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Abstract. The production routing problem (PRP) combines the lot-sizing problem and the 

vehicle routing problem, two classical problems that have been extensively studied for 

more than half a century. The PRP is solved in an attempt to jointly optimize production, 

inventory, distribution and routing decisions and is thus a generalization of the inventory 

routing problem (IRP). Although the PRP has a complicated structure, there has been a 

growing interest in this problem during the past decade in both academia and industry. 

This article provides a comprehensive review of various solution techniques that have 

been proposed to solve the PRP. We attempt to provide an in-depth summary and 

discussion of different formulation schemes and of algorithmic and computational issues. 

Finally, we point out interesting research directions for further developments in production 

routing.  

 

Keywords. Integrated supply chain planning, production routing, inventory routing, exact 

algorithms, heuristics, review. 

Acknowledgements. This work was supported by the Natural Sciences and Engineering 

Research Council of Canada (NSERC) under grants 227837-09 and 342182-09. This 

support is gratefully acknowledged. 

Results and views expressed in this publication are the sole responsibility of the authors and do not 
necessarily reflect those of CIRRELT. 

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
 
_____________________________ 
* Corresponding author: Yossiri.Adulyasak@cirrelt.ca 

Dépôt légal – Bibliothèque et Archives nationales du Québec 
                        Bibliothèque et Archives Canada, 2013 

© Copyright  Adulyasak, Cordeau, Jans and CIRRELT, 2013 



1. Introduction

In a typical supply chain which consists of sequential activities of pro-
duction, storage and distribution, each individual process is often planned
and optimized using predetermined decisions from its preceding activities.
For example, a production planner makes production lot-sizing decisions in
order to minimize production and inventory costs at the production facil-
ity. The planned lot-sizing decisions are then used as inputs in subsequent
steps of distribution planning. Since the decisions are limited by the plan of
the former process, the benefits of coordination in the planning process have
been left behind. An integrated supply chain operational planning system is
a tool that is used to jointly optimize several planning decisions thereby cap-
turing the additional benefits of coordination between sequential activities in
the chain. In recent years, many companies, such as Kellogg (Brown et al.,
2001) and Frito-Lay (Çetinkaya et al., 2009), have set up integrated planning
systems and achieved multi-million cost savings. The key to success is an
application that is not only able to produce solutions with minimal costs,
but that can also be used in an effective and timely manner.

The production routing problem (PRP) is an integrated operational plan-
ning application that jointly optimizes production, inventory, distribution
and routing decisions. It is of practical relevance in a Vendor Managed In-
ventory (VMI) approach, in which the supplier monitors the inventory at
retailers and also decides on the replenishment policy for each retailer. The
supplier acts as the central decision maker who solves an integrated supply
chain planning problem. The advantage of a VMI policy with respect to the
traditional retailer managed inventory lies in a more overall efficient resource
utilization. The PRP connects two well-known problems, namely the lot-
sizing problem (LSP) and the vehicle routing problem (VRP), to produce an
optimal solution when considering the total system cost. The PRP is also a
generalization of the lot-sizing problem with direct shipment and of the in-
ventory routing problem (IRP). Solving the PRP becomes challenging as it is
a combined version of the LSP and VRP and it incorporates the constraints
of these two difficult problems. We aim to provide an in-depth review of the
PRP, particularly with respect to the formulations and solution algorithms.
Different formulation schemes of the PRP are examined. The approaches
to compute lower bounds, exact algorithms and heuristics are thoroughly
reviewed. We further discuss future research directions.

In the rest of this section, we first provide a brief overview of the three
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Figure 1: Network Representations of the Integrated Problems

integrated problems. The network representations of these problems in the
case of a single supplying facility and multiple customers in a discrete time
finite horizon are presented in Figure 1. Note that the supplying facility
can be a plant with setup costs and production decisions or a warehouse
with fixed ordering costs and ordering decisions. In each period, a single or
multiple products can be made available at the supplying facility and they are
transported to the customers in order to satisfy demands. The products can
be stored at the plant or at the customers, thus incurring inventory holding
costs.

1.1. Integrated Lot-Sizing with Direct Shipment

In this problem, the products are directly transported from the manufac-
turing plant to the customers. The production, setup, inventory and direct
shipment costs are minimized over the planning horizon. This problem typ-
ically incorporates various production aspects, e.g., production setup cost
and/or setup time, and involves distribution decisions where the fixed and
unit costs of delivery are customer specific.

The integrated production and direct shipment distribution planning was
studied by several researchers. Most of the studies considered the distribu-
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tion cost as a fixed cost or a complex cost function. Li et al. (2004) focused
on the lot-sizing problem with a piecewise linear transportation cost function
where the supplier has the option to deliver by direct delivery with truck-
load (TL) or less-than-truckload (LTL) transportation. They developed a
dynamic programming approach to solve the one-product and one-customer
problem. Jaruphongsa et al. (2007) proposed other dynamic programming
algorithms to solve the problem with TL and LTL cost structures. A prob-
lem with a special cost structure, where the supplier can get a discount from
transportation capacity reservation, was studied by van Norden and van de
Velde (2005). A more general piece-wise linear transportation cost function
was addressed by Rizk et al. (2006). They decomposed the integrated prob-
lem into uncapacitated lot-sizing and time-independent subproblems and ap-
plied a Lagrangian relaxation technique to obtain lower bounds. In the more
general case of multiple customers, Chand et al. (2007) developed a dynamic
programming algorithm to solve the problem in which backlogging is allowed.
Jaruphongsa and Lee (2008) considered the problem with split delivery under
time window restrictions and employed dynamic programming algorithms to
solve the problem. A special problem of lot-sizing with truckload shipment
where transshipments between the customers are allowed was considered by
Herer and Tzur (2001). The multi-item problem with one customer was con-
sidered by Lee et al. (2005). In the case of uncapacitated production and
uncapacitated vehicles, the problem with direct shipments is also known as
the one-warehouse multi-retailer problem (OWMR). Federgruen and Tzur
(1999) considered the OWMR with multiple items and developed a time-
partitioning heuristic to solve the problem. Solyalı and Süral (2012) pro-
posed a new strong formulation based on the combined transportation and
shortest path model to solve the OWMR with a single product. Melo and
Wolsey (2012) discussed several formulations and proposed hybrid heuris-
tics for the two-level production-transportation problems with capacitated
production and vehicles.

There is a link between the lot-sizing problem with truckload cost struc-
ture and the classical lot-sizing problem with batch size where the batch
quantity is smaller than the maximum production quantity in one period.
The truck capacity can be viewed as the fixed batch quantity limit and the
cost of dispatching one truck can also be considered as the fixed produc-
tion cost of one batch. There is also a link between the lot-sizing problem
with transshipments and the lot-sizing problem with production substitution
where a product can be used to substitute for the demand of another product
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(Hsu et al., 2005). The cost of transshipment between customer locations can
be viewed as the cost of production substitution.

1.2. Inventory Routing Problem (IRP)

When the routing aspect is included and the production aspect is disre-
garded, the problem is transformed into the inventory routing problem (IRP).
In the IRP, the starting point is a warehouse where there is no production
decision as the production quantities made available in each period are typ-
ically given. A vehicle can visit more than one customer by travelling along
its route. As a generalization of the VRP, which consists of the decisions
on delivery quantities and routes to serve customers, the IRP also includes
the timing to serve the customers’ demands. This makes the problem much
more difficult than the classical VRP due to the complex periodic routing
and inventory decisions. The IRP is obviously NP-hard since it contains the
VRP as a special case (Coelho et al., 2012b).

