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Abstract. We analyze five parallelization strategies for the Variable Neighborhood Search 
(VNS) meta-heuristic. They are based on asynchronous cooperation of several search 
threads. We tested parallelization on various levels, from a low-level parallel neighborhood 
exploration, through medium-grained asynchronous execution of basic VNS steps 
(shaking and local search), to the coarse-grained asynchronous cooperation of various 
VNS algorithms. We also compared centralized and non-centralized information 
exchange. Parallel algorithms were implemented on multiprocessor systems containing q 
identical processors. We used two topologies: star configuration for centralized 
information exchange and processor ring for the non-centralized one. For the 
experimental evaluation, we applied these strategies to VNS-based procedures for 
Multiprocessor Scheduling Problem with Communication Delays (MSPCD). We compared 
the performance of the parallel searches with that of the sequential execution on 
benchmark problem instances with up to 500 tasks. We achieved not only the 
improvement of the solution quality but also reduction in execution time. The generality of 
the proposed strategies and their straightforward implementation make them easily 
applicable to various difficult combinatorial optimization problems. 
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1 Introduction

Combinatorial optimization problems are concerned with the selection of the best among
finitely many feasible solutions. Each problem is defined by (i) a set of objects, each with
an associated contribution, (ii) an objective function computing the value of a particular
subset or order of objects, and (iii) the feasibility rules specifying how subsets/orderings
may be built. The best (optimal) solution is the one satisfying feasibility rules in such
a way that the value of the objective function is the highest/lowest among all possible
combinations.

A main difficulty in solving combinatorial optimization problems is that the number
of feasible solutions usually grows exponentially with the number of objects in the initial
set. Therefore, meta-heuristics are the only practical tool for addressing these problems
in real-life dimensions. There are still problems, however, that cannot be treated appro-
priately in a reasonable amount of time, due either to their complexity or the large size
of the real instances. As shown in the recent literature [4], parallelization of search pro-
cedures is a promising approach to increase the efficiency of heuristic and meta-heuristic
methods. A significant amount of work has been performed in implementing and an-
alyzing parallelization strategies for meta-heuristics, from the low level parallelization
realized by distributing elementary computations among processors, up to the coopera-
tive multi-thread parallel search [4, 29, 5, 2].

Variable Neighborhood Search (VNS) is a simple and effective meta-heuristic method
[22, 16], that has been widely used to address combinatorial and global optimization
problems [18]. The basic idea of VNS is the systematic change of neighborhoods both
within a descent phase, to find a local optimum, and a perturbation phase to get out of
the corresponding valley. There are several papers proposing parallel versions of VNS [13,
3, 25, 24, 19, 23, 30]. They proposed a very limited number of strategies, however, either
independent execution of several VNS algorithms, or medium-grained parallelization of
basic VNS steps. We show in this paper that more sophisticated approaches provide
better performance than these straightforward parallelization strategies.

We propose various strategies for the parallelization of the VNS meta-heuristic. They
are based on asynchronous cooperation of several search threads running on different pro-
cessors. We developed and compared several “levels” of parallelization strategies, from a
low-level parallel neighborhood exploration, through medium-grained asynchronous exe-
cution of basic VNS steps (shaking and local search), to the coarse-grained asynchronous
cooperation of various VNS algorithms. Centralized and non-centralized information
exchange mechanisms were also compared. Our objective is to contribute to the paral-
lelization of the VNS method by proposing new (cooperative) parallelization strategies,
and studying the influence of the parallel execution on the performance of the VNS
algorithm.
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Scheduling is a major issue in many fields, e.g., computer science, operation research,
economy, etc. Scheduling problems are NP-complete, even in the simplest forms [14]. We
illustrate our methods for constructing parallel VNS algorithms on the static problem
of scheduling communicating tasks to homogeneous multiprocessor systems of arbitrary
structure, referred to as Multiprocessor Scheduling Problem with Communication Delays
(MSPCD) [6, 11, 28]. A mathematical programming formulation of MSPCD is given
in [10], and meta-heuristic approaches for this particular variant of the problem are
proposed in [11]. To the best of our knowledge, these still represent state-of-the-art
results for MSPCD (recent literature focused on different versions of the problem). The
results reported in [11] show that for the subset of benchmark test examples proposed
in [7] (task graphs with known optimal solutions), the proposed VNS produced solutions
whose deviations from the optimum are sometimes more than ten percent. Since MSPCD
seems to be hard to deal with, even with meta-heuristics, we aim in this paper to improve
the existing results by applying parallel VNS. To the best of our knowledge, parallel meta-
heuristics have not been used for this particular variant of the scheduling problem.

The main contributions of this paper therefore are (1) three brand new strategies for
the parallelization of VNS; (2) the first application of cooperative VNS to the MSPCD;
(3) the performance analysis of various parallel VNS methods; (4) the improvement of
the existing results for MSPCD benchmark instances. The paper is organized as follows.
The next section contains a brief overview of the VNS meta-heuristic. The review of the
recent literature addressing parallelization strategies for various meta-heuristic methods,
including VNS, is presented in Section 3. The proposed parallelization strategies for
VNS are described in Section 4, while Section 5 contains the implementation details.
The experimental evaluation of the different variants of parallel VNS procedures for
MSPCD is described in Section 6. We conclude in Section 7.

2 Variable Neighborhood Search

Variable Neighborhood Search (VNS) was proposed by Mladenović and Hansen [22] and
has been successively applied to various optimization problems [18]. It is a single-solution
neighborhood-based method whose basic building block is a Local Search (LS) procedure.
VNS uses multiple neighborhoods in order to increase the efficiency of the search. VNS is
based on three simple facts [16]: (1) A local optimum w.r.t. one neighborhood structure
is not necessarily the optimum for another; (2) A global optimum is a local optimum
w.r.t. all possible neighborhood structures; (3) For many problems, local optima w.r.t. one
or several neighborhoods are relatively close to each other.

In order to describe VNS, we first introduce the following notation. Consider an
optimization problem, min f(x), and its sets of solutions S, and feasible solutions X ⊆ S,
respectively. Let x∈X be an arbitrary feasible solution. Define the neighborhood N (x)
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of x ∈X as the set of all solutions obtained from x by the application of a predefined
elementary transformation. Different neighborhoods may be obtained by changing the
transformation or by applying the same transformation several times.

Let Nk, k= 1, . . . , kmax, be a finite set of pre-selected neighborhood structures, and

Nk(x) the set of solutions in the kth neighborhood of x. The basic VNS is given by the
pseudo-code illustrated in Figure 1.

Initialization. Find an initial solution x ∈ X; Improve it with LS
to obtain xbest; Choose stopping criterion; Set STOP = 0.

