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Abstract. This article develops simple and easy-to-use approximation formulae for the 

length of a Chinese Postman Problem (CPP) optimal tour on directed and undirected 
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Introduction

Two important solution approaches for logistics and transportation problems

are based respectively on mathematical programming and continuous approxi-

mations. The former approach relies on modeling and development of numerical

methods requiring detailed data collection, whereas the latter relies on concise

summaries of data and the development of analytic models. (Geoffrion, 1976)

advocates the use of simplified analytic models to gain insights into numerical

mathematical programming models. In a similar spirit, (Hall, 1986) illustrates

applications of discrete and continuous approximations, and notes that contin-

uous approximations are useful to develop models that are easy for humans to

interpret and comprehend. Both authors agree that continuous models should

supplement mathematical programming models but should not replace them.

The article by (Newell, 1973) is considered as the seed of the continuous ap-

proximation approach to distribution problems. The reader is referred to the

monograph of (Daganzo, 2005) for a pedagogical presentation of the continuous

approximation methods and to (Langevin et al., 1996) for an overview of con-

tinuous approximation models that have been developed for freight distribution

problems.

Distance approximations for multi-stop vehicle routes play a key role in many

continuous models of transport and distribution of freight and persons. In the

seminal work of (Beardwood et al., 1959) an asymptotic equation for the opti-

mal length of a traveling salesman tour visiting N points distributed randomly

in a region of area A is developed. From this equation, a formula is derived

to approximate the length L of the optimal tour: L = k
√
AN or equivalently

L = k
√
N on a unit square area. The constant k depends on the metric. The

approximation is considered good for N > 15. Distance approximations for

multiple stop peddling routes in distribution of goods are also developed by

(Christofides and Eilon, 1969), (Eilon et al., 1971), (Daganzo, 1984b) and (Da-

ganzo, 1984a).

In the domain of services, many routing problems correspond to arc routing
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problems, e.g., waste management, snow disposal, meter collecting, and post-

man tours. No approximation formula for the length of arc routing tours has

yet been developed. The basic problem in arc routing is the Chinese Postman

Problem (CPP), introduced by (Guan, 1962). The CPP consists in finding the

shortest closed tour that traverses all the edges and/or arcs of a graph at least

once. For completely directed or completely undirected graphs there exists a

polynomial algorithm. For mixed graphs, the problem is NP-hard.

The objective of this article is to develop approximation formulae for the length

of a CPP optimal tour in the directed and the undirected cases for planar graphs.

These formulae are functions of the number of nodes and arcs for graphs whose

nodes are randomly distributed on a unit square area. The fitness of the formu-

lae is evaluated statistically.

The article is organized as follows. The second section presents the methodology

used. The third section describes how the graphs are generated. The fourth

section presents the results and the statistical analyses and the last section

provides some concluding remarks and future research directions.

Methodology

Our methodology consists in generating a large set of graphs and, for each graph,

to optimally solve the Chinese Postman Problem in order to obtain the length

of the CPP tour. We look for an approximate formula to predict the length y

of the tour from the number of nodes xN and the number of arcs or edges xA,

using a regression type method. Finally a statistical analysis is conducted to

assess the validity of the formula. In the next section we describe the graph

generation process.

Graph generation

Considering that an important number of various graphs is needed to conduct

the experimentations, a graph generator that can generate random graphs with
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specific characteristics was built. Strongly connected planar graphs are required.

Graph generation procedure

We use the following procedure to generate the directed graphs. For each graph

we know the number of nodes xN and the number of arcs xA to generate.

1. Randomly generate xN nodes in a unit square.

2. Find a Hamiltonian circuit that connects all the nodes.

3. Add arcs until the required number is obtained.

The undirected graphs are obtained from the directed ones by replacing each

arc by its equivalent edge. Two arcs in reverse direction (e.g., arcs (a, b) and

(b, a)) are replaced by a single edge.

The program to randomly locate the nodes on a unit square area is written

in C++ and uses some LEDA (http://www.mpi-inf.mpg.de/LEDA/) library

subroutines. Then, to insure that the graph is strongly connected, we gener-

ate a Hamiltonian tour that connects all the nodes, using a TSP algorithm (see

http://mathsrv.ku-eichstaett.de/MGF/homes/grothmann/java/TSP/). The

Grothmann heuristics finds the shortest tour by local descent from random po-

sitions. This heuristics ensures that the graph of the Hamiltonian circuit is

planar. Then it is necessary to add arcs to the graph previously generated to

reach the required number of arcs. We use the following algorithm to add arcs

to the graph:

1. Randomly pick a node in the graph;

2. For this node, identify the list of possible nodes to be linked with, to

constitute a valid arc, within a maximum distance. A valid arc must be

a non-existing one; it must not intersect with another existing arc (to

maintain the planarity of the graph); the degree of the destination node

must be less than a given threshold;

3. If no such node exists, increase the maximum distance allowed and go to

step 2.
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Iterations are done until no more arc can be added or when the required number

of arcs is obtained.

