
A Multi-Coloring Approach for an

Order Acceptance and Scheduling

Problem with Preemption and Job

Incompatibilities

Simon Thevenin
Nicolas Zufferey
Jean-Yves Potvin

August 2013

CIRRELT-2013-45

G1V 0A6

Bureaux de Montréal : Bureaux de Québec :

Université de Montréal Université Laval
C.P. 6128, succ. Centre-ville 2325, de la Terrasse, bureau 2642
Montréal (Québec) Québec (Québec)
Canada H3C 3J7 Canada G1V 0A6
Téléphone : 514 343-7575 Téléphone : 418 656-2073
Télécopie : 514 343-7121 Télécopie : 418 656-2624

 www.cirrelt.ca

A Multi-Coloring Approach for an Order Acceptance and Scheduling
Problem with Preemption and Job Incompatibilities

Simon Thevenin1, Nicolas Zufferey1,2, Jean-Yves Potvin2,3,*

1 HEC, Faculty of Economics and Social Sciences, University of Geneva, Boulevard du Pont-
d’Arve 40, 1211 Geneva 4, Switzerland

2 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT)
3 Department of Computer Science and Operations Research, Université de Montréal, P.O. Box

6128, Station Centre-Ville, Montréal, Canada H3C 3J7

Abstract. The order acceptance and scheduling problem occurs when the production

capacity of a workshop is exceeded. The problem consists in selecting and scheduling a

subset of jobs to maximize the total gain associated with the selected jobs, while possibly

minimizing some costs. In this paper, the problem is considered in a parallel machine

environment where preemption is allowed and where there are job incompatibilities.

Preemption is particularly relevant when the production process has negligible setup

times, which is typically the case for automated production systems. But even if they are

negligible, setups due to preemption have a cost, and must be avoided if possible.

Therefore, we consider a multi-objective approach which accounts for three objectives:

total gain of the selected jobs, preemption penalties and work in progress inventory level.

In this work, the problem is modeled as a graph multi-coloring problem for which a linear

programming formulation is proposed to address small size instances. A constructive

heuristic, as well as local search methods, are also reported to address instances of more

realistic sizes.

Keywords: Scheduling, multi-coloring, multi-objectives, job incompatibilities, meta-

heuristics.

Acknowledgements. Financial support for this work was provided by the Natural

Sciences and Engineering Research Council of Canada (NSERC). This support is

gratefully acknowledged.

Results and views expressed in this publication are the sole responsibility of the authors and do not
necessarily reflect those of CIRRELT.

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: Jean-Yves.Potvin@cirrelt.ca
Dépôt légal – Bibliothèque et Archives nationales du Québec
 Bibliothèque et Archives Canada, 2013

© Copyright Thevenin, Zufferey, Potvin and CIRRELT, 2013

1. Introduction

We consider the scheduling of n jobs with different integer processing times

on a number of identical machines. Different tools can equip the machines,

and jobs with the same tool requirements cannot be processed simultane-

ously. Such jobs are said to be incompatible. Preemption is allowed, that

is, each job can be stopped at integer time points and can be resumed later.

We consider that the number of machines is sufficiently large to be non con-

straining with regard to the number of jobs to be processed in parallel. All

jobs must terminate before a global deadline D, which represents the end

of the planning horizon. As it might not be possible to schedule all jobs,

the workshop can reject some of them. When some job i is completed, the

company earns a gain gi (which often depends on its integer processing time

pi). There is no gain if the job is only partially performed, so it is better not

to perform it at all. Our goal is to optimize the three following objectives in

lexicographic order:

• f1 : maximize the total gain associated with completely performed jobs,

• f2 : minimize the number of job interruptions,

• f3 : minimize the work in progress, which is the total time spent by the

jobs in the production shop.

This problem is denoted P in the following and can be viewed as a multi-

coloring problem, which is an extension of the well-known graph coloring

problem. As the latter is NP-hard (Malaguti & Toth (2010)), problem P

is also NP-hard. Therefore, heuristics and metaheuristics are the most ap-

propriate methods to tackle large scale instances. General references on the

topics studied in this paper can be found in Pinedo (2008) for scheduling

problems, Slotnick (2011) for the order acceptance and scheduling problem,

Malaguti & Toth (2010) for the graph coloring problem and its extensions,

Gendreau & Potvin (2010) and Zufferey (2012) for metaheuristics.

A preliminary version of the work reported here has already appeared in

Thevenin et al. (2013). This previous contribution is extended in the follow-

1

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

ing ways. First, a linear programming formulation is proposed and imple-

mented with CPLEX to address small size instances. The tabu search is also

much improved, in particular by considering new neighborhood structures

and by integrating a diversification mechanism. Some drawbacks of the tabu

search, reported in Thevenin et al. (2013) with regard to the number of job

interruptions and work in progress inventory level, are now greatly alleviated

in the new implementation.

The remainder of this paper is organized as follows. Section 2 provides a lit-

erature review and establishes a correspondence between problem P and the

multi-coloring problem. A formal description of P and a linear programming

formulation are found in Section 3. Section 4 describes some basic heuristic

approaches, namely a greedy procedure and a descent method. In Section 5

a refined tabu search for problem P is described. Finally, all the proposed

methods are numerically compared in Section 6. The conclusion follows in

Section 7 along with future research avenues.

2. Literature review and correspondence with multi-coloring

To the best of our knowledge, the work reported in Thevenin et al. (2013) is

the only attempt at solving problem P. Thus, Section 2.1 will focus on some

key features of the problem. The correspondence between P and the multi-

coloring problem will be explained in Section 2.2, including some relevant

contributions in the graph coloring literature. A summary will follow in

Section 2.3. Note that the standard three-field notation (α | β | γ) is used in

the following, where α, β and γ correspond to the production environment,

the constraints and the objectives, respectively.

2.1. Key features

In the following, the literature is reviewed with regard to three key features of

our problem: preemption is discussed in Section 2.1.1, minimization of work

in progress is the topic of Section 2.1.2, while multi-objective optimization is

briefly introduced in Section 2.1.3.

2

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

2.1.1. Preemption penalties

Typically, when preemption is allowed, a job can be stopped and restarted

later at no cost or time penalty. For most scheduling problems, allowing pre-

emption makes them easier to solve. For example, minimizing the makespan

on parallel machines without preemption (Pm || Cmax) is NP-hard, but be-

comes solvable in polynomial time when preemption is allowed. Preemption

can thus be viewed as a constraint relaxation technique which is often used

to generate lower bounds. There are some exceptions, though, as indicated

in Brucker & Kravchenko (1999). If preemption is interesting from an aca-

demic point of view, the assumption that neither setup cost nor setup time

is incurred is often unrealistic in production environments. A good example

is the largest remaining processing time rule which is optimal for parallel

machine scheduling problems consisting in minimizing the makespan with

preemption (Pm | prmp | Cmax), but which cannot be applied in practice

because it often leads to a large number of job interruptions. Accordingly,

preemption should be avoided whenever possible by introducing penalties.

Although scheduling problems with preemption have been well studied, only

a few papers address preemption penalties, either explicitly or by consider-

ing setup costs. Liu & Cheng (2002) study the single machine scheduling

problem with preemption, release dates, preemption penalties and delivery

times, where the objective is to minimize the delivery time of the last job. It

is equivalent to solving a problem where each job has a due date and where

the maximum lateness must be minimized (1 | prmp, rj, dj | Lmax). The au-

thors show that the problem is NP-hard and propose a dynamic formulation

as well as a polynomial-time approximation scheme. Schuurman & Woeg-

inger (1999) introduce a polynomial-time approximation for the problem of

scheduling n jobs on m machines with setup times and with the objective of

minimizing the makespan. Heydari et al. (2010) propose an on-line heuristic

for minimizing the mean flow time with preemption penalties, where the flow

time is defined as the time spent by a job in the system (completion time

minus release date). The authors study two different types of job interrup-

tions: the most often encountered resume preemption type, where only the

remaining processing time has to be performed when a job is resumed and the

3

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

restart preemption type, where the job must be restarted from the beginning

(this case is only interesting in on-line scheduling problems). Shachnai et al.

(2002) impose a maximum number of job interruptions in a multiprocessor

scheduling environment. In another variant, the authors look for the sched-

ule with the minimum number of job interruptions among schedules that

minimize the makespan. In Mohammadi & Heydari (2011), the authors pro-

pose an exact approach for a single machine problem with release dates and

deadlines. The cost function depends on the completion time of the jobs and

the number of job interruptions. When a job is interrupted, a job-dependent

setup cost is incurred.

2.1.2. Work in progress

Minimizing the number of job interruptions and minimizing the work in

progress are clearly two different objectives. For problem P, minimizing the

work in progress is equivalent to minimizing the sum of processing time and

waiting time (due to preemption) over all jobs. In Hendel et al. (2009), a sin-

gle machine scheduling problem is studied where preemption is allowed and

where earliness and tardiness costs must be minimized. Earliness penalties

are often used to represent holding costs and are also related to the time spent

by the jobs in the assembly shop. The authors propose a descent method and

a branch-and-bound algorithm for this problem. In Kazemi et al. (2011), ear-

liness and tardiness penalties are considered similarly to Hendel et al. (2009).

A mathematical model is proposed for a problem where the objective func-

tion includes preemption penalties and inventory costs (associated with work

in progress), in addition to the earliness and tardiness penalties.

The problematic issue of unfinished products that must remain inside the

workshop is also found in the blocking flow shop problem, where buffers of

limited size between machines are considered. Once a buffer is full, the jobs

that are still on the machine are blocked until some space is freed (see Gröflin

et al. (2011) for a mathematical formulation and a tabu search metaheuristic).

4

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

2.1.3. Multi-objective

The most popular algorithms for solving multi-objective optimization prob-

lems are evolutionary algorithms, in particular genetic algorithms (GA).

They are particularly well suited for these problems because they work

with a population of solutions and can maintain a number of different non-

dominated solutions along the Pareto front (see Marler & Arora (2004) for a

survey on multi-objective optimization and Konak et al. (2006) for the most

important variants of GAs for multi-objective problems). Aggregating mul-

tiple objectives into a single objective through a weighted sum or imposing

a lexicographic order among the objectives, as it is done in this work, are

two different ways of transforming a multi-objective problem into a (series

of) single objective one(s). Three different objectives are considered in lex-

icographic order, where the higher level objective f1 is optimized before f2

which is then optimized before f3. This approach was chosen due to a natural

hierarchy among the three objectives in practical applications.

2.2. The multi-coloring problem

Section 2.2.1 first explains the correspondence between problem P and the

multi-coloring problem. Then, applications of graph coloring problems in

job-shop scheduling are discussed in Section 2.2.2. Finally, Section 2.2.3 is

dedicated to the multi-coloring problem.

2.2.1. Correspondence between P and the multi-coloring problem

Given a non directed graph G = (V,E), where V is the vertex set and E the

edge set, the graph coloring problem (GCP) consists in assigning a single color

(integer) to each vertex, such that no two adjacent vertices have the same

color, while minimizing the total number of colors. In the more general multi-

coloring problem, each vertex must be assigned a preset number of different

colors such that no two adjacent vertices have a color in common, while again

minimizing the total number of colors. Problem P can then be viewed as an

extension of the k-multi-coloring problem, where a feasible coloring with at

most k colors must be found. More precisely, each vertex stands for a job,

5

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

and there is an edge between two jobs if they are incompatible. A color then

represents a time unit and color c is assigned to job i if one time unit of job i

is processed during time unit c. Each job must be assigned a number of colors

which is equal to its processing time, and the total number of colors k is set to

D. In this extension of the k-multi-coloring problem, a weight is associated

with each vertex to represent the gain of the corresponding job. The objective

is to maximize the total gain over completely colored vertices, while taking

into account other secondary objectives. As P is closely related to the k-

multi-coloring problem, it is natural to take advantage of the literature on

graph coloring.

2.2.2. Graph coloring for scheduling problems

In the following, examples of scheduling problems which are modeled as graph

coloring problems are presented, with a particular emphasis on multi-coloring

problems.

Modeling scheduling problems as GCPs is particularly relevant in the pres-

ence of job incompatibilities. In Meuwly et al. (2010), for example, the

authors consider the problem of scheduling unit-time jobs with precedence

constraints and job incompatibilities while minimizing the makespan. The

problem is modeled as a mixed graph coloring problem. In this extension

of the GCP, arc constraints are found in addition to edge constraints. In

particular, if there is an arc (i, j), the color assigned to j must be larger than

the one assigned to i. A greedy heuristic, a tabu search and a variable neigh-

borhood search are proposed to solve the problem. Fukunaga et al. (2007)

consider an extension of the GCP, where the cost function depends on the

partition of the set of vertices into independent subsets of vertices sharing

the same color (color classes). Giaro et al. (2009) study a multiprocessor

task system where each task requires a fixed set of processors for its execu-

tion. Furthermore, all tasks have the same duration and machine and job

unavailabilities are considered. The authors model the problem as an edge

list coloring in a hypergraph and develop an exact algorithm for some special

classes of graphs. In their model, an edge can link several vertices and a list

of allowed colors is associated with each vertex.

