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Abstract. The contribution of infeasible solutions in heuristic searches for Vehicle Routing
Problems (VRP) is not a subject of consensus in the metaheuristics community. Infeasible
solutions may allow transitioning between structurally different feasible solutions, thus
enhancing the search, but they also lead to more complex move evaluation procedures
and wider search spaces. This paper introduces an experimental assessment of the
impact of infeasible solutions on heuristic searches, through various empirical studies on
local-improvement procedures, iterated local searches, and hybrid genetic algorithms for
the VRP with time windows and other related variants with fleet mix, backhauls, and
multiple periods. Four relaxation schemes are considered, allowing penalized late arrivals
to customers, early and late arrivals, returns in time, or a flexible travel time relaxation. For
all considered problems and methods, our experiments demonstrate the significant
positive impact of penalized infeasible solution. Differences can also be observed between
individual relaxation schemes. The “returns in time" and “flexible travel time" relaxations

appear as the best options in terms of solution quality, CPU time, and scalability.
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Time-Window Relaxations in Vehicle Routing Heuristics

1 Introduction

The vehicle routing problem with time-windows (VRPTW) is one of the most intensively stud-
ied NP-hard combinatorial optimization problems in transportation logistics, due to its major
practical applications and its remarkable difficulty. Most exact methods are still rarely able to
solve instances of more than 100 customers. As a result, a wide range of heuristics and meta-
heuristics (see the surveys of Bréysy and Gendreau 2005b,a, Gendreau and Tarantilis 2010,
Vidal et al. 2013b) have been proposed to address real-life settings.

Most efficient metaheuristics rely on local search-based improvement procedure and dedicate
a large part of the computation effort to the serial exploration of neighborhoods. Efficient move
evaluations are thus critical for algorithmic performance and scalability. Furthermore, even
finding a feasible solution to the VRPTW is a NP-hard problem (Savelsbergh 1985). Hence,
any method built on the postulate that an initial feasible solution can be rapidly found, e.g.
by a constructive procedure, is bound to failure on tightly-constrained problem instances.

In this context, using intermediate infeasible solutions with relaxed time-window constraints
is a simple alternative to guarantee the availability of some initial solutions. Several relaxation
schemes have been used in previous works, such as penalized late arrival to customers (Taillard
et al. 1997), early and late arrival (Ibaraki et al. 2005), or penalized returns in time (Nagata
et al. 2010). We also introduce a “flexible travel time” relaxation scheme which allows to
increase the speed on an arc up to a given limit. It is frequently conjectured that infeasible
solutions enable to better transition during the search between structurally different feasible
solutions (Cordeau et al. 2001). In particular, a purposeful management of penalties may enable
to focus the search towards borders of feasibility, a place where high quality solutions are more
likely to be located (Glover and Hao 2011). However, relaxations can also lead to more complex
move evaluations (Ibaraki et al. 2005) and larger search spaces. Hence, it is necessary to assess
whether the use of infeasible solutions contributes significantly to the search, and also if one
relaxation scheme is more suitable to progress towards good feasible solutions.

This paper contributes towards answering these questions by means of extensive experimen-
tal analysis on different types of heuristic searches. We consider simple neighborhood-centered
heuristics, a multi-start local-improvement procedures and an iterated local search, and a more
complex population-based method, the hybrid generic search with advanced diversity control
of Vidal et al. (2012a). Several variants of each algorithm, differing by their relaxation scheme,
are compared on the well-known benchmark instances of Solomon (1987) and Gehring and
Homberger (1999) for the VRPTW, as well as on several other routing variants with time
windows. Sensitivity analyses are conducted to measure the contribution of relaxations in the
search performance in presence of different objectives and solution initialization procedures.
As a result, all four relaxation schemes have a significant positive impact on solution qual-
ity. Differences of solution quality can also be observed between individual relaxation schemes
for some problems. Some relaxations allow for more efficient move evaluations within local
searches, and thus smaller CPU times. Overall, the “flexible travel time” scheme outperforms
the other relaxations w.r.t. both speed and solution quality.

The paper is organized as follows. Section 2 describes the VRPTW and the main relaxation
schemes used in previous works. State-of-the-art move evaluation procedures for each relaxation
scheme are recalled in Section 3. Section 4 describes the algorithms, parameter setting and
benchmark instances used in our experiments. Our experimental analysis of relaxations is then
reported, considering a simple local search for the VRPTW in Section 5.1, an iterated local
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search, and a hybrid genetic algorithm in Section 5.2. The impact of relaxations on other
VRPTW variants is assessed in Section 5.3. Section 6 concludes.

2 VRP with time windows and relaxation schemes

The vehicle routing problem with time windows (VRPTW) can be defined on a complete
undirected graph G = (V,€). The depot is modeled by a pair of nodes (vg,v,1) € V2,
representing respectively the origin and the final destination. Vertices V5T = V\{vg, v,41}
stand for n customers requiring service. Each edge (i,7) € & represents a possible travel from
vertex v; to vertex v; with travel time d;; (assimilated to the distance). Each customer v; € YOST
is characterized by a non-negative demand ¢;, a service duration 7;, as well as an interval of
allowed service times [e;,[;], called time window. A fleet of m identical vehicles is located at
the depot, the capacity of each vehicle being limited to Q).

The VRPTW aims to design at most m feasible routes o* = (*(1),...,0%(|o*|)) for k €
{1...m}, starting and ending at the depot, and respecting capacity constraints and arrival times
at vertices for each route. The most common objective in the literature involves minimizing
the number of routes in priority, and then distance. Some experiments are also conducted in
this paper with a distance minimization objective.

v; €V v €y k=1

Subject to: Z in]‘k =1 v; € POST (2)
vjeV k=1
Z Tjik — Z xijk:() V; EVCST ) ke {1,,m} (3)
0, €\ {ums1} v, €M\ {u0)
> g =1 ke{l,...,m} (4)
UjEV\{Uo}
Z Tjnt+lk = 1 k e {1,...,m} (5)
v; EV\{vn41}
v7;€V’Uj€V
tik—i‘dij—FTi—tij(l—xijk)T UZ'GV;’UJ'GV;/{?E{L...,TH} (7)
elﬁtlkglz UZEV,kG{l,,m} (8)
Tk € {0,1} v,eV;,uveV; ke{l,...,m} (9)
tikE%Jr Uiev;kE{l,...,m} (10)

Equations (1-10) display a mathematical formulation of the VRPTW. T is an upper bound
on the time horizon. The binary decision variables x;j; are set to 1 if and only if vehicle £ visits
v; immediately after v;, and the linear variables ¢;;, stand for the service date to customer v;,
when serviced by vehicle k. Equations (2-5) force each customer to be visited and establish

3 CIRRELT-2013-43



Time-Window Relaxations in Vehicle Routing Heuristics

limits on the number of incoming and outgoing edges for each node. Equation (6) imposes
the capacity restrictions on routes, while Equations (7-8) impose the time-window restrictions.
Equation (7) also eliminates sub-tours.

Considerable effort has been dedicated during the last decades on solving the VRPTW by
means of metaheuristics, leading to a very large number of approaches, reviewed in Braysy and
Gendreau (2005a) and Gendreau and Tarantilis (2010) among others.

