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Abstract. In this paper we study the design and optimization of train timetabling adapted 

to a dynamic demand environment. This problem arises in rapid train services which are 

common in most important cities. We present four formulations for the problem, with the 

aim of minimizing passenger average waiting time. The first one consists of a mixed 

integer non-linear programming model in which binary variables represent train launching 

times and the objective function contains a quadratic term. The other three introduce flow 

variables, allowing for a linear representation of the objective function. We provide 

incremental improvements on these formulations, which allows us to evaluate and 

compare the benefits and disadvantages of each modification. We present a branch-and-

cut algorithm applicable to all formulations. Through extensive computational experiments 

on several instances derived from real data provided by the Madrid Metropolitan Railway, 

we show the advantages of designing a timetable adapted to the demand pattern, as 

opposed to a regular timetable. We also perform an extensive computational comparison 

of all linear formulations in terms of size, solution quality and running time. 

Keywords. Train timetabling, dynamic demand, regular timetable, exact algorithm, 

branch-and-cut. 

Acknowledgements. This work was partly supported by the Natural Sciences and 

Engineering Research Council of Canada (NSERC) under grant 39682-10. This support is 

gratefully acknowledged. We also thank the Réseau québécois de calcul de haute 

performance (RQCHP) for providing computing facilities. 

Results and views expressed in this publication are the sole responsibility of the authors and do not 
necessarily reflect those of CIRRELT. 

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
 
_____________________________ 

* Corresponding author: Eva.Barrena@cirrelt.ca 

Dépôt légal – Bibliothèque et Archives nationales du Québec 
                     Bibliothèque et Archives Canada, 2013 

© Copyright  Barrena, Canca Ortiz, Coelho, Laporte and CIRRELT, 2013 



1 Introduction

The railway planning process is a complex activity which is usually decomposed into

a succession of stages, including network design, line design, scheduling, timetabling,

rolling stock, and personnel planning [1, 12, 14, 15]. Timetabling design consists of

determining launch and arrival times for each train service to and from each station

along a railway line. A service is defined as a trip from an origin to a final destination

station. In this paper, a train refers to the service it operates. We consider the case

of a double direction rapid transit line with two tracks, in which case launch and

arrival times can be designed without train conflicts on track segments, i.e., on the

line portions between two consecutive stations.

Timetables are often constructed subject to a regularity or periodicity constraint,

using a constant origin-destination peak-hour demand matrix [19, 20, 26]. Regular

timetables are mainly used in rapid transit systems, where the frequency of the train

services is high and their departures are equally spaced throughout the planning

horizon, for example, every seven minutes. A periodic timetable repeats itself at

every period of the planning horizon, for example, trains may be scheduled to depart

at 3, 21 and 46 minutes every hour. Periodic timetables have proved their ability to

deal with large-scale railway networks [19], they are easily memorized by passengers

and, in the case of constant demand, they yield minimum waiting times [20]. Periodic

solutions were initially proposed by Voorhoeve [26] who followed the formulation of

Serafini and Ukovich [25].

We now describe some of the main scientific contributions available in this area. In

Nachtigall and Voget [24], the authors present a genetic algorithm which is combined

with a greedy heuristic and a local improvement procedure to obtain timetables while

minimizing the average waiting time. Liebchen and Möhring [21] model the periodic

event scheduling problem (PESP) as a digraph in which temporal restrictions on

the arcs relate periodically recurring events. In Liebchen and Peeters [22], the

authors introduce the concept of integral cycle bases for characterizing periodic

tensions, following the work of Nachtigall [23]. Chierici et al. [11] study the quality
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of timetables and the corresponding demand captured by means of a logit model

which computes the modal split between railway and an alternative transportation

mode. Cordone and Redaelli [13] develop a branch-and-bound algorithm based on

a piecewise-linear approximation of a non-convex objective function. These authors

presented computational results concerning both random instances and a real-world

regional network located in Northwestern Italy. Kroon et al. [17, 18] study the

problem of improving periodic timetables in the Netherlands under a regular demand

assumption. These authors developed a stochastic optimization model to allocate

buffer times with the objective of minimizing random disturbances.

If demand cannot be assumed to be constant over time, the problem then becomes

much more general. A periodic timetable applied to a general demand case leads

to low occupancy levels of the trains and high average waiting times [6, 20]. Non-

periodic timetabling is particularly appropriate in long corridors with high track

densities.

Caprara et al. [10] use an integer linear programming (ILP) model to determine

trains timetable considering modifications over an ideal timetable provided by the

train operator. Launch time of trains at the first station can be modified, trains can

be cancelled, and speeds and dwell times can be reduced in order to satisfy track

capacity constraints. The model incorporates manual block signalling for managing a

train on a track segment and maintenance operations that can block a track segment

for a given period. Cacchiani et al. [4] extend this ILP model and apply a Lagrangian

heuristic algorithm to deal with additional real-world constraints. Cacchiani et al. [3]

consider a similar problem in which solutions are forced to satisfy the track capacity

constraints while minimizing deviations of launch and arrival train times with respect

to an ideal known timetable. They use an ILP formulation, which is obtained from

a so-called compatibility graph. Cacchiani et al. [2] consider an alternative ILP

model in which each variable corresponds to a full train timetable. They propose

heuristic and exact algorithms based on the solution of the LP relaxation model.