6

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

In batch scheduling, a machine can process a set of jobs simultaneously,

and the completion time of the batch is the completion time of its longest

job. In presence of job incompatibilities, the problem can be modeled as a

weighted sum-coloring problem when the objective is to minimize the mean

flow time. In this extension of the GCP, the cost of a color class corresponds

to its vertex of maximum weight and the objective is to maximize the sum

of these costs over all problem classes. This problem is tackled in Epstein

et al. (2009) and Halldórsson & Kortsarz (2004). In de Werra et al. (2005),

the authors consider an extension of the batch scheduling problem, where the

assignment of two or more incompatible jobs to the same batch are allowed.

In this case, however, the incompatible jobs must be processed consecutively

on the machine. Complexity results are given for this problem, while exact

and approximation procedure are proposed for particular graph topologies.

2.2.3. Multi-coloring

Multi-coloring problems are used to model a number of scheduling applica-

tions (Marx (2004)). First, it is worth noting that any multi-coloring problem

on a graph G = (V,E) can be transformed into a graph coloring problem on

a modified graph G′ = (V ′, E ′), called the split graph. G′ is obtained as

follows. First, for each vertex i ∈ V , pi vertices are created. Then, an edge is

created between two vertices of G′ if they are associated with the same vertex

in G or if they are adjacent in G. Any graph coloring algorithm can then be

applied to graph G′ to solve the corresponding multi-coloring problem.

The set-T -coloring problem is an extension of the multi-coloring problem,

where a set of colors must be assigned to each vertex, while satisfying two

different types of constraints. First, the co-node constraint forbids the differ-

ence between two colors of the same vertex i to be equal to a number taken

from a given set Ti. The second constraint forbids the difference between the

colors associated with two adjacent vertices i and i′ to be equal to a number

taken from a given set Tii′ . Dorne & Hao (1998) propose a tabu search algo-

rithm for the set-T -coloring problem and applies it also to the graph coloring

and T -coloring problems (a special case where each vertex requires only one

color). Chiarandini & Stützle (2007) compare different algorithms for the

7

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

set-T -coloring problem. The authors re-implement and test different con-

structive heuristics and local search algorithms either on the original graph

or on the split graph. The following conclusions can be drawn from the two

previous papers:

• an adaptation of DSATUR (Brélaz (1979)) proves to be the best con-

structive heuristic, where the saturation degree of vertex i is defined

as the number of different colors used by vertices adjacent to i. In

DSATUR, vertices are colored sequentially in order of decreasing satu-

ration degrees (ties are broken by considering the number of adjacent

vertices which are still not colored),

• tabu search is one of the best approach to improve an initial solution

produced by DSATUR,

• it is better to solve a series of k-coloring problems with decreasing k

values rather than solving the problem directly,

• a solution space where the co-node constraint is always satisfied is to

be preferred (i.e., a single vertex cannot be assigned conflicting colors,

but two adjacent vertices can),

• a neighborhood structure where all colors of a given vertex are modified

at once seems to be more efficient, but it can also be jointly used with

a neighborhood where only one conflicting color in a single vertex is

modified.

In Lim et al. (2005), heuristics are proposed for the set-T -coloring problem.

The authors introduce a greedy heuristic, a tabu search and a squeaky wheel

optimization approach. A global algorithm integrating the three methods

is also reported. In Satratzemi (2004), four heuristics are developed for the

multi-coloring problem. Two are DSATUR-based methods and the two oth-

ers color the (still not colored) maximum stable set at each iteration. The

methods differ by the way ties are broken. Due to the correspondence be-

tween problem P and the k-multi-coloring problem, the coloring terminology

(e.g., vertex, color, edge) and the scheduling terminology (e.g., job, time

period, incompatibility) will be used indifferently in the remainder.

8

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

2.3. Summary

As highlighted in Section 2.2.2, many extensions of the graph coloring prob-

lem have been proposed to address scheduling problems in different produc-

tion systems. In particular, problem P can be related to the multi-coloring

problem, for which several algorithms including tabu search are reported in

the literature. In our case, however, a weight (gain) is associated with each

vertex and the primary objective is to maximize the sum of the gains asso-

ciated with completely colored vertices rather than minimizing the number

of colors or number of conflicts. Therefore, previous methodologies for the

classical multi-coloring problem must be adapted in this new setting. Sec-

tion 2.1 helped to motivate our choice for the secondary objectives, as well

as their integration within a lexicographic ordering scheme. Section 2.1.1

showed that, even if preemption can help to improve the performance of pro-

duction systems, it must be penalized to avoid the occurrence of too many

job interruptions in a solution. Then, Section 2.1.2 explained that work in

progress inventories lead to non negligible costs and also need to be taken

into account.

3. Formal definition of problem P

Problem P consists in scheduling a set of n jobs on an unconstrained number

of parallel machines while allowing preemption. We also consider job incom-

patibilities which are modeled by a graph G = (V,E), where vertex i ∈ V is

a job and edge (i, j) ∈ E is created if jobs i and j are incompatible. With

each job i is associated an integer processing time pi and a gain gi. A global

deadline D is also given, so that no job can be processed after D. To collect

the gain gi, job i must be given pi time units, otherwise the job is rejected.

To write a mathematical formulation of the problem, the following decision

variables are needed:

• zi = 1 if job i is completely performed, 0 otherwise,

• Maxi = largest time unit assigned to i (equal to 0 if i is rejected),

9

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

• Mini = smallest time unit assigned to i (equal to 0 if i is rejected),

• sit = 1 if job i starts or is resumed (after preemption) in time unit t, 0

otherwise,

• ut = 1 if time unit t is used, 0 otherwise,

• xit = 1 if job i is processed in time unit t, 0 otherwise,

The mathematical model is then:

max α1 ·
∑

i∈V

(zi · gi) − α2 ·
∑

i∈V

D
∑

t=1

sit − α3 ·
∑

i∈V

(Maxi −Mini + zi) (1)

s.t.

D
∑

t=1

xit = pi · zi i ∈ V (2)

t · xit ≤Maxi 1 ≤ t ≤ D, i ∈ V (3)

t · xit +D · (1− xit) ≥Mini 1 ≤ t ≤ D, i ∈ V (4)

D · zi ≥Mini i ∈ V (5)

ut = xit + xjt 1 ≤ t ≤ D, (i, j) ∈ E (6)

sit ≥ xit − xi(t−1) 1 ≤ t ≤ D, i ∈ V (7)

sit, zi, xit, ut ∈ {0, 1} 1 ≤ t ≤ D, i ∈ V (8)

Mini,Maxi ≥ 0 and integer i ∈ V (9)

The three terms in the objective function correspond to the total gain associ-

ated with completely performed jobs, number of job interruptions and work

in progress, respectively, while the corresponding weights α1, α2 and α3 are

chosen to obtain the desired lexicographic ordering. In the second term, the

summation over the sit variables also includes the first fragment of a job, but

10

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

this is equivalent to minimizing the number of job interruptions when the

number of completely performed jobs is fixed (which is the case here, due to

the lexicographic ordering among the three objectives). For the third term,

zi is 1 if job i is performed and Maxi −Mini + 1 then corresponds to the

number of time units.

Constraint (2) imposes the assignment of pi time units to each completely

performed job i. Constraints (3), (4) and (5) define Mini and Maxi for each

job i. Constraint (5) sets Mini to 0 when job i is rejected, otherwise it in-

dicates that Mini should not exceed D. Note that when Mini is forced to

0 when job i is rejected, constraint (2) forces the corresponding xit variables

to 0, while constraint (3) becomes Maxi ≥ 0. Accordingly, Maxi is auto-

matically set to 0 due to the minimization of the third term in the objective

function. Constraint (6) states that two adjacent jobs in the incompatibility

graph G cannot share a common time unit. It also enforces ut to be equal

to 1 if time unit t is used. Constraint (7) indicates a start or a restart by

forcing sit to be 1 when xit = 1 and xi(t−1) = 0. Otherwise the subtraction is

negative or null and sit gets value 0 through the minimization of the second

term in the objective function.

As highlighted in Section 2.2.1, problem P can easily be viewed as a multi-

coloring problem by replacing time slots by colors in the above description.

This observation allows us to take advantage of the rich literature on graph

coloring.

4. Basic heuristics for problem P

In this section, basic heuristic methods to tackle our problem are presented.

A constructive method is first introduced, followed by a descent local search.

4.1. Constructive heuristic

The greedy constructive heuristic starts from an uncolored incompatibility

graph and builds a complete solution by coloring a new vertex at each itera-

11

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

tion. Let U be the set of vertices that have not been considered yet. At each

step, vertex i ∈ U with the largest gain gi is deleted from U and is either

rejected or fully colored by assigning pi admissible colors to it (i.e., colors not

found in adjacent vertices). Let Ai be the set of remaining admissible colors

for vertex i. If |Ai| is smaller than pi, vertex i is automatically rejected, oth-

erwise, i is completely colored. Note that if pi consecutive colors are available

in Ai, they should be automatically selected as they lead to the minimum

additional work in progress and do not induce any job interruption. Based

on such observations, the following procedure is proposed to color vertex i

when |Ai| > pi:

1. Find the largest subset of consecutive colors in Ai and call it Bi. If the

size of Bi is at least pi, then color vertex i with pi (randomly chosen)

consecutive colors in Bi. Otherwise, assign all colors in Bi to vertex i,

remove these colors from Ai, and go to step 2.

2. While vertex i is not fully colored, add a color in Ai that minimizes

the additional number of job interruptions (either 0 or 1 additional

interruption) and remove that color from Ai. In case of ties, choose the

color that minimizes the additional work in progress.

This color assignment procedure is fast and randomized (as many ties might

occur). Therefore, different runs of the greedy constructive heuristic are

likely to produce different solutions. This characteristic is exploited in the

following to provide different starting points for our descent method.

4.2. Descent method

Local search methods are heuristics which, starting from an initial solution,

moves from the current solution s to another solution in the neighborhood

of s. The latter is denoted N(s) and is obtained by performing a given type

of moves on s which slightly modifies its structure. In a descent method, the

best neighbor solution is selected at each iteration. When the method gets

trapped in the first encountered local optimum (with regard to the chosen

neighborhood), a restart procedure can be applied to escape from it. Many

restarts can thus be performed until a given time limit is reached to obtain

12

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

a so-called multi-start descent method. At the end, the best solution found

is returned.

In the multi-start descent method developed for our problem, every initial

solution is provided by the greedy constructive heuristic. As preliminary

experiments have shown that changing only one color at a time leads to poor

results, we consider moves which fully color (if the vertex has previously been

rejected) or fully recolor a vertex (if the vertex has previously been colored).

Thus, a neighbor solution s′ of s is obtained by assigning pi colors to a given

vertex i. The neighborhood N(s) is then obtained by applying this type of

move to all vertices, including those that have been rejected from the current

solution. The procedure for selecting the subset of colors assigned to a vertex

is explained in the following (note that the term recoloring will be used for

both colored and uncolored vertices).

When recoloring vertex i, two situations can occur. On the one hand, if

there are at least pi colors in set Ai, the colors are assigned one by one to

vertex i by selecting the color that minimizes the saturation degree of the

adjacent uncolored vertices. We recall that the saturation degree of a vertex

is the number of different colors used in adjacent vertices. At each step, the

color c ∈ Ai that maximizes
∑

i′∈Z(i) uc(i
′) is chosen, where Z(i) is the set

of adjacent uncolored vertices of vertex i, and uc(i
′) = 1 if color c is used

in vertices adjacent to i′ and 0 otherwise. The goal here is to assign a color

which leads to the smallest increase in the saturation degree of the adjacent

uncolored vertices. We denote this procedure by RSD.

On the other hand, if it is not possible to find pi admissible colors for vertex

i (i.e., |Ai| < pi), the recoloring of i is enforced as follows. First, all colors in

Ai are assigned to i, and the other colors are assigned one by one, by selecting

at each step the color that minimizes the gain reduction. That is, if the non

admissible color c is assigned to vertex i, all adjacent vertices with color c

are uncolored and the associated gain is lost. This procedure is called REnf

(for enforced recoloring).

13

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

5. Tabu search

Tabu search is also a local search algorithm. In contrast with a pure de-

scent method, a tabu list is used to prevent cycling when a local optimum is

reached by forbidding to undo some recently performed moves. Then, at each

iteration, the tabu search applies the best non tabu move (either improving

or not). We define below the main components used in our tabu search im-

plementation for problem P, namely the initial solution, the neighborhood

structure, the tabu list as well as a neighborhood restriction technique and

a diversification mechanism. Finally, some ways to put more emphasis on

objectives f2 (number of job interruptions) and f3 (work in progress) are

proposed.

Initial solution. The initial solution is provided by the greedy constructive

heuristic.

Neighborhood structure. The neighborhood structure is based on the union

of the three types of moves RSD, REnf and RDrop, where the latter simply

consists in removing all colors of a given vertex. Since this move degrades

solution quality, it can only be applied within a tabu search framework.

