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Abstract. The distribution of products using compartmentalized vehicles involves many 

decisions such as the allocation of products to vehicle compartments, vehicle routing and 

inventory control. These decisions often span several periods, yielding a difficult 

optimization problem. In this paper we define and compare four main categories of the 

Multi-Compartment Delivery Problem (MCDP). We propose two mixed-integer linear 

programming formulations for each case, as well as specialized models for particular 

versions of the problem. Known and new valid inequalities are introduced in all models. 

We then describe a branch-and-cut algorithm applicable to all variants of the MCDP. We 

have performed extensive computational experiments on single-period and multi-period 

cases of the problem. The largest instances that could be solved exactly for these two 

cases contain 50 and 20 customers, respectively. 

Keywords. Multi-compartment delivery, vehicle-routing, inventory-routing, multi-products, 

multi-vehicles, branch-and-cut algorithm, fuel distribution. 

Acknowledgements. This work was partly supported by the Natural Sciences and 

Engineering Research Council of Canada (NSERC) under grant 39682-10. This support is 

gratefully acknowledged. We also thank the Réseau québécois de calcul de haute 

performance (RQCHP) for providing computing facilities. 

 

Results and views expressed in this publication are the sole responsibility of the authors and do not 
necessarily reflect those of CIRRELT. 

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
 
_____________________________ 

* Corresponding author: Leandro.Coelho@cirrelt.ca 

Dépôt légal – Bibliothèque et Archives nationales du Québec 
                     Bibliothèque et Archives Canada, 2013 

© Copyright  Coelho, Laporte and CIRRELT, 2013 



1 Introduction

This paper is concerned with a multi-period routing problem in which several products

must be delivered by compartmentalized vehicles to customers equipped with several

tanks. No two products can be combined within the same compartment or within the

same tank. The most common example arises in the distribution of petroleum products

by tanker trucks to underground tanks located in gas stations [8, 9, 10, 11, 27, 28]. Such

problems are also encountered in the maritime transportation of bulk products by ships

whose hull is divided into compartments [3, 14, 15, 20], in the collection of garbage and

recyclable products [24], and in livestock transportation [25].

We analyze the problem in the general context of inventory-routing where a centralized

agent is responsible for the distribution of one or several products over several periods,

and for controlling inventory levels the customer locations. For recent surveys on the

inventory-routing problem (IRP), see Andersson et al. [2] and Coelho et al. [7]. For recent

branch-and-cut algorithms applicable to IRPs, see Coelho and Laporte [5, 6].

In the fuel distribution problem, which is the central application of our problem, vehicles

are often not equipped with debit meters, which implies that whenever a delivery is

made, the full content of the compartment must be emptied. In other words, the load

of a compartment cannot be split between different tanks. This is the assumption made

in the fuel distribution papers of Cornillier et al. [8, 9, 10, 11], Popović et al. [27] and of

Vidović et al. [28]. However, in the general case, compartments can be equipped with debit

meters and the quantity delivered to tanks then becomes a continuous decision variable.

The ability to split the content of a compartment between several deliveries yields a first

classification of the problem. Likewise, a customer may or may not allow different vehicles

to fill the same tank in a given period. If a tank may receive deliveries from different

vehicles, it is said to be split. This distinction yields the second class of classification of

the problem. We show in Table 1 the four cases yielded by this classification. Note that

only the upper-left case of this table has been treated in the literature. The other three
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cases are new and are modeled and solved for the first time in this paper.

Table 1: Four cases of MCDPs yielded by the classification proposed in this paper

Cases
Tanks

Split Unsplit

Compartments
Split Split-Split Split-Unsplit

Unsplit Unsplit-Split Unsplit-Unsplit

Split compartments and split tanks yield an extra layer of difficulty to the problem. Even

the single-period version of the problem is much more complicated than the classical ve-

hicle routing problem [23] because it still contains several products, several compartments

and multiple tanks, which significantly increases the number of binary variables in the

model. Likewise, the single-product version of the MCDP is also more complicated than

the IRP [7] due to the presence of multiple compartments and multiple tanks.

In this paper we develop mathematical programming formulations which are adapted

to handle all four combinations of split and unsplit compartments and tanks. We also

propose an exact branch-and-cut algorithm applicable to all variants of the problem. It

extends the classical vehicle routing formulations [23] in which a relaxed problem is first

solved and subtour elimination constraints are added dynamically as they are found to

be violated. Two models are also presented for the cases where the number of customers

per vehicle route is limited to two or three.

Our main goals are to formally introduce, model and solve four classes of the MCDP

to optimality within a unified framework. A generic model is first presented and then

modified to account for the variants of the basic case. Known and new valid inequalities

are introduced in all models. A byproduct of this research is the introduction of a testbed

of instances which we have used for our experiments and are made available to the re-

search community. The proposed testbed is designed to cover a large set of combinations

regarding the number of customers, products, vehicles, and compartments, as well as the

Classification, Models and Exact Algorithms for Multi-Compartment Delivery Problems
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length of the planning horizon, ranging from relatively easy instances to very challenging

ones.

The remainder of the paper is organized as follows. In Section 2 we provide a formal

description of the problem. In Section 3 we propose mixed-integer linear programming

formulations covering all variants of the problem. A branch-and-cut algorithm applicable

to all cases is described in Section 4. Extensive computational experiments are presented

in Section 5, followed by our conclusions in Section 6.

2 Formal description of the problem

We now formally introduce the MCDP. The problem is defined on an undirected graph

G = (V , E), where V = {0, ..., n} is the vertex set and E = {(i, j) : i, j ∈ V , i < j} is

the edge set. Vertex 0 represents the supplier and the vertices of V ′ = V \{0} represent

customers. The supplier distributes a set of M = {1, . . . ,M} types of products to the

customer compartments. Customers incur unit inventory holding costs hm
i per period

(i ∈ V , m ∈ M). The length of the planning horizon is T . We assume the supplier

holds enough inventory to meet all the demand during the planning horizon and that

inventories are not allowed to be negative, i.e., backlogging is not allowed. The variables

Imt
i define the inventory level of product m at the end of period t at customer i ∈ V ′.

