as the two-dimensional orthogo-
nal packing problem, see, e.g., Clautiaux et al. 2007). The SPP(L) instance is first
passed to a preprocessing procedure, and then solved by two exact methods, namely
a combinatorial branch-and-bound and the Benders’ decomposition of Section 2. In
the remaining of this section we give the details of each step of the algorithm.

Algorithm 1 Algorithm BLUE for the solution of the Strip Packing Problem
1: preprocess instance
2: compute an upper bound U and a lower bound L
3: while L < U do
4: comment: Solve SPP(L) = recognition version of SPP at height L
5: preprocess item heights
6: if

∑

j∈N |H(j)| <
∑

j∈N |W(j)| then rotate instance
7: solve SPP(L) with combinatorial branch-and-bound (B&B)
8: if B&B failed then solve SPP(L) with Benders’ decomposition
9: if Benders’ decomposition failed then return heuristic solution
10: if SPP(L) is feasible then
11: U := L
12: else
13: increase L
14: end-if
15: end while

5.1 Preprocessing and Bounds

In the following we suppose items are sorted by non-increasing width, breaking ties
by non-increasing height. Algorithm BLUE first preprocesses the instance using the
three techniques described in Section 2.2 of Boschetti and Montaletti (2010). The
first technique aims at packing large items at the bottom of the strip, and requires
to run a heuristic (which in our case is the algorithm described below to compute U)
on a subinstance. The second one aims at reducing the strip width W . The third
one computes, for any item j, in order, the maximum total width w′

j of a subset
of items that can be packed side by side with j without exceeding W , and then, if
wj + w′

j < W , it sets wj = W − w′
j .

Lower bounds.

To obtain a valid lower bound we first make use of three polynomial-time procedures
from the literature, namely:
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1. The simple lower bound L1 = max{⌈
∑

j∈N wjhj/W ⌉; maxj∈N hj};

2. A more sophisticated lower bound, L2, based on the most performing dual
feasible functions. In practice, L2 is evaluated as LBM

dff , described in Section
3.2 of Boschetti and Montaletti (2010), but with the inclusion of only the first
three dual feasible functions (the fourth one was disregarded because more time
consuming and not computationally effective on our instances);

3. A third lower bound, L3, obtained by invoking the alternating constructive
procedure described in Section 4.2.6 of Alvarez-Valdes et al. (2009).

Then we invoke two newly developed and more time-consuming procedures. The
first one is obtained by considering the relaxation of the 1CBP (see Definition 1), in
which we remove the constraint that horizontal slices must be packed contiguously
one with the other, and only impose that each bin contains at most one slice of each
item. The problem, known in the literature as the non-contiguous bin packing problem
(NCBP), can be modeled as follows.

We define a pattern t as a subset of items whose total width is not larger than W ,
and describe it by a column (a1t, . . . , ajt, . . . , ant)

T ∈ {0, 1}n, where ajt takes value 1
if item j is in pattern t, 0 otherwise. Let T be the family of all patterns containing at
most one slice for each item, and let zt be a binary variable taking value 1 if pattern
t is used, 0 otherwise (t ∈ T ). The NCBP is then

(NCBP) min
∑

t∈T

zt, (34)

∑

t∈T

ajtzt ≥ hj j ∈ N , (35)

zt ∈ {0, 1} t ∈ T . (36)

Since the NCBP is strongly NP-hard, we content us with the continuous relax-
ation of (34)–(36), which we solve by the standard column generation algorithm
originally proposed by Gilmore and Gomory (1961) for the cutting stock problem.
The fact that an item should appear at most once in a pattern is easily taken into ac-
count in the slave knapsack problem that has to be solved to generate columns. This
is done by associating a binary variable with each item j ∈ N (instead of an integer
variable not greater than hj, as in the standard algorithm for the cutting stock). This
column generation procedure is quite standard for one-dimensional packing problems,
but, as far as we know, this is the first time it is applied to the solution of the NCBP.

Let L4 be the round up of the resulting solution value. Now that we know that
all horizontal slices can be continuously packed in L4 bins, we check if the same fact
holds for the vertical slices. We then fix the height of the strip to be L4, “cut” items
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and strip using the vertical orientation, and again solve the continuous relaxation of
(34)–(36). In this second attempt patterns are combinations of items whose total
height does not exceed L4, and hj is replaced by wj in (35). If the resulting solution
value is greater than W , then no feasible packing of the vertical slices exists, so we
increase L4 by one. We re-iterate this second attempt as long as its solution value is
greater than W .

The last procedure is obtained by solving the root node of the MILP (12)–(15)
for the P|cont|Cmax, and storing the rounded up value of the resulting makespan
as L5. The lower bound we obtain is L = maxi∈1..5{Li}, where L1, L2 and L3

have polynomial complexity, L4 has pseudopolynomial complexity (if the ellipsoid
algorithm is used to solve the LPs, see Caprara and Monaci 2009) and is fast in
practice, whereas computing L5 is strongly NP -hard and can be time consuming for
the large instances (this is why at this step we limit its solution to the root node).

Upper bounds.

To obtain a valid upper bound we start by invoking (our implementation of) the
algorithm by Leung et al. (2011). This is a two-stage approach, in which the first stage
is a constructive heuristic, and the second one is an improvement procedure based
on simulated annealing. In our implementation we impose a limit of 104 iterations
to the simulated annealing, to lower the computation time. We call U1 the resulting
solution value.

We then invoke a new heuristic based on the solution of the 1CBP (recall Figure 1-
(b)). At each iteration this heuristic selects an unpacked item, and packs all its slices
left-justified in the bins, starting from the bottom-most bin that has enough residual
space to accommodate a slice. It re-iterates until all items are packed. Bins are closed
once they cannot accommodate any more item. The resulting partial solutions have
a classical staircase structure. In details, the first item j is selected randomly, and
its slices are packed at the left of bins 0, 1, . . . , hj − 1. Let r be the index of the
bottom-most open bin. The next item is chosen by using a score-based method that
has the aim of filling bin r in the best possible way. A score vj is assigned to each
item j which is still unpacked, with vj initially set to 2 if j is as large as the residual
space in r, 0 otherwise. Then, if by packing j in r, the top of j is as high as the first
horizontal segment at its left in the staircase, then vj is increased by 2. If instead
the top of j is as high as the top of any other horizontal segment in the staircase but
the first, then vj is increased by 1. The item with highest score is selected (ties are
broken randomly) and all its slices are packed.