Clearly, it will not be performed at all if a neighbor solution can be obtained

with RSD. But, it might lead to a better solution than a move of type REnf

which is likely to uncolor several vertices. Note that exploiting the union

of different types of moves has proven to be successful on different types of

problems (e.g., Wu et al. (2012), Lü et al. (2011)).

Tabu status. It is forbidden to recolor a recently recolored or uncolored vertex

for tab (parameter) iterations.

Neighborhood reduction technique. A fraction (tuned to 25%) of the whole

neighborhood is considered at each iteration. The sample of neighbor solu-

tions is randomly chosen.

Diversification strategy. Every I iterations (parameter tuned to 150) without

improvement to the best solution found, b% (parameter tuned to 20%) of the

colored vertices are randomly chosen and uncolored. It should be noted

14

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

that more sophisticated strategies (like selecting the vertices with colors that

did not change for the largest number of iterations) did not provide any

improvement over this simple random rule.

Despite the good performance of our tabu search with regard to the total

gain f1, the solutions obtained in preliminary experiments had quite large

values for the number of job interruptions f2 and the work in progress f3.

To address this issue, an exact recoloring procedure (i.e., able to optimally

color a vertex with regard to f2 and then f3) was used. Our approach, as

well as its integration within the neighborhood structure of our local search

methods, are described below.

Let us assume that we have to recolor vertex i and that |Ai| ≥ pi. The

exact algorithm consists in finding the subset of colors in Ai that minimizes

the total cost (preemption followed by work in progress) associated with the

recoloring of vertex i. Here, a vertex coloring is an ordered list or sequence

of colors of fixed size. The methodology is based on the following property.

Let S and S ′ be two non decreasing sequences of colors ending with

the same color c′. If the cost associated with S is smaller than the

cost associated with S ′, then adding color c at the end of S leads

to a partial solution whose cost is smaller than the one obtained by

adding c at the end of S ′.

This property stems from the fact that the cost increase depends only on

colors c and c′. The increase in the number of job interruptions (resp. work

in progress) due to the addition of color c at the end of a sequence ending

with color c′ is denoted Int(c′, c) (resp. Wip(c′, c)) and is defined as follows

for all c > c′:

Int(c′, c) =

{

1 if c > c′ + 1

0 otherwise
(10)

Wip(c′, c) = c− c′ (11)

A pseudo-code for identifying the optimal recoloring of vertex i is found in

Algorithms 1 and 2, where Lint(q, c) and Lwip(q, c) are the optimal values

15

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

for the number of job interruptions and work in progress, respectively, for

a color sequence BestS of length q ending with color c. To obtain the true

optimum, the procedure R(q, c) must be called for all q from 1 to pi and for

all c ∈ Ai. As the complexity of the latter is O(|Ai|), the exact recoloring

algorithm RExact runs in O(pi · |Ai|
2).

It should be noted that set B in R(q, c) is used to memorize the best sequences

with regard to the number of job interruptions f2, as there might be more

than one. Then, these sequences are evaluated for the work in progress

f3. If there are still two or more best sequences, ties are broken randomly as

indicated by the assignment of c∗ to c′ so that the ith sequence has probability
1
i
to be selected. The + sign in the last statement is used to indicate that

color c is added at the end of the sequence BestS(q − 1, c∗).

Algorithm 1 RExact(i)

For q from 1 to pi do

For c in Ai do

call R(q,c);

The exact recoloring procedure is applied on a vertex i only when |Ai| ≥ pi.

In the following, two strategies to integrate RExact into the tabu search are

proposed. Clearly, RExact always leads to a better solution than RSD when

applied to a given vertex. But, surprisingly, the tabu search returns better

solutions at the end when it is run with RSD, instead of RExact. It seems

that RSD better deals with the total gain f1 by forbidding a smaller number

of colors on the adjacent uncolored vertices. These vertices are then more

likely to be recolored in the next iterations. Based on this observation, RSD

must be part of the neighborhood and cannot be simply used as a filter to

quickly identify promising vertices for RExact. Accordingly, the two following

ways of integrating RExact into the neighborhood structure are proposed:

1. RSD, REnf and RDrop are first used jointly and the q (parameter) ver-

tices leading to the best solutions when recolored with RSD become

potential candidates for the exact procedure. Then, 25% of the candi-

date vertices are (randomly) selected, colored with RExact and added

16

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

Algorithm 2 R(q,c)

If (q = 1) then return BestS(q,c) = {c}, Lint(q, c) = 0, Lwip(q, c) = 1

Else

1. Bestint ←∞, Bestwip ←∞, B ← ∅

2. for c′ ∈ Ai such that c′ < c do

(a) if (c−c′) = 1 then Int← Lint(q−1, c
′) else Int← Lint(q−1, c

′)+1

(b) if Int = Bestint then B ← B ∪ {c′}

(c) if Int < Bestint then Bestint ← Int, B ← {c′}

3. for c′ ∈ B do

(a) Wip← Lwip(q − 1, c′) + (c− c′)

(b) if Wip = Bestwip then c∗ ← c′ (with some probability)

(c) if Wip < Bestwip then c∗ ← c′, Bestwip ← Wip

4. return BestS(q, c) = BestS(q − 1, c∗) + {c}, Lint(q, c) = Bestint,

Lwip(q, c) = Bestwip;

to the neighborhood of the current solution. This percentage is the

result of a compromise: if too large, RSD would never contribute to

the search; if too small, the impact of the exact procedure would be

negligible.

2. RExact, REnf and RDrop are jointly used with a probability γ (parame-

ter), whereas RSD, REnf and RDrop are jointly used with a probability

1− γ.

A pseudo-code for the tabu search is given in Algorithm 3, while its neigh-

borhood management strategy is found in Algorithm 4.

6. Experiments

In this section, the methodologies to be compared and the test instances are

presented. Then, the results obtained are reported and analyzed.

In the following, LP denotes the application of the exact CPLEX solver to the

17

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

Algorithm 3 Tabu search

Generate an initial solution s with Greedy (see Section 4.1).

While no stopping condition is met do:

1. generate the neighborhood N(s) of solution s, with RExact integrated

according to either strategy 1 or 2,

2. identify the best non tabu solution s′ in N(s) and the vertex v associ-

ated with this move,

3. update the tabu tenure: forbid vertex v to be recolored for tab itera-

tions,

4. s← s′,

5. if I = 150 consecutive iterations have been performed since the last

improvement of the best encountered solution, uncolor b = 20% of the

colored vertices in s.

Return best solution found during the search.

linear programming model of Section 3. The methods Greedy and Descent

are those previously introduced in Section 4. With regard to the tabu search,

the improvement provided by each algorithmic component is highlighted by

adding these components one by one. More precisely, TS denotes the tabu

search with RSD and REnf only, while TSDrop is obtained when RDrop is

added to the neighborhood structure. Then, TSDiv includes the diversifica-

tion procedure with I = 150 and b = 20%. Finally, RExact is added to TSDiv

using strategies 1 and 2 to obtain TSE1 and TSE2, respectively. In these two

variants, parameter q is tuned to 20 and parameter γ to 0.2. Note also that

the tabu tenure tab is tuned to 10 for instances with more than 50 jobs and

to 3 otherwise.

The test instances have been generated as in Dorne & Hao (1998). Two pa-

rameters are used for this purpose: the number of jobs n and the graph

density d (probability of having an edge between two vertices). A to-

tal of 90 instances were generated, with n ∈ {10, 25, 50, 100, 300, 500} and

d ∈ {0.2, 0.5, 0.8}. For each (n, d) couple, five instances were generated and

labeled with letters a, b, c, d and e. The processing time pi of job i is an

18

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

Algorithm 4 Neighborhood management strategy at each iteration

If strategy 2 is used, set R to RExact or RSD with probability 0.2 and 0.8,

respectively.

For each vertex i ∈ V do:

1. if i is colored, perform RDrop on i (with a probability of 25%),

2. do with a probability of 25%:

(a) if |Ai| < pi, perform REnf on i,

(b) else,

i. if strategy 1 is used, perform RSD on i and update the set Q

of the q best vertices,

ii. if strategy 2 is used, perform R,

If strategy 1 is used, perform RExact on 25% of the vertices in Q.

integer randomly chosen in interval [1, 10]. The gain gi is related to the pro-

cessing time pi, as observed in practice where larger jobs bring more profits.

Basically, a random number β is chosen in the interval [1,20] and gi = β · pi.

For each instance, the deadline D is chosen small enough to prevent the

scheduling of all jobs.

The algorithms were implemented in C++ and executed on a computer with

a processor Intel Quad-core i7 2.93 GHz with 8 GB of DDR3 RAM memory.

A time limit of 60 ·n seconds was used, where n is the number of jobs, and 5

runs per instance were performed with each algorithm, except LP for which

a single run was performed with a time limit of 10 hours and a memory limit

of 7 GB.

For the sake of completeness, the detailed results on each individual instance

are provided in the Appendix in Tables A1 and A2 for small and large in-

stances, respectively. In these tables, column Instance refers to the name

n d letter of the test instance. Then, column Bound contains the best known

bound for each objective in lexicographic order (i.e., total gain, number of

job interruptions and work in progress). A straightforward bound for the

first objective is the sum of the gains over all jobs (i.e.,
∑

i∈V gi). For the

two other objectives, the bound is set to the smallest value found over all our

19

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

experiments. The other columns in these tables contain, for each method,

the average gap in percentage between the solution value obtained for each

of the three objectives and the corresponding bound, still in lexicographic

order. In column LP , optimal solutions are indicated with (. . .)∗, feasible so-

lutions returned when the memory limit is reached are indicated with (. . .)m,

whereas those returned when the time limit is reached are indicated with

(. . .)t. Table A1, in particular, shows that LP is able to solve all instances

with 10 jobs and all instances with 25 jobs when the graph density is 0.2. In

the other cases, an upper bound is found.

Tables 1 and 2 below correspond to an aggregated version of the tables in the

Appendix, by averaging the results over the five instances labeled a, b, c, d

and e for each (n, d) couple. Table 1 shows that the solutions obtained with

LP are largely improved by the other methods on the test instances with

50 jobs. In particular, the average gap associated with the first objective on

these instances is 30% for LP versus 24.6% for TSDiv. Consequently, LP

was not run on the large instances. Over all instances of size 10, 25 and 50,

LP obtains an average gap for the first objective of 19.4%, versus 19.1% for

Greedy, but it is not competitive on the two other objectives. Greedy and

Descent produce similar results with average gaps of 19.1%, 4.1%, 7.7% and

18.8%, 5.6%, 11.6%, respectively, for the three objectives (in lexicographic

order). TS improves Greedy by 1.1% on the first objective but, when both

methods obtain the same values for this objective, Greedy outperforms TS

most of the time on the secondary objectives (see, for example, instances

10 2 b, 10 2 c, and 10 2 d in Table A1 in the Appendix). Adding RDrop

and the diversification mechanism lead to the best results with regard to

the primary objective. However, the results for the secondary objectives are

poor with average gaps of 140.4% and 136.2% for TSDrop, and 106.2% and

140.7% for TSDiv. Introducing RExact clearly provides a huge improvement,

given that TSE1 and TSE2 produce gaps of 17.6%, 43.6%, 42% and 17.6%,

77.8%, 66.2%, respectively, for the three objectives. Overall, TSE1 is the

best method on average. It also produces the best solutions on 28 instances

out of 45.

The aggregated results for the large instances of size 100, 300 and 500 are

20

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

reported in Table 2. On this set of instances, TS is better than Greedy,

which is slightly better than Descent. The average gaps with regard to the

first objective are 26.4%, 28%, and 28.7%, respectively. Adding RDrop leads

to a small improvement at 25.9%. However, the diversification mechanism

provides the best results with a gap of 23.9%. Finally, adding RExact does

not provide an implementation that matches TSDiv with gaps of 25.5% for

TSE1 and 25.2% for TSE2, but huge improvements are observed with regard

to the secondary objectives.

Overall, TSDiv, TSE1 and TSE2 are the best methods. If we consider the

lexicographic ordering of the three objectives, TSE1 leads to the best average

results on small instances with up to 50 jobs, while TSDiv is the best on

larger instances. In the latter case, however, TSE1 and TSE2 considerably

reduce the values of the second (number of job interruptions) and third (work

in progress) objectives, at the expense of a slight deterioration in the first

objective (total gain). These results demonstrate the effectiveness of the

recoloring procedure RSD for maximizing the total gain: the more it is used,

the better are the results. We also observe that strategy 1 is better than

strategy 2 when RExact is integrated within the tabu search. Finally, the

graph density does not have any impact on the ranking of the proposed

methods.

Based on these results, TSDiv is certainly a method to consider when the

focus is on the total gain. But TSE1 is also interesting by providing the best

results on small instances and by considerably improving the number of job

interruptions and work in progress (at the expense of a slight deterioration

in the total gain on large instances).