At the beginning of the planning horizon the decision maker knows the current inventory

level of all customers (Im0
i for i ∈ V ′, m ∈M), and has full knowledge of the demand dmt

i

of product m of each customer i for each time period t. There is a set K = {1, ..., K} of

vehicles available. Each vehicle k is made up of a set L = {1, . . . , L} of compartments l

of capacity Qlk, and tank m of customer i has a capacity Cm
i . Each vehicle can perform

one route per time period. A routing cost cij is associated with edge (i, j) ∈ E .

The objective of the MCDP is to minimize the total routing and inventory holding cost

while satisfying the demand for every product for each customer. The replenishment plan

is subject to the following constraints:
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• the vehicle compartment capacities cannot be exceeded;

• the inventory level of each product at each customer can never exceed the maximum

capacity of the tanks;

• the supplier’s vehicles can perform at most one route per time period, each starting

and ending at the supplier.

A solution to the problem determines which customers to serve in each time period, which

vehicles and compartments to use for each product, how much of each product to deliver

to each visited customer, and which vehicle routes to use.

3 Mathematical models

We first propose a mixed-integer linear programming model for the most general case of

the MCDP, i.e., the version with split compartments and split tanks. We then present

small modifications needed to account for the remaining three different combinations of

these criteria. We also present two variants applicable to cases where the number of

customers per vehicle route is limited.

The model works with routing variables xkt
ij , (i, j) ∈ E , equal to the number of times edge

(i, j) is used on the route of vehicle k in period t. It also uses binary variables ykti equal to

one if and only if node i is visited by vehicle k in period t, wmlkt equal to one if and only

if product m is loaded in compartment l of vehicle k in period t, and zmlkt
i equal to one if

and only if customer i receives a delivery of product m from compartment l of vehicle k

in period t. We denote by qmlkt
i the quantity of product m delivered to customer i using

compartment l of vehicle k in period period t. As previously stated, let Imt
i denote the

inventory level of product m at vertex i ∈ V at the end of period t ∈ T .

Classification, Models and Exact Algorithms for Multi-Compartment Delivery Problems
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3.1 Split compartments and split tanks

In this section we provide two models for the MCDP with split compartments and split

tanks. The model presented in Section 3.1.1 makes an explicit assignment of products

to compartments, whereas the model presented in Section 3.1.2 makes this assignment

implicitly.

3.1.1 Explicit compartment assignment model for the MCDP with split com-

partments and split tanks

We first present a formulation for the most general version of the problem:

minimize
∑
i∈V ′

∑
m∈M

∑
t∈T

hm
i I

mt
i +

∑
(i,j)∈E

∑
k∈K

∑
t∈T

cijx
kt
ij , (1)

subject to

Imt
i = Im,t−1

i +
∑
l∈L

∑
k∈K

qmlkt
i − dmt

i i ∈ V ′ m ∈M t ∈ T (2)

0 ≤ Imt
i ≤ Cm

i i ∈ V ′ m ∈M t ∈ T (3)∑
l∈L

∑
k∈K

qmlkt
i ≤ Cm

i − Im,t−1
i i ∈ V ′ m ∈M t ∈ T (4)

∑
l∈L

qmlkt
i ≤ Cm

i ykti i ∈ V ′ m ∈M k ∈ K t ∈ T (5)

qmlkt
i ≤ Qlkzmlkt

i i ∈ V ′ m ∈M l ∈ L k ∈ K t ∈ T (6)∑
i∈V ′

qmlkt
i ≤ Qlk m ∈M l ∈ L k ∈ K t ∈ T (7)

zmlkt ≤ ykti i ∈ V ′ m ∈M l ∈ L k ∈ K t ∈ T (8)

zmlkt
i ≤ wmlkt i ∈ V ′ m ∈M l ∈ L k ∈ K t ∈ T (9)∑

m∈M

wmlkt ≤ 1 l ∈ L k ∈ K t ∈ T (10)
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∑
j∈V,i<j

xkt
ij +

∑
j∈V,j<i

xkt
ji = 2ykti i ∈ V k ∈ K t ∈ T (11)

∑
i∈Z

∑
j∈Z,i<j

xkt
ij ≤

∑
i∈Z

ykti − yktn Z ⊆ V ′ n ∈ Z k ∈ K t ∈ T (12)

qmlkt
i ≥ 0 i ∈ V ′ m ∈M l ∈ L k ∈ K t ∈ T (13)

xkt
i0 ∈ {0, 1, 2} i ∈ V ′ k ∈ K t ∈ T (14)

xkt
ij , w

mlkt, zmlkt
j ∈ {0, 1} i ∈ V j ∈ V ′, i < j m ∈M l ∈ L k ∈ K t ∈ T (15)

ykti ∈ {0, 1} i ∈ V k ∈ K t ∈ T . (16)

The objective function (1) minimizes the total inventory and routing costs. Constraints

(2) define the inventory at the customers, while constraints (3) and (4) ensure that the

inventory level of product m at customer i is non-negative and does not exceed the max-

imum capacity Cm
i . Constraints (5) allow deliveries to tank m of customer i only if a

vehicle visits it. Likewise, constraints (6) allow deliveries of product m to customer i

using compartment l of vehicle k only if the compartment is assigned to that customer.

Constraints (7) ensure the vehicle compartment capacities are respected, while constraints

(8) and (9) link variables ykti , wmlkt and zmlkt
i . Specifically they allow deliveries from any

compartments only if the vehicle visits the customer. Constraints (10) limit the use of

each compartment to a single type of product. Constraints (11) and (12) are degree con-

straints and subtour elimination constraints, respectively. Constraints (13)−(16) enforce

integrality and non-negativity conditions on the variables.

We propose five classes of inequalities to strengthen the formulation just presented.