Graph characteristics

A database of 3600 directed graphs and 2700 undirected graphs has been created

using the previous procedure. Because of the graph generation procedure that

combines two reverse arcs in one edge to get the undirected graphs, it was

not possible to generate undirected graphs with a ratio “number of edges over

number of nodes” equal to 3. The generated graphs have the following input

characteristics:

– number of nodes xN , between 10 and 300, incremented by step of 10,

– number of arcs xA equal to the number of nodes xN multiplied by a

coefficient that is respectively 1.5, 2, 2.5, and 3 for the directed graphs

and 1.5, 2, 2,5 for the undirected graphs.

– 30 instances are generated for each pair of node and arc numbers,

– directed and undirected instances,

– arc length are computed using the euclidian metric.

For each generated graph, the following characteristics are recorded:

– the number of nodes (xN ),

– the number of arcs (xA),

– the mean degree of the nodes,

– the standard deviation of the node degree,

– the length of the network (sum of all the arc lengths),

– the length of the optimal CPP tour.
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Solving the CPP

For each generated graph, the optimal length of the CPP tour is determined

using the classical optimal approach proposed by (Guan, 1962). In the directed

case, it consists in solving a transportation problem by a standard linear pro-

gramming solver (Xpress-MP) and, in the undirected case, a matching problem

has to be solved using (Edmonds, 1965)’s algorithm.

Results

We performed a statistical study of the generated 3600 directed graphs and 2700

undirected graphs with the Scicoslab (http://www.scicoslab.org/) software,

using a multi-linear regression analysis. We present the estimated coefficients

corresponding to the model of equation (1) below for the directed and undi-

rected cases in Tables 1 and 2 respectively.

To visualize the fitness of the proposed approximations, we present a graphical

representation of the initial data compared with the curve obtained with the

estimated parameters, in Figure 1 for the directed case and in Figure 2 for the

undirected case. The abcissa values correspond to the number of nodes whereas

the ordinate values correspond to the optimal length of the CPP. Four sets of

points can be identified for the directed case, corresponding to the four ratios

(1.5, 2, 2.5, and 3) considered between the number of arcs and nodes. Three sets

of points are identified for the undirected case, corresponding to the three ratios

(1.5, 2, and 2.5). To better analyse the fitness between the approximations and

the data sets, we present the results for each set of observations independently.

Each graph now represents the length of the CPP tour as a function of the num-

ber of nodes. Figure 1 for the directed case and Figure 2 for the undirected case

show that the estimated models are quite relevant. Nevertheless, the dispersion

of data is more important in the directed case than in the undirected case. This

is conforming to our intuition that for the directed graphs the direction of the

arcs has an impact on the variability of the total length.
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Choice of the model

The goal of this section is to present some estimated models for the length y of

the CPP tour as simple functions of the number of nodes xN and the number

of arcs xA, for both the directed and undirected cases. The parameters of these

models are estimated from the results obtained on the 3600 and 2700 generated

graphs of the benchmark. Since we do not have any a priori knowledge about

what the real model is, the key idea is to start with a very general and flexible

model like the following one:

y(xN , xA) = a0 + aNzN + aAzA + aNAzNzA + ε (1)

where a0, aN , aA, and aNA are 4 unknown parameters, ε is an error term, and zN

and zA are new variables obtained using (Box and Cox, 1964) transformations

of parameters cN and cA, respectively, i.e.

zN =
xcN
N − 1

cN

zA =
xcA
A − 1

cA

The advantage of this simple model is that, depending on the values of cN and

cA, it can exhibit polynomial and/or power type characteristics. Let nb be the

number of graph instances (i.e., nb = 3600 for the directed case and nb = 2700

for the undirected case). The algorithm used for estimating the 6 parameters is

the following:

STEP 1. Let y be the following column vector:

y =















y1

y2
...

ynb















where yi, i = 1, 2, . . . , nb, is the length of the CPP tour corresponding

to the ith experiment in the benchmark (directed or undirected cases)

and let ȳ = 1
nb

∑nb

i=1 yi be the average value of the yi, i = 1, 2, . . . , nb.
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STEP 2. Set parameters cN and cA to some initial values like, for instance, cN =

1 and cA = 1 (i.e. the initial model is a simple linear + interaction

model).