Repeat
1. Set k = 1.
2. Repeat

(a) Shake. Generate a random point x′ ∈ Nk(xbest).
(b) Improve. Run LS with x′ as the initial solution;

Let x′′ be the corresponding local optimum.
(c) Move. If f(x′′) < f(xbest), move there (xbest = x′′),

and continue the search within N1 (k = 1);
otherwise move to the next neighborhood (k = k + 1).

(d) Stopping criterion. If stopping condition is met, set STOP = 1.
until k == kmax or STOP == 1.

until STOP == 1.

Figure 1: Pseudo-code of the VNS meta-heuristic

Usually, the initial solution is determined by some constructive scheduling heuristic
and then improved by LS before the beginning of the actual VNS procedure. The role of
the shake procedure is to prevent trapping in local optima. Intensification of the search
is realized by the improve step, which invokes the selected LS procedure with the aim
to improve the current solution. The entire VNS procedure is focused on the current
global best solution and, therefore, a move step has to ensure that this solution is always
updated as soon as possible. Basic VNS has a unique parameter kmax – the maximum
number of neighborhoods. Sometimes, but not necessarily, successive neighborhoods are
nested. There are several variations and modifications of this basic VNS scheme, and
many successful applications. Readers are referred to [17, 18] for further details.

The original, sequential VNS, has a strictly defined order of its basic steps. Moreover,
it is designed as a first-improvement procedure, i.e., as soon as a better solution is found,
the search is focused on this new solution. Therefore, VNS seems not to provide a natural
basis for parallelization. One should expect parallel methods to be quite different from
the original VNS. On the other hand, this enables the generation of qualitatively new
search algorithms as will be illustrated here by both reviewing the existing parallel VNS
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methods and evaluating the newly proposed ones.

3 Literature review

In this section, we review the existing results related to the parallelization of the VNS
meta-heuristic. First, we point out the main issues related to the parallelization of meta-
heuristic methods in general. In the second part of this section, we classify the existing
parallelization strategies for VNS.

3.1 Parallelization of meta-heuristics

The main goal of parallelization is to speedup the computations needed to solve a par-
ticular problem by engaging several processors and dividing the total amount of work
between them. For stochastic algorithms, meta-heuristics in particular, several goals may
be achieved [27]: (i) speeding up the search (i.e., reducing the search time); (ii) improving
the quality of the obtained solutions; (iii) improving the robustness; (iv) solving large-
scale problems. A combination of gains may also be obtained: the parallel execution
can enable an efficient search through different regions of the solution space, yielding an
improvement of the final solution quality within a smaller amount of execution time.

There exists a significant amount of work concerning the parallelization of meta-
heuristics. The approach can be twofold, considering theoretical aspects of paralleliza-
tion, or developing practical applications of parallel meta-heuristics for different opti-
mization problems. The survey papers [2, 4, 5, 29] summarize these results and propose
an adequate taxonomy.

One of the first papers introducing a classification of parallelization strategies is [29].
This classification, based on the control of the search process (thread), resulted in two
main groups of parallelization strategies: single walk and multiple walks parallelism.
To refine the classification of parallelization strategies, besides the control of the search
process, one has to consider communication aspects (synchronous or asynchronous) and
search parameters (same or different initial point and/or same or different search strate-
gies). The resulting classification is described in details in [2] and we briefly recall it here
in order to be able to adequately classify our parallelization strategies for VNS.

The classification from [2] takes into account three main aspects of parallel execution:
search control, communication control, and search differentiation. Such an approach
resulted in the 3D-Taxonomy noted X/Y/Z. Here, X is used to describe the search
control cardinality, and can take two values: centralized (1C) or distributed (pC). Y
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deals with two aspects of communication control: synchronization and type of data to
be exchanged. The four possibilities for Y are Rigid Synchronous (RS), Knowledge
Synchronous (KS), Collegial Asynchronous (C), and Knowledge Collegial (KC). Search
differentiation specifies the part of the search executed by each of the parallel processes.
The difference is characterized by the initial point and the search strategy. Each thread
can start from the same or a different initial point and can perform the same or a different
search procedure. Therefore, there exist four combinations for Z: Same initial Point–
Same search Strategy (SPSS), Same initial Point–Different search Strategies (SPDS),
Multiple initial Points–Same search Strategy (MPSS), Multiple initial Points–Different
search Strategies (MPDS). The implementation of these strategies depends on the given
multiprocessor architecture and the characteristics of the problem at hand.

3.2 Existing parallel VNS methods

The authors of [13] were among the first dealing with parallelization of VNS. They pro-
posed and compared three strategies to treat large instances of the p-Median Problem.
The first approach was to parallelize LS within a sequential VNS. This low-level par-
allelism may be classified as 1C/RS/SPSS. The second strategy involved independent
runs of several sequential VNS procedures, with the best solution being collected at the
end. It is classified as pC/RS/MPSS. The third method applied a synchronous cooper-
ation mechanism through a classical master-slave approach. The master processor ran
a sequential VNS in which the basic steps, Shake and LS (SH+LS), were performed in
parallel by slave processors. The authors tested their methods using the tsplib problem
instances with 1400 customers. Not surprisingly, the last two strategies found better
solutions, with the third (1C/KS/SPSS) approach using marginally less iterations than
the second one.

The p-Median Problem has also been used in [3] for the evaluation of the proposed
parallelized VNS algorithms. Besides the independent run from [13], an asynchronous
centrally coordinated parallelization strategy (classified as pC/C/MPSS) has been pro-
posed. It was implemented on a master-slave multiprocessor topology, with the master
processor playing the role of central (globally accessible) memory, while the slaves per-
formed SH+LS in parallel. The proposed parallel VNS was tested on p-median bench-
mark problem instances of up to 1000 medians and 11948 customers. The results showed
that, for a given time limit, the cooperative parallel method was able to find better
solutions than the sequential VNS.

Parallel VNS algorithms for Job Shop Scheduling problems were proposed in [25].
Four parallelization strategies were taken into account: (i) synchronized cooperative
strategy proposed in [13]; (ii) asynchronous centrally coordinated method from [3]; (iii)
Noncentral parallelism via unidirectional ring topology; (iv) Noncentral parallelism via
bidirectional ring topology. The later two strategies, classified as pC/C/MPSS, were pro-

5

Parallelization Strategies for Variable Neighborhood Search

CIRRELT-2013-47



posed for the first time in [25]. In Noncentral parallelism via unidirectional ring topology,
each processor was executing a single pair SH+LS, sending the obtained result to the
succeeding processor, and collecting the result generated by the preceding processor. The
newly arrived solution become an initial point for the next execution cycle regardless of
its quality. Noncentral parallelism via bidirectional ring topology differs from the previous
strategy in the following: as the initial point for the next execution cycle, each proces-
sor selected the best out of three solutions (the one resulted from its own computations
and two solutions received from the adjacent processors). The experimental investiga-
tion showed that unidirectional ring topology outperformed the others with respect to
solution quality. The comparison between parallel and sequential VNS is described in
[1].