After the heuristic packed all items, if the resulting 1CBP solution value is smaller
than U1, then we try to obtain a feasible SPP solution by invoking the y−check al-
gorithm, with a limit of 3 CPU seconds or 2 · 105 iterations. The instances for which
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y−check was invoked are stored in a hash table, so as to avoid checking them twice.
The algorithm is executed 10 times, and the best solution value is stored in U2. We
then compute U = min{U1;U2}.

Summarizing, the initialization of Algorithm BLUE computes in order U1, L1,
L2, L3, L4, L5, and U2, and updates U and L accordingly. The execution is clearly
stopped whenever L = U .

5.2 Closing the Gap

After the preprocessing and the computation of the bounds, if L is strictly smaller
than U , then we enter a loop in which we try to solve SPP(L). We first try to lift
the item heights. To this aim we use the third preprocessing technique described in
Section 5.1, but work on heights instead of widths. Formally, we compute for any
item j in order the maximum total height h′

j of a subset of items that can be packed
vertically over j without exceeding L, and then, if hj + h′

j < L, we set hj = L− h′
j .

As a general remark, it is usually “easier” (i.e., computationally faster) to solve
a P|cont|Cmax problem with a small number of columns, than a 1CBP with a large
number of bins. For this reason we compute the sets of normal patterns along the
x− and y−axis, by using (1) and (2), respectively, and setting H = L. Then, if
∑

j∈N |H(j)| <
∑

j∈N |W(j)| we “rotate” the instance, i.e., we exchange L with W ,
and hj with wj for all j ∈ N . Clearly after the instance is solved we restore the original
dimensions. Note that the two terms in the check give the number of variables in the
resulting master problems with one orientation or the other, see (26).

We then invoke the two exact procedures for solving the SPP(L), both described
in details below. If these procedures prove that a feasible solution at height L exists,
then we stop the algorithm with a proof of optimality. If instead they prove that
no feasible solution exists at height L, then we increase L and re-iterate. In the
latter case, we compute the minimum integer ℓ > L such that there exists a feasible
combination of item heights whose value is exactly ℓ, and then set L = ℓ. If the two
procedures fail in proving feasibility or infeasibility at height L, then the algorithm
terminates by returning a heuristic solution.

Branch-and-Bound for the SPP(L).

The first attempt to find an exact SPP(L) solution is based on a branch-and-bound
(B&B) for the recognition version of the P|cont|Cmax in which the makespan is fixed
to L. This B&B starts with W empty columns, and enumerates solutions by packing
one item at a time in the left-most column that still has some residual space to
accommodate items. Packing an item j in a column p means, in our approach,
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packing all the slices of j at the bottom of columns p, p + 1, . . . , p + wj − 1. As a
consequence, the resulting partial solutions have a staircase structure.

Let h̄p be the total height of the slices packed in column p in a partial solution.
At each node, the B&B first selects the left-most column p which still has h̄p < L. It
then creates a descendant node for any item j satisfying h̄p+hj ≤ L. It packs j in p,
computes hmin as the minimum height of the items still to be packed, and then sets
h̄q = h̄q + hj if h̄q + hj + hmin ≤ L, h̄q = L otherwise, for q = p, p+ 1, . . . , p+wj − 1.
If column p is not empty (i.e., h̄p > 0 holds), then the B&B also creates an additional
node in which it packs no item at all in p, and in this case it sets h̄p = L.

At any node of the tree we apply the following fathoming criteria:

1. if there are two items j and k, with hj = hk, wj = wk and j > k, then we pack
j only after k has been packed;

2. we define an array i(p) in which we store, for any column p, the maximum index
of an item packed with its left-most slice in p. At any iteration we allow to pack
an item j in p only if j > i(p);

3. we use the standard continuous lower bound on the area. Namely, if the
area of the items still to be packed is greater than the residual area (WL −
∑

p=0,1,...,W−1 h̄p), then we fathom the node;

4. We make use of the DP cut, a lower bounding technique based on iterated
solutions to subset sum problems, described in Section 4.3.1 of Kenmochi et al.
(2009).

Criteria 1 and 2 are derived from Mesyagutov et al. (2011) and are used to kill
symmetries: They forbid the same solution to be found at several nodes in the tree.
Criteria 3 and 4 are standard lower bounding techniques that forbid infeasible SPP(L)
solutions. Note that by using these criteria we are still enumerating all possible
P|cont|Cmax solutions, and hence we do not lose any possible solution for the SPP(L).

During the exploration of the B&B tree, whenever we find a feasible P|cont|Cmax so-
lution (“candidate” in the following), we invoke the y−check algorithm, with a max-
imum number of 2 · 107 iterations, to determine if it is also feasible for the SPP(L).

There are three possible exits for the B&B:

1. the y−check algorithm returns a feasible solution for a candidate. In this case
we found a feasible SPP(L) solution, so we terminate BLUE with a proof of
optimality;

2. we prove that no feasible solution exists, because we explore the complete tree
and the y−check algorithm returns infeasible for all candidates. We thus in-
crease L and re-iterate BLUE;
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3. we explore a maximum number of nodes, or the y−check algorithm fails for
a candidate (and does not find a feasible solution for any other attempted
candidate). In this case we proceed with the Benders’ decomposition described
below.

This B&B is effective on the so-called perfect packing instances, i.e., on those
instances in which the optimal solution has no waste. Thus, the maximum number
of explored nodes is set to 107 nodes if the instance appears to be a perfect packing,
i.e., if the best lower bound L is equal to

∑

j∈N wjhj/WH , and to 5 · 104 otherwise.
Other attempts that we made to speed up the algorithm, as, e.g., using dual feasible
functions at any node of the tree, or selecting the bottom-most niche instead of the
left-most column, led to slightly worse computational results.