1. Logical inequalities

Fischetti et al. [17] and Gendreau et al. [19] have proposed the following logical cuts

in order to link routing variables x with visiting variables y in a stronger fashion:

xkt
i0 ≤ 2ykti i ∈ V k ∈ K t ∈ T (17)

xkt
ij ≤ ykti i, j ∈ V k ∈ K t ∈ T (18)

Classification, Models and Exact Algorithms for Multi-Compartment Delivery Problems
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ykti ≤ ykt0 i ∈ V ′ k ∈ K t ∈ T . (19)

Constraints (17) and (18) are referred to as logical inequalities. They enforce the

condition that if the supplier is the successor of a customer on the route of vehicle

k in period t, i.e., xkt
i0 = 1 or 2, then i must be visited by vehicle k, i.e., ykti = 1. A

similar reasoning applies to customer j in inequalities (18). Constraints (19) include

the supplier in the route of vehicle k if any customer is visited by that vehicle in

that period.

2. Extended logical inequalities

We propose the following sets of constraints, which we call extended logical inequal-

ities because they further enforce logical relationships between integer variables of

the problem:

∑
m∈M

∑
l∈L

zmlkt
i ≥ ykti i ∈ V ′ k ∈ K t ∈ T (20)

∑
m∈M

∑
l∈L

wmlkt ≥ ykti i ∈ V ′ k ∈ K t ∈ T (21)

ykti ≥ zmlkt
i i ∈ V ′ m ∈M l ∈ L k ∈ K t ∈ T (22)

wmlkt ≥ zmlkt
i i ∈ V ′ m ∈M l ∈ L k ∈ K t ∈ T (23)∑

i∈V ′

∑
m∈M

∑
l∈L

zmlkt
i ≥

∑
i∈V ′

xkt
0i k ∈ K t ∈ T (24)

∑
m∈M

∑
l∈L

wmlkt ≥
∑
i∈V ′

xkt
0i k ∈ K t ∈ T . (25)

Inequalities (20) ensure that if a vehicle k is assigned to a customer i in period t,

i.e., ykti = 1, then a product from some compartment of vehicle k must be delivered

to customer i. Inequalities (21) apply a similar reasoning to the assignment of

a product to a compartment. Inequalities (22) and (23) tighten the relationships

between customers, products and compartments. Specifically, if a customer is set

to receive the delivery of a product from a given compartment, i.e., zmlkt
i = 1, then

Classification, Models and Exact Algorithms for Multi-Compartment Delivery Problems
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vehicle k must be assigned to customer i in period t (i.e., ykti = 1 in inequality (22))

and product m must be assigned to compartment l in vehicle k in period t (i.e.,

wmlkt = 1 in inequality (23)). Finally, inequalities (24) and (25) enforce the delivery

of a product to a customer and the assignment of a product to a compartment

whenever a delivery route exists in period t using vehicle k.

3. Outgoing degree inequalities at the depot

We adapt the outgoing degree of the depot constraints of the split delivery VRP

[12] to the MCDP:

∑
i∈V ′

xkt
0i ≥

∑
i∈V ′

qmlkt
i /Qlk m ∈M l ∈ L k ∈ K t ∈ T . (26)

4. Symmetry breaking inequalities

We also tighten the formulation by imposing the following vehicle symmetry break-

ing constraints valid for the case where the vehicle fleet is homogeneous:

ykt0 ≤ yk−1,t0 k ∈ K\{1} t ∈ T (27)

ykti ≤
∑
j<i

yk−1,tj i ∈ V ′ k ∈ K\{1} t ∈ T . (28)

Constraints (27) ensure that vehicle k cannot leave the depot if vehicle k − 1 is

not used. This symmetry breaking rule is then extended to the customer vertices

through constraints (28) which state that if customer i is assigned to vehicle k in

period t, then vehicle k− 1 must serve a customer with an index lower than i in the

same period. These constraints are inspired from those proposed by Fischetti et al.

[16] for the capacitated VRP and by Albareda-Sambola et al. [1] for a plant location

problem. They have also been used in an IRP setting by Coelho and Laporte [4, 6].

Finally, we also propose breaking the symmetries induced by vehicle compartments

and product allocations with the following constraints which are valid if the vehicle

fleet and compartments are homogeneous:

Classification, Models and Exact Algorithms for Multi-Compartment Delivery Problems
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zhlktj ≤
∑
i∈V ′

∑
m∈M

zm,l−1,kt
i j ∈ V ′ h ∈M l ∈ L\{1} k ∈ K t ∈ T (29)

whlkt ≤
∑
m∈M

wm,l−1,kt h ∈M l ∈ L\{1} k ∈ K t ∈ T (30)

zhlkti ≤
∑

j∈V ′,j≤i

∑
m∈M

zm,l−1,kt
j j ∈ V ′ h ∈M l ∈ L\{1} k ∈ K t ∈ T (31)

zhlkti ≤
∑
h′≤h

zh
′,l−1,kt

i +1−
∑
m∈M

zm,l−1,kt
i i ∈ V ′ h ∈M l ∈ L\{1} k ∈ K t ∈ T .

(32)

Constraints (29) and (30) allow deliveries using compartment l only if compartment

l − 1 is already used. Constraints (31) ensure that lower-index compartments are

assigned to lower-index customers. They are similar to constraints (27) and (28).

Constraints (32) break symmetry in terms of product allocation to compartments to

the same customer, ensuring that lower-index products are assigned to lower-index

compartments for the same customer.

5. Demand-based inequalities

We adapt to the MCDP additional cuts derived from the instance data. These

were first proposed by Coelho and Laporte [6] for the IRP. If the total demand of

customer i from period t1 to period t2 is at least equal to the maximum possible

inventory held, then a lower bound on the number of visits to this customer in the

interval [t1, t2] is obtained by dividing the quantity needed to satisfy future demands

by the customer inventory capacity, and rouding up, which yields constraints (33):

∑
k∈K

t2∑
t=t1

ykti ≥


t2∑

t=t1

dmt
i − Ci

Ci

 i ∈ V ′ m ∈M t1, t2 ∈ T , t2 ≥ t1. (33)

Since these constraints are non-linear, one can use the weaker form (34):
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∑
k∈K

t2∑
t=t1

ykti ≥

t2∑
t=t1

dmt
i − Imt1

i

Ci

i ∈ V ′ m ∈M t1, t2 ∈ T , t2 ≥ t1. (34)

A different version of the same inequalities can be written as follows. It is related

to whether the inventory held at each period is sufficient to fulfill future demands.