Two cooperation schemes based on central memory mechanism for parallelization of
VNS were proposed in [24]. They were tested on the Multi Depot Vehicle Routing Prob-
lem with Time Windows. In both schemes the extension of the parallelization strategy
from [3] was used. Each slave had to search through a certain number of neighborhoods.
In the fine-grained cooperation scheme (pC/C/MPSS), the search in a single cycle did
not necessarily include the whole set of neighborhoods. In the coarse-grained cooperation
scheme, however, the number of iterations performed by each slave before the information
exchange was significantly higher than the number of neighborhoods. The authors pro-
posed to make the cooperative scheme adaptive by adjusting search parameters during
the execution. This adjustment resulted in a pC/KC/MPSS classification of the coarse-
grained cooperation scheme. For the experimental evaluation, the cooperative execution
with up to 32 search threads was compared with the sequential procedure and with 32
independent runs. The efficiency of both cooperation schemes was verified by the runtime
scalability.

Parallel VNS for the Car Sequencing Problem was developed in [19]. Time Restricted
LS (TRLS) was incorporated into Randomized Variable Neighborhood Descent (VND),
where randomized meant that the order of neighborhoods was not fixed. Several iterations
of TRLS in different neighborhoods were performed in parallel, then the processes were
synchronized, the best solution identified and propagated to the next TRLS phase. The
described parallel VNS falls into the 1C/KS/SPDS class. Computational tests showed
that a substantial reduction of the computation time was achieved. Since no “perfect”
neighborhood ordering can be identified in advance, the parallel self-adaptive approach
was proposed to obtain good solutions.

Several VNS instances running on different processors and exchanging the best solu-
tion after a number of iterations were used in [23] for tackling the Periodic Vehicle Routing
Problem with Time Windows. The main aim of implementing this pC/KS/MPDS par-
allel VNS was to increase the quality of the final solution within the same amount of
CPU time as required by the sequential VNS. In the second version of parallel VNS,
an Integer Linear Programming solver was used to improve the best solution after the
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communication. The experimental results showed that the hybrid version improved the
quality of the final solution in 80% of cases.

A parallel VNS algorithm was used in [30] to increase the exploration of the search
space for the Flexible Job-Shop Problem (FJSP). The proposed algorithm was comprised
of external and internal loops. The external loop controlled the stopping condition of the
algorithm. In the internal loop a number of processors was used to perform a single run
of SH+LS, independently, in parallel. This strategy is classified as 1C/RS/SPDS since
different neighborhood structures were used. Shaking was always applied to the current
best solution. The computational results on 181 benchmark problems of FJSP showed
the competitiveness of the proposed algorithm to the similar methods from the relevant
literature.

Table 1: Summary of the existing parallelization strategies for VNS

Ref. Strategies Classification Details
[13] PLS in seqVNS 1C/RS/SPSS low level

IVNS pC/RS/MPSS independent execution
SH+LS in parallel 1C/KS/SPSS for same k synchronous

[3] IVNS pC/RS/MPSS independent execution
SH+LS in parallel pC/C/MPSS for random k asynchronous

[25] SH+LS in parallel 1C/KS/SPSS for same k synchronous
SH+LS in parallel pC/C/MPSS for random k asynchronous
SH+LS non-centralized ring pC/C/MPSS asynchronous
SH+LS non-centralized mesh pC/C/MPSS asynchronous

[24] SH+VND in parallel pC/C/MPSS fine grained cooperation
several iterations of SH+VND pC/KC/MPSS coarse grained cooperation

[19] SH+RVND in parallel 1C/KS/SPDS random neighborhood subset
[23] several VNS in parallel pC/KS/MPDS synchronous VNS multisearch
[30] SH+LS in parallel 1C/RS/SPDS different neighborhoods for LS

We summarize the described methods in Table 1. As can be seen from this table,
both synchronous and asynchronous strategies have been used. The majority of papers
reported better performance for asynchronous parallelization. On the other hand, coop-
erative execution dominates centrally coordinated, not only with respect to performance
but also regarding the frequency of its usage.
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4 Parallelization strategies for VNS

In this section, we describe in detail three parallelization strategies that produced (upon
implementation) five variants of parallel VNS algorithms. Some of the strategies are
modifications of existing ones in the literature, while the others are new and are used for
the first time in this paper.

We considered the parallelization of the LS procedure in [8]. We proposed, developed,
and compared several parallel LS variants. We incorporated the best performing parallel
LS procedure into VNS. The experimental evaluation of such a fine-grained parallel VNS
showed that both the quality of the final solution and the running time were improved
when parallel LS was executed on a modest number of processors (up to 10). The resulting
parallel VNS, named PVNSPLS, represents the first strategy used in this paper. It is
classified as 1C/C/SPSS, and it represents the sequential VNS speeded up by parallelizing
the most computationally intensive part, the LS procedure. Figure 2 illustrates the block-
diagram of PVNSPLS. A similar approach was used as the first strategy proposed in [13].

Figure 2: Low-level parallelization of VNS

The next strategy is similar to the one proposed in [3], but our method performs
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the search in a more systematic way. We refer to it as distributive VNS (DVNS), and
classify it as 1C/C/MPSS. The main idea is to explore different neighborhoods in parallel.
This is realized by performing the basic VNS steps (SH+LS) by different threads (and
consecutively on different processors) at the same time (Figure 3).

Figure 3: Distributive VNS

Actually, the sequential variant of VNS is performed with multiple executions of the
basic steps. The execution of VNS is centrally controlled in order to preserve the original
structure of the VNS algorithm. Each thread i shakes the current best solution xbest
in neighborhood ki and performs the same sequential LS procedure. Neighborhoods for
shaking are assigned to the threads cyclically. At the beginning, neighborhood Ni is
assigned to the thread i, as long as there are threads or neighborhoods available. Let
us assume that DVNS is distributed among q threads. In the case q ≤ kmax, the first
q neighborhoods are used simultaneously for shaking. If, on the other hand, q > kmax,
we assign N1 to thread q + 1, N2 to thread q + 2, and so on. Since shaking assumes
random selection of a solution from a given neighborhood, a potential duplication of used
neighborhoods does not imply redundant executions. The current global best solution
xbest and a current index k of neighborhood for shaking are kept and updated in the central
(global) memory. The access to the central memory is asynchronous and is performed
after the LS procedure is completed. The following cases may occur:

1. The current solution is improved. A particular thread i improves the current best
solution. One should check if this new solution is better than the global best xbest
from the memory. If this is the case, the memory is updated. The new best solution
is written and the current neighborhood index k is set to 1. When xbest from the
memory is better, it is taken (together with the neighborhood index) as the new
current best solution for the thread i. At the same time, the neighborhood index
k in the memory is incremented (if a value larger then kmax is obtained, it is set to
1 again).

2. The current solution is not improved. The later case (taking xbest from the memory
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and updating the neighborhood index) applies to the situation when thread i is not
able to improve the current best solution.