STEP 3. Compute zN,i =
x
cN
N,i

−1

cN
and zA,i =

x
cA
A,i

−1

cA
, for i = 1, 2, . . . , nb, where

xN,i and xA,i are the number of nodes and the number of arcs, respec-

tively, corresponding to the ith experiment in the benchmark (directed

or undirected cases).

STEP 4. Compute matrix X

X =















1 zN,1 zA,1 zN,1zA,1

1 zN,2 zA,2 zN,2zA,2

...
...

...
...

1 zN,nb zA,nb zN,nbzA,nb















STEP 5. Estimate the column vector of parameters a = (a0, aN , aA, aNA)
T

using a = CXTy where C = (XTX)−1.

STEP 6. Compute the column vector ŷ = (ŷ1, ŷ2, . . . , ŷnb)
T = Xa of estimated

lengths of the CPP tour.

STEP 7. Compute the coefficient of determination R2 = 1− SSE
SST

where SSE =
∑nb

i=1(yi − ŷi)
2 and SST =

∑nb

i=1(yi − ȳ)2 are the Sum Squares of

Error and Total, respectively. It is worth noting that the coefficient

of determination R2 ∈ [0, 1] is a statistic that gives some information

about the goodness of fit of a model and, in our case, how well model

(1) approximates the lengths of the CPP tour. The larger R2 the

better the fit.

STEP 8. Change the values of cN and cA using a non-linear optimization al-

gorithm ((Nelder and Mead, 1965) in our case) and loop to STEP 3

until R2 reaches its maximum.

When it exits, this algorithm provides estimates for the 6 parameters a0, aN ,

cN , aA, cA, aNA maximizing the coefficient of determination R2.
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Model corresponding to (1)

Estimates CI 95% p-value

a0 -281.767 [−352.298,−211.236] < 10−6

aN 3.9192×10−4 [4.6597× 10−5, 7.3724× 10−4] 0.02613

aA 194.941 [191.717, 198.164] < 10−6

aNA -3.3038×10−6 [−1.2206× 10−5, 5.5982× 10−6] 0.4669

cN 2.5879 - -

cA 0.4531 - -

Model corresponding to (1) with aNA = 0

Estimates CI 95% p-value

a0 -305.632 [−373.934,−237.329] < 10−6

aN 9.9268× 10−4 [6.3276× 10−4, 1.3526× 10−3] < 10−6

aA 199.77 [196.396, 203.144] < 10−6

cN 2.3554 - -

cA 0.4478 - -

Table 1: Directed graph case: estimated values for parameters a0, aN , cN , aA,

cA, aNA

Approximating the Length of Chinese Postman Tours
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Directed case

Concerning the directed graph case, the estimated values for parameters a0, aN ,

cN , aA, cA, aNA are presented in Table 1 (top). 95% Confidence Intervals (CI)

and p-values are also provided for a0, aN , aA and aNA. The optimal value for

R2 is 0.9249. Based on the estimated values of Table 1 (top), the corresponding

estimated model is

yD1(xN , xA) ≃ −281.767 + 3.9192× 10−4zN + 194.941zA − 3.3038× 10−6zNzA

with

zN =
x2.5879
N − 1

2.5879
and zA =

x0.4531
A − 1

0.4531

Since the p-value of aNA in Table 1 is very large (0.4669 >> 0.05), this indicates

that pararameter aNA = −3.3038 × 10−6 has no influence on the model and

thus the term in zNzA can be omitted. The estimated values for parameters

a0, aN , cN , aA, cA assuming aNA = 0 are also in Table 1 (bottom) with their

corresponding 95% confidence intervals and p-values. The optimal value for R2

is 0.9248 (i.e. almost unchanged compared to the model with aNA 6= 0). Based

on these new values, the reduced estimated model is

yD2(xN , xA) ≃ −305.632+9.9268×10−4

(

x2.3554
N − 1

2.3554

)

+199.77

(

x0.4478
A − 1

0.4478

)

In Figure 1 we have plotted the benchmark data corresponding to the di-

rected graph case (◦) for xN = 10, 20, . . . , 300 and for (a) xA = 1.5 × xN ,

(b) xA = 2×xN , (c) xA = 2.5×xN and (d) xA = 3×xN . We have also plotted

the estimated model yD2(xN , xA) in plain line and the 95% confidence interval

for the data in dotted lines. As it can be noted, the model yD2(xN , xA) fits the

benchmark data very well, no matter the combination of (xN , xA).