Table 1: Infeasible solutions in state of the art VRPTW heuristics

Authors Approach TW Relax.
Taillard et al. (1997) Tabu Search Late service
Gambardella et al. (1999) Ant Colony Optimization & Local Search NO
Homberger and Gehring (1999) Evolution Strategies & Local Search NO

Liu and Shen (1999) Customers relocations with deteriorating moves NO

Cordeau et al. (2001) Unified Tabu search Late service
Gehring and Homberger (2002) Evolution Strategies & Tabu Search NO

Bréaysy (2003) Node ejection chains & Variable neighborhood descent ~ NO

Berger et al. (2003) GA & Local & Large Neighborhood Search Late service
Bent and Van Hentenryck (2004) Simulated Annealing & Large Neighborhood Search Late service
Bréaysy et al. (2004) Injection Tree & Iterative Improvement NO
Homberger and Gehring (2005) Evolution Strategies & Tabu Search NO

Ibaraki et al. (2005) Iterated local search Early/Late

Le Bouthillier and Crainic (2005a) Cooperative GA and Tabu Searches Late service
Le Bouthillier and Crainic (2005b) Guided Cooperative GA and Tabu Searches Late service
Mester and Braysy (2005) Active Guided Evolution Strategies NO

Alvarenga et al. (2007) Genetic Algorithm & Set Partitioning NO

Lim and Zhang (2007) Generalized Ejection Chains NO

Pisinger and Ropke (2007) Adaptive Large Neighborhood Search NO
Hashimoto and Yagiura (2008) Path Relinking Return in time
Hashimoto et al. (2008) Iterated Local Search Early/Late
Ibaraki et al. (2008) Iterated Local Search Early/Late
Labadi et al. (2008) Hybrid Genetic Algorithm NO
Prescott-Gagnon et al. (2009) Branch-and-price based Large Neighborhood Search NO

Repoussis et al. (2009) Evolutionary Algorithm & Local Search Late service
Muter et al. (2010) Tabu Search & Set Partitioning NO

Nagata et al. (2010) Hybrid GA with edge assembly crossover Return in time
Kritzinger et al. (2012) Variable Neighborhood Search Late service
Vidal et al. (2013a) Hybrid GA with cost/diversity objective Return in time

Table 1 provides a review of recent state-of-the-art methods and their time-window relax-
ations. 14/28 of these state-of-the-art methods rely on time-window infeasible solutions. Three
main relaxations and penalization schemes are used. The Late service relaxation allows linearly
penalized late services but not early service to customers, while the Farly/Late relaxation al-
lows both early and late services. These two relaxations are often called “soft time windows”
in the literature, and correspond to a relaxation of Equation (8). Finally, the relaxation of
Nagata et al. (2010) allows the use of penalized Returns in time to reach customers in their
time-windows, and corresponds to a relaxation of Equation (7). Up to this date, the hybrid
genetic algorithms of Nagata et al. (2010) and Vidal et al. (2013a), which rely on this lat-
ter uncommon relaxation, have produced the best overall solutions. The contribution of this
particular time-window relaxation is an open question, under investigation in this paper.

CIRRELT-2013-43 4
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3 Move evaluation methods

Most metaheuristics for the VRPTW rely extensively on Local Search (LS) improvement pro-
cedures, exploring iteratively from an incumbent solution s a neighborhood N (s) of solutions
defined relatively to a limited number of movements on the sequences of visits, called moves.
In recent heuristics, the largest part of the overall computation effort is spent on evaluating
moves. Move evaluation procedures must therefore be very efficient.

It is well-known in the literature (Kindervater and Savelsbergh 1997, Irnich 2008, Vidal
et al. 2011, 2013a) that any classical VRP move based on a bounded number of edge exchanges
or vertices relocations, such as RELOCATE, SWAP, 2-OPT, 2-0PT*, or CROSS exchanges, can
be assimilated to a recombination of a bounded number of partial routes, e.g. subsequences of
consecutive visits, from the incumbent solution. Most local-search neighborhoods involve the
same partial routes multiple times, such that managing meaningful information on them can
save redundant computations and increase the local search performance.

The information on partial routes can be either pre-processed prior to move exploration
and updated whenever a route change is performed, or computed on the fly if a lexicographic
order is used for move evaluations (Savelsbergh 1985, 1992). We opted in this paper to rely on
pre-processing, since the computational effort required to compute the information is generally
negligible when compared to the effort required by move evaluations, and because it allows for
an efficient random exploration of granular local search neighborhoods.

Pre-processing information on partial routes is frequently done in heuristics. Consider the
example of the capacitated VRP. Keeping track of partial demands and distances on each partial
route from the incumbent solution provides the means to evaluate the load of any recombined
route with a bounded number of sums. This opens the way to O(1) time load-feasibility checks
during the local search, compared to O(n) for a straightforward method that browses the routes
and sums the loads. In a similar manner, pre-processing meaningful information on partial
routes can contribute to reduce the computational complexity of time-window feasibility checks
or, when applicable, time-penalties evaluations on the routes issued from the local search moves.
Efficient move-evaluation methods exploiting these properties are presented in the following for
different relaxation schemes.

3.1 No infeasible solution

When no infeasible solutions are used, checking route feasibility within a local search can be
efficiently done with the approach of Savelsbergh (1985, 1992) and Kindervater and Savelsbergh
(1997). For any partial route o, the sum of travel and service times 7T'(¢), the earliest possible
completion time E(c), and the latest feasible starting date L(o) are pre-processed. These
values can be computed by induction on the concatenation operation, starting with the base
case of a partial route og = (v;) containing a single visit where T'(c¢) = 7;, E(0q) = e; + 7; and
L(og) = l;. Equations (11-13) are then used to derive this information on any larger partial

route o1 @& gy = (01(1),...,01(|o1]),02(1), ..., 02(|oa|) obtained from a concatenation of two
partial routes oy = (01(1),...,01(|o1]|)) and o9 = (02(1), ..., 02(|o2])).
T(01 ® 02) = T(01) + doy (o1 )0 (1) + T'(02) (11)
E(oy @ 02) = max{E(01) + do,(jo1)on(1) + T (02), E(02) } (12)
Loy @ 02) = min{L(01), L(02) = dy, (o1 ])on(1) — T'(01)} (13)

5 CIRRELT-2013-43
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Any such concatenation of two subsequences of visits o7 and o is feasible if and only if
E(01) + doy(jo1))o21) < L(02). These equations enable to check in O(1) time the feasibility
of routes issued from moves, assimilated to a recombination of a bounded number of partial
routes.

3.2 Late and Early/Late service

Penalized late or early services, also referred as soft time windows, are relevant in a variety of
application cases in which a trade-off must be established between service quality and routing
costs. This relaxation is also frequently used within VRPTW heuristics to achieve better
performance (e.g. in Taillard et al. 1997). As discussed in Fu et al. (2007), various types of
soft time windows, differing by the shape of the associated penalty function, are used in the
literature. In this work we consider the two most frequent types: penalizing late services or
penalizing both early and late services. In these cases, some waiting time can occur upon an
early arrival.

When only late services are allowed, computing the total penalty on a route can be trivially
done in O(n) by servicing each customer as early as possible. This route evaluation procedure
will be denoted here as “simple evaluation”.