Our main goal is to investigate the performance of the asynchronous cooperative
approaches: with several (different, sequential) VNS methods running simultaneously
and exchanging relevant information. Keeping in mind that shaking rules and the LS
procedures may differ from processor to processor, it is obvious that we can expect
significant variations in the time required to complete the basic VNS steps. Therefore,
asynchronous execution represents the logical choice. Hence, the third strategy that we
propose is asynchronous cooperative VNS (CVNS), illustrated in Figure 4.

Figure 4: Cooperative VNS

The idea is that each thread runs a variant of the standard (sequential) VNS pro-
cedure [11]. At certain points during the computation, the threads communicate with
the central memory in order to make the decision about the next step. The appropriate
communication points have to be carefully selected through experimental comparison of
several possibilities such as:

1. At the end of the “first” LS procedure, before shaking in k = 1 when we (possibly)
have the new best solution;

2. At each improvement of the best solution;

3. When the neighborhood is to be changed (i.e., at k + + point);

4. When k = kmax, i.e., when the original sequential VNS would start a new iteration
(going to k = 1 again). The CVNS also runs from k = 1 upon the update of the
global best solution.

Cases 1 and 2 preserve the original VNS philosophy that the current global best is
updated as soon as possible. The remaining two cases should control the diversification of
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the search performed by each individual thread. The asynchronous information exchanges
could take place either through a central or distributed memory. Several variants of CVNS
are obtained by varying the selections of communication points and type of information
exchange. We distinguish three of them here.

The first variant represents medium-grained parallelization, where data exchange is
performed after the completion of each LS procedure, i.e., Case 3. Data exchange is
performed through the central memory. Regardless the quality of the obtained local
optimum, the best solution already known to the corresponding thread is compared with
the current global best solution recorded in the central memory. We named this variant
CVNSall.

The second variant represents a mixed parallelization strategy, where for some VNS
procedures data exchange is performed as in Case 3, while for the remaining sequential
VNSs, access to the memory follows Case 4. This means that the combination of medium
and coarse-grained parallelization is exploited. The resulting variant is referred to as
CVNSallK.

Finally, the non-centralized variant of CVNSall, named CVNSring is considered.
Communications are performed after the LS procedure is completed, but they are re-
alized through several memories, common to the selected subsets of VNS threads. All
relevant details about the implementation of the proposed parallel VNS algorithms are
described in the next section.

In addition, we also defined the strategy involving the independent execution of var-
ious (different) VNS algorithms, named IVNS. We used IVNS for the performance eval-
uation of our parallel VNS strategies. Usually, parallel algorithms are compared with
the best performing sequential algorithm. We went further and compared the parallel
executions with the best among all independent runs within the same amount of CPU
time. Moreover, if two or more algorithms generate the same solution, the fastest one is
used for the comparison. In such a way parallel VNS algorithms have a very hard task
to prove their dominance.

5 Implementation

The implementation of the parallel VNS algorithms was performed on a homogeneous
multiprocessor system based on SGI Altix computers and the Message Passing Inter-
face (MPI) communication protocol [15], in particular the library for C programming
language. We choose a distributed memory multiprocessor system because it is more
flexible. Reconfigurable clusters allow us to change the processor interconnection net-
works and provide a higher scalability in increasing the number of processors than the
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available multiple-core computers.

The distributed memory multiprocessor systems require the physical transfer of all
relevant data between processors. In order to minimize slow communications based on
the message-passing protocol, we have to carefully select data structures and minimize
the amount of data that should be transferred. The current global best solution is the
minimum data that needs to be shared. In some cases (medium level parallelization),
the index of the shaking neighborhood is managed globally, and therefore, it should also
be transferred between the corresponding processors.

The other relevant factor is the data exchange rate. Frequent communications could
yield the intensification of the searches executing on different processors around the same
solution. Less frequent data exchanges enforce the autonomy of each search process and
assure the exploration of different search regions. On the other hand, less frequent
communication changes the original VNS algorithm more and may prevent the search to
focus around promising solutions.

We used the multiprocessor networks illustrated in Figure 5 for the implementation
of the parallel VNS methods. The star architecture (Figure 5(a)) is used for centrally
coordinated search strategies (DVNS, PVNSPLS), cooperation with centralized infor-
mation exchange (CVNSall, CVNSallK), and independent runs of different sequential
VNS algorithms (IVNS). The non-centralized information exchange variant (CVNSring)
is implemented on the unidirectional processor ring (Figure 5(b)).

Figure 5: (a) Star architecture; (b) Unidirectional processor ring

In both cases, we distinguish the processor with the identification number zero, de-
clared as ui, which is used also for communication with the user. This communication
involves reading of input data, error message handling and writing the final results. The
actual parallel computations cannot start if an error occurs during the initialization part
of the code. If the input data are correctly read and broadcasted among all processors,
the START message is sent by the ui to all the other processors, and the execution of
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parallel VNS can begin.

5.1 Low level parallelization of VNS

As already mentioned, low-level parallelization of VNS assumes the sequential execution
of the VNS algorithm with the parallelized LS procedure. The star architecture is used
to model the master-slave organization of processors. The ui processor becomes here
the master processor that performs the basic steps of the sequential VNS up to the
improve part. This part assumes the application of some LS procedure now executed in
parallel by the other (slave) processors. As proposed in [8], neighborhood decomposition
on all available slave processors is performed. It is executed asynchronously, although
controlled by the master.

5.2 Distributive VNS - Parallel variant of single VNS

On the same multiprocessor architecture as the previous one (one master and q− 1 slave
processors), a single VNS is performed in parallel. The master processor controls the
execution (manages the current global best solution and the logic of the VNS algorithm,
takes care of the stopping condition, etc.). Slaves are engaged in performing SH+LS in
parallel. More precisely, the master processor performs the following steps:

1. Generate the initial solution x.

2. Improve it by LS to obtain the current best solution xbest.

3. Send xbest and the corresponding neighborhood index k to all slaves.

4. Perform a loop that consists of:

(a) Receive x′′ from a slave;

(b) if (x′′ is better xbest), set xbest = x′′ and k = 1; (move step),
else increment k;

(c) if (stopping condition is met), send STOP message to all slaves and exit loop;
else send xbest and k to the corresponding slave.

5. Collect time measuring data from all slaves and print output.

The pseudo-code for a slave processor is:

1. Receive xbest and k from the master processor.

13

Parallelization Strategies for Variable Neighborhood Search

CIRRELT-2013-47



2. Perform a loop that consists of:

(a) Shake the obtained xbest in the k-th neighborhood to obtain the new starting
solution x′;

(b) Apply LS, starting from x′ to obtain x′′;

(c) Send x′′ to the master;

(d) Receive a message from the master processor;

(e) if (STOP message arrived), exit the loop;
else read xbest and k.