Benders’ Decomposition for the SPP(L).

We solve the MILP (22)–(26) of Section 2.3, by lifting constraints (25) to (33) as
described in Section 4. As noticed before, we work on a fixed height L instead than
on the minimization of the strip height. This is simply obtained by disregarding the
objective function, and setting z = L in (24).

There are two ways to solve MILPs involving exponentially many constraints. In
a modern branch-and-cut implementation, the violated constraint is added as soon as
possible to the model, by using callbacks invoked at the nodes of the MILP enumera-
tion tree. In the standard delayed cut generation method, the master is solved to opti-
mality, then one finds violated cuts, if any, adds them to the model and re-optimizes
the master, until no further violation exists. We attempted both implementations,
and obtained better results with the delayed cut generation method. In our opinion,
the reason for the better behavior of the latter method is that it allows the solver to
use completely the automated preprocessing techniques, which are very effective for
the SPP(L), and the dynamic search method, which is much faster than the standard
branch-and-cut in the instances that we tested.

Whenever the MILP returns a feasible solution, we check if this is also feasible
for SPP(L) by invoking the y−check algorithm with a maximum number of 2 · 107

iterations. If the y−check algorithm fails for a candidate instance, then we suppose
the instance is infeasible, add the corresponding cut(s), and continue the search. Note
that we can still provide a proven optimal solution if we find another solution at the
same height L which is feasible for y−check.

Similarly to the B&B, also the Benders’ decomposition has three exits:

1. it finds a feasible, thus optimal, SPP(L) solution, so BLUE terminates;

2. it proves that no solution exists at height L, because, after possibly inserting
cuts, the MILP returns infeasible, thus BLUE increases L and re-iterates;
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3. it reaches a time limit, or the y−check algorithm fails for a candidate (and does
not find a feasible solution for any other candidate), so BLUE terminates with
a heuristic solution.

We also use two further enhancements. First, we decrease the number of variables
as follows:

1. We select the item j having the largest number of variables, and impose it to be
packed in the left half of the strip by removing all variables xjp with p ≥ W/2;

2. Suppose that an item j may be packed in a column p, but the area at the right of
j would be lost, because all items have width greater than W −p−wj . Further
suppose that there is another column q > p in which j can be packed. In this
case we remove variable xjp from the program, because any solution in which j
is packed in p may be transformed into an equivalent one in which j is packed
in q.

The second enhancement is a MILP-based heuristic, which is invoked before the
decomposition for the instances with identical items (i.e., items having same width
and height). We consider again the MILP (22)–(26) and solve it as discussed, but
replace the binary variables xjp with integer ones. In particular, suppose there are
k(j) items identical to item j and having index greater than j, then all these items
are removed from the instance, and variables xjp are constrained to be integer such
that 0 ≤ xjp ≤ 1 + k(j), for p ∈ W(j). After the model is solved, the values of
the integer variables are easily mapped back into the original binary ones, and the
solution is given to the y−check algorithm. If feasible, then the heuristic ends with an
optimal SPP(L) solution (and BLUE terminates), otherwise valid cuts are searched
with the procedure of Section 4, mapped again on the integer variables, and inserted
into the model. The resulting algorithm is just a heuristic because the Benders’ cuts
may forbid feasible solutions, but sometimes achieves feasible solutions in short time.

6 Computational Results

All algorithms have been implemented in C++ and run on an Intel Core(TM)2 Quad
CPU Q8200, running at 2.33 GHz under Linux openSUSE 11.4 operative system. The
LPs and the MILPs were solved with IBM Ilog Cplex 12.5, by setting parameters
RepeatPresolve = 3, Reduce = 3, Probe = 3, Simmetry = 5, and imposing it to
use a single processor (Threads = 1). The subset sum problems were solved using a
standard dynamic programming, and the knapsack problems with procedure combo

by Martello et al. (1999). Algorithm BLUE was allowed a time limit of 1200 CPU
seconds on each instance.
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6.1 Comparison with existing methods

We tested our algorithm on the benchmark instances that have been addressed with
exact methods in the SPP literature, and compare with the previous algorithms. We
refer to Boschetti and Montaletti (2010), and references therein, for the details on
the original papers that provided the benchmark instances. We address in total 560
instances, so we only provide here a summarized information of our results, but refer
to the appendix, and also to our web site www.or.unimore.it\resources\SPP.html,
for more details.

In Table 1 we give a summary of our results, and compare with the following
algorithms:

• MMV03 = Martello et al. (2003),

• BKC07 = the most performing algorithm (DA) by Bekrar et al. (2007),

• APT09 = Alvarez-Valdes et al. (2009),

• KINYN09 = the most performing SPP algorithm (G-STAIRCASE) by Ken-
mochi et al. (2009),

• BM10 = Boschetti and Montaletti (2010),

• CO11 = the most performing algorithm (DS) by Castro and Oliveira (2011),
and

• AIT12 = Arahori et al. (2012, forthcoming).

Under the name of each contribution, we report the speed of the computer that was
used, and the maximum time limit in seconds that was allowed. For each benchmark
set, we report the name of the set and the number of instances (#). For each algorithm
and each set, we report in column “opt” the number of optimal solutions, and in
column “sec” the average CPU time in seconds (computed only on the instances
optimally solved by that algorithm). The highest number of optimal solutions for
each set is reported in bold.

Benchmark sets ngcut, ht and beng are relatively easy. Both BM10, AIT12 and
BLUE solve all the instances in these sets to proven optimality in short time, while
the remaining approaches fail for a few instances. Our algorithm is almost as fast as
AIT12, and much faster than BM10. We refer to the appendix for the detailed results
on these “easy” sets. On the other benchmark sets, which are more difficult, BLUE
obtains better results than all previous algorithms, and always improves the number
of proven optimal solutions within short computational times. Some more details on
the results on these sets are presented in the next tables.
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Table 1: Summary of the computational results.