In contrast, allowing both early and late deliveries leads to a combinatorial optimization
problem. Indeed, upon an early arrival to any customer, choice must be made on either waiting
or paying a penalty for early service. For a fixed route o, these decisions can be modeled as a
{R, D|¢} timing problem (Vidal et al. 2011). A linear programming formulation is presented
in Equations (14-15). Coefficients o and 3 represent unit penalties for earliness and lateness.

ng Nk
Rt > aleaw — )"+ Y Bt — low)* (14)
el =1 i=1
s.t. t;+ To (i) + dg(i)g(i_;,_l) < i1 1<i1< |O'| (15)

The model (14-15) is encountered in various operations research fields, in transportation
logistics, project and machine scheduling, as well as in statistics as a generalization of the
isotonic regression problem (Robertson et al. 1988). Therefore, various solution algorithms are
available, some of which provide a solution in O(nlogn) time (see Garey et al. 1988 and Dumas
et al. 1990, among others).

Some dynamic programming methods (Yano and Kim 1991, Hendel and Sourd 2006, Ibaraki
et al. 2005, 2008) provide the means to pre-process information on partial routes to speed-up
the search: a function F(o)(t) representing the minimum cost to service the partial route o
while arriving at the last customer before time ¢, and a function B(c)(t) stating the minimum
cost of servicing o after time t. These functions are algebraically represented in the algorithm
using appropriate data structures. For a partial route oy = (v;) with a single vertex, F, (t) =
ming<; ¢;(z) and By, (t) = min,>; ¢;(z). These values can then be computed by forward dynamic
programming, or backward dynamic programming, respectively, on longer routes made of a
concatenation of a route o and an additional delivery v; using Equations (16-17).

Flo@wv)(t) = Ogggt{cz‘(fr) + F(0)(x = To(lo)) — do(lo]).i) } (16)
B(vi ®0)(t) = min {ci(z) + B(o)(@ + 7 + dio)} (17)

CIRRELT-2013-43 6
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Equation (18) then provides the optimal service cost Z*(o; @ o3) for a route issued of the
concatenation of two partial routes o; and os.

Z*(01 ® 0) = min{ F(01) () + B(02)(2 + To,(jos)) + oy (fouyoa(1)) } (18)

This equation allows, among other, for efficient evaluations of 2-OPT* neighborhoods. More-
over, any route resulting from the concatenation of three partial routes (o1 ® o @ 03) can
be evaluated by relying |o.| successive times on Equation (16) to yield the information on
o' = 01 ® or, and computing Z*(¢’ @ 02) with Equation (18). This strategy leads to efficient
evaluations of moves such as RELOCATE, SWAP, for which |oz| < 1, and Cross, for which |oy|
stands for the maximum size of the exchanged segment (limited to 2 in our experiments). The
resulting move evaluation complexity is O(|o|%;€(c;)), where &(¢;) represents the number of
pieces in each function ¢;(¢;). In soft time-windows settings, {(¢;) = 3 for any customer v;, and
thus moves are evaluated in amortized O(|oL|n).

In the particular case where all functions ¢;(¢;) are convex (e.g. in soft time windows
settings), advanced implementations based on heap or search tree data structures (Hendel and
Sourd 2006, Ibaraki et al. 2008) achieve a route evaluation complexity of O(logn). The two
relaxations schemes Early/Late and Late Service thus lead to the same best known logarithmic
move evaluation complexity.

3.3 Returns in time

The relaxation proposed by Nagata et al. (2010) is based on linearly penalized “time warps”,
which are used upon a late arrival to “return in time” to the end of the time windows. Any
unit of time warp is penalized by a factor a. As demonstrated in the following, despite its lim-
ited practical significance, the relaxation proves to be particularly useful to allow intermediate
infeasible solution in heuristics while still allowing for amortized O(1) move evaluations.

A possible way to efficiently perform move evaluations (Vidal et al. 2013a) requires comput-
ing on any partial route o the minimum duration D(¢) to perform the services, the minimum
time warp usage TW (o), and the earliest F(o) and latest visit L(c) to the first vertex allowing a
schedule with minimum duration and time-warp use. For a partial route oy = (v;) containing a
single vertex D(og) = 7;, TW (o) = 0, E(0p) = e; and L(0y) = [;. The same information can be
computed on larger routes by induction on the concatenation operator with Equations (19-25).

D(01 & 02) = D(01) + D(02) + do, (s yoa(1) + Dz (19

TW (01 @ 09) = TW (01) + TW (02) + Arw (20

E(o1 @ 09) = max{F(o3) — A, E(01)} — Awr (21
L(oy ® 09) = min{L(o9) — A, L(01)} + Arw (2

where A = D(01) — TW(01) 4 doy (|01 o (1) (23

Awr = max{E(oy) — A — L(0y),0} (24

(

ATW = maX{E(al) + A — L(O'Q), O} 25

N\
~— — — S ~ ~— —

These equations lead to amortized O(1) time move evaluations. This complexity is identical
to the case where no infeasible solutions are used (Section 3.1).
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3.4 Flexible service and travel times

The amount of time warp is not limited in the “return in time” relaxation. Routes servicing
a customer ¢ at time t;, paying for a time warp, and servicing the next customer j at time
t; < t; are thus allowed. To avoid this issue, we investigate another relaxation alternative based
on flexible travel times, which allows speed-ups under some limits and forbids negative travel
durations. This relaxation is a very simple case of flexible travel and service time where the
penalty p;;(6t) as a function of the service and travel duration is a piecewise linear function
given in Equation (26). In our experiments, the minimum duration allowed for a service to a
customer v; is 7" = 7;/2, and the minimum travel time for driving from any vertex v; to any
vertex v; is set to djj"™ = dj; /2.

+00 if ot < d"™ 4 7"
0 if dij + 7 S ot

Route evaluations in presence of this relaxation can be managed by means of a combination
of the previous methodologies. First, Equations (11-13) are used to check whether the path
is time-window feasible when the maximum speed and minimum service time is used. If it is
feasible, Equations (19-25) are used to measure the necessary amount of return in time along the
path, which is equivalent to the necessary speedups, otherwise the route is declared infeasible.
Thus, the relaxation cost related to flexible travel times can be measured in amortized O(1)
operations.

4 Vehicle routing heuristics

Table 2 recalls the different relaxation alternatives and their respective move evaluation com-
plexities. The impact of these different relaxation schemes is investigated in the following.
We investigate the related solution quality, CPU time and number of iterations to reach a
local minimum. We also consider three different heuristics and metaheuristics, a multi-start
local-improvement procedure, an iterated local search and a hybrid genetic search, two solution
initialization procedures, random or Il-insertion of Solomon (1987), two different objectives,
distance minimization or fleet-size minimization, and five VRPTW variants with multi-depots,
multi-periods, backhauls, or fleet mix.