The IRP first appeared in a gas delivery study by Bell et al. (1983). The
problem was solved using a Lagrangian relaxation method and was decom-
posed by time period and by vehicle. Carter et al. (1996) and Campbell
and Savelsbergh (2004) proposed efficient heuristic procedures by decompos-
ing the IRP into an allocation problem (AP) and a vehicle routing prob-
lem (VRP). Since the IRP is a complicated combinatorial problem, several
metaheuristics, e.g., tabu search (Rusdiansyah and Tsao, 2005), genetic al-
gorithm (Abdelmaguid and Dessouky, 2006), greedy randomized adaptive
search procedure (GRASP) (Savelsbergh and Song, 2007), hybrid heuristic
with combined tabu search and MIPs (Archetti et al., 2011), and adaptive
large neighborhood search (ALNS) (Coelho et al., 2012a,b), have been pro-
posed. Gaur and Fisher (2004) discussed a periodic IRP where the demand
pattern is repeated and developed a heuristic to solve the problem.

As mentioned in Andersson et al. (2010), few exact algorithms have been
proposed to solve the IRP due to its complexity. Notable exceptions include
a branch-and-cut procedures to solve the IRP with a single capacitated ve-
hicle by Archetti et al. (2007) and Solyalı and Süral (2011). Archetti et al.
(2007) introduced several valid inequalities to solve the problem under three
different inventory replenishment policies. In the first policy, called order-up-
to level (OU), a visited customer receives exactly the amount which brings
its inventory up to a predefined target stock level (TSL). The second pol-
icy, called maximum level (ML), allows delivery quantities to be any positive
value but the inventory at each customer cannot exceed its maximum stock
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level. The third policy is similar to the ML policy but there is no maximum
stock level imposed at the customers. Solyalı and Süral (2011) strengthened
the formulation of the IRP with the OU policy of Archetti et al. (2007) by
using a shortest path network reformulation. Adulyasak et al. (2013) and
Coelho and Laporte (2013) extended the approach of Archetti et al. (2007)
to the IRP with multiple vehicles. The IRP with transshipment and the
IRP with several consistency features were also considered by Coelho et al.
(2012a).

Variants of the IRP have been proposed as well. Christiansen (1999)
introduced an IRP application in a maritime context, called the inventory
pickup and delivery problem, and applied a Dantzig-Wolfe decomposition
and column generation approach to solve the problem. Savelsbergh and
Song (2008) considered the IRP with continuous moves where a product is
distributed from a set of plants to a set of customers by multiple vehicles. The
authors developed a branch-and-cut approach to solve the problem. We refer
to Andersson et al. (2010) and Coelho et al. (2013) for more comprehensive
reviews of the IRP.

1.3. Production Routing Problem (PRP)

The two integrated problems discussed in the previous sections each disre-
gard one important aspect of the supply chain operational planning process,
i.e., the integrated lot-sizing problem with direct shipment does not incor-
porate routing decisions, while the IRP disregards the production part. In
the PRP, the plant must decide in each period whether or not to make the
product and determine the corresponding lot size. If production does take
place, this process incurs a fixed setup cost as well as unit production costs.
In addition, the lot size cannot exceed the production capacity. Deliveries
are made from the plant to the retailers by a limited number of capacitated
vehicles and routing costs are incurred. If products are stored at the plant
or at the retailers, unit inventory holding costs are also incurred. Table 1
provides a summary of the PRP literature.

The PRP has received more attention in recent years. The benefits of co-
ordination in the PRP were first discussed by Chandra (1993) and Chandra
and Fisher (1994). They showed that 3-20% cost savings can be achieved by
solving the PRP compared to sequentially solving the separate problems. As
for the case of the IRP, most of the previous studies employed heuristic proce-
dures to solve the problem. Several metaheuristics, such as GRASP (Boudia
et al., 2007), memetic algorithm (Boudia and Prins, 2009), tabu search (Bard
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and Nananukul, 2009b; Armentano et al., 2011), and ALNS (Adulyasak et al.,
2012b) have been employed. Archetti et al. (2011) discussed the PRP un-
der the ML and OU policies and developed a mixed integer programming
(MIP) heuristic to solve the problem. Bard and Nananukul (2009a, 2010)
introduced a heuristic based on a branch-and-price framework.

Due to the complexity of the problem, few studies have introduced ex-
act algorithms or methods to compute strong lower bounds. Fumero and
Vercellis (1999) and Solyalı and Süral (2009) developed a Lagrangian relax-
ation approach to obtain lower bounds based on the multi-commodity flow
formulation. Ruokokoski et al. (2010) and Archetti et al. (2011) employed
a branch-and-cut approach similar to that of Archetti et al. (2007) to solve
the PRP. Ruokokoski et al. (2010) explored different lot-sizing reformulations
for the PRP with uncapacitated production and a single uncapacitated ve-
hicle, while Archetti et al. (2011) focused on the PRP with uncapacitated
production and a single capacitated vehicle, and introduced several valid in-
equalities to solve the problem. Adulyasak et al. (2013) focused on the PRP
with multiple vehicles and proposed two branch-and-cut approaches based
on different formulations schemes to solve the problem.
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The paper is organized as follows. Section 2 provides the problem de-
scription and formulations of the basic version of the PRP which consists of
a network of a single product, a single plant and multiple customers. Solu-
tion approaches for several variants of the PRP are discussed next. Section
3 provides details on the approaches developed to compute lower bounds
and Section 4 reviews recent developments in exact algorithms. Section 5
presents various heuristics and recent computational results. We further dis-
cuss future research opportunities in Section 6 and this is followed by the
conclusion.

2. Notation and Formulations for the PRP

2.1. Description and Notation of the PRP

A PRP network is defined on a complete directed graph G = (N,A) where
N represents the set of the plant and the customers indexed by i ∈ {0, ..., n}
and A = {(i, j) : i, j ∈ N, i 6= j} is the set of arcs. The plant is represented
by node 0 and we further define the set of customers Nc = N \ {0}. Over a
finite set of time periods T = {1, . . . , l}, a single product can be produced at
the plant and delivered by a set of identical vehicles K = {1, . . . ,m} to the
customers to satisfy the demands in each period. The parameters and the
decision variables are defined as follows.

Parameters:

u unit production cost;

f fixed production setup cost;

hi unit inventory holding cost at node i;

cij transportation cost from node i to node j;

dit demand at customer i in period t;

C production capacity;

Q vehicle capacity;

Li maximum or target inventory level at node i;

Ii0 initial inventory available at node i.

8
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Decision variables:

pt production quantity in period t;

Iit inventory at node i at the end of period t;

yt equal to 1 if there is production at the plant in period t, 0 otherwise;

z0t the number of vehicles leaving the plant in period t;

zit equal to 1 if customer i is visited in period t, 0 otherwise, ∀i ∈ Nc;

xijt if a vehicle travels directly from node i to node j in period t, 0 other-
wise;

qit quantity delivered to customer i in period t;

wit load of a vehicle before making a delivery to customer i in period t.

We further letMt = min
{
C,
∑l

j=t

∑
i∈Nc

dij

}
and M̃it = min

{
Li, Q,

∑l
j=t dij

}
.

2.2. Formulations for the PRP

We first present a model based on the basic LSP and VRP formulations.
It is also the most compact one as it contains a polynomial number of con-
straints. The PRP is formulated with variables that control the amounts
delivered by a homogenous fleet of vehicles. A basic formulation based on
that of Bard and Nananukul (2009a, 2010) is as follows.