Ingolotti et al. [16] implement a metaheuristic considering a set of realistic safety
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and operative constraints. The authors do not consider passenger demand. Their

objective is to minimize the deviation between the train delays with respect to the

minimum total running time.

In this paper, we focus on constructing timetables adapted to a dynamic demand

pattern [7]. Our study is motivated by a collaboration with the Madrid Metropolitan

Railway, which provided real demand data for their C5 line. We introduce four

different formulations to model this problem. One of the main features of these

formulations is that they do not assume any shape for the demand function; they

can deal with non-monotonic and even non-convex demand functions. The objective

of the problem is to minimize passenger waiting times at stations. We propose exact

algorithms to optimize the models. The solutions are train timetables adjusted to

a dynamic demand pattern over a finite planning horizon and are not necessarily

regular, nor periodic. We believe this is the first exact algorithm ever proposed for

this problem. We note that the train timetabling problem is NP-hard [5, 8], which

justifies looking for tight formulations and efficient algorithms.

The remainder of this paper is organized as follows. In Section 2 we formally describe

the problem and introduce some notation common to all models. In Section 3 we

propose four mathematical formulations for the problem, followed by the description

of a branch-and-cut algorithm applicable to all models in Section 4. We present the

results of extensive computational experiments in Section 5, followed by conclusions

in Section 6.

2 Problem description

Train timetables are normally represented in form of time-space diagrams as shown

in Figure 1. The x-axis represents the planning horizon, and the y-axis the stations of

the considered line, more concretely, the distance from each station to the first one.

Figure 1(a) illustrates a regular timetable, i.e., the headway between consecutive

trains is constant, and Figure 1(b) a non-regular timetable, i.e., headways are not
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necessarily constant and train frequency is normally higher around peak hours.

(a) Regular timetable (b) Non-regular timetable

Figure 1: Time-space diagrams of train timetables for a one line corridor

We now formally describe the train timetabling design problem for a two-track

railway line, one in each direction. The determination of the timetable can then be

decomposed into two independent problems. Let S = {1, . . . , n} be the ordered set

of stations defining a two-track railway line. The planning horizon is discretized into

time intervals of length δ. Thus, time instant t ∈ T = {0, 1, . . . , p} corresponds to δt

time units elapsed since the beginning of the planning horizon. The discretization

constant δ represents the length of the smallest time interval considered in the

problem and so, from now on we will consider it as the time unit which can be as

small as desired. Let dtij be the passenger demand between stations i, j ∈ S, j > i

during the interval [t − 1, t]. We assume that passenger arrival data are available

for each time interval. This demand description is very common in modern transit

systems where data acquisition devices are installed at the entrance of stations and

these data are used to compute the origin-destination matrices. Let lij be the length

of the segment between stations i and j, hmin be the minimum headway, i.e., the

minimum amount of time required between the launch of two consecutive trains at

each station, wmin and wmax be the minimum and maximum allowed dwell time at

stations, and smin and smax be the inverse of the minimum and maximum traveling

speed of a train. Note that we work with the inverse of the speeds to avoid non-linear

terms in the constraints of the problem.
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The aim of the problem is to determine train launch times at stations and train

speeds on segments such that the average waiting time of passengers on the stations

is minimized.

3 Mathematical formulations

We propose four formulations for the railway timetabling problem with dynamic

demand. In what follows we assume that a set M = {1, . . . ,m} of possible trains

is available. Note that this is not a strong assumption and that the models can be

easily solved with an unlimited number of trains. We use variables ski to represent the

inverse of the speed of train k when leaving station i, and variables wki representing

the dwell time of train k at station i.

3.1 Non-Linear Formulation

The first formulation uses binary variables yk, k ∈ M, equal to one if and only if

train k is used in the solution, and binary variables ztik equal to one if and only if

train k leaves station i at time t. For all trains used, let the launch time of train k at

station i be represented by an integer variable xik, i.e., xik =
∑
t∈T

tztik. Let Di be the

cumulative function of the outgoing demand at station i, i.e., Di(t) =
t∑

t′=0

∑
j∈S,j>i

dt
′
ij.

Let x̂ik =
∑
t∈T

Di(t)z
t
ik be the cumulative demand when train k leaves station i. These

variables give rise to a non-linear objective function expressed in terms of launch

times of each pair of consecutive trains. In order to write the following model, we

consider two dummy trains, one at the beginning and another at the end of the

planning horizon. The problem can then be formulated as follows:

(NLF) minimize
1

2

∑
i∈S

∑
k∈M∪{0,m+1}

(
x̂ik − x̂ik−1

)
· (xik − xik−1) (1)

subject to
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xi0 = 0 i ∈ S (2)

xim+1 = p i ∈ S (3)

p(1− yk) ≤ xik ≤ p i ∈ S, k ∈M (4)

xik ≤ xik+1 i ∈ S, k ∈M \ {m} (5)

xi+1
k = xik + ski li,i+1 + wki+1 i ∈ S \ {n}, k ∈M (6)

ykwmin ≤ wki ≤ ykwmax i ∈ S, k ∈M (7)

yksmin ≤ ski ≤ yksmax i ∈ S \ {n}, k ∈M (8)

xik+1 ≥ xik + hminyk+1 + wki i ∈ S, k ∈M \ {m} (9)∑
t∈T

ztik ≤ 1 i ∈ S, k ∈M (10)

xik =
∑
t∈T

tztik i ∈ S, k ∈M (11)

xik ∈ N+ i ∈ S, k ∈M (12)

yk ∈ {0, 1} k ∈M (13)

ztik ∈ {0, 1} i ∈ S, k ∈M, t ∈ T . (14)

In this formulation, the objective function (1) minimizes the total waiting time of

the passengers. Constraints (2) and (3) define the dummy train launch times. Their

role is to ensure that the objective function considers all waiting times and demands

into account. Constraints (4) link variables xik and yk. Specifically, if train k is

not used, i.e., yk = 0, then it is launched at the end of the planning horizon, i.e.,

xik = p. On the other hand, if train k is used, i.e., yk = 1, then xik can take any

value smaller than p, i.e., the train must be launched before the end of the planning

horizon. Constraints (5) order the trains in terms of launch times, i.e., together

with constraints (4), they ensure that trains with lower index values are launched

first. This is a necessary condition for this formulation, but it also breaks symmetric

solutions. Constraints (6) ensure that if train k is launched from station i at time

xik, then this train has to be launched from the next station i+1 at time xik, plus the
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time required to go from i to i+ 1, plus the dwell time at station i+ 1. Constraints

(7) set the bounds for dwell times of launched trains and consider dwell times equal

to zero for those that are not launched. Constraints (8) are similar to (7). They

bound the inverse of the speed ski of train k leaving station i for launched trains,

and set it to zero for unlaunched trains. Note that constraints (6)−(8) ensure that

if train k is not launched, then xik = p for all stations i. Constraints (9) play a

stronger role than (5) and (6) by ensuring that no two trains are launched from the

same station at the same time, and by also considering the minimum headway hmin.

Constraints (10) ensure that each train is launched at most once from each station.

Constraints (11) link binary variables z with their corresponding launch time x.

Integrality and binary conditions on the variables are enforced through constraints

(12)−(14).

3.2 Linear Formulation 1

This formulation introduces passenger flow variables in order to linearize the objec-

tive function. It uses binary variables xtki equal to one if and only if train k leaves

station i at time t, integer variables uti representing the number of passengers board-

ing the train leaving station i at time t, and variables f ti representing the number of

passengers waiting at station i at the end of interval [t−1, t], i.e., if no train departs

from station i at time t. We realistically assume that f 0
i = 0 since no initial demand

is considered. These variables give rise to a linear representation of the objective

function with respect to a dynamic demand function. In order to compute the av-

erage waiting time (AWT) per passenger, we consider that a passenger arriving in

the interval [t, t+ 1] waits half of this time interval, i.e., δ/2, plus the full δ for each

of the remaining time intervals until boarding the next train. So, the total waiting

time is δ
2

∑
t∈T

∑
i,j∈S,j>i

dtij + δ
∑

i∈S\{n}

∑
t∈T \{p}

f ti . Since the first term is a constant, we do

not consider it in the objective function. The problem can then be formulated as

follows:
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(LF1) minimize δ
∑

i∈S\{n}

∑
t∈T \{p}

f ti (15)

subject to

f ti = f t−1i +
∑

j∈S,j>i

dtij − uti i ∈ S \ {n}, t ∈ T (16)

uti ≤
∑
k∈M

xtki

t∑
t′=0

∑
j∈S,j>i

dt
′

ij i ∈ S \ {n}, t ∈ T (17)

xtki ≤
t∑

t′=0

xt
′

k−1,i i ∈ S, k ∈M \ {1}, t ∈ T (18)

∑
t∈T

∑
k∈M

xtk1 ≤ m (19)

∑
t∈T

xtki ≤ 1 i ∈ S, k ∈M (20)

∑
t∈T

txtk,i+1 =
∑
t∈T

txtki + ski li,i+1 + wki+1 i ∈ S\{n}, k ∈M (21)

wmin
∑
t∈T

xtki ≤ wki ≤ wmax
∑
t∈T

xtki i ∈ S, k ∈M \ {m} (22)

smin
∑
t∈T

xtki ≤ ski ≤ smax
∑
t∈T

xtki i ∈ S \ {n}, k ∈M (23)

∑
t∈T

txtk+1,i ≥
∑
t∈T

txtki + hmin
∑
t∈T

xtki i ∈ S, k ∈M \ {m} (24)

xtki ∈ {0, 1} i ∈ S, k ∈M, t ∈ T (25)

f ti , u
t
i ≥ 0 i ∈ S, t ∈ T (26)

ski , w
k
i ≥ 0 i ∈ S, k ∈M. (27)

In this formulation, the objective function (15) minimizes the total waiting time of

passengers. Constraints (16) define the flow conservation of passengers waiting at

station i at time t. It is defined as the sum of passengers who were already at the

station from previous periods, plus all passengers who arrived at station i at time t

destined for other stations, minus the number of passengers who boarded the train

Exact Formulations and Algorithm for the Train Timetabling Problem with Dynamic Demand
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leaving station i at time t. Constraints (17) define upper bounds on the number of

passengers boarding a train. In particular, if no train is launched at time t, the flow

of passengers boarding the train is zero. If a train is launched, the right-hand side of

constraints (17) constitutes an upper bound on the number of passengers boarding

the train. Note that capacities can easily be introduced in these constraints. From

constraints (17) and (26), uti is zero if no train is assigned to leave station i at time

t. Constraints (18) order the trains by their indices. Again, this helps break the

symmetry of this formulation. Constraints (19) limit the number of available trains.