Table 2: Relaxations schemes for the VRPTW

Relaxation Complexity First introduced in
NoOINF No infeasible solution O(1) Kindervater and Savelsbergh (1997)
LATE Late arrival O(logn) Cordeau et al. (2001) or Ibaraki et al. (2008)
E/L Early/Late arrival O(logn) Ibaraki et al. (2005) or Ibaraki et al. (2008)
RETURN Return in time o(1) Nagata et al. (2010)
FLEX Flexible service and travel time O(1) This paper

For each alternative relaxation, the move evaluation strategy presented in Section 3 has been
implemented. It should be noted that the simpler O(n) move evaluation procedures are used
for the LATE and E /L relaxations. Faster O(logn) evaluations are known to be achievable, but
the required algorithm development is high, and the purpose of this paper is not to propose a

CIRRELT-2013-43 8
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horse-racing algorithm, but rather to investigate solution quality on a fixed number of iterations
in presence of different relaxations. The three heuristics and metaheuristics considered in this
work are described in the following:

The Multi-Start Local Improvement (MS-LI) procedure is based on classic vehicle
routing neighborhoods: 2-0OPT, 2-0PT* as well as CROSS and I-CROSS exchanges restricted
to sequences of size smaller than L,,,, = 2. Moves are explored in random order, any improving
move being directly applied, until no improvement can be found in the whole neighborhood.
The resulting improvement procedure is described in Algorithm 1. In this algorithm, the partial
route information is preprocessed and updated by means of functions “updateData” (lines 2,
11, 13 and 16). The procedure is run Npgsepnr times with penalty values of o = = 2. This
value has been chosen in order to obtain feasible solutions as output in around 50% of cases.
Any infeasible solution undergoes a second local improvement with penalties a = § = 100 to
restore feasibility.

Algorithm 1 Local Improvement(scygg)
1: isEnd = false
2: for each route r € squrr do updateData(r)
3: while not isEnd do
4: isknd = true

5. fori=1,...,.nand j=1,...,ndo

6: ¢; <—shuffledNodeOrder(i) ; ¢; < shufledNodeOrder(j) ;

7: ri <—getRoute(c;) ; rj < getRoute(c;) ;

8: if r; # r; and {islmprovingCROSS(¢;,¢;) or islmproving2opt*(c;,c;)} then
9: Scurr — performMove(scurr;ci,c;) ; updateData(r;,r;); isEnd = false

10: if r; == r; and {isImprovingOrOpt(c;,c;) or isImproving20pt(c;,c;)} then
11: Scurr — performMove(scurg;ci) ; updateData(r;); isEnd = false;

12: return Scyupgy

The Multi-Start Iterated Local Search (MS-ILS) considered in our experiments, de-
picted in Algorithm 2, is similar to the one described in Prins et al. (2009) The method starts
from a randomly generated solution. Subsequently, from an incumbent solution, MS-ILS gen-
erates n¢ child solutions by applying a shaking operator and the local-improvement procedure
of Algorithm 1, the best child solution being taken as new incumbent solution for the next
iteration. For this reason, the method is sometimes called Evolutionary Local Search. As in
Prins et al. (2009), shaking operations are performed on the giant-tour solution representation,
a polynomial Split algorithm being applied to obtain the associated complete solution. Also,
the penalty coefficients are adapted during the search relatively to the proportion of feasible
solutions as in Vidal et al. (2012a). The method is applied np times. Each run is terminated
after n; consecutive iterations without improvement of the best solution. The overall best so-
lution is finally returned.

The Hybrid Genetic Algorithm with advanced diversity control of Vidal et al. (2012a,
2013a) relies on four main successful concepts: 1) A hybridization of genetic algorithms with
local search procedures; 2) The use of penalized infeasible solutions, managed through two
distinct sub-populations during the search; 3) A solution representation as a giant tour without

9 CIRRELT-2013-43
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Algorithm 2 MS-TLS()
1: for ip =1 to np do
Scurr — getInitialSolution() ; Sppsr < Scurs ; %1Ls = 0
while iILS <N do
SCHILDREN <_ @
for ic =1 to nc do
s <—Shaking(scurr)
s <Split(s)
Secnmprex <—locallmprovement(s)
Scurr bestElement (S prex)
if cost(Scyrr) < cost(Sppsr) then Sgpsr < Scurn ; t1Ls = 0
else iILS = iILS +1
12: adaptPenaltyCoefficients()
13: return bestSolutionEver()

— =
—= O

trips delimiters with an optimal Split procedure for delimiter computation (Prins 2004); 4)
A bi-criteria fitness individual evaluation function computed as a weighted sum of cost and
contribution to diversity measures. Starting from initial population, new solutions are iter-
atively generated by means of a binary-tournament selection, PIX crossover, Split, and the
local-improvement procedure of Algorithm 1. Any new solution is inserted in the population,
and a survivor selection phase is triggered whenever the population reaches a maximum size
of 1+ X to select out the worst A individuals according to our fitness measure. Diversification
and decomposition phases (Vidal et al. 2013a), triggered periodically after a given number of
iterations, enable to enhance the search towards good solutions and unknown areas of the search
space.

5 Empirical comparison of relaxations

The impact of relaxations, in presence of different metaheuristic schemes and construction meth-
ods, is assessed on the VRPTW benchmark instances of Solomon (1987) with 100 customers
and Gehring and Homberger (1999) with 200 and 400 customers. These instances are grouped
in 6 categories which differ by the characteristics of the geographical distribution of customers.
Customers are uniformly distributed in the R1 and R2 problem classes, clustered in the C1
and C2 classes, whereas RC1 and RC2 mix both uniform and clustered customer distributions.
Class C1, R1 and RC1 contain problems with short time horizon and small vehicle capacities,
while C2, R2 and RC2 have larger vehicle capacities and lead to longer routes. Two different
objectives are considered: either distance minimization, or minimization of fleet size and then
distance. The impact of initial solutions is also examined, by testing either a random solution
obtained by randomly assigning and positioning customers into routes, or a solution produced
by the I1 insertion heuristic of Solomon (1987).

The parameters of HGA (Vidal et al. 2012a) and MS-ILS (Prins et al. 2009), with (np, ny, nc¢) =
(5,50,10), are maintained identical to the original papers. The next sections report in turn
the experiments on the MS-LI (Section 5.1), MS-ILS and HGA for the VRPTW (Section 5.2).
Further tests on different time-window constrained VRP variants and benchmark instances are
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reported in Section 5.3.

5.1 Multi-start local-improvement heuristic

Distance minimization. Table 3 displays the average solutions retrieved by each method in
10 runs, using either the random initialization procedure or the I1 heuristic of Solomon (1987).
The initial solution provided by the I1 heuristic is also displayed in Column 2 as well as the
best known solution. Distances are aggregated by problem classes. The last four lines indicate
the cumulated distance (CTD), the distance gap (%) to the best solution, the number of local
search iterations and CPU time, averaged on all instances. Double precision numbers have been
used for distance computations.

