
A Cooperative Parallel Metaheuristic

for the Capacitated Vehicle Routing

Problem

Jianyong Jin
Teodor Gabriel Crainic
Arne Løkketangen

August 2013

CIRRELT-2013-50

G1V 0A6

Bureaux de Montréal : Bureaux de Québec :

Université de Montréal Université Laval
C.P. 6128, succ. Centre-ville 2325, de la Terrasse, bureau 2642
Montréal (Québec) Québec (Québec)
Canada H3C 3J7 Canada G1V 0A6
Téléphone : 514 343-7575 Téléphone : 418 656-2073
Télécopie : 514 343-7121 Télécopie : 418 656-2624

 www.cirrelt.ca

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle
Routing Problem

Jianyong Jin1,2, Teodor Gabriel Crainic1,3,*, Arne Løkketangen2

1 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT)
2 Molde University College - Specialized University in Logistics, P.O. Box 2110, 6402 Molde, Norway
3 Department of Management and Technology, Université du Québec à Montréal, P.O. Box 8888,

Station Centre-Ville, Montréal, Canada H3C 3P8

Abstract. This paper introduces a cooperative parallel metaheuristic for solving the

capacitated vehicle routing problem. The proposed metaheuristic consists of multiple

parallel tabu search threads that cooperate by asynchronously exchanging best found

solutions through a common solution pool. The solutions sent to the pool are clustered

according to their similarities. The search history information identified from the solution

clusters is applied to guide the intensification or diversification of the tabu search threads.

Computational experiments on two sets of large scale benchmarks from the literature

demonstrate that the suggested metaheuristic is highly competitive, providing new best

solutions to ten of those well-studied instances.

Keywords: Vehicle routing, parallel metaheuristics, cooperative search, solution

clustering.

Acknowledgements. The authors thank Compute Canada and the Norwegian

Metacenter for Computational Science (Notur) for providing computing resources to

conduct the experiments of this research.

Results and views expressed in this publication are the sole responsibility of the authors and do not
necessarily reflect those of CIRRELT.

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: Teodor-Gabriel.Crainic@cirrelt.ca
Dépôt légal – Bibliothèque et Archives nationales du Québec
 Bibliothèque et Archives Canada, 2013

© Copyright Jin, Crainic, Løkketangen and CIRRELT, 2013

1 Introduction

In recent years, cooperative parallel metaheuristics have increasingly been used for solving
a variety of difficult combinatorial problems (Le Bouthillier and Crainic, 2005). Such
parallel metaheuristics usually use multiple processes (threads) working simultaneously
on available processors, with varying degrees of cooperation, to solve a given problem
instance. The rationale behind this phenomenon may be twofold. First, it has been
demonstrated that such parallel algorithms are capable of both speeding up the search
and improving the robustness (ability of providing equally good solutions to a large and
varied set of problem instances) and the quality of the solutions obtained (Crainic, 2008).
Second, parallel computing resources have become increasingly available with the advent
of computer clusters and multi-core processors. The computer clusters usually consist
of a set of identical computers that run standard operating systems and are connected
to each other through high speed networks. Many universities nowadays possess such
computer clusters. In addition, many commodity laptop and desktop computers today
use dual- or quad-core processors. Thus, using parallelism has become an advantageous
and practical option. For detailed introduction to parallel metaheuristics, we refer to the
book of Alba (2005) and the survey paper of Crainic (2008).

The capacitated vehicle routing problem (CVRP), as the classical version of the
vehicle routing problem (VRP), aims to determine the minimum total cost routes for a
fleet of homogeneous vehicles to serve a set of customers. The CVRP can be defined on a
graph G = (N,E) where N = {0, . . . , n} is a vertex or node set and E = {(i, j) : i, j ∈ N}
is an edge set. Vertex 0 is the depot where the vehicles depart from and return to. The
other vertices are the customers which have a certain demand d to be delivered (or picked
up). The travel cost between node i and j is defined by cij > 0. The vehicles are identical.
Each vehicle has a capacity of Q. The objective is to design a least cost set of routes,
all starting and ending at the depot. Each customer is visited exactly once. The total
demand of all customers on any route must not exceed the vehicle capacity Q. Some
CVRP instances may have an additional route duration limit constraint, restricting the
duration (or length) of any route to a preset bound D. A detailed introduction of the
CVRP and its solution methods can be found in the book of Toth and Vigo (2002), and
the survey paper of Laporte (2009). Even though a large number of solution methods have
been proposed in the literature during last fifty years, it still remains computationally
challenging to quickly produce high quality solutions to large scale CVRP instances.