Undirected case

Concerning the undirected graph case, the estimated values for parameters a0,

aN , cN , aA, cA, aNA are presented in Table 2 (top) with their corresponding 95%

confidence intervals and p-values. The optimal value for R2 is 0.9947. Based on
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Figure 1: Comparison between the estimated model and the benchmark data

for the directed graphs
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Model corresponding to (1)

Estimates CI 95% p-value

a0 46.918 [−166.304, 260.141] 0.6662

aN 91.414 [−124.291, 307.118] 0.4061

aA 110.049 [109.355, 110.744] < 10−6

aNA -107.273 [−107.952,−106.594] < 10−6

cN -0.9748 - -

cA 1.4908 - -

Model corresponding to (1) with cN = −1 and cA = 1.5

Estimates CI 95% p-value

a0 -356.154 [−581.817,−130.491] 0.00199

aN 512.77 [279.267, 746.273] 0.00002

aA 116.562 [115.825, 117.299] < 10−6

aNA -116.547 [−117.286,−115.808] < 10−6

cN -1 - -

cA 1.5 - -

Table 2: Undirected graph case: estimated values for parameters a0, aN , cN ,

aA, cA, aNA
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the estimated values of Table 2 (top), the corresponding estimated model is

yU1(xN , xA) ≃ 46.918 + 91.414zN + 110.049zA − 107.273zNzA

with

zN = −x−0.9748
N − 1

0.9748
and zA =

x1.4908
A − 1

1.4908

In this case, it is worth to note that the parameters cN and cA are close to

−1 and 1.5. For this reason, we have recomputed the parameters a0, aN , aA

and aNA assuming cN = −1 and cA = 1.5. The results are shown in Table 2

(bottom) with their corresponding 95% confidence intervals and p-values. The

optimal value for R2 is 0.9946 (i.e. almost unchanged compared to the full

model). Based on these new values, the simplifed estimated model is

yU2(xN , xA) ≃ −356.154 + 512.77zN + 116.562zA − 116.547zNzA

with

zN = 1− 1

xN

and zA =
x1.5
A − 1

1.5

In Figure 2 we have plotted the benchmark data corresponding to the undi-

rected graph case (◦) for xN = 10, 20, . . . , 300 and for (a) xA = 1.5 × xN , (b)

xA = 2×xN and (c) xA = 2.5× xN . We have also plotted the estimated model

yU2(xN , xA) in plain line and the 95% confidence interval for the data in dotted

lines. As it can be noted, the model yU2(xN , xA) fits the benchmark data very

well, no matter the combination of (xN , xA).

Remark : The formulae derived in this paper are relative to directed and undi-

rected graph generated on a unit square. For the general case of graphs extended

over a region area of surface A, the length of optimal tours provided by our for-

mulae would have to be multiplicated by
√
A.

Conclusions

This article develops approximation formulae for the length of a Chinese Post-

man optimal tour on directed and undirected strongly connected planar graphs.

The estimated length of the optimal tour is function of the number of nodes
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Figure 2: Comparison between the estimated model and the benchmark data

for the undirected graphs
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and the number of arcs for graphs whose nodes are randomly distributed on

an unit square area. Using the actual optimal length of the Chinese Postman

tour of 3600 directed graphs and 2700 undirected graphs, the coefficients of the

formulae were estimated using a regression type method. A statistical analysis

assessed the validity of the formulae which can be used to forecast the length of

a CPP optimal tour for various practical combinations of number of arcs and

nodes ranging from 10 to 300 nodes and 15 to 900 arcs.

Further research could be devoted to the adaptation of our methodology to-

wards the development of approximation formulae for extended cases (non pla-

nar or not strongly connected graphs, or mixed directed / undirected graphs,

non euclidean metrics). An interesting research avenue would be to apply our

methodology to develop an approximation formula for the TSP on a network

and compare it with the approximation formula of (Beardwood et al., 1959) on

the plane. However this would require solving to optimality thousands of TSP.

A challenging theoretical research direction could consider the determination

of asymptotically exact formulae in a similar fashion to the (Beardwood et al.,

1959) formula for the travelling salesman problem on the plane.

Acknowledgements

The authors wish to ackknowledge the support of CPCFQ (Commission Per-
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