Table 3: Distance minimization on the VRPTW benchmark instances of Solomon (1987)

Inst. | Sol I1 | NoInf Late E/L Return Flex No Inf Late E/L Return Flex BKS
Random Initial Solution Solomon1 Initial Solution
R1 | 1431.97 | 1242.52 1212.87 1211.76 1211.17 1211.56 | 1208.05 1204.38 1203.07 1203.36 1203.28 | 1178.98
R2 | 1326.64 | 918.97 915.40 914.98  914.57 915.41 | 915.61 907.84 907.21 909.33 906.81 | 877.20
C1 | 936.48 | 828.38 828.39 828.38 828.38 828.38 | 828.40 828.40 828.41 828.38 828.38 | 828.38
C2 | 696.57 | 592.63 591.49 591.44 591.09 591.39 | 592.01 591.73 591.55 591.33 591.29 | 589.86
RC1 | 1578.28 | 1440.39 1388.62 1386.57 1386.14 1385.61 | 1382.52 1377.88 1376.90 1375.08 1375.67 | 1338.18
RC2 | 1653.61 | 1056.67 1046.00 1045.42 1044.19 1046.80 | 1053.07 1040.95 1041.13 1038.77 1040.91 | 1003.95
CTD | 71633 57192 56288 56249 56221 56254 56245 55979 55948 55940 55933 | 54708
D(%) | 30.99% | 3.91%  2.67%  2.61%  2.56% 2.62% | 2.66% 2.20%  2.16% 2.14% 2.13% | 0.00
IT-LS 43222 44081 43864 43676 44936 7437 8498 8597 8636 8643
T (min) 0.08 0.20 6.06 0.09 0.13 0.07 0.21 6.34 0.09 0.11

Table 3 demonstrates the significant contribution of time-window relaxations to the solu-
tion quality. Relaxations lead to a Gap reduction of —1.24% to —1.35% when random initial
solutions are used, otherwise of —0.46% to —0.53% when the I1 construction procedure is used.
Furthermore, relaxations tend also to mitigate the impact of low quality initial solutions. When
opting for a random construction instead of an I1 constructive procedure, the Gap increases by
+0.42% to +0.49% in presence of relaxations, whereas it strongly increases by +1.25% if only
feasible solutions are used.

It should be noted that evaluating neighborhoods with penalized infeasible solutions only
leads to a slight difference of computational effort, with 0.07 and 0.08 minutes for NOINF com-
pared to 0.09 to 0.13 minutes if a computationally efficient relaxation scheme such as RETURN
or FLEX is used. This observation goes in accordance with the computational complexity re-
sults of Section 3, and motivates the choice of one of these two relaxations to achieve a good
trade-off between solution quality and CPU time.

Fleet-size minimization. When relaxations are used, addressing the hierarchical objective
of fleet size minimization and distance can be simply done by iteratively applying Algorithm 1
and decrementing the fleet size as long as a final feasible solution is found. Fleet-size minimiza-
tion with only feasible solutions is more intricate. Any such method has to start from a feasible
solution, which has inevitably a too large number of routes, and reduce the number of routes
during the search. Several tailored procedures have been proposed to that extent, using auxil-
iary objectives to progress towards empty routes as in Gendreau et al. (1996) and Bent and Van
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Hentenryck (2004), or ejection chains and route-removal operations (Nagata and Braysy 2009).
However, these procedures are complex and require different types of neighborhoods, thus not
allowing for a fair comparison with the simple heuristics that we study. For this reason, only
the relaxed heuristic variants are compared on the fleet-minimization objective.

Table 4 displays the results of the fleet minimization algorithm for each relaxation scheme,
using either the constructive heuristic I1 or the random procedure for solution initialization.
The results of the three-phase local and large neighborhood search of B02 (Braysy 2002) are
displayed. B02 was identified as the “best route construction and local search heuristic” in
the survey of Braysy and Gendreau (2005a). For each problem class, the average number of
vehicles and distance on 10 runs is displayed. The last six lines display the cumulated number
of vehicles (CNV), cumulated distance (CTD), average fleet size gap V(%), distance gap D(%),
LS iterations and CPU time on all 56 instances.

Table 4: Fleet minimization on the VRPTW benchmark instances of Solomon (1987)

Random Initial Solution Solomonl1 Initial Solution
Inst. | Solll Late E/L Return Flex Late E/L Return Flex B02 BKS

R1 | 13.42 12.52 12.45 12.47 12.47 12.51 12.46 12.48 12.44 12.17 11.92
1431.97 | 1224.24 1230.79 1225.21 1229.28 | 1219.68  1222.69 1219.51 1225.74 | 1253.24 | 1210.33
R2 | 3.18 2.76 2.75 2.77 2.75 2.75 2.75 2.74 2.75 2.82 2.73
1326.64 | 987.91  986.55  984.70 988.56 | 993.44 988.78  992.73 991.36 | 1039.56 | 951.03
C1 | 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
936.48 | 830.69 830.51  831.27 830.71 | 828.54 828.42 82847 828.44 | 832.88 828.38
C2 | 313 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
696.57 | 590.76  590.56  590.99 590.99 | 591.03 590.55  590.64 590.54 | 593.49 589.86
RC1 | 13.50 12.06 12.09 12.05 12.06 12.04 12.03 12.05 12.04 11.88 11.50
1578.28 | 1405.86 1401.81 1407.78 1404.09 | 1403.59  1397.71 1400.73 1402.24 | 1408.44 | 1384.16
RC2 | 3.75 3.25 3.26 3.26 3.25 3.25 3.25 3.25 3.25 3.25 3.25
1653.61 | 1183.05 1181.11 1176.11 1177.11 | 1176.92 1177.22 1179.14 1179.74 | 1244.96 | 1119.24

CNV | 449.0 417.1 416.5 416.6 416.3 416.7 415.9 416.3 415.8 412.0 405
CTD | 71633 58471 58483 58415 58480 58393 58329 58374 58450 59945 97187

V(%) | 12.41% | 2.28%  2.17%  2.32% 2.03% | 2.09% 1.90%  1.89% 1.90% | 1.47% 0.00%

D(%)
IT-LS
T(min)

25.19%

2.22%
50273
0.74

2.21%
45049
24.71

2.11%
49078
0.29

2.22%
54794
0.41

2.12%
10577
0.52

2.00%
10643
18.03

2.09%
10117
0.20

2.19%
10427
0.26

3.15%

4.60

0.00%

According to these results, as long as one of the considered relaxation scheme is introduced,
the specific choice of relaxation scheme has no significant major impact on the results of the
fleet minimization. There is no “clear winner”, but a tendency for the LATE relaxation to
produce slightly worst results in terms of fleet size. This can be related to the fact that
infeasible insertions at the beginning of routes are likely to result in massive penalties in the
LATE relaxation scheme, leading to imbalanced insertion capabilities, and thus a search bias.
In this setting, we also suggest to rely on the less computationally expensive relaxation scheme
such as RETURN or FLEX. The relaxation RETURN, in particular, leads to the best average
results in both settings, distance and fleet-size minimization.

These simple local searches compare favorably with B02, yielding better solutions on 4
sets out of 6, and in general producing lower overall distances. For the two remaining sets,
the better results of B02 are a normal consequence of the more advanced route-minimization
techniques which are used, such as large neighborhoods and ejection chains. Even if the goal of
these experiments with these basic local searches was to investigate the relaxations rather than
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competing with intricate state-of-the-art methods, it is noteworthy that this simple process of
decrementing the fleet size and solving relaxed problems produces solutions of fair quality.