MMV03 BKC07 APT09 KINYN09 BM10 CO11 AIT12 BLUE
0.8 GHz 1.7 GHz 2 GHz 3 GHz 1.6 GHz 2.5 GHz (*) 2.33 GHz
t.l.=3600s t.l.=1200s t.l.=1200s t.l.=3600s t.l.=1200s t.l.=3600s t.l.=1200s

name # opt sec opt sec opt sec opt sec opt sec opt sec opt sec opt sec

ngcut 12 11 118.35 12 582.89 12 7.33 10 224.19 12 35.11 6 21.51 12 0.32 12 0.20
ht 9 7 514.33 7 288.86 8 1.58 9 8.63 9 350.00 7 558.77 9 2.64 9 6.47
beng 10 6 318.86 2 304.21 10 1.03 9 4.05 10 138.29 10 0.97 10 0.94
cgcut 3 1 11.48 1 323.54 1 0.00 1 0.12 1 0.69 2 407.86 3 11.23
gcut-01-04 4 2 0.00 1 0.00 2 0.00 3 2.47 3 85.19 4 2.71
gcut-05-13 9 6 0.76 7 28.72
n 13 8 39.20 4 345.04 10 7.81
“10 classes” 500 256 21.40 274 34.72 142 112.61 322 26.11

(*)=t.l.=3600 sec on a 3.3GHz for ngcut, ht, beng, cgcut, gcut and n; t.l.=1200 sec on a 2.53GHz for the 10 classes.

Table 2 gives the details of the results for the cgcut instances by Christofides
and Whitlock (1977). In column “opt” we report a “*” if the instance is solved to
proven optimality, in column “sec” we give the computational time, and for BLUE
we also report the optimal solution value z. For BKC07 we write n.a. when their
algorithm converged to a sub-optimal solution (a correct optimal solution for this case
was later provided by AIT12). The first instance is easily solved to optimality by all
algorithms. The second one was solved for the first time by AIT12 in slightly more
than 800 seconds, whereas BLUE only needs about 20 seconds. The third instance
was still an open problem, but BLUE solves it in less than 13 seconds.

Table 2: Results and comparison on the cgcut instances.

MMV03 BKC07 APT08 KINYN09 BM10 AIT12 BLUE
0.8 GHz 1.7 GHz 2 GHz 3 GHz 1.6 GHz 3.3 GHz 2.33 GHz
t.l.=3600s t.l.=3600s t.l.=1200s t.l.=3600s t.l.=1200s t.l.=3600s t.l.=1200s

name n W opt sec opt sec opt sec opt sec opt sec opt sec z opt sec

cgcut01 16 10 * 11.48 * 323.54 * 0.00 * 0.12 * 0.69 * 0.00 23 * 0.03
cgcut02 23 70 t.lim. n.a. t.lim. t.lim. t.lim. * 815.71 64 * 20.74
cgcut03 62 70 t.lim. t.lim. t.lim. t.lim. t.lim. t.lim. 656 * 12.91

Table 3 gives the details of the results on the gcut instances by Beasley (1985).
When BLUE fails in closing the instance, in column z we provide the interval given by
the lower and upper bound that it found. The first four instances have been addressed
by all the exact algorithms in the table. Among them, instances gcut01 and gcut03
are very easy and were solved by almost all algorithms in a short time. Instance
gcut02 was already solved by BM10 in 7 seconds, and by AIT12 in 255 seconds,
whereas we need less than 2 seconds. Instance gcut04 was still an open problem, and
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we solve it in less than 9 seconds. The remaining nine instances are characterized
by a large width, from 500 to 3000. They were addressed just by BM10, that could
solve six of them, whereas we can solve one instance more, gcut11, by using a similar
computational effort.

Table 3: Results and comparison on the gcut instances.

MMV03 BKC07 APT08 BM10 AIT12 BLUE
0.8 GHz 1.7 GHz 2 GHz 1.6 GHz 3.3 GHz 2.33 GHz
t.l.=3600s t.l.=3600s t.l.=1200s t.l.=1200s t.l.=3600s t.l.=1200s

name n W opt sec opt sec opt sec opt sec opt sec z opt sec

gcut01 10 250 * 0.00 * 0.00 * 0.00 * 0.00 * 0.01 1016 * 0.01
gcut02 20 250 t.lim. n.a. t.lim. * 7.41 * 255.48 1187 * 1.76
gcut03 30 250 * 0.00 t.lim. * 0.00 * 0.00 * 0.09 1803 * 0.17
gcut04 50 250 t.lim. t.lim. t.lim. t.lim. t.lim. 2995 * 8.88
gcut05 10 500 * 0.69 1273 * 0.30
gcut06 20 500 * 1.33 2622 * 1.11
gcut07 30 500 * 0.36 4693 * 0.56
gcut08 50 500 t.lim. [5824, 5904] t.lim.

gcut09 10 1000 * 0.09 2317 * 0.12
gcut10 20 1000 * 2.08 5964 * 35.63
gcut11 30 1000 t.lim. 6866 * 163.10
gcut12 50 1000 * 0.00 14690 * 0.19
gcut13 32 3000 t.lim. [4803, 4945] t.lim.

The optimal solutions of the two most important open problems that we closed
in these two sets, namely cgcut03 and gcut04, are depicted in the appendix. They
are very interesting, because characterized by complex non-guillotine structures, that
create large holes and make it difficult to compute both the lower and the upper
bound. The solutions that we obtained on all other instances are available on our
web site.

The details of the results on the n instances by Burke et al. (2004) are given in
Table 4. In terms of exact algorithms, this set was addressed only by KINYN09 (just
the first 12 instances, using algorithm StaircasePP) and BM10. Algorithm BLUE
largely outperforms these two exact algorithms, solving more instances to proven
optimality, using usually less time. Note that these instances have been built ad hoc
to have zero waste, and hence represent an interesting test bed more for heuristics
than for exact algorithms (indeed, that was their original scope), due to the fact that
the computation of sophisticated lower bounds is useless.