(PRP1) : min
∑
t∈T

upt + fyt +
∑
i∈N

hiIit +
∑

(i,j)∈A

cijxijt

 (1)

9
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s.t. I0,t−1 + pt =
∑
i∈Nc

qit + I0t ∀t ∈ T (2)

Ii,t−1 + qit = dit + Iit ∀i ∈ Nc,∀t ∈ T (3)

pt ≤Mtyt ∀t ∈ T (4)

I0t ≤ L0 ∀t ∈ T (5)

Ii,t−1 + qit ≤ Li ∀i ∈ Nc,∀t ∈ T (6)

qit ≤ M̃itzit ∀i ∈ Nc,∀t ∈ T (7)∑
j∈N

xijt = zit ∀i ∈ Nc,∀t ∈ T (8)∑
j∈N

xjit +
∑
j∈N

xijt = 2zit ∀i ∈ N,∀t ∈ T (9)

z0t ≤ m ∀t ∈ T (10)

wit − wjt ≥ qit − M̃it(1− xijt) ∀(i, j) ∈ A,∀t ∈ T (11)

0 ≤ wit ≤ Qzit ∀i ∈ Nc,∀t ∈ T (12)

pt, Iit, qit ≥ 0 ∀i ∈ N,∀t ∈ T (13)

yt, xijt ∈ {0, 1} ∀i, j ∈ N, ∀t ∈ T (14)

zit ∈ {0, 1} ∀i ∈ Nc,∀t ∈ T (15)

z0t ∈ Z+ ∀t ∈ T. (16)

The objective function (1) minimizes the total production, setup, inven-
tory and routing costs. Constraints (2)-(6) represent the lot-sizing part of
the problem. Constraints (2) and (3) are the inventory flow balance at the
plant and customers, respectively. Constraints (4) are the setup forcing and
production capacity constraints. The constraints force the setup variable to
be one if production takes place in a given period and limit the production
quantity to the minimum value between the production capacity and the
total demand in the remaining periods. Constraints (5) and (6) limit the
maximum inventory at the plant and customers, respectively. The inven-
tory part of this model is controlled by the so-called maximum level (ML)
policy as defined by Archetti et al. (2007), where the delivery quantity can
be any positive number but the resulting inventory level after delivery prior
to demand consumption cannot exceed the maximum inventory level. The
remaining constraints, i.e., (7)-(12), are the vehicle loading and routing re-
strictions. Constraints (7) allow a positive delivery quantity only if customer
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i is visited in period t and each customer can be visited by at most one vehicle
(8). Constraints (9) are the vehicle flow conservation. Constraints (10) limit
the number of trucks that can be used to the number of available trucks.
Constraints (11) are the vehicle loading restrictions and subtour elimination
constraints in the form of the Miller-Tucker-Zemlin inequalities (Miller et al.,
1960). These constraints do not allow taking an arc that generates a subtour
as shown in Figure 2; the arc (3, 1, t) cannot be taken because w1t−w2t ≥ q1t
is not valid. Constraints (12) are the vehicle capacity constraints.

1

2

3

0

1

2

3

0

Figure 2: Illustration of vehicle restriction and subtour elimination constraints (11).

In Bard and Nananukul (2009a, 2010), the subtour elimination constraints
(11) and vehicle capacity (12) constraints are used. However, in the VRP,
this subtour elimination constraint set can lead to a weak formulation in
the routing part (Toth and Vigo, 2001). Constraints (11) and (12) can be
replaced with other subtour elimination constraints, i.e.,

• fractional capacity constraints (FCCs) (Letchford and Salazar-González,
2006) as presented in Chandra and Fisher (1994):∑

i/∈S

∑
j∈S

xijt ≥
∑
i∈S

qit/Q ∀S ⊆ Nc : |S| ≥ 1,∀t ∈ T (17)

• generalized fractional subtour elimination constraints (GFSECs):∑
i∈S

∑
j∈S

xijt ≤ |S| −
∑
i∈S

qit/Q ∀S ⊆ Nc : |S| ≥ 2,∀t ∈ T. (18)
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Figure 3: Illustration of FCCs (left) and GFSECs (right)

Figure 3 depicts how these constraints eliminate subtours. Suppose that
(q1t + q2t + q3t)/Q = 1. The FCC forces one arc from outside the set S to
connect to a node inside S, while the GFSEC does not allow more than two
arcs in the set S. Both of the constraints can eliminate subtours in the set
S.

Unlike in the VRP where the delivery quantity to each customer is known
a priori, the value (

∑
i∈S qit)/Q cannot be rounded up in the PRP because

the delivery quantity qit is a decision variable and this would result in a
non-linear formulation. Adulyasak et al. (2013) used a strengthened version
of constraints (18) where the parameter |S| is replaced with

∑
i∈S zit. They

also observed that the form (18) is numerically unstable due to the fractional
term qit/Q. The alternative form of the GFSECs presented in Adulyasak
et al. (2013) is as follows:

Q
∑
i∈S

∑
j∈S

xijt ≤
∑
i∈S

(Qzit − qit) ∀S ⊆ Nc : |S| ≥ 2,∀t ∈ T. (19)

However, using these constraints in the formulation instead of (11), the
problem becomes much larger due to an exponential number of subsets. A
branch-and-cut (BC) procedure is typically an efficient approach to solve the
problem. In this procedure, these constraints are initially removed and added
iteratively during the branch-and-bound process. Note that in the case where
an undirected graph is assumed, the formulations can be converted by using
the method presented by Toth and Vigo (2001).

To overcome the disadvantage of constraints (19) which are fractional, one
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can explicitly formulate the problem with a vehicle index and impose routing
constraints on each vehicle separately. In this formulation, the variables qikt,
zikt and xijkt have the same interpretation as qit, zit and xijt but they are
associated with vehicle k only. The formulation with a vehicle index based
on the formulation presented by of Boudia et al. (2007, 2008) is as follows.

(PRP2) : min
∑
t∈T

upt + fyt +
∑
i∈N

hiIit +
∑

(i,j)∈A

cij
∑
k∈K

xijkt

 (20)

s.t. I0,t−1 + pt =
∑
i∈Nc

∑
k∈K

qikt + I0t ∀t ∈ T (21)

Ii,t−1 +
∑
k∈K

qikt = dit + Iit ∀i ∈ Nc,∀t ∈ T (22)

pt ≤Mtyt ∀t ∈ T (23)

I0t ≤ L0 ∀t ∈ T (24)

Ii,t−1 +
∑
k∈K

qkit ≤ Li ∀i ∈ Nc,∀t ∈ T (25)

qikt ≤ M̃itzikt ∀k ∈ K, ∀i ∈ Nc, ∀t ∈ T (26)∑
k∈K

zikt ≤ 1 ∀i ∈ Nc,∀t ∈ T (27)∑
j∈N

xjikt +
∑
j∈N

xijkt = 2zikt ∀k ∈ K, ∀i ∈ N,∀t ∈ T (28)∑
i∈S

∑
j∈S

xijkt ≤ |S| − 1 ∀S ⊆ Nc : |S| ≥ 2, ∀k ∈ K, ∀t ∈ T

(29)∑
i∈Nc

qikt ≤ Qz0kt ∀k ∈ K, ∀t ∈ T (30)

pt, Iit, qikt ≥ 0 ∀i ∈ N,∀k ∈ K, ∀t ∈ T (31)

yt, zikt, xijkt ∈ {0, 1} ∀i, j ∈ N,∀k ∈ K, ∀t ∈ T. (32)

The objective function (20) and constraints (21)-(28) are equivalent to the
objective function (1) and constraints (2)-(9) in the PRP1, respectively. Con-
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straints (29) are in fact the subtour elimination constraints (SECs) similar to
those of the travelling salesman problem (TSP) and constraints (30) impose
the vehicle capacity on each vehicle. Archetti et al. (2007) and Adulyasak
et al. (2013) found that the following form of the SECs, which was originally
developed for the selective TSP (Gendreau et al., 1998), is more efficient than
(29) when solving the problem with a branch-and-cut algorithm:∑

i∈S

∑
j∈S

xijkt ≤
∑
i∈S

zikt − zekt ∀S ⊆ Nc : |S| ≥ 2,∀e ∈ S,∀k ∈ K, ∀t ∈ T.