3. Send measured time variables to the master.

The SH+LS searches are thus performed in parallel asynchronously for different neigh-
borhoods. “Different neighborhoods” here is related mainly to the Shake step, while the
LS procedures are usually the same. This also means that the starting solutions are
different sometimes. Namely, as soon as the master processor detects a new global best
solution, it forces the search to concentrate around this new solution. This intensifica-
tion does not involve all slave processors immediately, however. Each slave is allowed to
complete its current search before getting new directions. As a consequence, for some of
the intermediate solutions, more neighborhoods are explored than it would be the case in
the sequential execution of VNS. This makes the main difference between the sequential
and parallel VNS.

5.3 Independent execution of different VNS

In the above described variants of parallel VNS, we considered low- and medium-level
parallelizations of a single VNS procedure. Varying the parameters of VNS (kmax, Shake
rules, LS procedures, etc.), we obtain different VNS procedures that can run on different
processors simultaneously. The independent execution (without any communications) of
different VNS is obtained if we let all VNS run in parallel until the stopping criterion is
satisfied on all processors. Then, we collect the obtained results and adopt the best of
them as our final solution. We use the star architecture for this execution, although the
multiprocessor interconnection network is not relevant here. We declare the final result
of independent executions as the best sequential result and use it for the evaluation of
all parallel executions.

5.4 Cooperative VNS

As explained in the previous section, cooperation means the simultaneous execution
of various sequential VNS procedures (on different processors) with the exchange of
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relevant data at appropriate times. The data exchange could be centralized or non-
centralized. We implemented three variants of CVNS: two with centralized information
exchange (CVNSall, CVNSallK) and a variant with non-centralized information exchange
(CVNSring).

For the implementation of CVNSall and CVNSallK, we used the star interconnection
network of processors (Figure 5(a)). Apart from the user interface role, the processor
zero (ui) serves as central memory and does not perform any computations related to
the parallel VNS algorithm. More precisely, in both cases, the ui processor performs the
following steps:

1. Receive x′′ from all processors;

2. Identify the best of them as the current best solution xbest;

3. Send xbest to all processors;

4. Perform a loop that consists of:

(a) Receive the x′′ from a processor;

(b) if (x′′ is better than xbest) set xbest = x′′ and send xbest to all processors;

(c) if (stopping condition is met) send STOP message to all processors and exit
loop.

5. Collect time measuring data from all processors and print output to the user.

The role of the ui processor is to perform communications with other processors,
to update and store the global best value, and to take care of the stopping condition.
Communications are performed asynchronously in such a way that processor ui fills in the
mailboxes of the other processors with new (better) solutions and each processor picks up
the last message (the one containing the current best solution) whenever it reaches the
communication point. At the same time, the other processors are filling in the mailbox
of processor ui, which is reading and processing these messages sequentially. After the
allowed CPU time is elapsed (stopping criterion is met), ui sends the STOP message
to all other processors, collects the time measurement data and reports them, together
with the best found solution to the user. Neighborhood management in this variant is
performed by processors executing various VNS algorithms.

The pseudo-code for the other processors depends on the CVNS variant. For medium-
grained CVNSall, each processor performs the following steps:

1. Generate the initial solution x.
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2. Improve it by LS to obtain x′′.

3. Send x′′ to ui.

4. Receive xbest from ui.

5. Set k = 1.

6. Perform a loop that consists of:

(a) Shake the obtained xbest in the k-th neighborhood to obtain the new starting
solution x′;

(b) Apply LS, starting from x′ to obtain x′′,

(c) Send x′′ to ui ;

(d) Check for a message from ui ;

(e) if (STOP message arrived) exit the loop;
else read xbest and update k.

7. Send measured time variables to ui.

The pseudo-code for processors executing the coarse-grained part of CVNSallK is as
follows:

1. Generate the initial solution x.

2. Improve it by LS to obtain x′′.

3. Send x′′ to ui.

4. Receive xbest from ui.

5. Perform a loop that consists of:

(a) Set k = 1;

(b) do

i. Shake xbest in the k-th neighborhood to obtain the new starting solution
x′;

ii. Apply LS, starting from the x′ to obtain x′′;

iii. if (x′′ is better than xbest) set k = 1, xbest = x′′ and send xbest to ui ;
else increment k;

iv. Check for a message from ui ;

v. if (STOP message arrived) exit the (outer) loop;

while (k < kmax);
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(c) Check for a message from ui ;

(d) if (STOP message arrived) exit the loop;
else read xbest;

6. Send measured time variables to ui.

Depending on the problem in hand, the initial solution x is determined either by the
application of some constructive heuristics or randomly. Starting from that solution,
each processor performs its variant of initial LS procedure. The initial local minimum
x′′ is sent to ui for the update of the global best solution xbest. Upon receiving xbest
from ui, each processor starts its variant of VNS procedure and performs it until the
communication point is reached.

On the improvement of its own best solution each processor immediately informs
ui, regardless the variant of CVNS executed. This step supports the first improvement
search strategy inherent to the original sequential VNS algorithm. At the same time,
the corresponding processor checks for a possibly better solution in the global memory,
i.e. on the ui processor.

If no improvement is made after a specified point (after LS or a entire VNS iteration,
i.e. after k = kmax), the corresponding processor is looking for a new global best (that
might have been registered by ui meanwhile). If the global best is not improved, it
continues the search from the current solution and updates k according to the rules of
the corresponding CVNS variant.

As we already described for our distributed memory environment, access to the global
memory is realized by message exchange with the ui processor. The asynchronous im-
plementation of global memory access means that processors take into account only the
last message from ui, i.e. the one containing the current global best solution detected so
far. On the other hand, ui is sending the improved solutions to others as soon as they
are detected in the received messages. In such a way, the VNS philosophy “as soon as
you find new best solution, go there and start from the beginning (k = 1)” is not com-
pletely preserved, Step 2 being violated. Asynchronous data exchange, however, allows
both frequent exchanges of information and the individuality of each VNS method to
make improvements. Stopping all the processors each time the new best solution occurs,
would intensify the search around the same solution. Therefore, as in the sequential vari-
ant, only a small part of neighborhoods could be explored. In addition, the potentially
promising searches that had not been completed yet would be interrupted without the
chance to generate potentially good solutions.