The purpose of this paper is to present a cooperative parallel metaheuristic that takes
advantage of modern parallel computing resources for solving large scale CVRP instances.
The proposed algorithm incorporates multiple tabu search threads which cooperate by
asynchronously exchanging best found solutions through a common solution pool, and
includes several novel features. Intensification and diversification of the searches are
based on solution clustering. Four variants of reinsertion neighborhood are applied and
infeasible solutions may also be sent to the solution pool. These features are clearly

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

different from previous work (e.g., Jin et al., 2012, 2011) and largely contribute to the
high performance of the proposed metaheuristic. The computational experiments on
two sets of large scale CVRP benchmarks demonstrate that the suggested metaheuristic
can quickly produce solutions to benchmark problems that are highly competitive with
the best solutions reported in the literature. New best solutions to 10 out of the 32
benchmark instances have been identified.

The remainder of this paper is organized as follows. In the next section the description
of the proposed metaheuristic is presented. Then Section 3 reports the computational
results. Finally, concluding remarks are given in the last section.

2 Description of the cooperative parallel metaheuris-

tic

In the proposed cooperative parallel metaheuristic (CPM), illustrated in Figure 1, multi-
ple tabu search (TS) threads are run in parallel for solving a given CVRP instance. Some
of the TS threads are designated to concentrate on intensification while the others are
assigned to pursue diversification. These threads communicate asynchronously through
a common solution pool.

Figure 1: Framework of CPM

The general scheme of CPM is displayed in Algorithm 1. During the search process,
the solution pool receives solutions sent from the search threads. Whenever a solution is
received from a search thread, the pool does the clustering, selects a solution and sends
it back to the same thread. Each of the TS threads carries out its search independently
and periodically the search halts and exports its best found solution. It then receives a
solution from the pool and resumes its search from this solution. The detailed description
of the solution pool and the TS threads will be provided in Section 2.1 and 2.2 respectively.

2

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

The termination of CPM can be controlled in two ways. In the first setting (identified
as TC1), the termination is triggered by the first TS thread. The metaheuristic termi-
nates after the thread runs for a certain number of iterations. In the other setting (called
TC2), the metaheuristic terminates after the solution pool receives a certain number of
non-improving solutions consecutively. A solution is regarded as non-improving when
its value is not better than that of the current best feasible solution at the pool or the
solution is infeasible.

lined 1 CPM
Initialize TS threads and the solution pool
while termination condition not met

Solution pool do
Receives solutions.
Clusters solutions.

Selects and sends solutions back.

Each TS thread do asynchronously
Performs the search.
Sends best found solution to solution pool.

Receives new solution to start from.

end while
Return best feasible solution

In terms of the taxonomy introduced in Crainic and Hail (2005) for parallel meta-
heuristics, CPM fits into the pC/KC/MPDS classification. The first dimension pC in-
dicates the global search is controlled by multiple cooperative threads. The second di-
mension KC stands for knowledge collegial information exchange and refers to the fact
that multiple threads share information asynchronously and knowledge is created from
the exchanged information to guide the cooperating threads. The last dimension MPDS
indicates that multiple search threads start from different points in the solution space
and follow different search strategies.

2.1 Solution pool

To explore a search space effectively and efficiently, a metaheuristic approach should be
able to both intensively investigate areas of the search space with high quality solutions,
and to move to unexplored areas of the search space when necessary. These goals are
usually achieved by intensification and diversification mechanisms of the metaheuristic
(Blum and Roli, 2003). Glover and Laguna (1997) highlight that intensification is to
carefully search the neighborhood of elite solutions while diversification encourages the
search process to generate solutions that differ from those seen before. A solution clus-
tering approach is used in CPM to implicitly identify common features of solutions and
collect search history information, which then provide a good basis for selecting promising

3

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

search areas for intensification and less explored areas for diversification.