(33)

Another advantage of this formulation is that it can be used to solve
the problem with a heterogeneous fleet of vehicles, e.g., various fleet size,
consumption or costs. In that case, the transportation costs cij and the
vehicle capacity Q in the formulation PRP2 can be replaced with the cost
and capacity associated with each vehicle size k, i.e., cijk and Qk, respectively.

2.3. Remarks on LSP and VRP Formulation Schemes

Because the PRP includes the structure of the LSP and VRP, this sec-
tion provides a brief summary of the different formulation schemes for these
two problems. For the LSP, a review of basic formulation and reformulation
schemes was presented by Pochet and Wolsey (2006). In short, the basic
LSP formulation is a weak formulation that gives poor quality lower bounds.
Many reformulation schemes can be used to strengthen the formulation. The
major LSP reformulation schemes considered for the PRP include the short-
est path (Eppen and Martin, 1987) and facility location (Krarup and Bilde,
1977) reformulations. In the single level uncapacitated LSP, these two for-
mulations have the integrality property, i.e., feasible mixed-integer solutions
are obtained by solving the LP relaxation. The efficiency of different LSP
reformulations in the PRP was studied by Ruokokoski et al. (2010).

In the VRP, different formulations are typically used to solve the prob-
lems with different characteristics. For example, the basic formulation is a
compact formulation that is suitable for a homogeneous fleet and a limited
number of vehicles. To handle a heterogeneous fleet (e.g., various fleet size,
consumption, speed, or costs), one should employ a formulation in which
a vehicle index can be incorporated, e.g., a multi-commodity flow formula-
tion. In some VRP applications in which the vehicle routes are predefined
or have few possibilities, e.g., a truck can only serve the customers in the
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same cluster, or in maritime applications where the vessel schedule option
is predefined, it is more appropriate to use a set-partitioning formulation.
This formulation is also generally used as the master problem in a column
generation process. Another issue in VRP formulations is the set of subtour
elimination constraints. Applying different subtour elimination constraints
can result in different lower bounds (Letchford and Salazar-González, 2006).
As in the VRP, some formulations were used in the PRP to deal with specific
issues, e.g., a formulation with a vehicle index for the PRP with heteroge-
neous fleet by Lei et al. (2006) and a path-based formulation used in the
column generation approach of Bard and Nananukul (2009a, 2010).

3. Approaches to Compute Lower bounds

As the PRP is a complicated combinatorial optimization problem con-
taining a large number of binary variables, the quality of the lower bound of
the basic PRP formulation obtained by solving the LP relaxation is generally
very poor. Nananukul (2008) found that the LP relaxation of the formulation
PRP1 is not practical in providing relaxed solutions in exact algorithms such
as branch-and-bound or measuring the quality of other solution approaches.
Hence, alternative relaxation methods have been developed to obtain better
lower bounds.

3.1. Lagrangian Relaxation

Lagrangian relaxation (see Fisher (1981)) is an approach to obtain lower
bounds by dualizing constraints with Lagrangian multipliers and decompos-
ing the problem into subproblems which are more easily solvable. A La-
grangian relaxation for a variant of the PRP, where unit transportation costs
are assumed, was proposed by Fumero and Vercellis (1999). They decom-
posed the basic LSP and the multi-commodity flow VRP reformulation into
subproblems by dualizing the plant inventory constraints and the vehicle ca-
pacity constraints. The problem is then transformed into four subproblems,
i.e., production (PROD), inventory (INV), distribution (DIS), and routing
(ROU) subproblems. The first two subproblems can be solved by inspection
and the DIS subproblem can be solved by an LP solver. The lower bound
of the ROU subproblem is calculated by the minimum cost network flow
problem. Instances with up to 8 periods, 12 customers and 10 products were
tested and the algorithm could obtain lower bounds with an average gap of
5.5% compared to an upper bound obtained by a heuristic.
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A similar Lagrangian relaxation approach was used by Solyalı and Süral
(2009) to solve the PRP with the order-up-to level (OU) policy. However,
the lower bounds obtained by this approach were weak compared to the
case where the unit transportation costs are used as in Fumero and Vercellis
(1999). On the instances with 8 customers and 5 periods, the lower bound
produced by the Lagrangian relaxation has an average deviation of 33.16%
from the optimal value.

3.2. Column Generation

In a column generation procedure, a basic formulation is decomposed into
a restricted master problem (RMP) and subproblems. The original variables
are replaced with a convex combination of extreme points of the subproblems
which are generated and added iteratively by solving the subproblems. More
details about recent general column generation approaches can be found in
Lübbecke and Desrosiers (2005).

Bard and Nananukul (2010) proposed a RMP and subproblem formula-
tions for the PRP and developed a branch-and-price procedure. Let R(t) be
the sets of delivery plans in period t where a delivery plan, indexed by r,
is characterized by the delivery quantity to each customer and routing deci-
sions. The binary variable θrt is equal to one if the delivery plan r for period
t is selected. The parameter crt is the total cost of using delivery plan r in
period t, and µi

rt is the amount delivered to customer i with delivery plan r
in period t. The RMP is formulated as follows.

min
∑
t∈T

upt + fyt +
∑
i∈N

hiIit +
∑

r∈R(t)

crtθrt

 (34)

s.t. (4)-(6), (13) and

I0,t−1 + pt =
∑
i∈Nc

∑
r∈R(t)

µi
rtθrt + I0t ∀t ∈ T (35)

Ii,t−1 +
∑

r∈R(t)

µi
rtθrt = dit + Iit ∀i ∈ Nc,∀t ∈ T (36)

∑
r∈R(t)

θrt ≤ 1 ∀t ∈ T (37)

θrt ∈ {0, 1} ∀t ∈ T,∀r ∈ R(t). (38)
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The objective function (34) and constraints (35)-(36) are equivalent to
(1) and (2)-(3), respectively. At most one delivery plan can be selected in
each period (37).

The subproblem is the delivery schedule generator. Denote by α1
t , α

2
it

and α3
t the dual variables of the RMP associated with the constraints (35),

(36) and (37), respectively. The subproblem is decomposed into a VRP
subproblem in each time period. The subproblem for time period t, referred
to as SV RPt, is as follows.

min
∑

(i,j)∈A

cijxijt −
∑
i∈Nc

(α1
t + α2

it)qit + α3
t (39)

s.t. (13)-(16) and

qit ≤ M̃itzit ∀i ∈ Nc (40)∑
j∈N

xijt = zit ∀i ∈ Nc (41)∑
j∈N

xjit +
∑
j∈N

xijt = 2zit ∀i ∈ N (42)

z0t ≤ m (43)

wit − wjt ≥ qit − M̃it(1− xijt) ∀(i, j) ∈ A (44)

0 ≤ wit ≤ Qzit ∀i ∈ Nc. (45)

Constraints (40)-(45) are equivalent to constraints (7)-(12).
A lower bound on the original problem can be obtained when the inte-

grality constraints on the variables θrt are relaxed and the problem is solved
to optimality. However, in the experiments of Nananukul (2008) on instances
with up to 10 customers, 6 periods and 5 vehicles, this relaxation could only
give a lower bound which on average was 0.43% higher compared to the
original model PRP1.