21

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

n
d

L
P

G
r
e
e
d
y

D
e
s
ce
n
t

T
S

T
S
D
r
o
p

T
S
D
iv

T
S
E
1

T
S
E
2

1
0

0.
2

(1
8
.8

;
2
.5

;
3
.4
)

(2
1
.5

;
0
;
0
)

(1
8.
8
;
2.
5
;
3.
4)

(1
8.
8
;
7.
1
;
7.
5)

(1
8.
8
;
9.
5
;
6.
9)

(1
8.
8
;
4.
8
;
7.
4)

(1
8
.8

;
2
.5

;
3
.4
)

(1
8.
8
;
3
;
3.
9)

0.
5

(1
3
.1

;
0
;
0
)

(1
3.
1
;
4.
7
;
9.
9)

(1
3
.1

;
0
;
0
)

(1
3.
1
;
29

.9
;
31

.6
)

(1
3.
1
;
30

.8
;
29

.3
)

(1
3.
1
;
11
.9

;
20
.5
)

(1
3
.1

;
0
;
0
)

(1
3.
1
;
8.
1
;
4.
7)

0.
8

(1
5
.6

;
3
.3

;
1
.1
)

(1
5
.8

;
0
;
0
)

(1
5.
8
;
0
;
0)

(1
5.
6
;
59

.4
;
51

.2
)

(1
5.
6
;
60

.4
;
50

.7
)

(1
5.
6
;
28
.7

;
55
.5
)

(1
5
.6

;
3
.3

;
1
.1
)

(1
5.
6
;
16

;
14
.4
)

A
v
g
.
(1

5
.8

;
1
.9

;
1
.5
)

(1
6
.8

;
1
.6

;
3.
3)

(1
5.
9
;
0.
8
;
1.
1)

(1
5.
8
;
32

.1
;
30

.1
)

(1
5.
8
;
33

.6
;
28

.9
)

(1
5.
8
;
15
.1

;
27
.8
)

(1
5
.8

;
1
.9

;
1
.5
)

(1
5.
8
;
9
;
7.
6)

2
5

0.
2

(1
6
.7

;
5
.5

;
5
.8
)

(2
0
.1

;
0
;
0
.2
)

(2
0.
1
;
0
;
0.
2)

(1
6.
7
;
79

.6
;
54

.2
)

(1
6.
7
;
79

.4
;
53

.4
)

(1
6.
7
;
46
.6

;
58
.1
)

(1
6.
7
;
6.
8
;
8.
1)

(1
6.
7
;
26

;
22
.5
)

0.
5

(8
.9

;
12

.4
;
15

.8
)

(9
.3

;
0.
8
;
2.
9)

(9
.2

;
3
.4

;
7
.8
)

(8
.4

;
23

6.
2
;
19

1.
3)

(8
.4

;
20

7.
5
;
17

6.
8)

(8
.5

;
12
1.
9
;
17
2.
8)

(8
.4

;
1
9
.8

;
2
8
.9
)

(8
.4

;
73
.7

;
70
.7
)

0.
8

(1
1.
9
;
19

.1
;
4
3
.8
)

(1
2
.3

;
6
.5

;
15

.1
)
(1
1.
8
;
27

.4
;
5
7.
7)

(1
1.
6
;
24

7.
4
;
35

6.
8)

(1
1.
6
;
21

6.
4
;
33

9.
5)

(1
1.
6
;
16
3
;
32
3.
8)

(1
1
.6

;
4
0
.5

;
6
5
.7
)

(1
1.
6
;
13
0.
2
;
15
3.
7)

A
v
g
.
(1
2.
5
;
12

.3
;
2
1
.8
)

(1
3
.9

;
2
.4

;
6.
1)

(1
3.
7
;
10

.3
;
2
1.
9)

(1
2.
2
;
18

7.
7
;
20

0.
7)

(1
2.
3
;
16

7.
8
;
18

9.
9)

(1
2.
3
;
11
0.
5
;
18
4.
9)

(1
2
.2

;
2
2
.4

;
3
4
.3
)

(1
2.
2
;
76
.6

;
82
.3
)

5
0

0.
2

(1
8
.4

;
7
3
.5

;
4
5
.1
)

(2
1
;
8
;
7.
6)

(2
1.
2
;
2.
2
;
3.
8)

(1
9.
4
;
17

2
;
89

.3
)

(1
8.
6
;
11

1.
5
;
66

.7
)

(1
8.
6
;
11
5.
3
;
86
.1
)

(1
8.
8
;
46
.7

;
26
.2
)

(1
8.
7
;
80
.4

;
39
.3
)

0.
5

(3
5.
5
;
22

3
.6

;
1
51

.4
)

(3
0
.1

;
8
.4

;
20

)
(3
0.
7
;
5.
3
;
9.
5)

(2
9.
9
;
26

5.
6
;
17

9.
6)

(2
8.
4
;
24

6.
6
;
18

2.
5)

(2
8.
2
;
18
7.
7
;
19
4.
4)

(2
8.
2
;
10
2.
6
;
76
)

(2
8
.1

;
1
3
0
.9

;
8
4
.4
)

0.
8

(3
6.
2
;
10

4
;
1
36

.7
)

(2
8
.7

;
8
.1

;
13

.4
)
(2
8.
9
;
10

;
21

.6
)

(2
8.
1
;
34

3.
2
;
34

4)
(2

7
;
3
0
1
.1

;
3
2
0
.6
)
(2
7.
1
;
27
6
;
34
7.
7)

(2
7.
4
;
17
0
;
16
8.
4)

(2
7.
2
;
23
1.
8
;
20
2.
2)

A
v
g
.
(3
0
;
1
33

.7
;
1
11

.1
)

(2
6
.6

;
8
.2

;
13

.7
)
(2
6.
9
;
5.
8
;
11

.7
)

(2
5.
8
;
26

0.
3
;
20

4.
3)

(2
4.
7
;
21

9.
7
;
18

9.
9)

(2
4
.6

;
1
9
3
;
2
0
9
.4
)

(2
4.
8
;
10
6.
4
;
90
.2
)

(2
4.
7
;
14
7.
7
;
10
8.
6)

A
v
g.

(1
9.
4
;
49

.3
;
4
4
.8
)

(1
9
.1

;
4
.1

;
7.
7)

(1
8.
8
;
5.
6
;
11

.6
)

(1
8
;
16

0
;
14

5.
1)

(1
7.
6
;
14

0.
4
;
13

6.
2)

(1
7.
6
;
10
6.
2
;
14
0.
7)

(1
7
.6

;
4
3
.6

;
4
2
)

(1
7.
6
;
77
.8

;
66
.2
)

T
ab

le
1:

A
gg
re
ga
te
d
re
su
lt
s
on

sm
al
l
in
st
an

ce
s

n
d

G
r
e
e
d
y

D
e
s
ce
n
t

T
S

T
S
D
r
o
p

T
S
D
iv

T
S
E
1

T
S
E
2

1
00

0
.2

(4
0.
3
;
9.
5
;
1
1.
1)

(4
0
.8

;
4
.4

;
5.
6)

(3
7
;
1
9
6.
6
;
1
02

.2
)

(3
7.
5
;
15

8
;
93

.4
)

(3
6
.1

;
2
3
3
.2

;
1
2
6
)

(3
6.
3
;
93
.1

;
52
.6
)

(3
6.
4
;
11
9.
5
;
60
.8
)

0
.5

(5
5.
8
;
10
.6

;
20
.3
)
(5
6
.2

;
6
.2

;
11

.4
)
(5
4
.4

;
31

4
.5

;
22

2.
7)

(5
2.
6
;
29

7.
9
;
21

0.
7)

(5
2
.4

;
3
3
1
.5

;
2
3
3
.3
)

(5
2.
6
;
14
9.
4
;
98
.8
)

(5
2.
7
;
18
6.
1
;
12
5.
8)

0
.8

(5
4
;
2
.8

;
2
1.
8)

(5
4.
5
;
10

.5
;
18

)
(5
3
;
34

0
;
3
3
6.
3)

(5
1.
1
;
32

4
;
32

8.
8)

(5
1
.1

;
3
4
5
.1

;
3
5
5
.6
)

(5
1.
3
;
24
5.
4
;
19
9.
9)

(5
1.
2
;
26
8.
2
;
23
9.
7)

A
v
g.

(5
0
;
7
.6

;
1
7.
7)

(5
0.
5
;
7
;
11

.7
)

(4
8
.2

;
28

3
.7

;
22

0.
4)

(4
7.
1
;
26

0
;
21

1)
(4

6
.6

;
3
0
3
.3

;
2
3
8
.3
)

(4
6.
7
;
16
2.
6
;
11
7.
1)

(4
6.
8
;
19
1.
3
;
14
2.
1)

3
00

0
.2

(1
6.
3
;
11

;
1
9.
2)

(1
7
.3

;
5
.5

;
13

.4
)
(1
3
.8

;
10

7
.8

;
14

1.
2)

(1
4.
2
;
89

.8
;
12

0.
3)

(9
.4

;
2
2
4
.2

;
2
6
0
.1
)

(1
2.
5
;
78
.2

;
75
.7
)

(1
1.
8
;
10
5.
8
;
10
6.
1)

0
.5

(1
9.
4
;
7.
8
;
1
4.
9)

(2
0
.5

;
5
.6

;
11

.6
)
(1
6
.5

;
14

1
.5

;
22

6.
7)

(1
5.
6
;
12

0.
6
;
21

7.
9)

(1
3
.1

;
2
6
2
.8

;
4
2
1
.6
)

(1
5.
7
;
13
6.
5
;
16
3)

(1
5.
3
;
14
7.
6
;
18
4.
4)

0
.8

(1
6.
3
;
5.
1
;
1
8.
4)

(1
6
.9

;
7
.4

;
30

.2
)
(1
3
.7

;
10

0
.2

;
29

5.
6)

(1
3.
1
;
94

.1
;
27

3.
9)

(1
0
.7

;
2
2
3
.4

;
5
9
2
.3
)

(1
3.
4
;
11
6.
7
;
24
6.
6)

(1
2.
8
;
13
0.
5
;
26
0.
2)

A
v
g.

(1
7.
3
;
8
;
17
.5
)

(1
8
.2

;
6
.2

;
18

.4
)
(1
4
.7

;
11

6
.5

;
22

1.
1)

(1
4.
3
;
10

1.
5
;
20

4)
(1

1
;
2
3
6
.8

;
4
2
4
.7
)

(1
3.
9
;
11
0.
5
;
16
1.
8)

(1
3.
3
;
12
7.
9
;
18
3.
6)

5
00

0
.2

(1
4.
9
;
5
;
16
.8
)

(1
5
.7

;
5
.2

;
20

.4
)
(1
4
.3

;
49

.5
;
81

)
(1
4.
3
;
43

.8
;
75

.1
)

(1
0
;
1
8
2
.9

;
2
7
3
.2
)

(1
3.
3
;
82
.5

;
99
.4
)

(1
3
;
69
.2

;
76
.8
)

0
.5

(2
1.
5
;
4.
4
;
1
9.
9)

(2
2
.2

;
3
.6

;
15

.6
)
(2
1
.3

;
42

.8
;
90

.9
)

(2
1.
4
;
41

.5
;
86

.9
)

(1
9
.1

;
1
3
5
.3

;
2
7
7
.1
)

(2
0.
9
;
58
.1

;
94
.1
)

(2
0.
8
;
71
.9

;
11
3.
6)

0
.8

(1
3.
9
;
4.
6
;
1
5.
2)

(1
4
;
7.
5
;
3
5
)

(1
3
.3

;
28

.1
;
89

.5
)

(1
3.
1
;
32

.8
;
98

.7
)

(1
2
.8

;
4
4
.2

;
1
3
2
.6
)

(1
3.
3
;
32
.4

;
82
.5
)

(1
2.
9
;
29
.5

;
68
.7
)

A
v
g.

(1
6.
8
;
4.
7
;
1
7.
3)

(1
7
.3

;
5
.4

;
23

.7
)
(1
6
.3

;
40

.1
;
87

.1
)

(1
6.
3
;
39

.4
;
86

.9
)

(1
4
;
1
2
0
.8

;
2
2
7
.6
)

(1
5.
8
;
57
.7

;
92
)

(1
5.
5
;
56
.9

;
86
.4
)

A
v
g.

(2
8
;
6
.7

;
1
7.
5)

(2
8.
7
;
6.
2
;
17

.9
)
(2
6
.4

;
14

6
.8

;
17

6.
2)

(2
5.
9
;
13

3.
6
;
16

7.
3)

(2
3
.9

;
2
2
0
.3

;
2
9
6
.9
)

(2
5.
5
;
11
0.
3
;
12
3.
6)

(2
5.
2
;
12
5.
4
;
13
7.
4)

T
ab

le
2:

A
gg
re
ga
te
d
re
su
lt
s
on

la
rg
e
in
st
an

ce
s

22

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

7. Conclusion

In this paper, an order acceptance and scheduling problem is solved with

different heuristic and metaheuristic methods, in particular a tabu search.

Three different objectives are considered in lexicographic order to produce

solutions of interest in practical settings. The effectiveness of several algo-

rithmic components within the tabu search are empirically demonstrated like

the joint use of several types of neighborhoods, the diversification mechanism,

and an exact recoloring procedure.

Several extensions of our problem can be of interest. First, the number of

parallel machines is unrestricted, although a more realistic variant would fix

it to a given number. The makespan could also be part of the objectives.