In particular, if the inventory held in period t1 by customer i is sufficient to fulfill

its demand for periods [t1, t2], then no visit is needed for this customer, i.e., if

Imt1
i ≥

t2∑
t=t1

dmt
i , then

∑
k∈K

t2∑
t=t1

ykti ≥ 0. On the other hand, if the inventory is not

sufficient to fulfill future demands, then at least one visit must take place in the

interval [t1, t2]. This can be enforced through the following set of valid inequalities:

∑
k∈K

t2∑
t=t1

ykti ≥

t2∑
t=t1

dmt
i − Imt1

i

t2∑
t=t1

dmt
i

i ∈ V ′ m ∈M t1, t2 ∈ T , t2 ≥ t1. (35)

3.1.2 Implicit compartment assignment model for the MCDP with split com-

partments and split tanks

When the vehicle compartments are homogeneous within the same vehicle, the assignment

of product types to compartments becomes irrelevant, and a more compact model can

be derived. This model ignores this assignment, while ensuring that the total vehicle

capacity is respected.

This formulation contains no assignment variables wmlkt. Binary variables zmlkt
i are rede-

fined as zmkt
i and are equal to one if and only if product m is delivered to customer i in

the route of vehicle k in period t. The continuous quantity variables qmlkt
i are changed to

qmkt
i and represent the quantity of product m delivered to customer i using vehicle k in

period t. Moreover, we redefine the parameter Qk as the capacity of each compartment of

vehicle k. This formulation uses upper bounds q̄mkt on the sum of the qmkt
i variables, and

integer variables vmkt equal to the number of compartments needed to perform delivery
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q̄mkt. Letting Sk be the number of compartments in vehicle k, the implicit model can

then be formulated as follows:

minimize
∑
i∈V ′

∑
m∈M

∑
t∈T

hm
i I

mt
i +

∑
(i,j)∈E

∑
k∈K

∑
t∈T

cijx
kt
ij , (36)

subject to

Imt
i = Im,t−1

i +
∑
k∈K

qmkt
i − dmt

i m ∈M i ∈ V ′ t ∈ T (37)

0 ≤ Imt
i ≤ Cm

i i ∈ V ′ m ∈M t ∈ T (38)

qmkt
i ≤ zmkt

i SkQk i ∈ V ′ m ∈M k ∈ K t ∈ T (39)∑
i∈V ′

qmkt
i ≤ q̄mkt m ∈M k ∈ K t ∈ T (40)

∑
m∈M

q̄mkt ≤ SkQk k ∈ K t ∈ T (41)

q̄mkt = vmktQk m ∈M k ∈ K t ∈ T (42)

zmkt
i ≤ ykti i ∈ V ′ m ∈M k ∈ K t ∈ T (43)∑

j∈V,i<j

xkt
ij +

∑
j∈V,j<i

xkt
ji = 2ykti i ∈ V k ∈ K t ∈ T (44)

∑
i∈Z

∑
j∈Z,i<j

xkt
ij ≤

∑
i∈Z

ykti − yktn Z ⊆ V ′ n ∈ Z k ∈ K t ∈ T (45)

qmkt
i ≥ 0 i ∈ V ′ m ∈M k ∈ K t ∈ T (46)

xkt
i0 ∈ {0, 1, 2} i ∈ V ′ k ∈ K t ∈ T (47)

xkt
ij , y

kt
i , zmkt

j ∈ {0, 1} i ∈ V j ∈ V ′, i < j m ∈M k ∈ K t ∈ T . (48)

The objective function (36) minimizes the total inventory and routing costs. Constraints

(37) define the inventory at the customers, while constraints (38) ensure that the inven-

tory level of product m at customer i is non-negative and does not exceed the maximum

capacity Cm
i . Constraints (39) allow deliveries only to those customers assigned to receive
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such deliveries. Constraints (40)−(42) mean that for each product m, vehicle k and period

t, an integer number of compartments is used to perform the deliveries, while respecting

the size of the compartments and the total number of compartments available in the ve-

hicle. Constraints (43) link the visiting variables y with the delivery assignment variables

z. Constraints (44) and (45) are degree constraints and subtour elimination constraints,

respectively, while constraints (46)−(48) enforce integrality and non-negativity conditions

on the variables.

Inequalities (17)−(19), (27) and (28) still hold for the implicit formulation. In addition,

by making the appropriate changes in the variable definitions, inequalities (20), (22) and

(24) also remain valid.

Because of the way that new variables zmkt
i are defined, it is possible to derive a new class

of valid inequalities for the MCDP, called the double split deliveries inequalities, described

by (49). These valid inequalities avoid splitting the delivery of the same product type over

two customers using the same two vehicles (see Figure 1). They help break symmetry

when both customers have to be visited by the two vehicles to deliver different products,

and they avoid splitting the deliveries of the same products. It is possible to avoid double

split deliveries, as illustrated in Figure 1.

j

i

vehicle k vehicle k’

Figure 1: Example of double split deliveries for customers i and j

zmkt
i +zmkt

j +zmk′t
i +zmk′t

j ≤ 2 i, j ∈ V ′, i 6= j m ∈M k, k′ ∈ K, k 6= k′ t ∈ T . (49)
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3.2 Split compartments and unsplit tanks

In the MCDP with split compartments and unsplit tanks, compartments are equipped

with debit meters so they can deliver less than full compartment loads. However, tanks

cannot receive two visits in the same period. In this section we develop two models for

this version of the problem. The explicit compartment assignment for the MCDP with

split compartments and unsplit tanks is presented in Section 3.2.1 and the implicit version

of this model in Section 3.2.2.