4. Exact Solution Algorithms

Exact solution algorithms for PRP are very scant. To the best of our
knowledge, three exact algorithms were proposed to solve the PRP: the
branch-and-cut with strong reformulation of Ruokokoski et al. (2010) for
the PRP with a single uncapacitated vehicle, the branch-and-cut of Archetti
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et al. (2011) for the PRP with a single capacitated vehicle, and the branch-
and-cut of Adulyasak et al. (2013) for the PRP with multiple capacitated
vehicles. Although the branch-and-price algorithm of Bard and Nananukul
(2009a) can be used to obtain an optimal solution, the subproblem SV RPt

employs the VRP structure and it is very time consuming to solve the prob-
lem to optimality. In their experiments, only instances with 10 customers,
2 periods and 5 vehicles where solved to optimality. Therefore, Bard and
Nananukul (2009a, 2010) used a heuristic to handle this subproblem and de-
veloped a heuristic based on a branch-and-price framework. We later provide
the summary of their heuristic algorithm in Section 5.1.2. We also discuss
the Benders decomposition algorithm of Adulyasak et al. (2012a) that was
proposed to handle the PRP with demand uncertainty in Section 4.4.

4.1. Branch-and-Cut Algorithm of Ruokokoski et al. (2010)

The problem with an uncapacitated plant and a single uncapacitated
truck was considered by Ruokokoski et al. (2010). They used the stronger
LSP reformulations, e.g., facility location and shortest path reformulations,
to solve the PRP. The formulation is similar to PRP2 but the vehicle index
k is dropped and the subtour elimination constraints (29) are replaced with∑

i/∈S

∑
j∈S

xijt +
∑
i∈S

∑
j /∈S

xijt ≥ 2zet ∀S ⊆ Nc : |S| ≥ 2,∀e ∈ S,∀t ∈ T. (46)

Ruokokoski et al. (2010) investigated the quality of lower bounds by using
different LSP reformulation schemes compared to the basic LSP formulation.
The computational results show that the LP relaxation values of the short-
est path and facility location reformulations when the subtour elimination
constraints are dropped are much improved compared to the basic formula-
tion. The LP bound obtained by the shortest path reformulation is greater
than or equal to the LP bound of the facility location reformulation which
follows from the proof in Solyalı and Süral (2012), but the difference between
the bounds is very small. The facility location reformulation provides better
computational performance when adding the valid inequalities for the rout-
ing problem (including the subtour elimination constraints) and solving the
integer problem using a branch-and-cut process.

In their branch-and-cut implementation, the authors used a heuristic and
an exact separation procedure based on a minimum s − t cut problem to
detect subtours. They also adapted the generalized comb and 2-matching
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inequalities presented by Fischetti et al. (1997) which were developed for
a generalized travelling salesman problem (GTSP) to the PRP. The results
show that when all valid inequalities are used, the facility location LSP refor-
mulation provides the best LP relaxation. This algorithm can solve problems
with 80 customers and 8 periods within about 30 minutes.

4.2. Branch-and-Cut Algorithm of Archetti et al. (2011)

Archetti et al. (2011) studied the PRP with uncapacitated production and
a single capacitated vehicle. They used the formulation PRP2 but with the
SECs (29) being replaced with (33) and the vehicle index k is dropped. The
authors also added the inequalities of Archetti et al. (2007) for the inventory
routing problem to strenghthen the inventory and routing parts including
the following inequalities:

Ii,t−s−1 ≥
s∑

j=0

di,t−j

(
1−

s∑
j=0

zi,t−j

)
∀i ∈ Nc,∀t ∈ T, s = 0, 1..., t− 1. (47)

The inequalities (47) can be interpreted as follows: if there is no shipment
delivered during the time interval [t − s, t], the inventory level in period
t− s− 1 must be sufficient to satisfy the demand in this interval. By adding
them to the PRP, they could strengthen the lot-sizing part of the customer
replenishment and provide better lower bounds. In Archetti et al. (2011),
they also proposed inequalities specifically for the PRP with uncapacitated
production.

In the branch-and-cut process, the subtour elimination constraints (33)
are removed and only the violated cuts are added iteratively during the
branching process. The performance of the algorithm is tested on gener-
ated test instances with 14 customers and 6 periods. Most of the instances
are solved to optimality within a few seconds.

4.3. Branch-and-Cut Algorithms of Adulyasak et al. (2013)

Adulyasak et al. (2013) extended the branch-and-cut approach of Archetti
et al. (2011) to the PRP with multiple vehicles. They compared the perfor-
mance of two formulations. The first one is the formulation without a vehicle
index, i.e., the PRP1 with constraints (11) and (12) being replaced by the
GFSECs (19). The authors also developed inequalities to strengthen the
routing part of the formulation. The second one is the formulation with a
vehicle index, i.e., the PRP2 with constraints (11) and (12) being replaced
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by (19). This formulation is enhanced with the inequalities to deal with
symmetry breaking constraints which disallow alternative solutions that can
be created due to the fact that vehicles are identical.

Both formulations are further enhanced with the inequalities of Archetti
et al. (2011). For the formulation without a vehicle index, the authors em-
ployed the separation algorithms of Lysgaard et al. (2004), which were devel-
oped for the VRP, and they also developed a greedy heuristic algorithm for
the new cuts. The formulation with a vehicle index is solved by a branch-and-
cut algorithm similar to that of Ruokokoski et al. (2010). The experiments
showed that the formulation with a vehicle index is superior in finding opti-
mal solutions. Instances with up to 35 customers, 3 periods and 3 vehicles
were solved to optimality in two hours. The formulation without a vehi-
cle index, however, could generally produce better lower bounds at the root
node and found better lower bounds for the instances that were not solved
to optimality in two hours. The authors also tested the performance of the
formulation with a vehicle index with an eight-core machine using parallel
computing and instances with up to 50 customers, 3 periods and 3 vehicles
were solved to optimality in 12 hours. The approaches of Adulyasak et al.
(2013) were also adapted for the PRP with the OU policy and IRP with the
ML and OU policies.

4.4. Benders-based Branch-and-Cut for the Stochastic Production Routing
Problem of Adulyasak et al. (2012a)

Adulyasak et al. (2012a) specifically addressed the PRP with demand
uncertainty and introduced the stochastic PRP (SPRP) under demand un-
certainty in a two-stage decision process. The first stage consists of making
setup and routing decisions before the realization of demand, and the second
stage involves production and delivery quantity decisions made when the de-
mand becomes known. They developed exact solution approaches based on
Benders decomposition to solve the problem and two different Benders refor-
mulation schemes were proposed. The first Benders reformulation separates
the first- and second-stage decisions in the master and subproblems, respec-
tively. In the second reformulation, the routing decisions are also projected
out to the subproblems. The two Benders reformulations were enhanced
with inequalities to improve the lower bound, aggregate Benders cuts using
scenario groups, and Pareto-optimal cuts (Magnanti and Wong, 1981). The
Benders algorithm was implemented within a branch-and-cut framework in
which Benders cuts are generated at the nodes of the branching tree for the
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master problem. The computational experiments show that this implemen-
tation outperforms the standard implementation of the Benders algorithm
where the master problem is solved from scratch at each iteration. This new
algorithm also provides superior results to the branch-and-cut approach of
Adulyasak et al. (2013) when solving a large number of scenarios. They fur-
ther discussed the reoptimization capabilities of the Benders approach which
can be particularly useful in two stochastic environments, namely, a sample
average approximation scheme (SAA) to handle a large number of scenarios,
and a rolling horizon framework (RH) for a dynamic and stochastic variant
of the PRP.