Constraints (20) ensure that a train is launched at most once. Constraints (21)

ensure that if a train is launched from station i at time t, then this train has to be

launched from station i + 1 at time t, plus the travel time from i to i + 1, plus the

dwell time at station i + 1. Constraints (22) set the thresholds for dwell times of

launched trains. Similarly, constraints (23) set the thresholds for the inverse of speed

of launched trains. Constraints (24) establish the relationship between launch times

of two consecutive trains at station i, ensuring that the minimum headway hmin

is respected. Finally, constraints (25)−(27) enforce integrality and non-negativity

conditions on the variables.

In order to reduce the computational effort needed to solve this model exactly, we

propose three sets of valid inequalities which tighten the formulation. The first set

reduces the number of variables of the problem by effectively setting to zero all

binary variables xtki for which the launch time t from station i would not allow any

train k to arrive to the last station n before the end of the planning horizon:

xtki = 0 i ∈ S\{n} k ∈M t ∈ T ∩ [p− (sminlin + (n− i− 1)wmin), p]. (28)

The second set ensures that if a train k is launched from station i, it is also launched

from next station i+ 1:∑
t∈T

xtki =
∑
t∈T

xtk,i+1 i ∈ S\{n} k ∈M. (29)

Finally, the third set limits the launch time of any train k from station j to the

launch time of the same train k from any previous station i < j, considering the
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minimum and maximum times required to travel from station i to station j:∑
t∈T

txtkj ≤
∑
t∈T

txtki + smaxlij + (j − i)wmax i, j ∈ S\{n} i < j k ∈M (30)

∑
t∈T

txtki + sminlij + (j − i)wmin ≤
∑
t∈T

txtkj i, j ∈ S\{n} i < j k ∈M. (31)

3.3 Linear Formulation 2

This formulation is similar to LF1 in that it also uses flow variables and binary

xtki variables representing launch times. However, in LF2 we disregard speed and

waiting times variables. We have observed that the previous formulation contains

a number of symmetries since the same launch time at a station i+ 1 can be given

by the launch time at previous station i and for different combinations of arrival

and waiting times at station i + 1. This leads to symmetric solutions which can

be avoided by not considering the speeds ski and waiting times wki of each train k,

but introducing instead integer variables vki representing the amount of time elapsed

between the launch times of train k from stations i and i+ 1. The formulation is as

follows:

(LF2) minimize δ
∑

i∈S\{n}

∑
t∈T \{p}

f ti (32)

subject to (16)−(20), (24)−(26), and to

∑
t∈T

txtk,i+1 =
∑
t∈T

txtki + vki i ∈ S\{n} k ∈M (33)

vki ≤ (smaxli,i+1 + wmax)
∑
t∈T

xtki i ∈ S \ {n}, k ∈M (34)

(sminli,i+1 + wmin)
∑
t∈T

xtki ≤ vki i ∈ S \ {n}, k ∈M. (35)

In this formulation, the objective function (32) is the same as (15). Constraints (33)

ensure that if a train is launched from station i at time t, then this train has to be

launched from station i + 1 at time t, plus the time vki elapsed between the launch
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times of train k from stations i and i+ 1. Finally, constraints (34) and (35) enforce

the bounds on the vki variables according to minimum and maximum speeds and

waiting times.

3.4 Linear Formulation 3

The third linear formulation is similar to LF2, but is even more streamlined with

respect to the variables linking the launch times from two consecutive stations.

Here, the launch times at stations are constrained to lie within the interval in which

a service may be launched in order to yield a feasible solution. The formulation is

as follows:

(LF3) minimize δ
∑

i∈S\{n}

∑
t∈T \{p}

f ti (36)

subject to (16)−(20), (24)−(26), and to

∑
t∈T

txtk,i+1 ≤
∑
t∈T

txtki + smaxli,i+1 + wmax i ∈ S\{n} k ∈M (37)

∑
t∈T

txtki + sminli,i+1 + wmin ≤
∑
t∈T

txtk,i+1 i ∈ S\{n} k ∈M. (38)

In this linear formulation, the objective function (36) is again the same as (15).

Constraints (37) and (38) enforce the bounds on the launch time from station i+ 1

according to the launch time from station i, and the minimum and maximum speeds

and waiting times.

4 Branch-and-cut algorithm

We have implemented a branch-and-cut algorithm capable of solving all formula-

tions. All variables and constraints of these formulations are explicitly handled by

the algorithm. Given the large number of valid inequalities, these are not explicitly
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included in the initial subproblem, but are rather dynamically generated as cuts.