3.2.1 Explicit compartment assignment model for the MCDP with split com-

partments and unsplit tanks

In order to prevent tanks from receiving visits from more than one vehicle per period, we

need a new binary variable umkt
i equal to one if and only if customer i receives product m

from vehicle k in period t, regardless of the compartment. The following sets of constraints

must then be added to the model presented in Section 3.1:

∑
k∈K

umkt
i ≤ 1 i ∈ V ′ m ∈M t ∈ T (50)

zmlkt
i ≤ umkt

i i ∈ V ′ m ∈M l ∈ L k ∈ K t ∈ T (51)

umkt
i ≤ ykti i ∈ V ′ m ∈M k ∈ K t ∈ T (52)

umkt
i ∈ {0, 1} i ∈ V ′ m ∈M k ∈ K t ∈ T . (53)

Constraints (50) limit the number of vehicles delivering to tank m of customer i in period

t, while constraints (51) and (52) link the new variables to the existing ones. Constraints

(53) ensure the binary conditions on the new variables.

All valid inequalities (17)−(32) still hold for this version of the problem. In addition, the

following inequalities are valid for the MCDP with split compartments and unsplit tanks:
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∑
k∈K

ykti ≤M i ∈ V ′ t ∈ T . (54)

Constraints (54) limit the number of maximum visits to customer i in period t to the

maximum number M of existing tanks in each customer.

3.2.2 Implicit compartment assignment model for the MCDP with split com-

partments and unsplit tanks

The implicit formulation presented in Section 3.1.2 uses variable zmkt
i indicating whether

product m is delivered to customer i by vehicle k in period t or not. Simply adding the

following constraints to it allows for the resolution of this variant of the problem:

∑
k∈K

zmkt
i ≤ 1 i ∈ V ′ m ∈M t ∈ T . (55)

The interpretation of constraints (55) is obviously the same as that of constraints (50).

3.3 Unsplit compartments and split tanks

In the MCDP with unsplit compartments and split tanks, compartments are not equipped

with debit meters so that full compartment loads must be delivered to each visited tank.

However, tanks are allowed to receive the visit of more than one vehicle per period. The

explicit compartment assignment model for the case with unsplit compartments and split

tanks is presented in Section 3.3.1, while the implicit assignment model is developed in

Section 3.3.2.
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3.3.1 Explicit compartment assignment model for the MCDP with unsplit

compartments and split tanks

In order to prevent the loads of compartments from being split, we add the following

constraints to the formulation presented in Section 3.1:

qmlkt
i ≥ Qlkzmlkt

i i ∈ V ′ m ∈M l ∈ L k ∈ K t ∈ T . (56)

Together with constraints (6), constraints (56) ensure that if a compartment is assigned

to a tank, the full load of the compartment is delivered.

All valid inequalities (17)−(32) still hold for this version of the problem. In addition, the

following inequalities are valid for the MCDP with unsplit compartments and split tanks:

∑
i∈V ′

ykti ≤ L k ∈ K t ∈ T (57)

∑
i∈V ′

∑
m∈M

zmlkt
i ≤ 1 l ∈ L k ∈ K t ∈ T . (58)

Constraints (57) limit the number of maximum visits performed by vehicle k in period t

to the number L of existing compartments in each vehicle. Constraints (58) ensure that

each compartment is assigned to at most one customer and one type of product for each

vehicle and each period.

3.3.2 Implicit compartment assignment model for the MCDP with unsplit

compartments and split tanks

In order to adapt the implicit model presented in Section 3.1 to the MCDP with unsplit

compartments and split tanks, one needs to control the specific amounts of product deliv-

ered to each customer by each vehicle. To this end, we define a new integer variable vmkt
i

equal to the number of compartments used to deliver product m to customer i. Then,

the following constraints must be imposed:
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qmkt
i = vmkt

i Qk i ∈ V ′ m ∈M k ∈ K t ∈ T . (59)

Constraints (59), which are similar to (42), apply to each customer and ensure that full

compartment loads are delivered.

3.4 Unsplit compartments and unsplit tanks

In this most restrictive version of the MCDP, no splitting is allowed. Thus, one must

ensure that the full content of a compartment is delivered to a tank and that tanks

only receive the visit of at most one vehicle per time period. The explicit compartment

assignment model is presented in Section 3.4.1, and the implicit assignment model in

Section 3.4.2. Variants of this version of the problem are presented in Section 3.4.3.

3.4.1 Explicit compartment assignment model for the MCDP with unsplit

compartments and unsplit tanks

Constraints (50)−(53) and (56) must be added to the model described in Section 3.1 in

order to account for these changes. All valid inequalities (17)−(32), (54), (57) and (58)

are still valid for this version of the problem.

3.4.2 Implicit compartment assignment model for the MCDP with unsplit

compartments and unsplit tanks

The implicit model presented in Section 3.1.2 must be considered with constraints (55)

and (59) in order to formulate this version of the problem.
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3.4.3 Variants of the MCDP with unsplit compartments and unsplit tanks

When the number of stations visited by a vehicle is very small (two or three) and no split

decisions need to be made, as in Cornillier et al. [8] and Popović et al. [27], one can easily

enumerate all possible routing combinations and avoid using the related xkt
ij variables and

constraints. Using this approach, these researchers have obtained excellent results on the

unsplit-unsplit case of the fuel distribution problem. We extend their formulation to the

remaining three cases of the MCDP. To this end, we now introduce two variants of the

routing decisions exploiting the reduced number of stations per route. Note that this new

approach is not efficient if more than three stations are allowed to be visited per route.

3.4.3.1 3.4.3.1 Model for up to two stations per route For the special case in

which the number of stations per route is restricted to be at most two, one can simplify

the search by enumerating all possible combinations of stations consisting of one or two

stations. To this end, we introduce a new binary variable Rkt
ij equal to one if and only if

stations i ∈ V and j ∈ V ′, j > i are visited by vehicle k in period t. If the route consists

of only one station, then i = 0 and j represents the station. If two stations are visited,

they are ordered in such a way that i < j, thus avoiding symmetry in this new variable.

The cost ĉij of visiting stations i and j, or visiting only station j can be precomputed as

ĉij =

2c0j if i = 0,

c0i + cij + c0j otherwise.