5. Heuristics

This section provides a comprehensive review of the heuristics for the
PRP. We categorize the heuristics into two groups, i.e., general heuristics
and metaheuristics. The details on publicly available benchmarks and recent
computational results of the heuristics are presented in Section 5.3.

5.1. General Heuristics

This section presents a review of general heuristics for the PRP, i.e.,
decomposition-based approach, branch-and-price heuristic, MIP heuristic and
iterative MIP heuristic.

5.1.1. Decomposition-Based Heuristics

These heuristics solve the PRP by decomposing the problem into produc-
tion and distribution planning subproblems. The initial solution is obtained
by sequentially solving each problem and a heuristic procedure is called to
improve the solutions. This approach was first introduced by Chandra (1993)
and Chandra and Fisher (1994) to solve the multi-product PRP. The inte-
grated problem is decoupled into the capacitated lot-sizing problem and the
distribution scheduling problem. The lot-sizing problem is solved to opti-
mality and a distribution schedule for each period is produced by applying
a simple heuristic together with a 3-opt procedure (Lin, 1965). The result is
further improved by allowing production shifting across periods if the total
cost is reduced. This heuristic algorithm provides approximately 6% cost sav-
ings compared to the uncoordinated approach with no improvement heuristic
procedure on the small test instances.
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Instead of focusing only on the lot-sizing part in the first phase of the
algorithm, Lei et al. (2006) incorporated the distribution part and developed
a two-phase heuristic to solve the PRP with multiple plants and a heteroge-
neous fleet of vehicles. In the first phase, they assume that the deliveries are
made by direct shipments from plants to customers and solve the integrated
lot-sizing problem with direct shipment. In the second phase, the decisions
in the first phase except the direct transportation routes are fixed and the
authors used a VRP heuristic to determine the routes for each vehicle at each
plant in each period. In the experiments using instances with one plant and
up to 12 customers, 2 vehicles and 4 periods, this approach could generally
provide better solutions with much shorter computing times compared to the
solutions obtained by solving the full model with CPLEX. They also tested
the algorithm using a real world dataset.

Boudia et al. (2008) developed an improved decomposition based ap-
proach by first determining production lot sizes as large as possible to cover
some future periods. The distribution plan in each period is constructed
by the savings algorithm (Clarke and Wright, 1964). The algorithm finds
opportunities to reduce production costs by adopting the Wagner-Whitin
algorithm (Wagner and Whitin, 1958) for the LSP. Then, a local search
procedure based on 3-opt moves, insertion, and swap heuristics is called to
improve the solution. The algorithm is called H2 and it is tested on the
large instances generated by Boudia et al. (2005) with 50-200 customers and
20 periods. It provides 10%-15% cost savings compared to the two-phase
decoupled heuristic, called H1, which basically provides a solution from the
production plan identified by the Wagner-Whitin method, and the delivery
plans generated by a 3-opt procedure.

5.1.2. Branch-and-Price Heuristic

Bard and Nananukul (2009a, 2010) presented a heuristic based on the
branch-and-price framework using the RMP and subproblems as described
in Section 3.2. The branch-and-price scheme is a decomposition based pro-
cedure which involves a branching process. At each branching node, column
generation is performed to add variables to the RMP and this updated RMP
is solved again until an optimal LP relaxation value of the node is found.
Then, the branching process continues until an optimal solution to the orig-
inal problem is obtained. The readers are referred to Barnhart et al. (1998)
for more details on branch-and-price.

The branching process starts with the production setup variables (yt)
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until all these variables have integer values. Subsequently, the variables θrt
are considered. Branching on θrt directly, however, results in an unbalanced
branching tree. When the variable θrt is set to one, the delivery plan r is
used and all corresponding qit and xijt variables are fixed. But when θrt = 0,
it is very difficult to manage the variables to only exclude the delivery plan
r. Therefore, it is more appropriate to branch on the xijt variables. This
branching scheme is similar to the branch-on-edge approach presented in
Bramel and Simchi-Levi (2001). The depth-first-search strategy is used to
quickly find an incumbent solution. To improve the branch-and-price proce-
dure, several features are included in the process. First, an initial solution
is generated by the tabu search heuristic presented by Bard and Nananukul
(2009b). Second, during the column generation process, instead of solving the
subproblems to optimality, they are solved by the separation based heuristic
algorithms of Bard and Nananukul (2009a). Third, the branching scheme is
modified to branch on groups of variables. And fourth, a rounding heuristic
procedure is used. With these modifications, the performance of the branch-
and-price process is substantially improved. The experiments on instances
with up to 50 customers and 8 periods showed that this branch-and-price
heuristic provides better solutions than those obtained by CPLEX (solution
costs are improved by 12.2% on average) within one hour of computing time.

5.1.3. MIP-Based Heuristic

Archetti et al. (2011) decomposed the PRP into the uncapacitated lot-
sizing and inventory-routing subproblems and developed a heuristic to solve
the decomposed problems. The algorithm starts by fixing production quan-
tities equal to the demand in each period and solving the IRP by a heuristic
procedure. In this process, each retailer is selected sequentially and a search
tree is explored to determine the time periods and vehicles used to serve
that retailer. After that, the uncapacitated lot-sizing subproblem is solved
to further explore whether the production plan can be improved by shifting
some production quantity to reduce the production and inventory costs. A
heuristic procedure is applied to the current solution to obtain further im-
provements by removing two retailers, and then a problem is formulated to
find the minimum insertion cost of these retailers. If the total cost is re-
duced, the uncapacitated LSP subproblem is solved again and the process is
repeated until there is no improvement. The authors evaluated the perfor-
mance of this algorithm by comparing it to the best solutions found by the
exact branch-and-cut solution procedure as described in Section 4.2 on in-
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stances with 14 customers, 6 periods and one vehicle. This heuristic provides
solutions within 1% of optimality in a few seconds.

5.1.4. Iterative MIP Heuristic

Absi et al. (2013) introduced an iterative MIP heuristic to solve the PRP
with uncapacitated production. The MIP is formulated by replacing the
routing costs and variables in the original PRP model with fixed costs SCvit

representing the approximate cost of visting customer i in period t with
vehicle v. At each iteration, this MIP is solved to optimality (or until a max-
imum CPU time is reached) to obtain production, inventory and customer
visit decisions. Then, a heuristic is called to determine the routes to serve the
visited customers. Next, the costs SCvit are set to a minimum insertion cost
corresponding to the current solution and the next iteration is performed.
A diversification mechanism that modifies visit costs is also applied when
the current solution is not improved for a certain number of iterations. The
process stops when a maximum number of iterations is reached. The authors
proposed two variants of the iterative approach. In the first variant, an indi-
vidual vehicle capacity is taken into account when solving the MIP and each
route is determined by a TSP heuristic, while an aggregate vehicle capacity
is considered and the routes are determined by a VRP heuristic in the sec-
ond variant. The results show that the second variant is superior to the first
and can generally produce better solutions in a shorter computing time. Al-
though the performance of this algorithm relies heavily on the performance
of the MIP solver, the results show that it outperformed other heuristics on
the data set with uncapacitated production of Archetti et al. (2011).