5.2 TIterated Local Search and Hybrid Genetic Algorithm

Similar experiments have been conducted with two richer metaheuristic frameworks, HGA
and MS-ILS described in Section 4, using the instances of Solomon (1987) and Gehring and
Homberger (1999). As previously, double precision numbers have been used for distance compu-
tations. There was also no clear difference related to the use of the I1 constructive procedure for
solution initialization, perhaps because the proposed metaheuristics themselves already produce
higher quality and more diverse solutions than any construction procedure in a few seconds.
For the sake of simplicity, a random initial solution is thus used in the remainder of this section.

The next two tables report the solutions retrieved by MS-ILS and HGA with different
relaxation schemes, with a distance minimization objective (Table 5), or with a fleet-size mini-
mization objective (Table 6). 10 runs were performed for LATE, RETURN and FLEX relaxations,
and one single run for E /L because of the prohibitively high CPU time required for these tests.
Average solution values are reported in all cases. Results are aggregated by problem size and
classes. We also display the results reported by the current best metaheuristic for the VRPTW
with distance minimization (Labadi et al. 2008 — LPRO08), for the VRPTW with fleet-size min-
imization (Nagata et al. 2010 — NB10), and the best solution found in our experiments during
all runs. The last lines indicate the cumulated number of vehicles (CNV), cumulated distance
(CTD), average fleet size gap V(%), distance gap D(%), LS iterations and CPU time on all 176
instances.

Table 5: HGA and MS-ILS for distance minimization on the larger VRPTW benchmark in-

stances of Solomon (1987) and Gehring and Homberger (1999)

HGA MS-ILS
Inst n | Nolnf Late E/L Return Flex No Inf Late E/L  Return Flex | LPRO8 | Best
R1 100 | 1181.25 1180.03 1178.98 1179.93 1179.90 | 1188.27 1181.59 1181.24 1182.13 1181.14 | 1184.16 | 1178.98
R2 100 | 879.26 87743 877.23 877.24 877.24 884.88 879.00 878.97 879.21 878.61 | 879.51 877.20
Cl 100 | 828.38 828.38 828.38 828.38 828.38 | 828.38 828.38 828.38 828.38 828.38 | 828.38 | 828.38
C2 100 | 589.86 589.86 589.86 589.86 589.86 | 589.86 589.86 589.86 589.86 589.86 | 589.86 | 589.86
RC1 100 | 1350.79 1339.07 1338.32 1338.80 1338.86 | 1365.76 1347.98 1345.65 1350.14 1347.59 | 1352.02 | 1338.18
RC2 100 | 1007.27 1004.03 1004.00 1004.20 1004.16 | 1012.42 1006.62 1008.35 1006.94 1007.06 | 1009.37 | 1003.95
R1 200 | 3610.89 3595.61 3593.81 3596.40 3595.85 | 3681.07 3623.87 3615.07 3624.12 3618.22 3588.45
R2 200 | 2657.51 2636.57 2635.12 2636.57 2636.04 | 2698.52 2648.30 2650.73 2646.21 2644.06 2633.59
C1l 200 | 2680.78 2678.96 2678.96 2679.00 2678.97 | 2685.58 2683.80 2684.09 2684.22 2683.41 2678.96
C2 200 | 1832.12 1830.94 1830.11 1830.08 1829.80 | 1858.74 1833.55 1833.42 1833.72 1831.99 1828.01
RC1 200 | 3169.58 3165.05 3166.28 3164.75 3165.82 | 3213.04 3182.80 3188.00 3184.67 3181.13 3158.83
RC2 200 | 2318.49 2300.27 2301.34 2300.23 2300.28 | 2350.74 2313.37 2314.48 2310.13  2306.96 2293.88
R1 400 | 8471.08 8414.10 8415.73 8411.10 8409.35 | 8763.45 8531.72 8546.83 8535.81 8514.34 8378.08
R2 400 | 5808.77 5711.50 5714.42 5715.88 5707.83 | 6079.31 5783.10 5795.39 5774.01 5751.82 5681.16
Cl 400 | 7063.14 7043.86 7047.07 7041.94 7042.00 | 7101.20 7071.73 7079.89 7074.78 7067.44 7037.47
C2 400 | 3914.42 3859.04 3856.24 3855.54 3857.36 | 4028.82 3899.53 3903.50 3896.37 3880.36 3839.97
RC1 400 | 7944.93 7921.38 7925.84 17918.99 7917.30 | 8148.93 8037.51 8034.35 8037.74 8012.35 7875.81
RC2 400 | 5022.01 4939.59 4935.83 4938.82 4935.04 | 5250.40 4985.22 4987.37 4977.27 4960.62 4911.09
CTD | 599823 595700 595718 595620 595483 | 613791 600804 601181 600678 599377 593761
D(%) | 0.77% 0.23% 0.21% 0.22% 0.20% 242% 0.81% 0.85% 0.80% 0.65% 0.00%
T(min) | 1741  27.71 460.33  14.01 18.64 10.53  15.04 26249 8.06 10.63
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Table 6: HGA and MS-ILS for fleet size minimization on the larger VRPTW benchmark in-
stances of Solomon (1987) and Gehring and Homberger (1999)

HGA MS-ILS
Inst. n | Late E/L Return Flex Late E/L Return Flex NB10 | Best
R1 100 | 11.93 11.92 11.92 11.93 11.95 11.92 11.94 11.92 11.92 11.92
1210.23 121198 121145 1210.52 | 1211.36 1213.16 1213.73 1213.52 | 1210.34 | 1210.33
R2 100 | 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73
951.93 952.30 952.23 952.32 | 954.02  954.27  953.85 954.36 | 951.71 | 951.03
C1l 100 | 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
828.38 828.38 828.38 828.38 | 828.38 828.38 828.38 828.38 | 828.38 | 828.38
C2 100 | 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
589.86 589.86 589.86 589.86 | 589.86 589.86 589.86 589.86 | 589.86 | 589.86
RC1 100 | 11.53 11.50 11.50 11.53 11.62 11.75 11.71 11.58 11.50 11.50
1382.30  1384.16 1384.20 1382.15 | 1375.19 1367.21 1370.68 1378.88 | 1384.30 | 1384.16
RC2 100 | 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
1119.44  1119.24 111931 1119.31 | 1121.44 112277 1121.59 1120.85 | 1119.43 | 1119.24
R1 200 | 18.20 18.20 18.20 18.20 18.20 18.20 18.20 18.20 18.20 18.20
3619.53  3620.66 3618.94 3621.25 | 3659.90 3689.07 3670.46 3661.07 | 3614.06 | 3611.93
R2 200 | 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
2930.85  2929.58 2932.04 2931.56 | 2935.28 2933.79 2936.33 2936.62 | 2930.63 | 2929.41
C1l 200 | 18.90 18.90 18.90 18.90 18.90 18.90 18.90 18.90 18.90 18.90
2720.34 271856  2720.95 2720.46 | 2724.82 2723.19 2727.34 2725.90 | 2718.44 | 2718.41
C2 200 | 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
1831.73  1831.65 1831.73 1831.72 | 1832.78 1833.35 1833.03 1832.71 | 1831.73 | 1831.59
RC1 200 | 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00
3190.75  3193.17  3193.74 3196.37 | 3270.74 3283.79 3283.78 3267.50 | 3181.27 | 3178.41
RC2 200 | 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.30
2538.38  2552.66  2537.86  2538.38 | 2544.63 2550.90 2544.45 2543.28 | 2536.46 | 2536.12
R1 400 | 36.40 36.40 36.40 36.40 36.46 36.50 36.45 36.41 36.40 36.40
8429.15  8436.28  8432.65 8430.84 | 8692.86 8720.75 8744.92 8672.16 | 8420.11 | 8388.34
R2 400 | 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
6168.58  6172.60 6172.05 6171.18 | 6211.57 6224.50 6219.46 6195.97 | 6156.47 | 6147.21
C1 400 | 37.60 37.60 37.60 37.61 37.68 37.80 37.87 37.68 37.60 37.60
7184.34  7175.07 7184.66 7178.03 | 7333.86 7313.20 7280.62 7330.44 | 7185.88 | 7167.67
C2 400 | 11.70 11.70 11.70 11.69 11.75 11.80 11.75 11.73 11.70 11.60
3913.91  3908.48  3910.66 3913.93 | 3947.47 3919.29 3944.51 3950.87 | 3906.34 | 3951.62
RC1 400 | 36.00 36.00 36.00 36.00 36.02 36.00 36.04 36.00 36.00 36.00
7941.83 7945.38  T7947.67 7948.13 | 8230.12 8276.59 8261.11 8202.62 | 7948.69 | 7884.94
RC2 400 | 8.50 8.50 8.52 8.53 8.56 8.70 8.62 8.50 8.48 8.50
5248.73  5254.70  5235.23 5224.66 | 5298.46 5387.09 5277.38 5282.83 | 5237.31 | 5206.18
CNV | 2481.3 2481.0 2481.2 2481.6 | 2485.1  2489.0  2488.2 24829 | 2480.8 | 2480.0
CTD | 614363 614609 614396 614253 | 624003 625704 624404 623252 | 613871 | 612705
V(%) | 0.06% 0.05% 0.06% 0.08% | 0.21% 0.39%  0.31% 0.12% | 0.04% 0.00%
D(%) | 0.14% 0.19% 0.15% 0.13% 1.00%  1.17%  1.04% 0.96% | 0.08% 0.00%
T(min) | 43.73 924.18 19.99 28.04 31.29 569.67  13.91 21.51 15.45