The details of the results on the 10 classes proposed by Berkey and Wang (1987)
and Martello and Vigo (1998) are given in Table 5. Each class contains 50 instances,
divided into 5 groups of 10 instances, one for each value of n ∈ {20, 40, 60, 80, 100}.
These sets have been addressed by APT08, BM10, and AIT12. Each line in the table
gives the number of optimal solutions and average time (for the instances solved to
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Table 4: Results and comparison on the n instances.
KINYN09 BM10 BLUE
3 GHz 1.6 GHz 2.33 GHz

t.l.=3600s t.l.=1200s t.l.=1200s
name n W opt sec opt sec z opt sec

n01 10 40 * 0.27 * 0 40 * 0.01
n02 20 30 * 0.08 * 2.16 50 * 0.04
n03 30 30 * 289.09 * 770.55 50 * 0.11
n04 40 80 * 23.02 t.lim. 80 * 0.16
n05 50 100 t.lim. t.lim. 100 * 4.63
n06 60 50 * 0.05 t.lim. 100 * 4.21
n07 70 80 * 0.11 * 607.45 100 * 16.79
n08 80 100 t.lim. t.lim. [80; 83] t.lim.

n09 100 50 t.lim. t.lim. 150 * 38.13
n10 200 70 * 0.22 t.lim. 150 * 6.31
n11 300 70 * 0.74 t.lim. 150 * 7.71
n12 500 100 t.lim. t.lim. [300; 311] t.lim.

n13 3152 640 t.lim. [960; 988] t.lim.

proven optimality), for each group and each algorithm. We present results only for
those groups in which at least one instance was solved by one of the algorithms.
BLUE is on average faster and provides a higher number of proven optimal solutions
than the previous algorithms. Notably, it solves for the first time all instances with
n = 20 for the classes 3, 4, and 5.

6.2 Evaluation of the behavior of BLUE

The most effective approaches published in the SPP literature are branch-and-bound
algorithms based on the idea of building solutions by packing one item at a time in
the strip. Algorithm BLUE has a completely different approach, that, intuitively,
divides items into slices, packs slices, and then attempts the reconstruction of the
original items. This innovative approach appears to perform better on all benchmark
instances. This can be noted, for example, in Figure 4. The figure focuses again
on the 10 classes, and graphically depicts the number of optimal solutions for each
algorithm and each class, from the most difficult to the easiest. It can be noted that
BLUE provides equal or better results than the other algorithms on each class.

It is important to notice that all the components of BLUE contributes to the good
results. The root node solves to optimality 279 instances out of 560, with an average
time of about 10 seconds. Our new upper bound U2 improves 154 times the upper
bound U1 that we derived from the literature. The new lower bound L4 improves 122
times the maximum value among the first three lower bounds that we took from the
literature (L1, L2, and L3), and then L5 obtains other 15 further improvements.

The main loop decreases the upper bound in 49 cases, and, most important,
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Table 5: Results and comparison on the 10 classes (10 instances per line).
APT08 BM10 AIT12 BLUE
2 GHz 1.6 GHz 2.53 GHz 2.33 GHz

t.l.=1200s t.l.=1200s t.l.=1200s t.l.=1200s
class n W opt sec opt sec opt sec opt sec

1 20 10 10 2.75 10 0.67 10 137.36 10 0.44
40 10 10 6.29 10 19.55 4 0.48 10 0.12
60 10 7 28.71 10 39.97 2 4.97 10 0.25
80 10 9 105.30 10 14.26 1 0.09 10 0.44

100 10 5 93.14 10 95.68 2 0.04 10 0.92

2 20 30 9 0.40 10 75.75 10 1.69 10 2.68
40 30 9 0.48 10 103.55 10 0.01 10 0.13
60 30 8 4.68 10 146.93 10 0.02 10 0.32
80 30 8 2.63 10 101.84 10 0.01 10 0.42

100 30 9 5.32 10 81.93 10 0.04 10 0.51

3 20 40 8 229.49 9 77.01 9 292.73 10 15.13
40 40 6 0.44 6 0.37 4 12.17 9 113.45
60 40 4 2.38 4 19.23 0 9 72.18
80 40 5 1.79 5 12.97 0 8 2.64

100 40 6 2.84 6 20.99 0 7 4.68

4 20 100 1 8.00 1 608.88 8 371.77 10 171.68
40 100 0 0 1 528.75 0

5 20 100 8 148.75 6 10.06 7 162.17 10 66.92
40 100 7 1.45 8 12.50 7 48.36 10 4.18
60 100 6 1.39 7 61.03 1 362.40 8 1.30
80 100 6 1.83 6 10.23 1 0.10 8 1.57

100 100 4 11.32 5 41.25 0 7 21.15

6 20 300 0 0 1 755.45 5 196.91

7 20 100 10 0.42 10 0.08 10 59.39 10 0.08
40 100 10 0.59 10 0.42 1 325.52 10 0.20
60 100 10 1.33 10 0.44 0 10 0.45
80 100 10 1.03 10 0.79 0 10 1.29

100 100 10 3.23 10 2.07 0 10 1.39

8 20 100 1 10.55 1 37.67 2 303.65 2 6.66

9 20 100 10 0.01 10 0.00 10 27.16 10 0.04
40 100 10 0.54 10 0.08 2 258.60 10 0.20
60 100 10 0.02 10 0.00 0 10 0.25
80 100 10 0.14 10 0.11 0 10 0.37

100 100 10 0.16 10 0.12 0 10 0.60

10 20 100 7 56.42 7 20.28 8 422.23 9 75.17
40 100 2 16.46 2 1.48 1 115.44 6 247.68
60 100 1 0.44 1 62.33 0 3 69.84
80 100 0 0 0 1 453.11
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Figure 4: Number of optimal solutions (out of 50) per class, from the most difficult
to the easiest.

increases the lower bound in 106 cases. In this way it solves to optimality other 98
instances. The loop is iterated on average just once per instance. Inside the loop, the
feasibility or infeasibility of an instance is proven 39 times by the branch-and-bound,
and 328 times by the Benders’ decomposition. Overall, the Benders’ decomposition
is the most important part of the algorithm, because it performs very well on the
difficult instances.