These formulations can then be solved by branch-and-cut as follows. At a generic

node of the search tree, a linear program with relaxed integrality constraints is

solved, a search for violated constraints is performed, and violated valid inequali-

ties are added to the current program which is then reoptimized. This process is

reiterated until a feasible or dominated solution has been reached, or until no more

cuts can be added. At this point branching on a fractional variable occurs. Let z∗

represent the cost of best known solution. In Algorithm 1, we provide a sketch of

the branch-and-cut scheme for all formulations.

As in other papers comparing a timetable with a benchmark solution, such as the

ideal plans used in Caprara et al. [9] and Cacchiani et al. [3], we focus on obtaining

improvements with respect to a regular timetable with the same number of trains,

which can be instantaneously generated. We therefore provide the algorithm with a

regular timetable as an initial solution. However, this feature is not essential to our

algorithm.

5 Computational experiments

We now detail the computational experiments performed to evaluate our models and

algorithm. All computations were carried out on a grid of Intel XeonTM processors

running at 2.66 GHz with up to 24 GB of RAM installed per node, with the Scientific

Linux 6.1 operating system. A single thread was used. The algorithm just described

were coded in C++ and we use IBM Concert Technology and CPLEX 12.5 as the

MIP solver.

We describe in Section 5.1 the real data we received from Madrid Metropolitan

Railway and how we have designed a set of instances to evaluate our models based

on these data. In Section 5.2 we describe the results of our experiments on artificial

instances and we compare the performance of each formulation between themselves

and with respect to a regular timetable. In Section 5.3 we analyze the impact of
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Algorithm 1 Branch-and-cut algorithm

1: At the root node of the search tree, generate and insert all variables and con-

straints (16)−(27) into the program.

2: Input a feasible incumbent solution of cost z∗.

3: Termination check:

4: if there are no more nodes to evaluate then

5: Stop with the incumbent and optimal solution of cost z∗.

6: else

7: Select one node from the branch-and-bound tree.

8: end if

9: Subproblem solution: solve the LP relaxation of the node and let z be its cost.

10: if the current solution is feasible then

11: if z ≥ z∗ then

12: Go to termination check.

13: else

14: z∗ ← z.

15: Update the incumbent solution.

16: Prune nodes with lower bound larger than or equal to z∗.

17: Go to termination check.

18: end if

19: end if

20: Cut generation:

21: if the solution of the current LP relaxation violates any cuts then

22: Add violated cuts as new constraints.

23: Go to subproblem solution.

24: end if

25: Branching: branch on one of the fractional variables.

26: Go to the termination check.
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using optimized solutions compared to a regular timetable, on the real instances

obtained from our partner.

5.1 Real data and instances generation

We have received real data from Line C5 of Madrid Metropolitan Railway. Although

demand patterns significantly differ from one instance to another, an important

common feature observed in real-world settings is the existence of demand peaks at

different times. Based on this observation and on the shape of the demand functions

obtained from our partner, we have generated a set of benchmark instances with

a variable demand scenario. In particular, the demand functions are generated for

each pair of stations, and their cumulative representation is composed of the sum of

one or more S -shaped functions, or sigmoid curves.

The 36 instances whose demand data are provided by Madrid Metropolitan Railway

contain six stations and between 200 and 1200 minutes.

In addition, we have created a set of 90 artificial instances which vary in terms of

the number of stations, time horizon, discretization constant and number of trains.

These instances were generated according to the following parameters:

• number of stations n: 3, 6, 10;

• horizon p: 200, 400, 600, 800, 1000 minutes;

• discretization constant δ: 1, 2, 4 minutes;

• maximum number of trains m: 5, 10;

• maximum inverse speed of the trains smin: 0.0015 min/m (speed = 40 km/h);

• minimum inverse speed of the trains smax: 0.00075 min/m (speed = 80 km/h);

• minimum headway hmin: 12 minutes;

• minimum stopping time at the stations wmin: 4 minutes;

Exact Formulations and Algorithm for the Train Timetabling Problem with Dynamic Demand
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• maximum stopping time at the stations wmax: 12 minutes.

These instances will be referred to as TT -n-p-δ-m, e.g., TT -3-800-2-10, correspond-

ing to a train timetabling instance with three stations, a planning horizon of 800

minutes, discretization constant of two minutes, and a maximum of 10 trains. For

the instances involving six and 10 stations, we do not consider a planning horizon

200 minutes since the regular case was infeasible for certain number of trains and

discretization constants. Instead, instances of 1200 minutes are included. For all

cases, a maximum running time of three hours was imposed. The set of instances

as well as their solutions are available on http://www.leandro-coelho.com.

5.2 Computational results

In our preliminary computational experiments, we have observed that the non-linear

formulation performed much worse than any of the linear ones. For this reason, in

what follows we focus only on the three linear formulations we have presented.