The results of Table 5, with the distance-minimization objective, emphasize the notable
contribution of infeasible solutions in HGA and MS-ILS. For HGA, the gap is reduced from
+0.77% to less than +0.23%, while for MS-ILS it goes down from +2.42% to less than +0.85%.
This is a significant reduction of a factor three for only a minor difference in CPU time. We
conducted a group of two-tailed paired-samples t-tests on the average results, expressed as gaps,
to investigate for each relaxation X the hypothesis that Relaxation X leads to results which are
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significantly different than Nolnf. For both HGA and MS-ILS, a p-value p < 10~% is retrieved,
thus confirming the contribution of infeasible solutions with high confidence. It should also be
noted that the proposed methods yield the best results for the distance minimization objective
in the literature.

The results of Table 6 shows that HGA yields solutions of good quality, with a total number
of vehicles between 2481.0 and 2481.6, very close to Nagata et al. (2010) with 2480.8. From
previous papers, NB10 has been shown to be slightly better than Vidal et al. (2013a) for the
smaller instance sets, while the inverse tendency is observable on the largest instances. Now,
to assess on the difference between relaxation schemes for both distance minimization or fleet
minimization objective, we conducted for each relaxation X among LATE, RETURN or E/L
two-tailed paired-samples t-tests on the average gap to investigate the hypothesis that the
results of MS-ILS with FLEX relazation are significantly different from those of MS-ILS with
X. For all X, the hypothesis is confirmed with high confidence, with a p-value p < 0.008. Thus,
using FLEX as a relaxation with MS-ILS is the best option, since it leads to a better solution
quality in similar CPU time. For HGA, the differences among different relaxation schemes, for
both the distance and fleet size objectives are smaller and not statistically significant (p-values
are higher than 0.2). HGA is fairly robust and performs well with any relaxation scheme.
This observation goes in accordance with Vidal et al. (2012b), which demonstrate that with a
single parameter setting and no particular calibration, HGA can work well on many problems
with different evaluation procedures and objectives. Again, the choice of relaxation should be
oriented towards the less computationally expensive one, such as RETURN or FLEX.

5.3 Other time-window constrained VRPs

To complement these experiments on the classic VRPTW, we also consider the impact of
relaxation schemes on four time-window constrained vehicle routing variants with vehicle fleet
mix (VFMPTW), multiple periods (PVRPTW), and backhauls (VRPBTW). We consider the
VFMPTW instances of Liu and Shen (1999), the PVRPTW benchmark instances of Pirkwieser
and Raidl (2009) without duration constraints and the VRPBTW instances of Ropke and
Pisinger (2006). The standard objective for the first two problems is distance minimization,
while the VRPBTW has been usually addressed with fleet-size minimization in priority. The
best current methods in the literature, other than HGA, are included in the comparison : the
Guided Local Search of Bréysy et al. (2009) (Bal09), the GA and neighborhood-based search
hybrid of Nguyen et al. (2011) (NCT11), and the Adaptive Large Neighborhood Search of
Ropke and Pisinger (2006) (RP06). The results of these tests are reported in Tables 7 to 9,
using the same format as previously.

The same conclusions arise from these tests. For the VEMPTW (Table 7), a significant
difference is observed between the methods using infeasible solutions, with a 0.06% gap for
HGA and 0.18% for MS-ILS, and those which only allow feasible solutions during the search,
with 0.79% and 1.18% gap respectively. This is so far the most considerable difference observed
in our tests. This difference may be related to the additional effect of vehicle-type selections,
which require the ability to build longer routes with tightly-scheduled customers for vehicles
with higher capacity, and shorter routes for the others. Transitioning between solutions with
different route types may lead to several time-window infeasibilities to be resolved.

No significant difference was observed, on the VFMPTW and PVRPTW, when comparing
the individual relaxations together. For the VRPBTW still, the relaxation FLEX leads to
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Table 7: HGA and MS-ILS with different relaxation schemes on the VEFEMPTW instances of
Liu and Shen (1999)

HGA MS-ILS
Inst n | NoInf Late E/L Return Flex No Inf Late E/L Return Flex Bal09 | Best
R1 100 | 1534.54 1530.18 1530.30 1530.21 1530.27 | 1536.96 1532.27 1531.37 1531.82 1531.82 | 1539.90 | 1529.40
R2 100 | 1146.34 1128.90 1129.53 1129.12 1129.00 | 1157.30 1131.50 1133.63 1131.97 1130.85 | 1149.06 | 1127.20
Cl 100 | 1639.39 1615.46 161549 1615.45 1615.48 | 1652.35 1615.42 1615.39 1615.43 1615.39 | 1615.40 | 1615.39
C2 100 | 1186.75 1185.19 1185.19 1185.19 1185.19 | 1186.91 1185.19 1185.19 1185.19 1185.19 | 1185.70 | 1185.19
RC1 100 | 1745.04 1734.37 1734.04 1734.53 1734.45 | 174529 1735.89 1736.41 1736.28 1735.66 | 1749.66 | 1734.00
RC2 100 | 1365.04 1359.15 1358.91 1359.20 1359.25 | 1367.55 1360.68 1360.88 1361.41 1360.56 | 1372.82 | 1358.24
CTC | 80153 79549 79553 79553 79553 80443 79627 79645 79636 79611 80122 | 79510
D(%) | 0.79% 0.05% 0.06%  0.06% 0.05% 1.18% 0.15%  0.18%  0.16% 0.13% 0.82% | 0.00%
T(min) | 2.97 4.09 85.36 2.19 2.89 2.17 4.87 114.69  2.48 3.52 0.06