Finally, it is assumed that each resource (or tool) exists in a single exemplar,

but we might want to consider different types of tools with many exemplars of

each type. This would lead to an hypergraph multi-coloring problem. Each

edge would represent a tool and would link that tool to all jobs that need

it. In this case, the number of conflicts associated with each edge and each

color would need to be smaller than or equal to the number of exemplars of

the tool modeled by the edge.

Appendix

23

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

In
st
.

B
o
u
n
d

L
P

G
r
e
e
d
y

D
e
s
ce
n
t

T
S

T
S
D
r
o
p

T
S
D
iv

T
S
E
1

T
S
E
2

10
0.
2
a

(6
27
,
5,

28
)

(5
2
.2
,0

,0
)∗

(5
2
.2
,
0
,
0
)

(5
2
.2
,
0
,
0
)

(5
2
.2
,
0
,
0
)

(5
2
.2
,
0
,
0
)

(5
2
.2
,
0
,
0
)

(5
2
.2
,
0
,
0
)

(5
2
.2
,
0
,
0
)

10
0.
2
b

(2
95
,
9,

35
)

(3
.1
,0

,0
)∗

(3
.1
,
0
,
0
)

(3
.1
,
0
,
0
)

(3
.1
,
6.
7,

1.
7)

(3
.1
,
17
.8
,
6.
3)

(3
.1
,
2.
2,

3.
4)

(3
.1
,
0
,
0
)

(3
.1
,
0
,
0
)

10
0.
2
c

(6
68
,
8,

38
)

(1
9
.6
,0

,0
)∗

(1
9
.6
,
0
,
0
)

(1
9
.6
,
0
,
0
)

(1
9.
6,

5,
5.
3)

(1
9.
6,

5,
2.
1)

(1
9.
6,

3.
8,

7.
9)

(1
9
.6
,
0
,
0
)

(1
9
.6
,
0
,
0
)

10
0.
2
d

(3
66
,
9,

34
)

(4
.9
,0

,0
)∗

(4
.9
,
0,

0)
(4
.9
,
0,

0)
(4
.9
,
8.
9,

12
.9
)

(4
.9
,
2.
2,

6.
5)

(4
.9
,
1,

5.
3)

(4
.9
,
0
,
0
)

(4
.9
,
0
,
0
)

10
0.
2
e

(3
95
,
8,

35
)

(1
4
.2
,1

2
.5
,1

7
.1
)∗

(2
7.
8
,
0,

0)
(1

4
.2
,
1
2
.5
,
1
7
.1
)
(1
4.
2,

15
,
17
.7
)

(1
4.
2,

22
.5
,
19
.4
)

(1
4.
2,

17
,
20
.6
)

(1
4
.2
,
1
2
.5
,
1
7
.1
)

(1
4.
2,

15
,
19
.4
)

10
0.
5
a

(3
51
,
9,

42
)

(8
.5
,0

,0
)∗

(8
.5
,
0
,
0
)

(8
.5
,
0
,
0
)

(8
.5
,
82
.2
,
75
.7
)

(8
.5
,
60
,
47
.1
)

(8
.5
,
24
.8
,
53
.8
)

(8
.5
,
0
,
0
)

(8
.5
,
11
.1
,
4.
3)

10
0.
5
b

(6
00
,
9,

47
)

(1
2
,0

,0
)∗

(1
2,

11
.1
,
25
.5
)

(1
2,

0,
0)

(1
2,

22
.2
,
28
.1
)

(1
2,

31
.1
,
39
.6
)

(1
2,

10
.1
,
22
.6
)

(1
2
,
0
,
0
)

(1
2,

2.
2,

0.
4)

10
0.
5
c

(2
67
,
6,

21
)

(2
7
.3
,0

,0
)∗

(2
7
.3
,
0
,
0
)

(2
7
.3
,
0
,
0
)

(2
7
.3
,
0
,
0
)

(2
7
.3
,
0
,
0
)

(2
7
.3
,
0
,
0
)

(2
7
.3
,
0
,
0
)

(2
7
.3
,
0
,
0
)

10
0.
5
d

(6
72
,
8,

50
)

(1
0
.3
,0

,0
)∗

(1
0.
3,

12
.5
,
24
)

(1
0
.3
,
0
,
0
)

(1
0.
3,

7.
5,

8.
4)

(1
0.
3,

25
,
19
.2
)

(1
0.
3,

1.
3,

0)
(1

0
.3
,
0
,
0
)

(1
0.
3,

2.
5,

0.
4)

10
0.
5
e

(4
34
,
9,

44
)

(7
.4
,0

,0
)∗

(7
.4
,
0
,
0
)

(7
.4
,
0
,
0
)

(7
.4
,
37
.8
,
45
.9
)

(7
.4
,
37
.8
,
40
.5
)

(7
.4
,
23
.2
,
25
.9
)

(7
.4
,
0
,
0
)

(7
.4
,
24
.4
,
18
.2
)

10
0.
8
a

(4
42
,
9,

40
)

(1
.8
,0

,0
)∗

(1
.8
,
0
,
0
)

(1
.8
,
0
,
0
)

(1
.8
,
53
.3
,
55
)

(1
.8
,
75
.6
,
85
)

(1
.8
,
32
.5
,
79
.5
)

(1
.8
,
0
,
0
)

(1
.8
,
8.
9,

10
.5
)

10
0.
8
b

(6
50
,
7,

49
)

(1
2
.9
,0

,0
)∗

(1
2
.9
,
0
,
0
)

(1
2
.9
,
0
,
0
)

(1
2.
9,

15
4.
3,

10
5.
3)

(1
2.
9,

13
7.
1,

10
0.
8)

(1
2.
9,

76
.6
,
14
7.
3)

(1
2
.9
,
0
,
0
)

(1
2.
9,

37
.1
,
38
)

10
0.
8
c

(2
79
,
6,

18
)

(2
5
.1
,1

6
.7
,5

.6
)∗

(2
6.
2
,
0,

0)
(2
6.
2,

0,
0)

(2
5
.1
,
1
6
.7
,
5
.6
)

(2
5
.1
,
1
6
.7
,
5
.6
)

(2
5
.1
,
1
6
.7
,
5
.6
)

(2
5
.1
,
1
6
.7
,
5
.6
)

(2
5
.1
,
1
6
.7
,
5
.6
)

10
0.
8
d

(4
93
,
7,

45
)

(8
.1
,0

,0
)∗

(8
.1
,
0,

0)
(8
.1
,
0,

0)
(8
.1
,
68
.6
,
89
.3
)

(8
.1
,
68
.6
,
61
.3
)

(8
.1
,
15
.6
,
43
.6
)

(8
.1
,
0
,
0
)

(8
.1
,
17
.1
,
17
.8
)

10
0.
8
e

(5
22
,
5,

26
)

(3
0
.1
,0

,0
)∗

(3
0
.1
,
0
,
0
)

(3
0
.1
,
0
,
0
)

(3
0.
1,

4,
0.
8)

(3
0.
1,

4,
0.
8)

(3
0.
1,

2,
1.
5)

(3
0
.1
,
0
,
0
)

(3
0
.1
,
0
,
0
)

25
0.
2
a

(1
27
5,

21
,
10
7)

(1
7
.3
,0

,0
)∗

(1
7.
3,

0,
0.
9)

(1
7.
3,

0,
0.
9)

(1
7.
3,

75
.2
,
45
.6
)

(1
7.
3,

11
6.
2,

67
.1
)

(1
7.
3,

46
.9
,
71
.6
)

(1
7.
3,

0,
0.
7)

(1
7.
3,

12
.4
,
11
.4
)

25
0.
2
b

(1
20
8,

21
,
95
)

(7
.3
,0

,0
)∗

(7
.3
,
0
,
0
)

(7
.3
,
0
,
0
)

(7
.3
,
41
,
27
.6
)

(7
.3
,
45
.7
,
30
.7
)

(7
.3
,
31
.2
,
37
.7
)

(7
.3
,
0
,
0
)

(7
.3
,
14
.3
,
12
.2
)

25
0.
2
c

(1
44
1,

18
,
93
)

(1
8
.2
,1

6
.7
,2

0
.4
)∗

(3
1.
6
,
0,

0)
(3
1.
6,

0,
0)

(1
8.
2,

16
2.
2,

11
5.
7)

(1
8.
2,

14
6.
7,

10
6.
2)

(1
8.
2,

89
.4
,
10
6)

(1
8.
2,

23
.3
,
31
.2
)

(1
8.
2,

63
.3
,
50
.8
)

25
0.
2
d

(1
51
3,

17
,
90
)

(2
9
.3
,5

.9
,5

.6
)∗

(3
1.
7
,
0,

0)
(3
1.
7,

0,
0)

(2
9.
3,

71
.8
,
42
.4
)

(2
9.
3,

54
.1
,
32
.2
)

(2
9.
3,

40
.6
,
40
)

(2
9
.3
,
5
.9
,
5
.6
)

(2
9.
3,

24
.7
,
22
)

25
0.
2
e

(1
02
3,

21
,
94
)

(1
1
.3
,4

.8
,3

.2
)∗

(1
2.
4
,
0,

0)
(1
2.
4,

0,
0)

(1
1.
3,

47
.6
,
39
.6
)

(1
1.
3,

34
.3
,
30
.6
)

(1
1.
3,

25
.1
,
35
.3
)

(1
1
.3
,
4
.8
,
3
.2
)

(1
1.
3,

15
.2
,
16
.2
)

25
0.
5
a

(1
25
7,

18
,
10
9)

(1
2
.8
,0

,0
)t

(1
2
.8
,
0
,
0
)

(1
2.
8,

5.
6,

3.
3)

(1
2.
8,

25
8.
9,

20
1.
7)

(1
2.
8,

30
4.
4,

23
1.
2)

(1
2.
8,

15
2.
1,

23
2.
8)

(1
2.
8,

15
.6
,
20
.9
)

(1
2.
8,

78
.9
,
11
3.
9)

25
0.
5
b

(1
51
1,

21
,
13
1)

(6
.1
,0

,6
.1
)t

(6
.4
,
3.
8,

6.
1)

(6
.6
,
1,

0.
9)

(6
.1
,
31
6.
2,

22
3.
8)

(6
.1
,
26
1,

19
9.
2)

(6
.1
,
13
3.
3,

18
3.
1)

(6
.1
,
11
.4
,
22
.3
)

(6
.1
,
61
,
57
.6
)

25
0.
5
c

(1
51
4,

26
,
15
1)

(8
.3
,4
6.
2,
41
.7
)m

(1
0.
1,

0,
8.
6)

(9
.6
,
3.
1,

7.
2)

(8
.3
,
17
3.
1,

12
7.
4)

(8
.3
,
13
6.
2,

12
4)

(8
.3
,
93
.7
,
11
1.
3)

(8
.3
,
1
0
.8
,
2
4
)

(8
.3
,
65
.4
,
54
)

25
0.
5
d

(1
66
4,

19
,
11
2)

(1
3.
2,
15
.8
,3
1.
3)

m
(1
3.
2,

0,
0)

(1
3.
2,

0,
0)

(1
1,

31
7.
9,

24
6.
8)

(1
1,

23
5.
8,

19
8.
2)

(1
1.
1,

16
8.
4,

20
3.
2)

(1
1
,
6
1
.1
,
7
7
.3
)

(1
1,

13
0.
5,

97
.7
)

25
0.
5
e

(1
42
3,

24
,
11
8)

(4
,
0
,
0
)

(4
,
0
,
0
)

(4
,
7.
5,

27
.8
)

(4
,
11
5,

15
6.
6)

(4
,
10
0,

13
1.
5)

(4
,
62
.1
,
13
3.
6)

(4
,
0
,
0
)

(4
,
32
.5
,
30
.5
)

25
0.
8
a

(1
16
1,

24
,
11
6)

(3
,1

2
.5
,4

9
.1
)t

(3
.3
,
9.
2,

24
.1
)

(3
,
50
,
10
0.
2)

(3
,
20
8.
3,

39
3.
8)

(3
.1
,
22
0.
8,

41
6.
4)

(3
.1
,
15
1.
6,

40
7.
9)

(3
,
37
.5
,
85
.3
)

(3
,
97
.5
,
16
0.
5)

25
0.
8
b

(1
71
7,

23
,
14
2)

(4
.7
,1
3,
27
.5
)t

(4
.8
,
12
.2
,
21
.5
)

(4
.7
,
19
.1
,
31
.1
)

(4
.7
,
28
0,

37
6.
8)

(4
.7
,
20
9.
6,

32
0)

(4
.7
,
14
5.
1,

31
7.
5)

(4
.7
,
4
.3
,
5
.9
)

(4
.7
,
10
1.
7,

12
3.
7)

25
0.
8
c

(1
55
7,

17
,
99
)

(3
8
.3
,0

,0
)m

(3
8.
3,

0,
7.
1)

(3
8.
3,

0,
8.
5)

(3
8.
3,

17
0.
6,

14
5.
5)

(3
8.
3,

16
3.
5,

11
7.
4)

(3
8.
3,

14
6.
5,

13
2.
7)

(3
8.
3,

48
.2
,
36
.2
)