Not all instances could be solved within the time limit. For instances that could

not be solved optimally, we recorded the best AWT generated by the algorithm. We

present in Table 1 a summary of the AWT per passenger over all instances. The

columns represent the different cases of three, six and 10 stations, as well as the real

case of the line C5 of Madrid Metropolitan Railway, and the rows present the regular

timetabling and all linear formulations LF1, LF2 and LF3. It can be observed that

for the three linear formulations presented, the AWT considerably improves with

respect to a regular timetable. As expected, LF3 yields the best results, followed

by LF2 and LF1. The only case where this order is not observed is when the are

three stations, where LF2 yields a better AWT improvement than LF3. However,

as we show in the following experiments, LF2 requires longer computational times

that LF3. For these reasons, we consider LF3 to be the most effective formulation

in terms of obtaining better solutions in shorter computational times.

For the case of three stations, we provide in Tables 2−4 the upper and lower bounds

Exact Formulations and Algorithm for the Train Timetabling Problem with Dynamic Demand
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Table 1: Summary of the average waiting times (AWT)

3 stations 6 stations 10 stations C5 Average
% AWT improvement

over regular

Regular 45.19 60.07 60.56 40.07 51.47 -

LF1 10.60 41.80 56.08 37.60 36.52 29.05

LF2 10.28 38.34 51.08 37.12 34.21 33.53

LF3 10.54 32.09 49.18 36.25 32.02 37.79

on the objective function, the percentage optimality gap, the running time in sec-

onds, and the AWT per passenger for each formulation. For the instances where the

optimal solution was reached, the AWT is obviously the same in all formulations,

but even for the cases where it is not reached, all formulations improve the AWT

significantly with respect to the regular case.

It can be observed that all the instances parameters have an effect on the resolution

difficulty. The number of binary variables xtki increases with the number of trains,

the number of stations and the length of the planning horizon, the latter being the

most crucial parameter. The tables show that when the planning horizon is longer,

fewer instances are solved optimally and the gap for the unsolved instances is larger.

This effect tends to diminish when δ increases. Thus, a less fine discretization

(a larger value of δ) enables instances with a larger planning horizon to be solved

optimally. Tables 2−4 show that for a fixed number of three stations and five trains,

optimality is reached for an instance with 200 minutes when δ = 1, whereas it is

obtained for 400 minutes when δ = 2 and for 1000 minutes when δ = 4. The

drawback of increasing δ is that the AWT also goes up, which was expected since

the number of possible launch times for trains is smaller and thus, the feasibility

space is reduced.

As stated above, the number of stations is one of the parameters affecting the

difficulty of resolution. For instances with six and 10 stations the optimum is not

reached but still, the improvement with respect to the regular timetable is important.

Figures 2 and 3 show the percentage improvement yielded by formulations LF1, LF2

Exact Formulations and Algorithm for the Train Timetabling Problem with Dynamic Demand
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and LF3 with respect to the regular case for each of the instances considered. Again,

it can be observed that LF3 yields the best improvements, not only on average as was

shown in Table 1, but also for most of the instances. The second best formulation

is LF2 and the worst is LF1.
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Figure 2: Percentage improvement of the AWT on instances with six stations with

respect to a regular timetable

5.3 Computational results for the case of Line C5 of Madrid

Metropolitan Railway

We now provide results for the instances obtained from the line C5 of Madrid

Metropolitan Railway. We have run all the three formulations on the 36 real in-

stances. We present in Table 5 the AWT per passenger when applying a regu-

lar timetable, as well as the corresponding values obtained with our formulations.

Once again, it is clear that all three formulations yield better results than a regular

timetable, and that LF3 is the best among them, with an average improvement of

7.64% over the regular case, of 3.37% over LF1 and of 2.28% over LF2. On some
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Table 2: Summary of computational results of LF1 on instances with three stations