The two enhancements that we developed to speed up this decomposition are
both important. The strategies to decrease the number of variables are effective
on instances having large W . For example, for gcut04 they reduce the number of
variables from 1640 to just 424. The MILP-based heuristic is also successful in a few
important cases. For example, it finds the optimal solution of cgcut03 in just a few
seconds.

In Figure 5 and Table 6 we show some insight about two of the most innovative
components of BLUE, namely, the y−check algorithm and the procedure to lift the
Benders’ cuts. Considering the overall run on the 560 instances, the y−check algorithm
has been invoked 2490 times by the exact algorithms of Section 5.2. It terminated
within the given iteration limit for 96.6% of the cases. In Figure 5 we show the evolu-
tion, in terms of percentage of instances solved, for the first 2 seconds of computation.
In just 0.01 seconds the algorithm solves 40% of the instances. This is caused by the
fact that the algorithm is very quick in finding a feasible solution, if any: It takes
just 0.01 seconds on average and 0.24 in the worst case to prove feasibility. Then
the task becomes harder, but still the algorithm needs just 0.8 seconds on average to
prove the infeasibility of an instance. Being the problem strongly NP-hard, it is not
surprising that a few y−check instances remain unsolved after one minute.

In Table 6, the impact of the procedures to combine and lift the Bender’s cuts is
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Figure 5: Evolution of the y−check algorithm in the first 2 seconds of computation.

evaluated on a few successful examples, taken from instances in the 10 classes that
were not solved to proven optimality by previously published algorithms. We com-
pare the results obtained by a version of BLUE that uses the Benders’ cuts (20),
another version that uses the combinatorial Benders’ (21) obtained by the procedure
of Section 4.1, and the final version that uses the lifted combinatorial Benders’ (33).
For each case and each instance we report the optimality of the solution (opt), the
computational time (sec), the total time spent inside the MILP of the decomposi-
tion (sec MILP), the number of added cuts (num cuts), the number of calls to the
y−check algorithm (num y-ch.) and the total seconds it elapsed (sec y-ch.).

The standard cuts solve 3 out of 6 instances. The combinatorial cuts do not
increase the number of optimal solutions, but can decreases consistently the compu-
tational effort, as happens for example in instance 05-40-01, where the time decreases
from 610 to 17 seconds. The lifted cuts improve consistently the previous configu-
rations, solving all instances to optimality and decreasing the computational effort.
The cuts are efficient in both strengthening the formulation, and thus reducing sec
MILP, and in reducing the number of calls and the time spent for problem y−check.

7 Conclusions

We proposed an innovative algorithm for the exact solution of the Strip Packing
Problem, which is based on a Benders’ decomposition and is enriched with several
tailored techniques. We proved that the slave problem arising in the decomposition
is difficult, but solved it with an algorithm that is efficient in practice. We improved
the standard Benders’ cuts by using the concept of combinatorial Benders’ cuts, and
a new lifting procedure which is very effective on the difficult instances.
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Table 6: Evaluation of the impact of the different cuts on some previously unsolved
instances from the 10 classes.

Benders’ cuts (20) Combinatorial Benders’ (21) Lifted combinatorial Benders’ (33)
sec num num sec sec num num sec sec num num sec

name opt sec MILP cuts y-ch. y-ch. opt sec MILP cuts y-ch. y-ch. opt sec MILP cuts y-ch. y-ch.

05-40-01 * 610.65 607.70 1259 1260 1.70 * 17.32 12.56 494 39 0.01 * 11.80 5.17 400 17 0.23
06-20-05 t.lim. 1192.45 1124 1127 0.26 t.lim. 590.58 6786 525 0.09 * 146.92 138.24 600 28 0.00
06-20-08 * 662.63 645.97 8 9 0.00 * 657.94 640.99 52 5 0.00 * 604.64 586.98 25 2 0.00
10-40-08 t.lim. 564.82 857 857 631.91 t.lim. 125.83 2340 181 152.21 * 551.48 177.05 1402 59 129.47
10-40-10 * 169.38 167.89 185 186 0.12 * 240.64 147.6 2197 170 0.18 * 110.81 81.88 1625 66 0.09
10-60-08 t.lim. 1145.65 742 742 50.40 t.lim. 101.85 316 71 2.86 * 208.67 44.36 216 13 4.17

The proposed algorithm consistently outperforms the previously published ap-
proaches. It provides a larger number of optimal solutions in similar or smaller
computational effort, and solves for the first time to proven optimality instances that
were open since decades.

The general framework that we propose can be adapted to solve other two-
dimensional packing problem, such as the two-dimensional knapsack and the two-
dimensional bin packing. It can be also generalized to higher dimensional problems.
These represent interesting future research directions.
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8 Appendix

This electronic companion is structured as follows. In Section 8.1, we give the proof
of Theorem 1. In Section 8.2 we graphically depict two optimal solutions whose
structure was commented in the paper. In Section 8.3 we provide additional details
on the computational results that we obtained.

8.1 Proof of Theorem 1

In order to prove that y−check is strongly NP−complete, we give a polynomial
transformation from the following problem.

Definition 5 3-Partition: Given n = 3m items, each having weight sj ∈ Z+

(j = 1, 2, . . . , n), and a value B ∈ Z+ such that
∑n

j=1 sj = 3B, find a partition of
the items into m disjoint subsets S1, S2, . . . , Sm such that

∑

j∈Si
sj = B holds for

i = 1, 2, . . . , m, if any.

In the proof of Lemma 1 we used nine items to obtain two 1 × B buckets. Here
we want to obtain m 1 × B buckets, using an iterative method that adds nine more
items at a time. We start by considering two 5× (2B + 3) rectangles, each obtained
by packing nine items as those of Figure 2 (see the 18 hatched items in Figure 6), and
we embed them into nine new items following the same scheme used in Lemma 1. In
this scheme, however, the new items produce two buckets of width five. In Figure 6
we depict this frame, by drawing in white the new items.