(3
8.
3,

12
2.
4,

74
.1
)

25
0.
8
d

(1
06
5,

23
,
13
1)

(4
.8
,3
4.
8,
78
.6
)t

(5
.3
,
11
.3
,
22
.9
)

(4
.4
,
54
.8
,
11
2.
5)

(3
.7
,
25
8.
3,

38
9.
6)

(3
.7
,
23
8.
3,

46
3.
2)

(3
.7
,
17
1.
5,

33
8.
6)

(3
.7
,
5
7
.4
,
9
3
.7
)

(3
.7
,
16
5.
2,

19
6.
3)

25
0.
8
e

(1
41
9,

20
,
11
3)

(8
.5
,3
5,
63
.7
)m

(9
.7
,
0,

0)
(8

.5
,
1
3
,
3
6
.3
)

(8
.5
,
32
0,

47
8.
4)

(8
.5
,
25
0,

38
0.
4)

(8
.5
,
20
0.
5,

42
2.
3)

(8
.5
,
55
,
10
7.
4)

(8
.5
,
16
4,

21
3.
8)

50
0.
2
a

(1
41
9,

20
,
11
3)

(1
7
.2
,7

1
.4
,3

1
.6
)t

(1
9.
6,

0,
0)

(1
9.
6,

8.
1,

13
.9
)

(1
8.
4,

16
4.
8,

98
.1
)

(1
7.
7,

16
0,

92
.6
)

(1
7.
8,

11
4.
1,

96
.1
)

(1
7.
9,

54
.8
,
34
)

(1
7.
8,

85
.2
,
48
.2
)

50
0.
2
b

(2
86
4,

42
,
23
1)

(2
9.
3,
56
.8
,4
2.
5)

m
(3
3.
6,

10
.8
,
6.
4)

(3
3.
8,

0,
0)

(2
9.
4,

16
9.
7,

73
.3
)

(2
9.
4,

69
.2
,
26
.9
)

(2
9.
3,

91
.6
,
59
.4
)

(2
9
.3
,
4
1
.6
,
1
1
.4
)

(2
9.
3,

54
.1
,
17
.9
)

50
0.
2
c

(2
84
1,

37
,
23
3)

(1
0
,2

6
.3
,1

9
.2
)m

(1
1.
6
,
2.
6,

0)
(1
1.
9,

2.
1,

5.
4)

(1
2.
2,

17
2.
6,

86
.6
)

(1
0.
1,

97
.9
,
70
.4
)

(1
0.
2,

10
3.
1,

99
.1
)

(1
0.
2,

24
.2
,
23
.7
)

(1
0.
3,

69
.5
,
32
.7
)

50
0.
2
d

(2
42
9,

38
,
21
3)

(2
1.
7,
12
2.
9,
84
.9
)t

(2
4.
4,

14
.3
,
25
.3
)
(2
4.
6,

0.
6,

0)
(2
1.
6,

22
0.
6,

12
9.
7)

(2
1.
7,

14
6.
9,

10
6.
6)

(2
1
.4
,
1
5
9
.4
,
1
1
6
.2
)
(2
2,

57
.7
,
37
.2
)

(2
1.
6,

12
3.
4,

68
)

50
0.
2
e

(2
87
2,

35
,
18
6)

(1
3
.7
,9

0
,4

7
.2
)t

(1
5.
7,

12
.5
,
6.
5)

(1
6,

0,
0)

(1
5.
2,

13
2.
5,

58
.9
)

(1
3.
9,

83
.5
,
36
.9
)

(1
4.
1,

10
8,

59
.9
)

(1
4.
4,

55
,
24
.7
)

(1
4.
4,

70
,
29
.9
)

50
0.
5
a

(2
62
8,

40
,
24
8)

(4
5.
8,
22
1.
4,
16
9.
2)

t
(3
9,

0,
0)

(3
9.
4,

12
.1
,
29
.8
)

(4
0.
2,

27
0.
7,

16
7.
8)

(3
9,

27
5.
7,

18
8)

(3
8.
4,

18
2.
1,

17
5.
5)

(3
7
.8
,
7
7
.9
,
4
8
.7
)

(3
7.
9,

13
8.
6,

82
.3
)

50
0.
5
b

(3
19
3,

28
,
18
2)

(4
5.
1,
23
8.
5,
13
6.
2)

t
(3
3.
7
,
11
.5
,
13
.2
)
(3
5,

3.
1,

1.
8)

(3
2.
9,

34
6.
9,

21
7.
9)

(3
0.
3,

30
9.
2,

20
9.
8)

(3
0.
2,

23
6.
9,

22
6.
3)

(3
1.
2,

13
0,

10
3.
4)

(3
0
.2
,
1
4
2
.3
,
7
4
.9
)

50
0.
5
c

(2
82
7,

26
,
17
4)

(3
3.
3,
18
2.
1,
11
6.
8)

t
(3
4,

17
.9
,
58
.1
)

(3
4.
2,

2.
9,

12
.6
)

(3
4.
8,

24
8.
6,

17
1.
7)

(3
3.
3,

23
8.
6,

17
7.
1)

(3
3.
3,

18
7.
9,

18
0.
2)

(3
2
.9
,
9
6
.4
,
5
8
)

(3
3.
3,

13
5,

95
.8
)

50
0.
5
d

(2
73
8,

28
,
16
7)

(1
9.
8,
22
2.
2,
22
5.
1)

t
(1
6,

5.
6,

26
.9
)

(1
6.
6,

0,
1.
9)

(1
3.
5,

22
6.
1,

21
4.
7)

(1
2.
5,

18
2.
2,

21
0.
6)

(1
2
.5
,
1
6
1
.4
,
2
6
5
.7
)
(1
2.
9,

90
,
11
3.
7)

(1
2.
6,

10
0.
6,

94
.4
)

50
0.
5
e

(2
28
6,

36
,
17
1)

(3
3.
8,
25
3.
6,
10
9.
6)

t
(2
8.
2
,
7.
1,

2)
(2
8.
4,

8.
6,

1.
4)

(2
7.
9,

23
5.
7,

12
5.
7)

(2
7,

22
7.
1,

12
6.
7)

(2
6.
6,

17
0,

12
4.
3)

(2
6
.5
,
1
1
8
.6
,
5
6
)

(2
6.
5,

13
7.
9,

74
.6
)

50
0.
8
a

(2
66
3,

28
,
19
7)

(3
7.
5,
39
.4
,7
8.
1)

m
(2
5.
6,

6.
7,

10
.8
)

(2
5.
6,

9.
1,

34
)

(2
5,

33
5.
2,

48
4.
7)

(2
4.
4,

32
8.
5,

46
0.
4)

(2
4.
4,

24
2.
7,

47
0.
6)

(2
4
.2
,
1
8
7
.9
,
2
1
8
.5
)
(2
4.
3,

18
7.
3,

24
3.
4)

50
0.
8
b

(2
89
8,

33
,
17
8)

(4
0.
1,
14
5.
2,
18
5.
2)

m
(3
1.
3
,
1.
9,

5.
7)

(3
1.
7,

5.
8,

24
)

(3
0.
5,

34
5.
2,

32
5.
7)

(2
8
.6
,
3
1
8
.7
,
3
2
1
.2
)
(2
8.
8,

30
8.
4,

34
1.
5)

(2
9.
3,

19
7.
4,

17
0.
9)

(2
9,

26
4.
5,

21
1.
3)

50
0.
8
c

(3
39
6,

31
,
23
7)

(4
4.
4,
59
.4
,9
2.
1)

m
(3
5.
4,

9.
4,

32
.1
)

(3
5.
9,

8.
7,

13
.9
)

(3
4.
4,

32
8.
8,

22
7.
1)

(3
3
.4
,
2
9
1
.3
,
2
2
4
)

(3
3.
6,

28
2.
4,

24
8.
1)

(3
4,

15
7.
5,

12
3.
1)

(3
3.
8,

24
0,

16
3.
5)

50
0.
8
d

(3
62
7,

32
,
27
7)

(2
8.
8,
86
.2
,6
2.
6)

t
(2
3.
2,

20
,
9.
8)

(2
3.
3,

15
.2
,
17
.5
)

(2
2.
4,

38
2.
8,

33
3.
9)

(2
0
.7
,3

3
7
.2
,3

0
8
)

(2
1.
1,

29
0.
7,

34
8.
4)

(2
1.
7,

13
7.
2,

12
7)

(2
1.
2,

23
5.
2,

15
8.
2)

50
0.
8
e

(1
96
9,

29
,
23
8)

(2
9.
9,
19
0,
26
5.
6)

t
(2
7.
8
,
2.
7,

8.
4)

(2
7.
8,

11
.3
,
18
.8
)

(2
8.
2,

32
4,

34
8.
6)

(2
8.
1,

23
0,

28
9.
3)

(2
7
.6
,
2
5
6
,
3
3
0
)

(2
7.
8,

17
0,

20
2.
4)

(2
7.
7,

23
2,

23
4.
5)

A
v
g
.

(1
9.
4,

49
.3
,
44
.8
)

(1
9.
1
,
4.
1,

7.
7)

(1
8.
8,

5.
6,

11
.6
)

(1
8,

16
0,

14
5.
1)

(1
7.
6,

14
0.
4,

13
6.
2)

(1
7.
6,

10
6.
2,

14
0.
7)

(1
7
.6
,
4
3
.6
,
4
2
)

(1
7.
6,

77
.8
,
66
.2
)

T
ab

le
A
1:

D
et
ai
le
d
re
su
lt
s
on

sm
al
l
in
st
an

ce
s

24

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

In
st
.

B
o
u
n
d

G
r
e
e
d
y

D
e
s
ce
n
t

T
S

T
S
D
r
o
p

T
S
D
iv

T
S
E
1

T
S
E
2

10
0
0.
2
a

(5
72
4
,
55

,
29
2)

(4
0.
3
,
14
.5

,
25
.3
)
(4
0.
8
,
2.
9
,
7.
4)

(3
7.
5
,
19
7.
5
,
11
7.
3)

(3
7.
4
,
16
4.
4
,
10
6.
7)

(3
6
.9

,
2
1
5
.6

,
1
2
2
)

(3
7
,
81
.1

,
53
)

(3
6.
9
,
12
8.
4
,
70
.3
)

10
0
0.
2
b

(5
76
0
,
55

,
31
4)

(4
5
,
0
,
11
.5
)

(4
5.
4
,
6.
5
,
14
.9
)

(3
9.
5
,
19
4.
5
,
94
.1
)

(4
2.
9
,
14
0.
4
,
80
.4
)

(3
9.
3
,
24
6.
5
,
12
1.
3)

(3
9
.2

,
9
3
.5

,
5
0
.9
)

(3
9.
9
,
10
3.
3
,
51
.3
)

10
0
0.
2
c

(5
69
4
,
49

,
31
5)

(4
0.
3
,
16
.3

,
8.
6)

(4
0.
8
,
8.
2
,
0.
3)

(3
8.
3
,
21
8.
8
,
93
.3
)

(3
6
.8

,
1
6
4
.1

,
8
4
.8
)

(3
7.
3
,
25
3.
1
,
11
8.
2)

(3
7.
9
,
86
.9

,
40
.3
)

(3
8
,
10
4.
1
,
44
.3
)

10
0
0.
2
d

(5
09
2
,
60

,
32
5)

(3
4.
2
,
8.
3
,
2.
2)

(3
4.
8
,
3
,
3.
1)

(3
0
,
16
9.
3
,
10
7.
1)

(3
0.
7
,
15
6.
7
,
10
0.
5)

(2
8
.3

,
1
8
2
,
1
1
3
.5
)

(2
8.
8
,
80
.3

,
51
)

(2
8.
6
,
11
1.
3
,
64
.4
)

10
0
0.
2
e

(5
85
0
,
48

,
27
2)

(4
1.
7
,
8.
3
,
7.
7)

(4
2.
2
,
1.
3
,
2.
3)

(3
9.
8
,
20
2.
9
,
99
.2
)

(3
9.
7
,
16
4.
6
,
94
.4
)

(3
8.
7
,
26
8.
8
,
15
5)

(3
8
.4

,
1
2
3
.8

,
6
7
.6
)

(3
8.
4
,
15
0.
4
,
73
.8
)

10
0
0.
5
a

(6
01
2
,
29

,
17
9)

(6
3.
8
,
3.
4
,
10
.6
)

(6
4
,
0.
7
,
7.
4)

(5
7.
3
,
39
3.
1
,
28
0)

(5
7.
4
,
35
3.
1
,
27
4.
6)

(5
5
,
3
7
1
.7

,
2
7
0
.4
)

(5
5.
4
,
16
0.
7
,
11
3.
2)

(5
5.
3
,
21
4.
5
,
14
6.
9)

10
0
0.
5
b

(5
42
2
,
35

,
26
0)

(5
0.
2
,
20

,
13
.1
)

(5
0.
6
,
4.
6
,
1.
2)

(5
2.
3
,
31
8.
3
,
16
0.
9)

(4
8
.3

,
3
5
5
.4

,
1
7
0
.2
)
(4
9.
4
,
30
6.
9
,
16
0.
5)