The non-centralized data exchange is implemented on a unidirectional ring of pro-
cessors (Figure 5(b)). Messages are exchanged between the two adjacent processors sim-
ulating their common memory: one of them is writing its current global best solution,
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while the other one is reading the last solution written. Therefore, apart from the user
interface part of the processor ui, all of the processors perform the same pseudo-code:

1. Generate the initial solution x.

2. Improve it by LS to obtain x′′ = xbest.

3. Send xbest to the next processors.

4. Receive x′best from the previous processor.

5. Compare xbest and x′best and set the better one to be the new xbest.

6. Set k = 1.

7. Perform a loop that consists of:

(a) Shake the obtained xbest in the k-th neighborhood to obtain the new starting
solution x′;

(b) Apply LS, starting from the x′ to obtain x′′;

(c) if (x′′ is better then xbest) set xbest = x′′;

(d) Send xbest to the next processors;

(e) Check for a new message;

(f) if (STOP message arrived) exit the loop;
else read x′best, update xbest and k;

8. Send measured time variables to ui.

To summarize, we implemented and compared six variants of parallel VNS, listed
in Table 2. IVNS is used only to identify the best performing sequential VNS to be
parallelized into PVNSPLS and DVNS, and for obtaining the best sequential result for the
performance evaluation of parallel VNS methods. The comparison results are described
in the next section.

6 Experimental evaluations

In this section, we describe and analyze the results of applying the proposed coopera-
tive strategies to the Multiprocessor Scheduling Problem with Communication Delays
(MSPCD). Our first objective is to improve the state-of-the-art scheduling results (ob-
tained by the sequential VNS meta-heuristic) for MSPCD, through the exploration of
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Table 2: Summary of the tested parallelization strategies for VNS

Strategy Classification Details
IVNS pC/RS/MPDS independent execution of different VNS
PVNSPLS 1C/C/SPSS parallel LS in sequential VNS, low level
DVNS 1C/C/MPSS in sequential VNS, SH+LS in parallel,

(different k, same LS)
CVNSall pC/C/SPDS SH+LS in parallel, (different k, different LS)
CVNSallK pC/C/SPDS VNS iteration in parallel, centralized
CVNS pC/C/MPDS SH+LS in parallel, non-centralized

(different k, different LS)

larger part of the solution space. We also aim to reduce the computation time (to
speedup the VNS execution) through a better exploration of the solution space. We
tested the parallel strategies on benchmark instances provided by Davidović and Crainic
[7].

We first give a brief overview of MSPCD and the sequential VNS method, then
present our working environment and benchmark test instances, and finally, describe the
computational results.

6.1 Problem definition and sequential method

MSPCD represents a static problem of scheduling communicating tasks to homogeneous
multiprocessor systems of arbitrary structure. The tasks to be scheduled are represented
by a directed acyclic graph (DAG) [6, 20, 26] called Task Graph (TG), defined by a tuple
G = (T, L, E, C). Here T = {t1, . . . , tn} stands for the set of tasks; L = {l1, . . . , ln}
represents the set of task computation times (execution times, lengths). E = {eij | ti, tj ∈
T} models precedence relation between tasks by a set of communication edges. A task
cannot be executed unless all of its predecessors have completed their execution and all
relevant data is available. The set of edge communication costs is C = {cij | eij ∈ E},
where cij ∈ C stands for the amount of data transferred between tasks ti and tj if they
are executed on different processors. If both tasks are scheduled to the same processor,
the communication cost equals zero. Task preemption and redundant executions are not
allowed.

The multiprocessor architectureM is assumed to contain p identical processors (with
their own local memories) that communicate by exchanging messages through bidirec-
tional links of the same capacity. This architecture is modeled by a distance matrix [6, 12].
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The element (i, j) of the distance matrix D = [dij]p×p is equal to the minimum distance
between the nodes i and j. Here, the minimum distance is calculated as the number of
links along the shortest path between two nodes. It is obvious that the distance matrix
is symmetric with zero diagonal elements.

The scheduling of DAG G ontoM consists of determining the index of the associated
processor and starting time for each of the tasks from the task graph in such a way as
to minimize some objective function. The usual objective function (that we use in this
paper as well) is the completion time of the scheduled task graph (also referred to as
makespan, response time or schedule length). The starting time of a task tj depends on
the completion times of its predecessors and the amount of time needed for data trans-
ferring. Depending on multiprocessor architecture, the time spent for communication
between tasks ti and tj can be calculated in the following way

γklij = cij · dkl · ipc,

where it is assumed that task ti will be executed on processor pk, task tj on processor pl
and ipc represents the Iter-Processor-Communication cost defined as the ratio between
time for transferring the unit amount of data between two adjacent processors and the
time spent for performing single computational operation. If l = k then dlk = 0, implying
that γklij = 0.

The MSPCD is NP-Hard and is addressed by meta-heuristic methods [11, 21]. One of
the most successful meta-heuristic methods applied to MSPCD is VNS [11]. Therefore,
we started from the sequential permutation-based VNS [11] and parallelized it.

The solution representation and neighborhood definitions are the same as in [11].
The solution space S is defined as a set of all permutations of tasks. According to the
precedence relations, not all permutations are feasible. Therefore, the search space, the
set of feasible solutions X ⊆ S is defined as a set of all feasible permutations. The same
solution representation was used in the exhaustive search presented in [6], the sequential
GA, MLS, TS, and VNS proposed in [11], as well as for the implementation of parallel
GA from the [21].

A feasible permutation defines the order in which tasks will be allocated to processors.
The representation based on feasible permutations is indirect, one still needs to schedule
tasks to processors, i.e., to apply some scheduling rule. In our version, the Earliest-Start
(ES) scheduling rule [6] is used since it provides the best performance according to the
results described in [7, 11].

By presenting a solution of MSPCD as a permutation of tasks, one can explore well-
known several neighborhood structures, used in addressing the Traveling Salesman Prob-
lem, with the restriction to keep the feasibility of generated neighbors. The neighbor-
hoods used in the sequential method are described in [11]. Here we used swap and
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interchange neighborhoods and combined them in the Shake and LS phase to obtain
various VNS procedures to work in cooperation.

6.2 Working environment

The parallel variants of VNS were implemented in C, on a Linux operating system. We
used the MPI communication library for inter-processor communications. Experiments
were executed on a SGI Altix system containing 384 Intel Itanium2 dual core processors
running at 1.6 GHz for a total of 768 cores. The system also has 1.5 TB of memory, 2
GB per core.

For the experimental evaluation of our parallel VNS methods, we used the benchmark
instances proposed in [7]. There are two sets of benchmark task graphs. The first one
contains completely random task graphs, while the second set consists of the task graphs
with known optimal solutions for a given multiprocessor architecture. All task graphs
are available at http://www.mi.sanu.ac.rs/~tanjad/sched_results.htm.

We first selected a subset of “hard” instances consisting of ten sparse task graphs
with known optimal schedules on a 2-dimensional hypercube (4 processors). The number
of tasks varies from 50 to 500 with the increment of 50, while the edge density is around
30% of the maximum allowed density (calculated from the given optimum solution). The
values of the optimal schedule length for each instance are given in Table 3, as well as the
maximum CPU time (in seconds) allowed for the execution of each variant of (sequential
and parallel) VNS. These instances we used for the parameter adjustment described in
the next subsection.

Table 3: Optimal schedule lengths and time limits

n 50 100 150 200 250 300 350 400 450 500 av.