In details, let us call 1′, 2′, . . . , 9′ and 1′′, 2′′, . . . , 9′′ the hatched items in the two
buckets. Items 1′ and 1′′ cannot be packed in the same 5× (2B + 3) bucket, because
they are too high. As a consequence also items 3′ and 3′′ must be packed in different
buckets. The same reasoning applies to items 2′ and 2′′, and consequently to items 5′

and 5′′. Continuing this reasoning one can show that also the remaining items must
be packed as in Figure 2. We have thus created two copies of the packing of Figure
2 and four 1 × B empty buckets. We now consider the resulting solution as a single
9× (4B+9) rectangle and we embed two of them in a frame of other nine items. We
continue this process for, say, k times, until we create 2k 1 × B empty buckets with
2k ≥ m (the technical details on the widths, heights and x−coordinates of the items
are given at the end of this proof).

Let α denote the number of items used to create the 2k 1×B buckets. We complete
the instance by adding n items with wj = 1, hj = sj−α (j = α + 1, α + 2, . . . , α + n)
and psj corresponding to the x−coordinate of the empty buckets, and other 2k − m
items with wj = 1, hj = B and the same psj of the previous ones. Each of the last
2k − m items completely fills 2k − m buckets, so leaving exactly m empty buckets.
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Figure 6: Basic frame for the reduction of 3-Partition to y−check.

These can be feasibly filled by the remaining items if and only if 3-Partition has a
feasible solution. Since 3-Partition is strongly NP−complete, the same holds for
y−check.

Details on sizes and coordinates of the items.

We constructed the instance by adding for k times nine items as those depicted in
Figure 2. Let (i, j) denote the item of “type” i (i = 1, 2, . . . , 9) used at iteration
j (j = 1, 2, . . . , k). The items of type 1, 2, 6, 7, and 8 have width one, but height
depending on the iteration, the items of type 3, 4, and 5 have height one, but width

Combinatorial Benders' Cuts for the Strip Packing Problem

36 CIRRELT-2013-27



depending on the iteration. In particular:

w(i,j) = 1, h(i,j) = 2jB + 3(2j − 1)− 1 i = 1, 2

w(i,j) = 1, h(i,j) = h(1,j)/2 i = 6, 7

w(i,j) = 1, h(i,j) = h(6,j) − 1 i = 8, 9

h(i,j) = 1, w(i,j) =

{

3 for j = 1
3 + 2j for j > 1

i = 3, 4, 5.

The x−coordinate of an item (i, j) is:

2(k − j) i = 1, 3

1 + 2(k − j) i = 4, 6, 9

2 + 2(k − j) i = 5

2k − 2(k − j) i = 2

2k − 1− 2(k − j) i = 7, 8.

This information concludes the proof. �

8.2 Graphical representation of two optimal solutions

In Figure 7 we depict an optimal solution of instance cgcut03 by Christofides and
Whitlock (1977), and in Figure 8 an optimal solution of instance gcut04 by Beasley
(1985). Both figures are scaled, so that a unit on the height is one half of a unit on
the width.

As described in the paper, these two solutions are characterized by complex non-
guillotine structures, that create large holes and make difficult the computation of
both the lower and the upper bound. The solutions that we obtained on all other
instances, either proven optimal or heuristic, are available for download on our web
site www.or.unimore.it\resources\SPP.html.

8.3 Additional Computational Results

In Table 7 we give the results of our algorithm on the “easy” benchmark sets ngcut,
ht and beng. As done in the paper, in column “opt” we report a “*” if the instance
is solved to proven optimality, in column “sec” we give the computational time, and
in column z we report the solution value found by BLUE. We recall that we compare
with: MMV03 = Martello et al. (2003), BKC07 = the most performing algorithm
(DA) by Bekrar et al. (2007), APT09 = Alvarez-Valdes et al. (2009), KINYN09 =
the most performing algorithm (G-STAIRCASE) by Kenmochi et al. (2009), BM10
= Boschetti and Montaletti (2010), CO11 = the most performing algorithm (DS) by
Castro and Oliveira (2011), and AIT12 = Arahori et al. (2012, forthcoming).
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0 (43 x 31)

1 (43 x 31)

2 (43 x 31)

3 (43 x 31)

4 (41 x 30)

5 (41 x 30)

6 (39 x 29)

7 (39 x 29)

8 (39 x 29)

9 (39 x 29)

10 (38 x 28)

11 (38 x 28)

12 (38 x 28)

13 (38 x 28)

14 (37 x 27)

15 (37 x 27)

16 (37 x 27)

17 (36 x 26)

18 (36 x 26)

19 (36 x 26)

20 (36 x 26)

21 (35 x 25)
22 (35 x 25)

23 (35 x 25)

24 (34 x 24)

25 (34 x 24)

26 (34 x 24)

27 (34 x 24)

28 (32 x 22)

29 (32 x 22)

30 (32 x 22)

31 (27 x 17)

32 (27 x 17)

33 (25 x 16)

34 (25 x 16)

35 (25 x 16)

36 (25 x 16)

37 (24 x 15)

38 (24 x 15)

39 (24 x 15)

40 (23 x 33)

41 (23 x 33)

42 (23 x 33)

43 (23 x 33)

44 (21 x 31)

45 (21 x 31)

46 (21 x 31)

47 (18 x 29)

48 (18 x 29)

49 (18 x 29)

50 (17 x 9)
51 (14 x 23)

52 (14 x 23)

53 (14 x 23) 54 (14 x 23)

55 (12 x 21)

56 (12 x 21)

57 (12 x 21)

58 (11 x 19)

59 (11 x 19)

60 (11 x 19)

61 (11 x 19)

Figure 7: Optimal solution of instance cgcut03 (W=70, z = 656).
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9 (151 x 164)

10 (151 x 68)

11 (147 x 92)

12 (145 x 141)

13 (141 x 144)

14 (141 x 70)

15 (139 x 174)

16 (139 x 147)

17 (139 x 123)

18 (132 x 67)

19 (132 x 127)

20 (128 x 138)

21 (122 x 183)

22 (118 x 111)

23 (117 x 173)

24 (111 x 160)

25 (109 x 128)

26 (109 x 177)

27 (107 x 110)

28 (105 x 141)

29 (103 x 139)

30 (103 x 92)

31 (99 x 166)

32 (98 x 156)

33 (97 x 125)

34 (97 x 106)

35 (97 x 85)

36 (97 x 69)

37 (95 x 103)

38 (92 x 86)

39 (87 x 178)

40 (86 x 165)

41 (84 x 73)

42 (84 x 68)

43 (83 x 71)

44 (82 x 62) 45 (77 x 121)

46 (74 x 88)

47 (69 x 66)

48 (64 x 101)

49 (63 x 171)

Figure 8: Optimal solution of instance gcut04 (W=250, z = 2995).
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Table 7: Results and comparison on nguct, ht, and beng instances.