(4
9.
1
,
13
6
,
64
.4
)

(4
9.
6
,
17
8.
9
,
84
.2
)

10
0
0.
5
c

(5
50
7
,
37

,
20
6)

(5
7.
6
,
0
,
0)

(5
8.
2
,
8.
1
,
22
.7
)

(5
6.
2
,
30
3.
2
,
24
7)

(5
5.
5
,
25
6.
8
,
23
3.
7)

(5
4
.8

,
3
1
4
.1

,
2
5
5
.7
)
(5
5.
1
,
14
1.
1
,
93
.2
)

(5
5.
1
,
18
3.
2
,
13
8.
8)

10
0
0.
5
d

(5
18
2
,
40

,
21
6)

(5
2.
4
,
17
.5

,
62
)

(5
2.
9
,
8.
5
,
18
.8
)

(5
1.
7
,
28
2
,
24
2.
4)

(4
9
.3

,
2
1
9
.5

,
1
9
1
.1
)
(5
0.
2
,
32
0.
5
,
27
3.
2)

(5
0.
3
,
14
5
,
12
6.
2)

(5
0.
4
,
17
2
,
15
4.
4)

10
0
0.
5
e

(6
11
2
,
33

,
22
1)

(5
4.
9
,
12
.1

,
15
.8
)
(5
5.
1
,
9.
1
,
7)

(5
4.
7
,
27
5.
8
,
18
3.
1)

(5
2
.6

,
3
0
4
.8

,
1
8
3
.8
)
(5
2.
8
,
34
4.
2
,
20
6.
6)

(5
3.
1
,
16
4.
2
,
97
.1
)

(5
3.
2
,
18
1.
8
,
10
4.
7)

10
0
0.
8
a

(5
64
8
,
37

,
23
8)

(5
2.
4
,
0
,
10
.1
)

(5
3.
2
,
8.
1
,
36
.1
)

(5
2.
8
,
30
9.
7
,
38
9.
4)

(4
9
.3

,
3
2
6
.5

,
4
0
9
.5
)
(5
0
,
37
3.
5
,
46
8.
8)

(5
0.
5
,
24
5.
9
,
24
3.
2)

(5
0
,
30
5.
9
,
31
5.
9)

10
0
0.
8
b

(5
93
6
,
38

,
28
0)

(5
3.
9
,
5.
3
,
16
.1
)

(5
4.
3
,
4.
2
,
5.
9)

(5
3.
4
,
33
8.
9
,
32
0.
2)

(5
1.
5
,
32
8.
4
,
32
2.
4)

(5
1
.3

,
3
4
3
.2

,
3
4
4
.6
)
(5
1.
7
,
24
1.
1
,
20
3.
9)

(5
1.
3
,
26
5.
3
,
24
4.
9)

10
0
0.
8
c

(5
66
8
,
34

,
33
0)

(5
2.
8
,
0
,
25
.2
)

(5
3.
3
,
17
.6

,
12
.1
)
(5
3.
6
,
39
0.
6
,
25
5.
6)

(5
1
.4

,
3
2
2
.9

,
2
2
1
.8
)
(5
1.
8
,
26
5.
9
,
17
3.
2)

(5
1.
6
,
26
0
,
13
3.
3)

(5
2
,
22
1.
2
,
12
3.
4)

10
0
0.
8
d

(5
50
6
,
35

,
26
0)

(5
5.
9
,
0
,
0)

(5
6.
2
,
7.
4
,
15
.4
)

(5
2.
4
,
36
2.
9
,
37
1.
8)

(5
1.
1
,
33
4.
3
,
30
7)

(5
0.
9
,
38
1.
1
,
37
5.
3)

(5
0
.7

,
2
3
8
.9

,
1
9
4
.8
)
(5
0.
7
,
25
0.
9
,
22
2)

10
0
0.
8
e

(5
56
4
,
35

,
22
8)

(5
5.
1
,
8.
6
,
57
.5
)

(5
5.
4
,
14
.9

,
20
.5
)
(5
3.
1
,
29
7.
7
,
34
4.
3)

(5
2.
3
,
30
8
,
38
3.
3)

(5
1
.6

,
3
6
1
.7

,
4
1
6
.1
)
(5
2.
2
,
24
1.
1
,
22
4.
6)

(5
2
,
29
7.
7
,
29
2.
5)

30
0
0.
2
a

(1
49
87

,
27
9
,
21
23
)

(1
3.
2
,
8.
2
,
7.
7)

(1
3.
7
,
2.
2
,
6.
2)

(1
0.
6
,
74
.1

,
10
8)

(1
0.
2
,
71

,
92
.9
)

(6
,
2
1
9
.6

,
2
5
0
.8
)

(8
.7

,
82
.9

,
76
.3
)

(8
.7

,
84
.8

,
79
.1
)

30
0
0.
2
b

(1
61
05

,
22
8
,
16
34

)
(2
1.
5
,
11

,
19
.7
)

(2
2.
9
,
9
,
25
.1
)

(1
7
,
15
2.
7
,
21
3.
7)

(1
7.
4
,
14
0.
4
,
20
5.
2)

(1
3
.7

,
2
5
6
.8

,
3
0
2
.3
)
(1
6.
3
,
97
.1

,
91
)

(1
4.
9
,
18
1.
2
,
19
4.
8)

30
0
0.
2
c

(1
58
69

,
19
1
,
12
91

)
(3
0.
2
,
16
.8

,
25
.9
)
(3
1.
5
,
9.
4
,
19
.5
)

(2
4.
7
,
26
8.
3
,
31
6.
1)

(2
6.
5
,
17
5.
5
,
21
1.
2)

(2
3
.8

,
2
8
5
,
2
8
6
.8
)

(2
6
,
10
4
,
10
3.
2)

(2
5.
7
,
11
5.
7
,
10
5)

30
0
0.
2
d

(1
59
34

,
32
0
,
26
37

)
(7
.1

,
10
.3

,
12
.4
)

(7
.8

,
2.
5
,
4)

(7
.9

,
7.
9
,
9.
8)

(7
.5

,
15
.3

,
16
.4
)

(1
.4

,
1
6
2
.1

,
1
9
7
)

(6
.3

,
19
.6

,
15
.6
)

(5
,
48
.8

,
43
.3
)

30
0
0.
2
e

(1
67
96

,
30
0
,
23
19

)
(9
.4

,
8.
7
,
30
.1
)

(1
0.
6
,
4.
3
,
12
.5
)

(8
.7

,
35
.8

,
58
.2
)

(9
.4

,
46
.7

,
7
5.
6)

(2
.2

,
1
9
7
.3

,
2
6
3
.9
)

(5
.4

,
87
.5

,
92
.5
)

(4
.8

,
98
.2

,
10
8.
6)

30
0
0.
5
a

(1
78
04

,
21
4
,
25
91
)

(2
9.
8
,
13
.6

,
10
.1
)
(3
0.
7
,
7.
6
,
6.
7)

(2
4.
3
,
27
7.
3
,
38
5.
5)

(2
4.
4
,
16
7.
1
,
26
6)

(2
2
.5

,
3
0
0
.7

,
4
1
8
.2
)
(2
5.
7
,
17
0
,
16
9.
3)

(2
4.
9
,
18
3.
3
,
19
4.
9)

30
0
0.
5
b

(1
68
27

,
24
9
,
29
03

)
(1
7.
7
,
6.
4
,
18
.3
)

(1
8.
9
,
8
,
7.
6)

(1
3.
3
,
12
0.
2
,
22
7.
9)

(1
2.
6
,
14
4.
9
,
29
3.
8)

(1
0
.5

,
2
9
1
.2

,
4
6
0
.9
)
(1
3.
8
,
15
9.
8
,
17
0.
6)

(1
2.
7
,
18
2.
8
,
24
4.
4)

30
0
0.
5
c

(1
51
93

,
18
9
,
19
53

)
(3
1.
2
,
10
.1

,
14
.6
)
(3
2.
7
,
2.
1
,
7.
9)

(2
8.
4
,
21
5.
9
,
33
4.
6)

(2
6.
7
,
17
9.
2
,
28
1.
5)

(2
6
.3

,
2
8
0
.1

,
4
0
6
)

(2
7.
8
,
15
3.
3
,
19
9)

(2
7.
2
,
18
7.
3
,
22
2.
6)

30
0
0.
5
d

(1
60
02

,
28
7
,
36
69

)
(1
1.
2
,
0
,
0)

(1
2.
1
,
5.
8
,
10
.8
)

(9
.7

,
58
.2

,
10
7)

(7
.3

,
84
.9

,
1
70
.6
)

(4
.1

,
2
6
1
.7

,
4
2
9
.4
)

(7
.3

,
10
1.
9
,
12
5.
9)

(7
.1

,
10
9.
3
,
14
2.
5)

30
0
0.
5
e

(1
74
90

,
31
6
,
36
21

)
(7
.2

,
8.
9
,
31
.7
)

(8
.1

,
4.
7
,
25
)

(6
.7

,
36

,
78
.4
)

(6
.9

,
26
.9

,
7
7.
8)

(1
.8

,
1
8
0
.5

,
3
9
3
.7
)

(4
.1

,
97
.3

,
15
0.
1)

(4
.6

,
75
.2

,
11
7.
8)

30
0
0.
8
a

(1
58
15

,
21
2
,
27
52
)

(2
3.
8
,
4.
6
,
36
.3
)

(2
4.
7
,
6
,
34
.8
)

(2
0.
9
,
11
2.
5
,
37
5.
5)

(1
9.
7
,
12
8.
2
,
38
1.
4)

(1
7
.9

,
2
8
8
.7

,
7
5
4
.9
)
(2
0.
5
,
15
1.
7
,
31
4.
8)

(1
9.
6
,
16
6.
9
,
36
3.
8)

30
0
0.
8
b

(1
64
51

,
22
0
,
30
97

)
(2
2.
5
,
5.
5
,
8.
2)

(2
3.
6
,
6
,
20
.3
)

(1
9.
5
,
14
4.
4
,
41
1.
8)

(1
8.
3
,
12
9.
1
,
39
6.
4)

(1
5
.7

,
2
9
7
.5

,
7
2
3
.2
)
(1
8.
7
,
13
7.
8
,
28
0.
7)

(1
8.
8
,
19
6.
3
,
35
4.
2)

30
0
0.
8
c

(1
71
16

,
22
4
,
32
92

)
(2
1.
1
,
10
.3

,
21
.8
)
(2
2.
3
,
5
,
16
)

(1
6
,
18
2.
1
,
48
9.
3)

(1
6
,
14
5.
3
,
39
6)

(1
4
.2

,
2
5
3
.3

,
6
5
5
.2
)
(1
7.
5
,
16
5.
9
,
28
8.
3)

(1
5.
7
,
15
3.
3
,
28
8.
5)

30
0
0.
8
d

(1
79
08

,
33
3
,
56
21

)
(4
.6

,
5.
3
,
25
.9
)

(4
.6

,
8.
3
,
41
.5
)

(4
.4

,
22
.4

,
80
.3
)

(4
.1

,
28
.6

,
8
2.
1)

(1
.3

,
1
1
9
.7

,
3
6
3
.7
)

(3
.4

,
42

,
10
7.
8)

(3
,
39
.6

,
78
.7
)

30
0
0.
8
e

(1
59
85

,
28
8
,
44
66

)
(9
.3

,
0
,
0)

(9
.4

,
11
.4

,
38
.6
)

(7
.5

,
39
.9

,
12
1)

(7
.6

,
39
.1

,
11
3.
3)

(4
.4

,
1
5
8
.1

,
4
6
4
.6
)

(6
.9

,
86
.1

,
24
1.
6)

(6
.6

,
96
.5

,
21
6)

50
0
0.
2
a

(2
83
09

,
35
3
,
29
91
)

(3
1.
4
,
1.
1
,
9.
3)

(3
2.
2
,
2.
5
,
9.
8)

(2
4.
4
,
19
8.
1
,
27
0.
2)

(2
6.
1
,
15
7.
7
,
21
8.
3)

(2
4
.2

,
2
5
7
.5

,
3
2
1
.2
)
(2
7.
3
,
15
1.
7
,
14
3.
3)

(2
7
,
16
0.
1
,
14
6)

50
0
0.
2
b

(2
78
84

,
56
0
,
44
48

)
(2
.5

,
19
.5

,
55
.8
)

(3
,
7.
6
,
33
.7
)

(3
.3

,
8.
8
,
39
.3
)

(2
.9

,
10
.3

,
4
0.
1)

(3
.4

,
9.
6
,
42
.6
)

(3
.3

,
4.
4
,
19
)

(2
.4

,
4
,
1
3
.9
)

50
0
0.
2
c

(2
76
91

,
46
8
,
41
38

)
(1
5.
4
,
4.
5
,
0)

(1
6.
4
,
7
,
23
.2
)

(1
6.
2
,
20
.1

,
41
.8
)

(1
6
,
26
.2

,
5
0.
9)

(9
.2

,
2
4
2
.5

,
3
6
1
)

(1
2.
6
,
13
0.
4
,
16
9.
7)