SLopt 600 800 1000 1200 1400 1600 1800 2000 2200 2400 1500.0

CPUtime 6 70 400 600 1000 2000 4000 6000 10000 16000 4007.6

6.3 Preliminary results

We first describe the preliminary results of applying the parallel strategies we developed
to MSPCD. For all experiments, the stopping criterion was the maximum allowed CPU
time, the initial solution was obtained by the CPES constructive heuristic [11], and the
maximum number of neighborhoods was set to kmax = n/2.

21

Parallelization Strategies for Variable Neighborhood Search

CIRRELT-2013-47



We identified 5 best performing variants of the sequential VNS and used them for
the parallel methods. The results of the independent execution of these 5 sequential
VNS procedures are given in Table 4. Two rows are devoted to each instance, the first
one containing the best obtained schedule length, while the minimum wall-clock time
required to reach this value is given in the second row. The best obtained results are
displayed in bold characters and repeated in the last two columns of Table 4. The last
row of the table contains average values for the 10 instances.

Table 4: Independent execution of best 5 sequential VNS algorithms

no. SL best
tasks tmin SL tmin

n VNS1 VNS2 VNS3 VNS4 VNS5
50 697 650 683 695 650 650 3.952

5.988 3.952 5.74 4.996 4.736
100 1036 912 1008 910 1057 910 11.28

38.124 68.616 46.476 11.28 57.564
150 1654 1103 1214 1077 1062 1062 129.112

162.032 76.316 75.988 299.48 129.112
200 2005 1334 1685 1532 1542 1334 167.388

337.736 167.388 374.576 255.876 485.476
250 2407 1612 1856 1663 1959 1612 430.216

64.496 430.216 985.208 935.352 370.408
300 2769 1767 1944 1764 2240 1764 1816.436

1371.864 1651.352 1961.608 1816.436 2003.872
350 3331 2337 3300 2274 3301 2274 2152.532

504.956 2745.068 2362.74 2152.532 3087.12
400 3687 2435 2509 2715 2638 2435 2822.912

5751.9 2822.912 3241.008 5926.492 1879.868
450 2982 2367 4147 2757 2433 2367 8004.596

6927.312 8004.596 2938.824 9473.8 6676.644
500 3039 3066 3160 2722 2920 2722 14412.668

4089.592 5982.76 9597.124 14412.668 9410.072
av. SL 2360.7 1758.3 2150.6 1810.9 1980.2 1713 2995.11

We used up to q = 20 processors for the parallel execution of our VNS algorithms.
DVNS and PVNSPLS algorithms executed the best performing sequential VNS variant
(VNS2). For the CVNS variants, the selected five VNS variants were added cyclically
with different seeds each time we use more than five processors were used.

The preliminary results are displayed in Table 5. The first row of Table 5 contains
the average (over the ten benchmark instances) best schedule lengths obtained by the
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Table 5: Comparison of different cooperation strategies

SLav

q CVNSall CVNSallK CVNSring DVNS PVNSPLS
1 1713.0 1713.0 1713.0 1713.0 1713.0
tmin 2995.11 2995.11 2995.11 2995.11 2995.11

5 1680.1 1733.9 1616.5 1670.1 1746.3
6 1696.2 1669.0 1641.5 1719.3 1669.9
7 1661.6 1706.5 1621.5 1645.7 1709.1
8 1642.9 1666.6 1618.2 1665.2 1686.9
9 1609.5 1670.1 1648.6 1667.4 1701.3
10 1559.2 1618.9 1604.4 1666.7 1705.6
11 1603.6 1568.8 1603.6 1655.6 1710.3
12 1606.6 1632.6 1628.2 1623.4 1671.4
13 1601.8 1643.1 1620.1 1662.4 1701.7
14 1645.5 1671.4 1647.5 1637.3 1667.4
15 1653.7 1677.6 1610.1 1632.1 1635.0
16 1608.9 1621.1 1602.6 1602.9 1703.1
17 1581.2 1611.3 1591.9 1684.5 1676.8
18 1637.5 1606.0 1627.1 1654.4 1693.0

av. SL 1627.74 1649.78 1620.13 1656.2 1691.27
av. tmin 2016.87 2597.20 2455.67 3018.25 3259.20

independent execution of the five best-performing variants of the sequential VNS (IVNS).
The IVNS result is therefore better than the best performing sequential algorithm since
we always take the best schedule for each instance (regardless of the variant of VNS that
produced it). Taking IVNS as the referent sequential result allows us to fully demonstrate
the benefits of parallelization. The corresponding average CPU times required to obtain
the best solutions, called minimum time (tmin), are given in the second row. The average
(over the ten instances) schedule lengths are presented in the next 14 rows for different
numbers of processors. The last two rows contain the average (over the values for q)
schedule lengths and the corresponding average tmin. These results were presented for
the first time in [9].

As can be seen from these results, CVNSring is the best performing parallel VNS.
Moreover, within the same amount of wall-clock time, all parallel methods outperform
the independent IVNS (and thus, the sequential VNS) with respect to solution quality.
In addition, all cooperative methods obtain their best results faster than IVNS. The best
results (minimum values for schedule length) are obtained when the parallel VNS is ex-
ecuted on a modest number of processors (q ≈ 10). This coincides with the conclusion
regarding the parallelization of the LS procedure described in [8]. Since our multiproces-
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sor system is different from the one used in [8], it is worth to note that for PVNSPLS
the communication time is not negligible. The data transfer between q = 5 processors
requires 2.5% of the total running time, while in the case when q = 20, communication
time takes 15% of the total time. In all other cases, the amount of data that is transferred
is small and therefore, the communication time becomes negligible.

6.4 General experimentation results

For the rest of the paper, we will focus on CVNSs only, since the preliminary results
showed that the coarse-grained cooperative methods perform better than the fine-grained
parallel VNS methods.

Two extensive sets of benchmark instances were used for this experimentation. First,
a subset of the random test graphs consisting of 36 sparse task graphs (ρ = 20%), 6
graphs for each number of tasks n = 50, 100, 200, 300, 400, 500 citeDC04. The second set
consisted of 90 graphs with known optimal solutions for a 2D-hypercube, 9 graphs for
each number of tasks n = 50, 100, 150, 200, . . . , 500. The time limits for the cooperative
VNS methods were set to the values indicated in Table 3 for the graphs of same size.