(60)

The objective functions of the previous models have to be changed to reflect this new

variable. The term

∑
(i,j)∈E

∑
k∈K

∑
t∈T

cijx
kt
ij (61)

must be replaced with
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∑
i∈V

∑
j∈V ′,j>i

∑
k∈K

∑
t∈T

ĉijR
kt
ij . (62)

Finally, two sets of constraints must be added to the models, replacing the routing vari-

ables:

∑
i∈V

∑
j∈V ′,j>i

Rkt
ij ≤ 1 k ∈ K t ∈ T (63)

∑
i<m

Rkt
im +

∑
j>m

Rkt
mj = yktm m ∈ V ′ k ∈ K t ∈ T . (64)

Constraints (63) ensure that only one combination of customers is assigned to any given

vehicle and period, effectively allowing only one route per vehicle per period. Constraints

(64) link the new variable to the existing variables of the model. Specifically, they set

variable yktm to one if station m is selected to be visited by vehicle k in period t.

3.4.3.2 3.4.3.2 Model for up to three stations per route When the number of

stations per route is limited to three, we introduce a new binary variable Rkt
ijl equal to

one if and only if stations i ∈ V , j ∈ V , j > i∪ {0} and l ∈ V ′, l > j are visited by vehicle

k in period t. Note that if only one station is visited in a given route, it is represented

by the last index l, while i and j are equal to zero. If two stations are visited, then they

are represented by j and l, where i is equal to 0. Moreover, the definition of the variable

ensures that l > j. Finally, if three stations are visited, they are represented in increasing

order of their labels. This is done in order to avoid symmetry in the representation of the

routes.

The cost ĉijl of visiting all combinations of one, two or three stations per route can be

easily precomputed as follows:
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ĉijl =



2c0l if i = j = 0,

c0j + cjl + c0l if i = 0,

min


c0i + cij + cjl + c0l

c0j + cji + cil + c0l

c0i + cil + clj + c0j

otherwise.

(65)

As in the previous case, the objective functions of the previous models can be modified

by replacing the term (61) with

∑
i∈V

∑
j∈V,j>i∪{0}

∑
l∈V ′,l>j

∑
k∈K

∑
t∈T

ĉijlR
kt
ijl. (66)

Then two sets of constraints must be added to the models, replacing all routing constraints:

∑
i∈V

∑
j∈V,j>i∪{0}

∑
l∈V ′,l>j

Rkt
ijl ≤ 1 k ∈ K t ∈ T (67)

∑
i<m

∑
l>m

Rkt
iml +

∑
i<j∪{0}

∑
j<m

Rkt
ijm = yktm m ∈ V ′ k ∈ K t ∈ T . (68)

Constraints (67) and (68) have the same interpretation as (63) and (64), respectively.

4 Branch-and-bound and branch-and-cut algorithms

The MCDP isNP-hard since it contains the IRP and thus the capacitated VRP as special

cases. If the instance size is small or if the number of customers per route is limited as

described in Sections 3.4.3.1 and 3.4.3.2, one can take advantage of the small number of

subtour elimination constraints needed in the models and generate all of them, which are

added to the root node of the branch-and-bound tree. An alternative is to precompute

routing decisions as explained in these two sections, which yields a problem without any

routing variable. Again, the problem is solved by branch-and-bound.
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If the instance size is not excessive, all proposed undirected formulations can be solved

exactly by branch-and-cut as follows. At a generic node of the search tree, a linear program

with relaxed subtour elimination constraints is solved, a search for violated constraints is

performed, and some of these are added to the current program which is then reoptimized.

This process is reiterated until a feasible or dominated solution has been reached, or until

no more cuts can be added. At this point branching on a fractional variable occurs.

In Algorithm 1 we provide a sketch of the branch-and-cut scheme for the most general

version of the problem.

Algorithm 1 Pseudocode of the proposed branch-and-cut algorithm

1: At the root node of the search tree, generate and insert all valid inequalities (17)−(32).

2: Subproblem solution. Solve the LP relaxation of the node.

3: Termination check:

4: if there are no more nodes to evaluate then

5: Stop.

6: else

7: Select one node from the branch-and-cut tree.

8: end if

9: while the solution of the current LP relaxation contains subtours do

10: Identify connected components as in Padberg and Rinaldi [26].

11: Determine whether the component containing the supplier is weakly connected as in Gendreau

et al. [18].

12: Add violated subtour elimination constraints (12).

13: Subproblem solution. Solve the LP relaxation of the node.

14: end while

15: if the solution of the current LP relaxation is integer then

16: Go to the termination check.

17: else

18: Branching: branch on one of the fractional variables.

19: Go to the termination check.

20: end if
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5 Computational experiments

We now describe the computational experiments we have executed to evaluate our algo-

rithms. All computations were carried out on a grid of Intel Xeon™ processors running at

2.66 GHz with up to 24 GB of RAM installed per node, with the Scientific Linux 6.1 op-

erating system with a single thread used. The algorithms were coded in C++ and we use

IBM Concert Technology and CPLEX 12.5 as the MIP solver. The instance generation

is described in Sections 5.1 and 5.2, while detailed computational results are provided in

Section 5.3.

5.1 Instances details

Since no existing study deals with all the cases we have considered, we have created our

own set of randomly generated instances which can cover all four categories of problems

described in the previous sections. Our testbed is made up of instances containing up to

50 customers, three products, five compartments, 18 vehicles, and spanning five periods.

We have generated five instances of each size. In Section 5.3 we provide averages over

these five instances per combination. All instances as well as detailed results are published

in the website http://www.leandro-coelho.com/instances.

5.2 Checking the feasibility of an instance

Not all instances are feasible, which means that before including an instance in the testbed,

we must first ensure that it is feasible; otherwise, it is discarded. In order to guarantee

the feasibility of an instance of the MCDP, it suffices to prove it is feasible for the case

with unsplit compartments and unsplit tanks. Since the other three cases are relaxations

of this one, if an instance is feasible for the unsplit-unsplit case, it will be feasible for all

other three cases. In order to prove feasibility, an NP-hard problem must be solved, since

the feasibility problem can be reduced to a multi-commodity circulation problem, which
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is known to be NP-complete for integer flows [13].