Instance Regular AWT UB LB Gap (%) Time(s) AWT

TT -3-200-1-5 19.39 37368 37368 0.00 831 6.27

TT -3-200-2-5 18.51 35210 35210 0.00 28 6.90

TT -3-200-4-5 15.81 29428 29428 0.00 3 6.93

TT -3-400-1-5 44.05 102418 55524 45.79 10800 9.08

TT -3-400-2-5 43.50 98412 98412 0.00 1974 9.72

TT -3-400-4-5 39.75 87260 87260 0.00 67 9.73

TT -3-600-1-5 44.99 167175 21111 87.37 10801 12.29

TT -3-600-2-5 43.33 162548 100065 38.44 10800 12.94

TT -3-600-4-5 39.44 150748 150748 0.00 1276 13.07

TT -3-800-1-5 87.36 290418 23753 91.82 10801 17.04

TT -3-800-2-5 89.26 284762 48520 82.96 10801 17.70

TT -3-800-4-5 97.84 270468 270468 0.00 3473 17.85

TT -3-1000-1-5 112.70 453416 18664 95.88 10802 26.60

TT -3-1000-2-5 111.55 294992 66854 77.34 10800 18.30

TT -3-1000-4-5 108.02 283516 283516 0.00 2532 18.62

TT -3-200-1-10 6.48 28961 28961 0.00 392 4.86

TT -3-200-2-10 8.17 26366 26366 0.00 36 5.42

TT -3-200-4-10 8.17 20744 20744 0.00 6 5.48

TT -3-400-1-10 22.48 60011 27737 53.78 10801 5.32

TT -3-400-2-10 19.24 55714 54168 2.77 10800 5.94

TT -3-400-4-10 19.24 45592 45592 0.00 516 6.04

TT -3-600-1-10 24.47 94637 15816 83.29 10801 6.95

TT -3-600-2-10 21.75 83130 41669 49.88 10801 7.11

TT -3-600-4-10 21.75 70584 55794 20.95 10801 7.18

TT -3-800-1-10 40.43 142836 18144 87.30 10803 8.38

TT -3-800-2-10 43.65 145422 25949 82.16 10801 9.53

TT -3-800-4-10 43.66 124388 55067 55.73 10801 9.29

TT -3-1000-1-10 55.08 213994 19106 91.07 10804 12.55

TT -3-1000-2-10 52.76 175016 24773 85.85 10802 11.26

TT -3-1000-4-10 52.76 131468 52491 60.07 10801 9.71

Average 45.19 138900 61309 39.75 6852 10.60
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Table 3: Summary of computational results of LF2 on instances with three stations

Instance Regular AWT UB LB Gap (%) Time(s) AWT

TT -3-200-1-5 19.39 37368 37368 0.00 817 6.27

TT -3-200-2-5 18.51 35210 35210 0.00 37 6.90

TT -3-200-4-5 15.81 29428 29428 0.00 4 6.93

TT -3-400-1-5 44.05 102492 55905 45.45 10801 9.09

TT -3-400-2-5 43.50 98412 98412 0.00 809 9.72

TT -3-400-4-5 39.75 87260 87260 0.00 58 9.73

TT -3-600-1-5 44.99 168335 33204 80.28 10800 12.37

TT -3-600-2-5 43.33 162008 62634 61.34 10801 12.90

TT -3-600-4-5 39.44 150748 150748 0.00 1011 13.07

TT -3-800-1-5 87.36 298220 24552 91.77 10801 17.49

TT -3-800-2-5 89.26 282996 37555 86.73 10801 17.60

TT -3-800-4-5 97.84 270468 270468 0.00 3106 17.85

TT -3-1000-1-5 112.70 331849 22256 93.29 10802 19.47

TT -3-1000-2-5 111.55 294992 51674 82.48 10802 18.30

TT -3-1000-4-5 108.02 283516 283516 0.00 3478 18.62

TT -3-200-1-10 6.48 28961 28961 0.00 639 4.86

TT -3-200-2-10 8.17 26366 26366 0.00 48 5.42

TT -3-200-4-10 8.17 20744 20744 0.00 4 5.48

TT -3-400-1-10 22.48 60295 27894 53.74 10801 5.35

TT -3-400-2-10 19.24 55714 53835 3.37 10801 5.94

TT -3-400-4-10 19.24 45592 45592 0.00 211 6.04

TT -3-600-1-10 24.47 92664 17812 80.78 10802 6.81

TT -3-600-2-10 21.75 85330 36284 57.48 10801 7.27

TT -3-600-4-10 21.75 70460 70460 0.00 6859 7.17

TT -3-800-1-10 40.43 144628 17111 88.17 10803 8.48

TT -3-800-2-10 43.65 134594 34329 74.49 10801 8.89

TT -3-800-4-10 43.66 123356 59354 51.88 10801 9.23

TT -3-1000-1-10 55.08 162942 14851 90.89 10805 9.56

TT -3-1000-2-10 52.76 186518 23879 87.20 10801 11.94

TT -3-1000-4-10 52.76 131524 51637 60.74 10800 9.71

Average 45.19 133433 60310 39.67 6690 10.28
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Table 4: Summary of computational results of LF3 on instances with three stations