5.2. Metaheuristics

We first describe the different metaheuristics in Sections 5.2.1-5.2.4 and
then provide a summary of the computational results of these metaheuristics
in Section 5.3.

5.2.1. Greedy Randomized Adaptive Search Procedure (GRASP)

GRASP was first introduced by Feo and Resende (1995). Basically, the
procedure consists of two main phases, i.e., construction and local search.
In the construction phase, an initial solution is provided via an adaptive
randomized greedy algorithm. Then the local search phase is applied to
improve the solution.
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A GRASP for the PRP was developed by Boudia et al. (2007). In the
construction phase, an initial solution is generated by sequentially developing
a production and delivery plan. Starting from the first period onwards, the
production plan is preliminarily determined by producing a sufficient amount
to cover the demand in the period without excess production which creates
inventory at the plant. Then, delivery routes in the period are constructed
by an insertion algorithm. Next, the algorithm checks if some customer de-
mands can be moved to prior periods without violating production, inventory
and vehicle capacities and the insertion process is again performed to insert
these quantities. Then, the saving heuristic is called to find a better routing
solution. All routing plans are fixed and the production plan improvement
algorithm is applied to shift production quantities to combine with a pro-
duction plan in earlier periods if the cost is lower, i.e., the incurred storage
cost at the plant is less than the setup cost. In the local search phase, the
routing plan of each period is improved by using a 3-opt procedure, inserting,
and swapping. Moves across periods are also considered if the cost can be
reduced. Boudia et al. (2007) also developed a path relinking procedure (see
Glover (1996)) as a post-processor. In this process, solutions obtained during
the GRASP are ranked according to their total cost and a limited number
of solutions are stored in a pool of elite solutions. Then, any two solutions
in the pool are chosen to create a new solution by transferring some delivery
quantities in one of these solutions to another period according to the deliv-
ery quantities in the other solution to reduce the differences between these
two solutions. This process could slightly improve the solutions obtained by
GRASP.

5.2.2. Memetic Algorithm (MA)

Informally speaking, a memetic algorithm is a modified genetic algorithm
(GA) that uses some form of local search to improve solutions. The basic idea
of a genetic algorithm is to generate new solutions from a population of initial
solutions which are represented by chromosomes (or bitstrings) using natural
evolution, i.e., crossover or mutation, to create new offsprings. In a memetic
algorithm, a local search procedure is additionally applied to improve both
the initial population and offsprings of the genetic algorithm. This approach
was first introduced by Moscato (1999). Boudia and Prins (2009) applied
this approach to the PRP with a special feature, called memetic algorithm
with population management (MA|PM) (Sörensen and Sevaux, 2006).

In the study of Boudia and Prins (2009), an initial population is created
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through a simple heuristic procedure that preliminarily sets a production
plan in each period equal to the total demand. Then, a savings heuristic is
used to generate the delivery plan and the production plan is adjusted by the
Wagner-Whitin algorithm. Next, the algorithm uses a crossover to generate
new offsprings. In the following step, the authors adopted the local search
of Boudia et al. (2007) to improve the generated offsprings and applied the
population management approach to select them, i.e., the new offsprings are
accepted only if they improve the current solution by more than a threshold
value. The algorithm terminates when the maximum number of iterations is
reached.

5.2.3. Tabu Search

The concept of tabu search was introduced by Glover (1989). In this
procedure, the search moves at each iteration from the current solution to
the best neighbor solution. In order to avoid cycling and to get out of local
optima, all visited solutions are stored in a tabu list and these solutions are
forbidden from the search procedure. The tabu search approach is known to
be one of the most efficient solution methods for the VRP (Gendreau et al.,
2001).

A tabu search for the PRP was proposed by Bard and Nananukul (2009b).
They used a reactive tabu list of variable size and this method is called reac-
tive tabu search (RTS) (Battiti and Tecchiolli, 1994). In their algorithm, an
initial solution is created by solving a modified PRP obtained by dropping
the routing constraints (8)-(12), removing variables xijt, and assuming that
the delivery cost is equal to the round trip transportation cost. Then, a sub-
sequent routing decision is made by applying a capacitated vehicle routing
problem (CVRP) subroutine based on a tabu search proposed by Carlton
and Barnes (1996). The generated solution is improved by a local search
procedure using swap or transfer moves. The swap move examines two cus-
tomers in two periods and exchanges maximum possible delivery quantities
between these two customers. The transfer move finds the delivery quantity
of a customer that can be combined with another delivery in a previous pe-
riod in order to reduce the transportation cost. The moves that lead to an
improved solution are stored in the tabu list and infeasible solutions are not
allowed.

Armentano et al. (2011) developed a tabu search with path relinking
(TSPR) procedure for the PRP. In their algorithm, an initial solution is
created by setting delivery quantities equal to demands and applying the
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Wagner and Whitin (1958) algorithm and the Clarke and Wright (1964) sav-
ings algorithm to obtain the production and routing decisions, respectively.
In the neighborhood search of Armentano et al. (2011), a move similar to
the transfer move of Bard and Nananukul (2009b) is used but it also allows
a delivery quantity to be combined with another delivery in a future period.
At each iteration, the algorithm also solves an LP to optimize the production
and inventory quantities at the plant. The local search terminates when it
reaches the maximum number of iterations. Then, a path relinking procedure
similar to that of Boudia et al. (2007) is used to diversify the search.

5.2.4. Adaptive Large Neighborhood Search (ALNS)

The adaptive large neighborhood search (ALNS) framework was intro-
duced by Ropke and Pisinger (2006) to solve the VRP with pickup and
delivery. The basic idea of the ALNS is to repeatedly destroy and repair
a part of a solution to obtain an improved solution using search operators.
These operators are probabilistically selected based on empirical scores. This
procedure was recently applied to various routing applications.

The ALNS of Adulyasak et al. (2012b) incorporated three main features.
First, an enumeration scheme is used to create several different initial so-
lutions. Each initial solution is generated by solving the two decomposed
problems, similarly to the approach of Bard and Nananukul (2009b), and
local branching inequalities (Fischetti and Lodi, 2003) are applied to gen-
erate another solution with a different production configuration. Second,
the authors developed two types of operators, called selection and trans-
formation. At each iteration, one operator of each type is probabilistically
selected. The selection operator is applied first to create a list of node candi-
dates (customer-period combinations) and then the transformation operator
is applied to remove and reinsert node candidates in the list to the current
solution. Third, when a new solution is found during the transformation
process, a minimum cost flow (MCF) problem is solved to optimize the pro-
duction, inventory and delivery quantities. The algorithm stops when it
reaches the maximum number of iterations. Since the quantity flow part is
optimized by the MCF, this algorithm is referred to as an optimization-based
ALNS (Op-ALNS).

5.3. Benchmark Instances and Computational Evaluation of the Heuristics

In this section, we provide details on the benchmark instances that are
publicly available as well as recent computational results. The first bench-
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mark was introduced by Boudia et al. (2005) and it consists of three prob-
lem sets with 50, 100, 200 customers and 20 time periods; there are 30
instances per set. This dataset was used in the experiments of Boudia et al.
(2008) and all the metaheuristics described in the previous section. This
dataset can be found on the website: https://sites.google.com/site/

YossiriAdulyasak/publications. The second benchmark was introduced
by Archetti et al. (2011). It consists of sets of problems with 14, 50, 100 cus-
tomers and 6 time periods. These instances are smaller compared to those of
Boudia et al. (2005). However, the set contains instances with four different
aspects, i.e., standard, high production cost, high transportation cost and
zero customer inventory cost. This data set was used in the experiments of
Archetti et al. (2011), Absi et al. (2013) and Adulyasak et al. (2012b) and it
can be downloaded at: http://www-c.eco.unibs.it/∼bertazzi/ml.zip.