MMV03 BKC07 APT09 KINYN09 BM10 CO11 AIT12 BLUE
0.8GHz 1.7GHz 2GHz 3GHz 1.6GHz 2.5GHz 3.3GHz 2.33GHz

t.l.=3600s t.l.=3600s t.l.=1200s t.l.=3600s t.l.=1200s t.l.=3600s t.l.=3600s t.l.=1200s
name n W opt sec opt sec opt sec opt sec opt sec opt sec opt sec z opt sec

ngcut01 10 10 * 0.05 * 23.20 * 2.20 * 0.39 * 0.08 * 81.60 * 0.00 23 * 0.19
ngcut02 17 10 * 11.31 * 1052.72 * 3.10 t.lim. * 0.47 t.lim. * 0.07 30 * 0.08
ngcut03 21 10 * 27.01 * 519.70 * 0.00 * 0.10 * 1.62 * 12.60 * 0.00 28 * 0.03
ngcut04 7 10 * 0.00 * 0.02 * 0.00 * 0.14 * 0.14 * 1.22 * 0.00 20 * 0.04
ngcut05 14 10 * 0.00 * 119.58 * 0.00 * 0.07 * 0.34 * 3.18 * 0.00 36 * 0.02
ngcut06 15 10 * 727.20 * 1079.26 * 4.60 * 147.31 * 0.84 t.lim. * 0.16 31 * 0.41
ngcut07 8 20 * 0.00 * 0.00 * 0.00 * 0.10 * 0.38 * 0.98 * 0.00 20 * 0.01
ngcut08 13 20 * 53.09 * 178.06 * 3.50 * 0.50 * 15.39 * 29.50 * 0.06 33 * 0.36
ngcut09 18 20 t.lim. * 1269.83 * 58.10 * 1971.64 * 286.55 t.lim. * 3.48 50 * 0.67
ngcut10 13 30 * 0.18 * 1152.83 * 2.60 * 113.98 * 6.58 t.lim. * 0.01 80 * 0.06
ngcut11 15 30 * 483.01 * 733.18 * 13.80 * 7.71 * 107.47 t.lim. * 0.04 52 * 0.44
ngcut12 22 30 * 0.00 * 866.32 * 0.00 t.lim. * 1.41 t.lim. * 0.00 87 * 0.03

tot opt/avg sec 11 118.35 12 582.89 12 7.33 10 224.19 12 35.11 6 21.51 12 0.32 12 0.20

ht01 16 20 * 10.84 * 0.00 * 0.00 * 0.07 * 3.84 * 2.08 * 0.00 20 * 0.02
ht02 17 20 * 3043.25 * 378.81 * 0.40 * 0.07 * 149.98 * 5.28 * 0.00 20 * 0.25
ht03 16 20 * 500.75 * 197.53 * 0.10 * 0.10 * 1.22 * 2.51 * 0.00 20 * 0.03
ht04 25 40 * 8.26 * 874.05 * 0.10 * 0.11 * 611.70 * 91.80 * 0.00 15 * 0.06
ht05 25 40 * 20.29 * 571.65 * 0.10 * 0.06 * 300.95 * 20.40 * 0.00 15 * 0.06
ht06 25 40 * 16.94 * 0.00 * 1.40 * 0.06 * 25.79 * 18.30 * 0.00 15 * 0.05
ht07 28 60 t.lim. n.a. * 1.80 * 0.10 * 654.56 * 3771.00 * 0.01 30 * 0.06
ht08 29 60 t.lim. n.a. t.lim. * 76.97 * 732.05 t.lim. * 23.77 30 * 57.66
ht09 28 60 * 0.00 * 0.00 * 8.70 * 0.13 * 669.90 t.lim. * 0.00 30 * 0.07

tot opt/avg sec 7 514.33 7 288.86 8 1.58 9 8.63 9 350.00 7 558.77 9 2.64 9 6.47

beng01 20 25 * 911.37 * 608.41 * 5.50 * 0.93 * 26.95 * 0.25 30 * 0.67
beng02 40 25 t.lim. t.lim. * 0.40 * 22.89 * 72.55 * 5.43 57 * 0.57
beng03 60 25 t.lim. t.lim. * 0.50 * 0.32 * 69.42 * 0.02 84 * 0.21
beng04 80 25 t.lim. t.lim. * 3.30 t.lim. * 198.22 * 0.01 107 * 1.46
beng05 100 25 * 500.62 t.lim. * 0.10 * 0.31 * 73.42 * 0.03 134 * 0.46
beng06 40 40 t.lim. t.lim. * 0.10 * 0.29 * 82.41 * 0.00 36 * 0.18
beng07 80 40 * 0.56 t.lim. * 0.10 * 0.18 * 607.33 * 0.04 67 * 2.47
beng08 120 40 * 500.54 t.lim. * 0.10 * 2.67 * 93.73 * 0.01 101 * 0.72
beng09 160 40 * 0.03 * 0.00 * 0.10 * 2.38 * 76.03 * 3.65 126 * 1.04
beng10 200 40 * 0.03 n.a. * 0.10 * 6.52 * 82.85 * 0.25 156 * 1.60

tot opt/avg sec 6 318.86 2 304.21 10 1.03 9 4.05 10 138.29 10 0.97 10 0.94
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