Instance Regular AWT UB LB Gap (%) Time(s) AWT

TT -3-200-1-5 19.39 37368 37368 0.00 366 6.27

TT -3-200-2-5 18.51 35210 35210 0.00 28 6.90

TT -3-200-4-5 15.81 29428 29428 0.00 1 6.93

TT -3-400-1-5 44.05 102418 52149 49.08 10800 9.08

TT -3-400-2-5 43.50 98412 98412 0.00 476 9.72

TT -3-400-4-5 39.75 87260 87260 0.00 35 9.73

TT -3-600-1-5 44.99 167941 31144 81.46 10801 12.34

TT -3-600-2-5 43.33 162008 162008 0.00 7979 12.90

TT -3-600-4-5 39.44 150748 150748 0.00 906 13.07

TT -3-800-1-5 87.36 290061 29381 89.87 10802 17.01

TT -3-800-2-5 89.26 282996 65078 77.00 10801 17.60

TT -3-800-4-5 97.84 270468 270468 0.00 3480 17.85

TT -3-1000-1-5 112.70 393820 25130 93.62 10802 23.10

TT -3-1000-2-5 111.55 294992 50677 82.82 10801 18.30

TT -3-1000-4-5 108.02 283516 283516 0.00 4627 18.62

TT -3-200-1-10 6.48 28961 28961 0.00 153 4.86

TT -3-200-2-10 8.17 26366 26366 0.00 18 5.42

TT -3-200-4-10 8.17 20744 20744 0.00 2 5.48

TT -3-400-1-10 22.48 59715 29887 49.95 10801 5.29

TT -3-400-2-10 19.24 55714 54734 1.76 10800 5.94

TT -3-400-4-10 19.24 45592 45592 0.00 140 6.04

TT -3-600-1-10 24.47 99034 17418 82.41 10801 7.28

TT -3-600-2-10 21.75 83512 43803 47.55 10801 7.13

TT -3-600-4-10 21.75 70460 70460 0.00 8649 7.17

TT -3-800-1-10 40.43 167218 19581 88.29 10803 9.81

TT -3-800-2-10 43.65 168932 29814 82.35 10801 10.91

TT -3-800-4-10 43.66 127528 54541 57.23 10801 9.47

TT -3-1000-1-10 55.08 205169 16550 91.93 10805 12.03

TT -3-1000-2-10 52.76 158180 26658 83.15 10801 10.28

TT -3-1000-4-10 52.76 130460 53162 59.25 10801 9.65

Average 45.19 137808 64875 37.26 6656 10.54
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Figure 3: Percentage improvement of the AWT on instances with 10 stations with

respect to a regular timetable

particular instances, the improvement yielded by all formulations with respect to

regular timetable is over 50%.

In most cases the algorithm could not prove optimality within the allotted three

hours of running time. For the instances where the optimal solution was proved, LF3

yields the shortest computing times, followed by LF2 and LF1. Due to the similarity

of the upper bounds, we believe that the solutions we report are close to the optimum

and that the larger gaps are probably due to the weakness of the lower bounds. For

this reason, we have also fine tuned the CPLEX solver in order to obtain better

lower bounds by setting appropriate parameters such as preprocessing, reductions,

presolving, aggressive cuts generation, branching direction, node selection, etc, but

these bounds did not improve significantly.
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Table 5: Summary of computational results on instances obtained from the line C5

of Madrid Metropolitan Railway

Instance AWT Regular AWT LF1 AWT LF2 AWT LF3

C5-200-1-5 18.66 13.18 12.80 12.70

C5-200-2-5 20.21 13.93 13.68 13.68

C5-200-4-5 23.12 14.42 14.42 14.42

C5-400-1-5 32.04 28.83 28.17 28.07

C5-400-2-5 32.27 29.29 29.95 28.87

C5-400-4-5 32.17 29.51 29.40 29.33

C5-600-1-5 49.99 49.70 49.94 45.87

C5-600-2-5 50.26 50.25 46.66 44.74

C5-600-4-5 49.87 48.12 44.30 43.94

C5-800-1-5 69.22 69.22 68.91 69.22

C5-800-2-5 69.08 68.86 68.20 61.77

C5-800-4-5 68.03 64.22 62.65 61.57

C5-1000-1-5 84.98 84.90 84.98 84.94

C5-1000-2-5 85.44 83.83 83.78 78.77

C5-1000-4-5 84.63 80.92 80.95 76.83

C5-1200-1-5 109.00 109.00 109.00 109.00

C5-1200-2-5 108.70 108.57 107.78 108.70

C5-1200-4-5 107.73 107.70 106.48 96.02

C5-200-1-10 17.01 8.99 8.21 8.23

C5-200-2-10 20.73 9.82 9.44 9.44

C5-200-4-10 20.70 9.93 9.93 9.92

C5-400-1-10 17.56 17.51 16.32 16.37

C5-400-2-10 18.96 18.54 17.83 17.82

C5-400-4-10 18.98 17.40 16.59 16.45

C5-600-1-10 25.73 25.53 25.73 25.73

C5-600-2-10 26.26 26.26 26.23 25.31

C5-600-4-10 26.30 25.34 25.74 25.38

C5-800-1-10 35.13 35.13 35.13 35.13

C5-800-2-10 35.34 35.28 35.19 35.34

C5-800-4-10 35.44 35.41 34.77 34.00

C5-1000-1-10 44.44 44.44 44.44 44.44

C5-1000-2-10 44.68 44.68 44.68 44.68

C5-1000-4-10 44.79 44.67 44.57 44.57

C5-1200-1-10 54.50 54.50 54.50 54.50

C5-1200-2-10 54.43 54.43 54.43 54.43

C5-1200-4-10 54.63 53.75 52.13 51.62

Average 46.97 44.89 44.39 43.38
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6 Conclusions

We have proposed four formulations for the train timetabling problem adapted to

a dynamic demand pattern. The first one consists of a mixed integer non-linear

programming model, while the other three are linear. The latter models clearly

dominate the non-linear one. This was made possible by the introduction of flow

variables, which allow a linear representation of the objective function. We have

developed a branch-and-cut algorithm applicable to all models. Through extensive

computational experiments on the real instances and on several randomly generated

instances, we have shown that the three linear formulations yield improvements in

the average waiting time per passenger with respect to the regular case of around

30% on average and 77% in the best case. We have observed that aggregating

speed and waiting time variables into a single travel time variable helps generate

better results in terms of the objective function value and computational time.

These improvements are particularly important and hold even when the new travel

time variable is eliminated and one controls launch times directly. A byproduct of

this study is the generation of a large set of benchmark instances which are made

available to the research community.
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