A comparison of the computational performance of the heuristics of Boudia
et al. (2008) and the metaheuristics on the Boudia et al. (2005) dataset
is reported in Tables 2 and 3. The computational experiments were con-
ducted with the test instances from Boudia et al. (2005). All test evaluations
were performed on workstations with comparable CPU performances. The
decomposition-based heuristics H1 and H2 were very quick but the quality of
the solutions is not comparable to the metaheuristics. The best solutions are
provided by the ALNS by Adulyasak et al. (2012b). Although this algorithm
spent higher computing times on average compared to other metaheuristics,
better solutions were obtained in the early stage of the algorithm as reported
in Adulyasak et al. (2012b), where the average computing times are compa-
rable to those of the GRASP developed by Boudia et al. (2007).

Table 2: Average total costs obtained by different heuristics on the Boudia et al. (2005)
benchmark

Set |Nc| l H11 H22 GRASP3 MA|PM4 RTS5 TSPR6 ALNS7

B1 50 20 511579 453462 443264 393263 369662 361704 346878

B2 100 20 963649 831019 791839 714627 712294 685898 636962

B3 200 20 1312612 1112392 1070026 1001634 1034923 951638 876761
1,2Boudia et al. (2005) 5Bard and Nananukul (2009b)
3Boudia et al. (2007) 6Armentano et al. (2011)
4Boudia and Prins (2009) 7Adulyasak et al. (2012b)

Table 4 shows the results obtained by the heuristic H of Archetti et al.
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Table 3: Average computing times in seconds obtained by different heuristics on the
Boudia et al. (2005) benchmark

Set |Nc| l H11 H22 GRASP3 MA|PM4 RTS5 TSPR6 ALNS7

B1 50 20 0.1 0.2 93.5 172.7 330.6 317.0 481.3

B2 100 20 0.5 1.1 415.9 1108.1 975.6 1147.6 1569.9

B3 200 20 2.1 10.4 1893.8 4098.5 2492.3 3926.4 5794.2
1,2,3,4executed on 2.30 GHz PC 6executed on 2.80 GHz PC
5executed on 2.53 GHz PC 7executed on 2.10 GHz Duo CPU PC

(2011), the ALNS of Adulyasak et al. (2012b) and the best variant of the
iterative MIP heuristic (IM) of Absi et al. (2013) on the Archetti et al. (2011)
benchmark test set. For the 467 instances of A1 solved to optimality, the first
variant of IM provides an average gap of 1.22%, whereas H and ALNS have a
gap of 1.71% and 2.66% respectively. For the multi-vehicle instances A2 and
A3, the best version of the IM heuristics is the second variant. We note that
for the uncapacitated production problems, the IM heuristic of Absi et al.
(2013) generally provides the best solutions.

Table 4: Average total costs and computing times in seconds obtained by different heuris-
tics on the Archetti et al. (2011) benchmark

Set |Nc| l Average total cost Average CPU time

H1 ALNS2 IM3 H1 ALNS2 IM3

A1 14 6 180830 181803 n/a - 9.0 11.3

A2 50 6 592608 590210 587973 11.0 46.6 24.4

A3 100 6 1092509 1089589 1084320 188.4 212.5 80.8

- computational times are negligible
1 executed on 2.40 GHz PC
2 executed on 2.10 GHz CPU PC
3 executed on 2.67 GHz CPU PC

6. Future Research Directions

As an integration of several areas in production and distribution planning,
there are many future research directions that have not been explored. We
summarize them here.
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Exact Algorithms. Although some exact algorithms were proposed, the
best ones are still limited to medium instance size with a relatively small
number of time periods. Several techniques that were used to enhance
these algorithms were adapted from the methods developed for the
LSP and VRP. However, inequalities or formulations that strengthen
the coordination between these two parts of the problem can be fur-
ther explored. Moreover, a complex decomposition based approach like
branch-cut-and-price may be effective to handle the PRP. By applying
this approach to the formulations where subtour elimination constraints
are used, a column generation technique can be used to control the flow
part of the problem where the subtour elimination constraints are han-
dled by a cutting-plane technique.

Other variants of the LSP. As a major component of the PRP, one may
consider other interesting variants of the LSP. For example, the multi-
product problem where the production setup for each product must
be done separately. Although some heuristics have been proposed for
this variant (Fumero and Vercellis, 1999 and Armentano et al., 2011),
no studies have discussed exact methods to solve the problem. One
can also consider the multi-product variant where production startups
must also be taken into account. We refer to Jans and Degraeve (2008)
for the details of other variants of the LSP.

PRP with customer visit and delivery time windows. Time windows
are one of the most common issues in transportation operations. There
are two different types of time windows that can be considered in the
PRP. The first type, called customer visit time windows, is imposed
on periods where some customers should be visited to satisfy opera-
tional requirements. The second type, called delivery time window, is
imposed during the day of delivery and is a well-known variant of the
VRP.

Robust PRP. In stochastic environments, it is possible that a probabilistic
description of the uncertainty is not available and one cannot use the
SPRP to solve the problem. In this case, instead of minimizing the
expected total cost, one is interested in obtaining a solution that is
immune to any realization of the uncertainty in a given set and therefore
the product availability must be guaranteed. A study of the robust
approach for the IRP can be found in Solyalı et al. (2012).
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Tactical PRP. In many applications, customers must be clustered and a
driver is assigned to serve a specific cluster. The cluster decisions are
fixed for a long term horizon. Examples of this variant can be found in
Michel and Vanderbeck (2012) and Coelho et al. (2012a). One possible
approach is to decompose the problem. The first problem would be
used to identify clusters, while the other problem would be a modified
PRP to determine the remaining decisions.

7. Conclusion

This paper provides an in-depth review of the production routing prob-
lem to support the growing interest in this research area. We first described
the relevance of this problem and of the other two integrated supply chain
planning problems, namely, the lot-sizing problem with direct shipment and
the inventory routing problem. As a combination of the lot-sizing and ve-
hicle routing problem, the production routing problem has an interesting,
but complex, structure. Therefore, the majority of the studies proposed
decomposition-based heuristics and metaheuristics to handle the problem,
while few exact algorithms were developed. We discussed these techniques
that have been developed for several variants of the PRP and summarized
the computational results. Although various contributions have been made
to this problem, there are still a number of interesting issues that have not
been addressed. We encourage researchers in this field to pursue further
developments in this promising research area.
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Letchford, A. N., Salazar-González, J. J., 2006. Projection results for vehicle
routing. Math. Programming 105 (2), 251–274.

Li, C.-L., Hsu, V. N., Xiao, W.-Q., 2004. Dynamic lot sizing with batch
ordering and truckload discounts. Oper. Res. 52 (4), 639–654.

Lin, S., 1965. Computer solutions of the traveling salesman problem. Bell
Syst. Tech. J. 44 (10), 2245–2269.
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Solyalı, O., Süral, H., 2012. The one-warehouse multi-retailer problem: Re-
formulation, classification, and computational results. Ann. Oper. Res.
196 (1), 517–541.
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