Table 8 HGA and MS-ILS with different relaxation schemes on the PVRPTW instances of

Pirkwieser and Raidl (2009)

HGA MS-ILS
Inst. n | Late E/L Return Flex Late E/L Return Flex NCT11 | Best
R4 100 | 3440.34 3441.30 3440.92 3441.27 | 3446.07 3446.32 3446.13 3445.32 | 3441.86 | 3433.92
C4 100 | 2768.66  2768.22 2768.45 2768.69 | 2775.52 2778.34 2773.76 2774.56 | 2778.19 | 2765.70
RC4 100 | 3635.01 3638.82 3631.97 3630.61 | 3641.08 3640.16 3638.47 3639.89 | 3628.41 | 3617.46
R6 100 | 4446.08  4438.04 4450.06 4447.06 | 4451.57 4457.74 4450.96 4452.66 | 4445.81 | 4428.40
C6 100 | 3732.05 3731.66 3730.93 3729.45 | 3738.91 3739.16 373791 3739.65 | 3742.74 | 3722.90
RC6 100 | 4973.89  4966.12 4972.24 4974.38 | 4991.39 4992.20 4987.99 4989.65 | 4967.34 | 4941.22
R8 100 | 5455.98  5455.64  5448.45 5464.17 | 5466.12 5472.68 5469.53 5468.23 | 5443.08 | 5423.92
C8 100 | 4832.26 4849.66 4833.75 4833.49 | 4844.32 4839.36 4850.11 4849.81 | 4860.52 | 4803.12
RC8 100 | 5889.99 5885.04 5889.58 5886.27 | 5904.95 5909.72 5902.83 5903.28 | 5902.67 | 5848.12
CTD | 195871 195872 195832 195877 196300 196378 196289 196315 | 196053 194924
D(%) | 0.46% 0.46% 0.44%  0.46% 0.69%  0.72%  0.68% 0.69% | 0.57% 0.00%
T(min) | 8.15 155.59 5.12 6.72 6.82 130.61  4.09 5.58 97.51

Table 9: HGA and MS-ILS with different relaxation
Ropke and Pisinger (2006)

schemes on the VRPBTW instances of

HGA MS-ILS
Inst. n | Late E/L Return Flex Late E/L Return Flex RPO06 | Best
Bhr101 100 | 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 | 23.00
1905.83 1905.83 1905.83 1905.83 | 1905.83 1905.83 1905.83 1905.83 | NC 1905.83
Bhr102 100 | 21.00 21.00 21.00 21.00 21.00 21.00 21.00 21.00 21.00 | 21.00
1726.55 1726.55 1726.55 1726.55 | 1726.55 1726.55 1726.55 1726.55 | NC 1726.55
Bhr103 100 | 15.70 15.67 15.70 15.67 15.67 15.67 15.67 15.67 15.67 | 15.67
1409.21  1410.73 1409.21 1410.73 | 1410.79  1410.73 1410.73 1410.76 | NC 1410.73
Bhr104 100 | 11.00 11.00 10.83 10.73 11.00 11.00 10.83 10.73 11.00 | 10.67
1143.72  1148.68 1163.55 1175.61 | 1143.46  1144.19  1166.27 1178.07 | NC 1182.73
Bhr105 100 | 15.67 15.67 15.67 15.67 15.67 15.67 15.67 15.67 15.97 | 15.67
1618.51  1623.10 1618.04 1618.15 | 1617.99 1617.88 1618.13 1618.42 | NC 1617.71
CNV | 259.1 259.0 258.6 258.2 259.0 259.0 258.5 258.2 259.9 | 258
CTD | 23411 23445 23470 23511 23414 23416 23483 23519 NC 23531
V(%) | 0.711% 0.67% 0.38% 0.13% 0.67% 0.67% 0.33% 0.13% 1.05% | 0.00%
D(%) | -0.66% -0.49% -0.34% -0.11% | -0.65% -0.64% -0.27% -0.07% NC 0.00%
T(min) | 4.91 57.40 2.79 3.97 6.91 62.86 3.75 5.40 1.90
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solutions of significantly higher quality in similar CPU time. Finally, as a consequence of these
tests some new best known solutions in the literature were generated. These new solutions are
listed in Table 10 for further research.

Table 10: New Best Known Solutions

VRPTW — dist VRPTW - fleet size VFMPTW — dist

R104  976.61 R1-400-7 36 7640.96 R104 1354.29
R106  1239.37 R1-400-8 36 7273.07 R110 1443.33
R107  1072.12 R1-400-9 36 8741.92 R201 1427.39
R108  938.20 R1-400-10 36 8102.78 R210 1149.31

R112  953.63  (C1-400-9 36 7043.10 RC101 2040.61
R201  1147.80 RC1-400-2 36 7898.37

R202  1034.35 RC1-400-4 36 7309.64 PVRPTW - dist
R204  735.80 RC1-400-7 36 7948.51

R205  955.82 RC1-400-9 36 7746.03 T6-RC1-1 5778.7
R207  797.99 RC1-400-10 36 7601.90 T6-RC1-3 4267.0
R208  705.33 RC2-400-8 8  4792.69

R210  904.78

R211  753.15 VRPBTW - fleet size

RC101 1623.59

RC102 1461.23 BHRI104C 11 1188.78

RC103 1261.67

RC104 1135.48

RC105 1518.58

RC106 1376.26

RC107 1211.11

RC201 1265.56

RC202 1095.65

RC203 926.82

RC204 786.38

RC205 1157.55

RC207 966.08

RC208 778.93

6 Conclusions

We introduced a comprehensive assessment of the impact of penalized infeasible solutions during
heuristic search for VRPTW. Three different heuristic procedures have been considered (a multi-
start local-improvement procedure, an iterated local search, and a hybrid genetic algorithm)
in the presence of four different relaxation schemes (penalized late arrivals, both early and
late arrivals, returns in time, or flexible speed). Our experimental results demonstrate that,
for all three heuristics, any considered relaxation scheme leads to solutions of significantly
higher quality. Observed differences can be considerable in some cases, the gap to the best
known solutions, being decreased by a factor 3 for the VRPTW, and a factor up to 8 for the
VFMPTW. Moreover, our experiments on simple local searches show that relaxations tend to
mitigate the impact of low-quality starting solutions.

The individual differences between the four relaxation schemes may not be observed on all
problems, heuristic frameworks, and benchmark instances. We noticed a significant improve-
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ment of solution quality when using the proposed “flexible speed” relaxation for the VRPTW
and VRPBTW. In light of computational complexity results and CPU time measures, the re-
turns in time and flexible speed relaxations are the fastest and most scalable methods. These
two latter relaxations are a promising choice for further heuristics.
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