In order to obtain a circulation problem from the MCDP to prove its feasibility, it suffices

to remove from its formulation all routing variables xkt
ij and all constraints containing

them. Constraints (69)−(80) define the feasibility problem:

Imt
i = Im,t−1

i +
∑
l∈L

∑
k∈K

qmlkt
i − dmt

i i ∈ V ′ m ∈M t ∈ T (69)

0 ≤ Imt
i ≤ Cm

i i ∈ V ′ m ∈M t ∈ T (70)∑
l∈L

∑
k∈K

qmlkt
i ≤ Cm

i − Im,t−1
i i ∈ V ′ m ∈M t ∈ T (71)

∑
l∈L

qmlkt
i ≤ Cm

i ykti i ∈ V ′ m ∈M k ∈ K t ∈ T (72)

qmlkt
i ≤ Qlkzmlkt

i i ∈ V ′ m ∈M l ∈ L k ∈ K t ∈ T (73)∑
i∈V ′

qmlkt
i ≤ Qlk m ∈M l ∈ L k ∈ K t ∈ T (74)

zmlkt ≤ ykti i ∈ V ′ m ∈M l ∈ L k ∈ K t ∈ T (75)

zmlkt
i ≤ wmlkt i ∈ V ′ m ∈M l ∈ L k ∈ K t ∈ T (76)∑

m∈M

wmlkt ≤ 1 l ∈ L k ∈ K t ∈ T (77)

qmlkt
i ≥ 0 i ∈ V ′ m ∈M l ∈ L k ∈ K t ∈ T (78)

wmlkt, zmlkt
i ∈ {0, 1} i ∈ V ′ m ∈M l ∈ L k ∈ K t ∈ T (79)

ykti ∈ {0, 1} i ∈ V k ∈ K t ∈ T . (80)

The interpretation of these constraints is the same as in Section 3.1.1. Note that what re-

mains here are assignment variables, constraints that impose integrality on the deliveries

quantities in terms of number of compartments, and bounds on the flows, i.e., minimum

and maximum inventory levels at the customers, and maximum capacity of each com-

partment.
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5.3 Computational results

We now present computational results for the instances just described. We start by

studying the performance of the two models proposed for each variant of the problem. To

this end, we have run a subset of the instances with a limit on the running time of 1800

seconds. Table 2 shows the percentage of instances for which the implicit compartment

assignment model is superior to the explicit compartment assignment model. Table 3

shows that after the 1800 seconds the implicit models usually yield smaller percentage

gaps between the upper and lower bounds.

Table 2: Percentage of best (or equal) results favorable to the Implicit Compartment Assign-

ment models

Problem
Criteria

Upper Bound Lower Bound Time (s)

Split-Split 85 97 50

Split-Unsplit 83 99 55

Unsplit-Split 69 92 54

Unsplit-Unsplit 75 92 66

Table 3: Average gaps for the Explicit vs Implicit Compartment Assignment models after 1800

seconds of running time

Problem
Average gap (%)

Explicit Implicit

Split-Split 11.1 2.8

Split-Unsplit 0.7 0.4

Unsplit-Split 3.0 0.1

Unsplit-Unsplit 4.3 3.9

With these results we can now put the relative performance of each of the models into

perspective, and we can proceed to obtain solutions for larger and more challenging in-
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stances. To this end, we have evaluated the implicit compartment assignment models

with a two-hour time limit. We have also applied the findings of Coelho and Laporte

[6] to order the input data with respect to the demand of the customers, in such a way

that customers are relabeled consecutively in non-increasing order of their demand. Input

ordering was first proposed by Jans and Desrosiers [21, 22] and was shown to improve

the lower bound of the problem. Labeling the customers according to their demand has

proved to be the most successful choice among those implemented and tested by Coelho

and Laporte [6].

We start this detailed analysis with instances containing a single product, in order to

evaluate the effect of having several compartments on the performance of the algorithm.

As in Cornillier et al. [8], single period instances were used. The results for all four

categories of the problem are summarized in Table 4. Several instances with up to 50

customers were solved to optimality. Even some of the largest instances considered, which

contain up to 50 customers, four compartments, and 14 vehicles were solved to optimality.

Likewise, instances with up to 50 customers, three compartments and 18 vehicles were also

solved for some variants of the problem to optimality in relatively small running times.

One can observe that the problem becomes more difficult when it is more constrained,

to the point where our algorithm could not find any feasible solution within two hours of

computing time for some instances of the unsplit-unsplit case. This is also reflected by

the size of the gaps and by the increased running time towards the right of the table.

We have then considered instances defined over several periods. Average results over all

four variants of the problem are presented in Table 5. These instances are considerably

more difficult to solve than their single-period counterpart, as reflected by the gaps and

running times. The algorithm often could not identify any feasible solution for instances

with more than 20 customers. For the 20 instances contained in Table 5, we observe

that, as is the case for the results of Table 4, the solutions of the first two variants of

the problem are quite similar, and so are those of the last two. Moreover, for each pair,

the more restrictive case seems to be easier to solve, which is reflected by smaller average
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Table 4: Summary of the results on single-period single-product instances

Instance
Split-Split Split-Unsplit Unsplit-Split Unsplit-Unsplit

Solution Gap (%) Time (s) Solution Gap (%) Time (s) Solution Gap (%) Time (s) Solution Gap (%) Time (s)