(1
2.
6
,
90
.5

,
10
7.
5)

50
0
0.
2
d

(2
71
75

,
52
5
,
47
17

)
(1
0.
3
,
0
,
18
.9
)

(1
1.
1
,
5
,
17
.4
)

(1
1.
2
,
7.
4
,
29
.5
)

(1
0.
9
,
8
,
31

.3
)

(5
,
1
7
2
.6

,
3
0
6
.2
)

(9
.8

,
25
.6

,
46
.8
)

(1
0
,
12
.2

,
20
.4
)

50
0
0.
2
e

(2
81
75

,
47
9
,
43
43

)
(1
5.
1
,
0
,
0)

(1
5.
6
,
4.
1
,
18
.1
)

(1
6.
3
,
13
.3

,
24
.5
)

(1
5.
7
,
16
.8

,
35
)

(8
.2

,
2
3
2
.2

,
3
3
5
.1
)

(1
3.
4
,
10
0.
1
,
11
8.
5)

(1
2.
7
,
79
.1

,
96
.1
)

50
0
0.
5
a

(2
65
46

,
44
2
,
62
74
)

(1
5.
3
,
9.
7
,
18
.7
)

(1
6.
1
,
4.
4
,
9.
3)

(1
5.
6
,
27
.1

,
63
)

(1
6.
2
,
21
.5

,
49
.2
)

(1
1
.5

,
1
3
8
.2

,
3
4
6
)

(1
4.
4
,
47
.7

,
99
.5
)

(1
4.
9
,
39
.3

,
78
.8
)

50
0
0.
5
b

(2
60
70

,
22
4
,
22
40

)
(5
1
,
4.
9
,
21
.1
)

(5
1.
6
,
2.
8
,
10
.4
)

(5
0.
2
,
97
.1

,
17
2.
2)

(5
0.
3
,
98
.4

,
16
6.
2)

(4
8
.5

,
2
4
9
,
3
8
7
.8
)

(5
0.
1
,
12
6
,
16
3.
2)

(4
9.
7
,
17
7.
1
,
24
7.
2)

50
0
0.
5
c

(2
73
12

,
34
8
,
47
46

)
(3
0
,
0
,
14
.9
)

(3
1.
3
,
5.
9
,
16
.2
)

(2
8.
6
,
77
.2

,
15
5.
7)

(2
8.
5
,
71
.6

,
14
9.
9)

(2
6
.1

,
1
9
7
.8

,
3
6
7
.8
)
(2
8.
5
,
92
.1

,
14
3.
6)

(2
8.
6
,
10
5.
1
,
14
8.
4)

50
0
0.
5
d

(2
73
46

,
54
5
,
91
12

)
(7
.8

,
4.
5
,
11
.5
)

(8
.5

,
2.
5
,
10
.7
)

(8
.8

,
6.
7
,
23
.3
)

(8
.3

,
9.
2
,
27

.9
)

(6
.1

,
6
6
.4

,
1
7
7
)

(7
.9

,
22
.1

,
45
.3
)

(7
.5

,
35
.2

,
81
)

50
0
0.
5
e

(2
72
82

,
60
7
,
84
77

)
(3
.3

,
2.
7
,
33
)

(3
.6

,
2.
6
,
31
.5
)

(3
.6

,
5.
7
,
40
.1
)

(3
.6

,
6.
8
,
41

.2
)

(3
.1

,
2
5
,
1
0
6
.9
)

(3
.6

,
2.
7
,
18
.9
)

(3
.2

,
2.
9
,
12
.6
)

50
0
0.
8
a

(2
81
30

,
28
1
,
49
51
)

(3
7
,
11
.3

,
24
.2
)

(3
8
,
4.
9
,
19
.4
)

(3
4.
7
,
86
.9

,
21
8.
7)

(3
3
.7

,
1
1
2
.6

,
3
0
0
.3
)
(3
3.
7
,
12
8.
5
,
33
5.
2)

(3
4.
8
,
11
1
,
23
1.
4)

(3
4.
8
,
98
.7

,
19
9.
2)

50
0
0.
8
b

(2
70
01

,
53
8
,
11
14

6)
(6

,
3.
4
,
18
.7
)

(5
.5

,
14
.3

,
47
.7
)

(5
.2

,
20
.3

,
75
.1
)

(5
.3

,
23
.4

,
6
5.
4)

(4
.8

,
2
8
.6

,
8
0
.3
)

(5
.2

,
12
.6

,
45
.4
)

(4
.8

,
15
.5

,
36
.7
)

50
0
0.
8
c

(2
61
73

,
52
0
,
11
73

0)
(9
.1

,
0.
7
,
6.
9)

(9
.6

,
4.
8
,
31
.2
)

(9
.3

,
8.
8
,
39
.7
)

(9
.3

,
6.
8
,
41

.3
)

(9
.4

,
17
.2

,
63
)

(9
.2

,
11
.4

,
35
.1
)

(8
.6

,
7
,
2
6
.1
)

50
0
0.
8
d

(2
62
28

,
47
1
,
10
10

1)
(1

1
.6

,
3
.2

,
7
.8
)
(1
2.
4
,
4
,
26
.8
)

(1
3.
1
,
6.
5
,
30
.6
)

(1
3.
2
,
7.
6
,
23
)

(1
1.
6
,
32
.1

,
11
6.
2)

(1
2.
8
,
11
.5

,
42
.2
)

(1
2.
4
,
13
.5

,
36
.4
)

50
0
0.
8
e

(2
80
29

,
55
6
,
12
02

3)
(5
.7

,
4.
2
,
18
.2
)

(4
.7

,
9.
4
,
49
.8
)

(4
.2

,
17
.8

,
83
.4
)

(4
.3

,
13
.7

,
6
3.
3)

(4
.5

,
14
.5

,
68
.3
)

(4
.4

,
15
.6

,
58
.4
)

(3
.8

,
1
2
.8

,
4
4
.8
)

A
v
g
.

(2
8
,
6.
7
,
17
.5
)

(2
8.
7
,
6.
2
,
17
.9
)

(2
6.
4
,
14
6.
8
,
17
6.
2)

(2
5.
9
,
13
3.
6
,
16
7.
3)

(2
3
.9

,
2
2
0
.3

,
2
9
6
.9
)
(2
5.
5
,
11
0.
3
,
12
3.
6)

(2
5.
2
,
12
5.
4
,
13
7.
4)

T
ab

le
A
2:

D
et
ai
le
d
re
su
lt
s
on

la
rg
e
in
st
an

ce
s

25

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

References

Brélaz, D. (1979). New methods to color vertices of a graph. Communications

of the ACM , 22 , 251–256.

Brucker, P., & Kravchenko, S. (1999). Preemption can make parallel machine

scheduling problems hard. OsnabrTucker Schriften zur Mathematik, Reihe

P (Preprint), 211 .

Chiarandini, M., & Stützle, T. (2007). Stochastic local search algorithms for

graph set T-colouring and frequency assignment. Constraints , 12 , 371–403.

Dorne, R., & Hao, J.-K. (1998). Tabu search for graph coloring, T-colorings

and set T-colorings. In S. Voss, S. Martello, I. Osman, & C. Roucairol

(Eds.), Meta-Heuristics: Advances and Trends in Local Search Paradigms

for Optimization (pp. 77 – 92). Norwell, MA: Kluwer.

Epstein, L., Halldórsson, M. M., Levin, A., & Shachnai, H. (2009). Weighted

sum coloring in batch scheduling of conflicting jobs. Algorithmica, 55 ,

643–665.

Fukunaga, T., Halldórsson, M. M., & Nagamochi, H. (2007). ”Rent-or-buy”

scheduling and cost coloring problems. In Proc. of the 27th Int. Conf.

on Foundations of Software Technology and Theoretical Computer Science

(pp. 84–95). Berlin, Heidelberg: Springer-Verlag.

Gendreau, M., & Potvin, J.-Y. (2010). Handbook of Metaheuristics, 2nd

Edition. New York, NY: Springer.

Giaro, K., Kubale, M., & Obszarski, P. (2009). A graph coloring approach to

scheduling of multiprocessor tasks on dedicated machines with availability

constraints. Discrete Applied Mathematics , 157 , 3625–3630.

Gröflin, H., Pham, D., & Bürgy, R. (2011). The flexible blocking job shop

with transfer and set-up times. Journal of Combinatorial Optimization,

22 , 121–144.

Halldórsson, M. M., & Kortsarz, G. (2004). Multicoloring: Problems and

techniques. In J. Fiala, V. Koubek, & J. Kratochv́ıl (Eds.), Mathematical

26

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

Foundations of Computer Science 2004 (pp. 21–45). Berlin, Heidelberg,

New York: Springer, volume 3153 of Lecture Notes in Computer Science.

Hendel, Y., Runge, N., & Sourd, F. (2009). The one-machine just-in-time

scheduling problem with preemption. Discrete Optimization, 6 , 10–22.

Heydari, M., Sadjadi, S., & Mohammadi, E. (2010). Minimizing total flow

time subject to preemption penalties in online scheduling. The Interna-

tional Journal of Advanced Manufacturing Technology , 47 , 227–236.

Kazemi, M., Mahdavi, I., Aalaei, A., Kia, R., & Nikoofarid, E. (2011). Just-

in-time preemptive one-machine problem with costs of earliness-tardiness,

interruption and work in process: A mathematical programming. In Proc.

of Industrial Engineering and Engineering Management (pp. 800 – 804).

Changchun, China.

Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization

using genetic algorithms: A tutorial. Reliability Engineering & System

Safety , 91 , 992–1007.

Lim, A., Zhu, Y., Lou, Q., & Rodrigues, B. (2005). Heuristic methods for

graph coloring problems. In Proceedings of the 2005 ACM Symposium on

Applied Computing (pp. 933–939). New York, NY: ACM.

Liu, Z., & Cheng, T. C. E. (2002). Scheduling with job release dates, delivery

times and preemption penalties. Information Processing Letters , 82 , 107–

111.

Lü, Z., Glover, F., & Hao, J.-K. (2011). Neighborhood combination for

unconstrained binary quadratic problems. In M. Caserta, & S. Voss (Eds.),

Metaheuristics: Intelligent Decision Making (pp. 49–61). New York, NY:

Springer.

Malaguti, E., & Toth, P. (2010). A survey on vertex coloring problems.

International Transactions in Operational Research, 17 , 1–34.

Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective optimization

methods for engineering. Structural and Multidisciplinary Optimization,

26 , 369–395.

27

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

Marx, D. (2004). Graph coloring problems and their applications in schedul-

ing. Periodica Polytechnica Ser. El. Eng., 48 , 11–16.

Meuwly, F.-X., Ries, B., & Zufferey, N. (2010). Solution methods for a

scheduling problem with incompatibility and precedence constraints. Al-

gorithmic Operations Research, 5 , 75 – 85.

Mohammadi, E., & Heydari, M. (2011). Single machine scheduling prob-

lem with minmax criteria and preemption penaties. In Proc. of the IEEE

Conf. on Computer Science and Automation Engineering (pp. 440 – 444).

Shanghai, China.

Pinedo, M. (2008). Scheduling: Theory, Algorithms and Systems . New York,

NY: Springer.

Satratzemi, M. (2004). A heuristic algorithm for the set T-coloring problem.

In Proc. of Information and Communication Technologies: From Theory

to Applications (pp. 531 – 532). Damascus, Syria.

Schuurman, P., & Woeginger, G. J. (1999). Preemptive scheduling with job-

dependent setup times. In Proc. of the 10th annual ACM-SIAM Symposium

On Discrete Algorithms (pp. 759–767). Baltimore, MD.

Shachnai, H., Tami, T., & Woeginger, G. (2002). Minimizing makespan and

preemption costs on a system of uniform machines. In R. Möhring, &

R. Raman (Eds.), Algorithms - ESA 2002 (pp. 859–871). Berlin, Heidel-

berg : Springer-Verlag, volume 2461 of Lecture Notes in Computer Science.

Slotnick, S. A. (2011). Order acceptance and scheduling: A taxonomy and

review. European Journal of Operational Research, 212 , 1–11.

Thevenin, S., Zufferey, N., & Potvin, J. -Y. (2013). Tabu search for a pre-

emptive scheduling problem with job incompatibilities. In Proc. of IFAC

Conference on Manufacturing Modelling, Management, and Control . Saint

Petersburg, Russia.

de Werra, D., Demange, M., Monnot, J., & Paschos, V. T. (2005). A hypo-

coloring model for batch scheduling. Discrete Applied Mathematics , 146 ,

3–26.

28

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

Wu, Q., Hao, J.-K., & Glover, F. (2012). Multi-neighborhood tabu search

for the maximum weight clique problem. Annals of Operations Research,

196 , 611–634.

Zufferey, N. (2012). Metaheuristics: Some principles for an efficient design.

Computer Technology and Application, 3 , 446–462.

29

A Multi-Coloring Approach for an Order Acceptance and Scheduling Problem with Preemption and Job Incompatibilities

CIRRELT-2013-45

	CIRRELT-2013-45pp
	CIRRELT-2013-45-abstract
	CIRRELT-2013-45