Table 6: Scheduling results for random task graphs on p=2

av. tmin av. tmin for q = 5, 6, ..., 20

n seqVNS CVNSall CVNSallK CVNSring
50 0.075 0.046 0.085 0.052

100 5.362 1.296 2.929 2.447
200 48.787 44.126* 62.631** 67.215**
300 410.913 213.259* 339.494** 265.110*
400 1422.706 686.062* 1137.353* 613.302**
500 4236.249 2401.833* 3407.779 3365.006**
av. 1020.682 557.77 825.045 718.855

∗ - this execution produces results better than the sequential run
∗∗ - some of the results are better than the best ones produced by CVNSall

The results of the three cooperative VNS methods to the subset of random task graphs
scheduled on p = 2 processors are presented in Table 6. We compare the average values
of cooperative methods on q = 5, 6, . . . , 20 processors with those of the independent
search (IVNS). Since the quality of the final schedule obtained by all cooperative VNS
algorithms is always better than or at least equal to the best schedule length obtained by
IVNS, Table 6 presents only the average time required to find the best solution, i.e., tmin.
As can be seen from Table 6, cooperative executions are able to obtain better results
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faster than the sequential run (i.e., within smaller amount of wall-clock time) in most of
the cases. However, the gain in the quality of the final solution (0.01%) does not always
justify the number of processors used. The best performance is obtained for q ≤ 10,
while using q > 15 processors seems to be pointless.

Figure 6: Evolution of the best solution – CVNSall on various numbers of processors

To illustrate this observation, we present in Figures 6-9 the improvement evolution
of the best solution for a selected task graph instance for the three cooperative methods
with several numbers of processors. Because the smaller task graphs (with up to 200
tasks) are too easy, we selected one of the instances with 300 tasks. The horizontal
time line starting at tmin = 883.72 seconds and ending at 1800.00 seconds displays the
referent sequential run (the best out of five independent VNS schedule lengths obtained
at the tmin). As can be seen from Figures 6-8, all CVNS executions produced solutions
of the same quality or better than IVNS within a smaller amount of wall-clock time,
approximately 4 times faster regardless the number of processors used. In most of the
cases, the best results were obtained for q = 10 and q = 12.

Figure 9 illustrates the comparison between the three CVNS methods on the same
number of processors q = 10. We can conclude that, at the beginning of the execution,
CVNSall improves the current best solution faster than the other two variants. This
is due to the intensive information exchange, i.e., the adoption of the current global
best solution after the completion of a single LS procedure. The consequence of this fact,
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however, is that later on, all search procedures are working around the same current global
best solution, which has already been fairly explored. On the other hand, less frequent
information exchanges within CVNSallK results in the slowest improvement rate and,
sometimes, the chaotic (random-walk like) search of the solution space. In most of the
cases, decentralized communication shows the most desirable behavior: smooth descent
and the best solution at the end.

Figure 7: Evolution of the current best solution – CVNSallK on various numbers of
processors

For the next experimental step, we increase the problem size by setting p = 8. More-
over, we consider an architecture with incomplete connection of processors, namely a
3-dimensional hypercube. These changes make the problem harder, at least for the se-
quential VNS. The results obtained by cooperative VNS algorithms are presented in
Table 7.

The results presented in Table 7 show that cooperation preserves or even improves the
solution quality and reduces the required CPU time. The method with more frequent
centralized information exchanges (CVNSall) performs better than the variant based
on lees frequent communication (CVNSallK) with respect to both solution quality and
execution time. For the problem considered, the non-centralized information exchange
mechanism outperforms both variants based on centralized communications, generating
better solutions very fast.
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Figure 8: Evolution of the current best solution – CVNSring on various numbers of
processors

Table 7: Scheduling results for random task graphs on 3D hypercube, p=8 processors

av. tmin av. tmin for q = 5, 6, ..., 20

n seqVNS CVNSall CVNSallK CVNSring
50 0.131 0.087 0.112 0.100

100 22.308 8.266 12.781 13.714**
200 186.349 180.002** 160.302* 161.466**
300 558.849 536.169** 530.364* 570.613**
400 2716.662 1821.536* 2173.294* 1863.706**
500 6702.583 3826.659* 7315.885* 3859.508**
av. 1697.814 1062.120 1698.79 1078.184

∗ - this execution produces results better than the sequential run
∗∗ - some of the results are better than the best ones produced by other CVNSs

The final challenge for our CVNS algorithms was to address the set of test instances
with known optimal solutions. We limited the experimental evaluation to q ≤ 12 pro-
cessors since we already concluded that CVNS algorithms perform the best in this case.
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Figure 9: Evolution of the current best solution – all CVNS methods

The results are presented in Table 8 displaying average schedule lengths and average
minimum CPU times, for IVNS and the three CVNS methods, over the 9 instances of
each size. The figures clearly show that all versions of cooperative VNS obtain better
schedules faster than IVNS (and sequential VNS). The best performing CVNS method
is again non-centralized CVNS (CVNSring) with respect to both criteria, solution qual-
ity and execution time. Regarding the centralized variants, the one with more frequent
communication preforms slightly better.

7 Conclusion

Parallel meta-heuristics represent powerful tools for dealing with hard combinatorial
optimization problems, especially for large size real-life instances. Therefore, a systematic
approach to the design and implementation of parallel meta-heuristic methods is of great
importance. The main objective of this work was to propose and evaluate parallelization
strategies for the Variable Neighborhood Search meta-heuristic and evaluate them on a
very hard combinatorial optimization problem, the Multiprocessor Scheduling Problem
with Communication Delays.
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Table 8: Scheduling results for task graphs with known optimal solutions on hypercube
with p=4 processors and q = 12

IVNS CVNSall CVNSallK CVNSring

n av. SL av. tmin av. SL av. tmin av. SL av. tmin av. SL av. tmin

50 618.00 1.98 607.28 1.14 609.83 1.33 609.19 1.11
100 850.89 16.15 846.21 16.93 842.44 13.65 843.94 16.84
150 1066.57 146.81 1064.26 82.70 1063.90 118.98 1057.78 88.49
200 1326.11 101.53 1298.13 175.75 1299.56 158.37 1293.15 168.84
250 1644.22 620.34 1581.97 333.43 1597.19 492.85 1582.89 374.77
300 1821.33 835.83 1796.11 838.31 1805.99 935.34 1782.24 835.70
350 2123.00 2321.68 2071.80 1416.29 2069.69 1854.71 2051.50 1539.31
400 2406.44 3673.86 2350.46 2103.40 2395.93 2648.03 2282.15 2216.28
450 2616.33 6638.79 2490.85 3746.94 2553.83 4996.02 2477.82 3302.23
500 2927.33 7786.67 2798.89 4902.67 2835.21 6752.01 2748.50 4668.28

av. 1740.02 2214.36 1690.60 1361.76 1707.36 1797.13 1672.92 1321.19

We proposed and analyzed several methods based on the distributed memory ap-
proach and with centralized and non-centralized information exchange. According to the
results of a comprehensive computational study, all cooperative methods outperformed
the independent-search method and, thus, the sequential VNS both on solution quality
and computational efficiency. New best-know solutions for the test instances considered
were thus achieved. The non-centralized asynchronous parallel VNS offers the best per-
formance among the cooperative methods for the problem considered. It provides the
largest improvement of the sequential results within the smallest amount of wall-clock
time. The shared memory approaches are an interesting avenue for further research.
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