MCD-10-1-3-5-1 1643.65 0.00 0 1643.65 0.00 0 2081.07 0.00 0 2081.07 0.00 0

MCD-10-1-4-4-1 1550.36 0.00 0 1550.36 0.00 0 2249.41 0.00 0 2249.41 0.00 0

MCD-20-1-3-8-1 2630.80 0.00 2 2630.80 0.00 2 4107.46 0.00 18 4107.46 0.00 10

MCD-20-1-4-7-1 2225.80 0.00 1 2225.80 0.00 0 3296.98 0.00 5 3296.98 0.00 5

MCD-30-1-3-12-1 3551.00 0.00 37 3551.00 0.00 23 5974.96 0.00 2385 5978.76 1.17 2696

MCD-30-1-4-9-1 3192.10 0.00 32 3192.10 0.00 19 4552.04 0.00 204 4552.04 0.00 143

MCD-40-1-3-15-1 4375.41 0.00 477 4375.41 0.00 216 9928.79 23.10 5897 8367.21 13.98 5816

MCD-40-1-4-12-1 4179.92 0.00 258 4179.92 0.00 165 6198.55 4.04 4636 6129.95 4.08 4662

MCD-50-1-3-18-1 5265.05 0.00 2340 5265.05 0.00 910 22812.70 58.19 7203 − − 7205

MCD-50-1-4-14-1 5077.01 0.00 1386 5077.01 0.00 681 10784.88 27.07 7202 7371.66 6.54 6783

gaps and running times. These similar results are, however, an effect of the structure of

the problem obtained by imposing unsplit compartments rather than a consequence of

the model.

Table 5: Summary of the results on multi-period single-product instances

Instance
Split-Split Split-Unsplit Unsplit-Split Unsplit-Unsplit

Solution Gap (%) Time (s) Solution Gap (%) Time (s) Solution Gap (%) Time (s) Solution Gap (%) Time (s)

MCD-10-1-3-5-3 3976.58 0.00 7 3976.58 0.00 8 7548.75 0.00 12 7548.75 0.00 8

MCD-10-1-4-4-3 3972.38 0.00 8 3972.38 0.00 7 7069.04 0.00 8 7069.04 0.00 8

MCD-20-1-3-8-3 6676.11 8.06 6924 6602.30 6.26 5699 13750.96 11.12 7200 13714.56 6.77 6169

MCD-20-1-4-7-3 6829.03 7.52 7105 6842.83 6.93 5653 13653.58 8.82 7200 13627.58 7.36 7200

Finally, we have solved the most general instances containing several products, periods,

vehicles and compartments. These instances contain up to 20 customers, three products,

five compartments, eight vehicles, and five periods. As expected, the size of the instances

for which optimal solution can be obtained decreases, as is shown in Table 6.

A transversal analysis over the last three tables allows us to derive some comments on the

relative difficulty of each variant of the problem. We observe that the average increase

on the solution cost (or on the upper bound when optimality is not achieved) of each
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Table 6: Summary of the results on multi-period multi-product instances

Instance
Split-Split Split-Unsplit Unsplit-Split Unsplit-Unsplit

Solution Gap (%) Time (s) Solution Gap (%) Time (s) Solution Gap (%) Time (s) Solution Gap (%) Time (s)

MCD-10-2-3-9-3 5622.00 0.00 370 5622.00 0.00 196 12109.86 0.00 81 12109.86 0.00 59

MCD-10-2-4-5-1 9010.03 4.69 7200 9023.85 3.41 7200 18588.52 0.50 3245 18588.52 0.63 2349

MCD-10-2-5-4-1 5443.75 0.00 15 5443.75 0.00 14 11749.56 0.00 32. 11749.56 0.00 18

MCD-10-2-5-4-3 8852.51 0.69 2848 8851.71 0.74 2301 18407.28 0.00 512 18407.28 0.00 312

MCD-10-3-3-6-1 5537.40 0.00 26 5537.60 0.00 27 11358.74 0.00 48. 11358.74 0.00 30

MCD-10-3-3-6-3 8497.38 0.17 1864 8497.38 0.00 1512 17956.90 0.00 177 17956.90 0.00 107

MCD-10-3-4-5-3 8189.95 2.33 4953 8225.93 2.09 5017 18504.90 0.00 971 18504.90 0.00 1474

MCD-10-3-4-5-5 10963.30 11.42 7200 11036.36 12.36 7200 25478.76 0.00 1812 25478.76 0.00 1335

MCD-10-3-4-8-5 7061.88 0.00 967 7064.25 0.00 770 16643.96 0.00 686 16643.96 0.00 365

MCD-10-3-5-4-1 10796.9 7.57 7200 10828.36 6.71 7200 25036.18 0.35 5026 25036.18 0.44 3633

MCD-20-2-4-8-5 11441.85 24.80 7201 − − 7200 23088.38 13.14 7201 23314.18 12.86 7201

MCD-20-2-5-7-5 9740.60 11.73 7200 15525.20 17.90 7201 22376.88 10.12 7200 22503.28 10.36 7201

MCD-20-3-3-6-1 14342.60 15.70 7201 8913.44 4.71 7200 35011.42 9.29 7201 34794.42 8.41 7201

MCD-20-3-3-6-3 9012.13 4.69 6947 15126.16 14.67 7201 21280.90 7.48 7200 21245.30 5.88 7201

MCD-20-3-5-4-3 − − 7202 − − 7200 35833.52 13.89 7202 35773.32 12.67 7203

variant of the problem with respect to the most general scenario, i.e., the split-split case,

is quite stable. The split-unsplit case often yields solutions that are marginally more

expensive than the split-split variant, while solving either the unsplit-split or the unsplit-

unsplit case approximately doubles the cost. Moreover, moving from the unsplit-split to

the unsplit-unsplit variant yields no significant difference in costs over the instances we

have tested.

6 Conclusion

We have introduced, classified, modeled and solved a wide range of routing problems

with several compartments used for the delivery of several products spanning several

periods, with the aim of minimizing routing and inventory costs over the network. This

problem typically arises in the distribution of petroleum products to gas stations. We

have developed two models for each variant of the problem, and we have shown how to
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adapt these models to handle specific versions of the problem described in the operational

research literature. Extensive computational results on a set of benchmark instances

show that optimal solutions can be proved for instances containing up to 50 customers,

four compartments and 14 vehicles. However, multi-period instances are clearly more

challenging. When several periods are considered, instances with up to 20 customers, and

several products, compartments, and vehicles can be solved optimally.
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