During the whole search process, the solutions sent to the solution pool from the
search threads are dynamically clustered into groups according to their similarities. For
the CVRP, the similarity can be measured in terms of the number of edges solutions
have in common. In this way, solutions kept in the solution pool can be grouped into
clusters and in each cluster all solutions have a certain number of edges in common.
Each cluster can thus approximately represent a region of the search space that CPM
has explored. The features of the solutions in a cluster, such as the number of solutions
and the quality of the solutions, can indicate how thoroughly a search region has been
explored and how promising it may be. Such search history information is used to guide
the starting solution selection for the TS threads so that they can pursue intensification
or diversification effectively.

The solution clustering approach has been applied by Voß (1995) for the quadratic
assignment problem. In his algorithm, a small number of elite solutions previously found
are stored by a clustering approach and are used as the starting solutions for the intensi-
fication phases. In CPM, the solution clustering approach is applied differently in three
aspects. First, all solutions sent to the pool are clustered, regardless of their quality.
Second, the solutions are clustered for both intensification and diversification purposes.
Third, the actual clustering mechanism is different.

2.1.1 Solution clustering

Clustering is often defined as the process of grouping a collection of patterns into dis-
similar segments or clusters based on a suitable notion of closeness or similarity among
these patterns. In CPM, solutions are grouped into clusters based on their similarities.
A cluster, in this context, refers to a collection of solutions that are similar. All solutions
sent to the solution pool are clustered.

To support solution exchange and information extraction from the clusters, a set of
components are implemented for each cluster.

• Feasible solution list: a list of feasible solutions assigned to a cluster.

• Infeasible solution list: a list of infeasible solutions assigned to a cluster.

• Edge residence counter: a residence counter for all edges. The residence counter
of an edge is defined as the number of feasible solutions containing this edge that
have been assigned to a cluster. Since the objective of the search is to identify
high quality feasible solutions, only feasible solutions are used to compute the edge
residence counter.

4

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

• Feasible solution counter: the number of feasible solutions that have been as-
signed to a cluster.

• Infeasible solution counter: the number of infeasible solutions that have been
assigned to a cluster.

• Average feasible solution value: the average value of all feasible solutions in a
cluster.

• Average infeasible solution value: the average value of all infeasible solutions
in a cluster.

Whenever a solution enters a cluster, the components of the cluster are updated. In
each cluster, duplicate solutions will be eliminated and the lists of feasible and infeasible
solutions are sorted in ascending order according to solution value.

In addition, the clusters are sorted in ascending order according to the average feasible
solution value. When there are only infeasible solutions in a cluster, replace the average
feasible solution value with the average infeasible solution value for sorting.

To determine whether a solution is similar to the solutions in a cluster, the similarity
between the solution and the cluster is calculated according to Equation 1.

Similarity =

∑
(ij)∈E nij ×Xs

ij

FSC ×
∑

(ij)∈E X
s
ij

(1)

The components of the formula are defined as follows.

• nij: the residence counter of edge (i, j) of the cluster.

• Xs
ij: 1 if edge (i, j) appears in solution s, 0 otherwise.

• FSC: the feasible solution counter of the cluster.

•
∑

(ij)∈E X
s
ij: the number of edges in solution s.

The advantage of computing the similarity in such a way is twofold. First, it does indi-
cate how many common edges a solution shares with the solutions in a cluster. Moreover,
it avoids the heavy computational load of calculating the similarities between a solution
and every solution in the cluster as other clustering approaches do.

A solution can be placed into a cluster only if the similarity between the solution
and the cluster is larger than a minimum value. This value is termed the minimal

5

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

similarity requirement. When a solution is sent to the solution pool, three possibilities
exist. Initially, there is no existing cluster, a cluster will be created and the solution will
be directly placed into the cluster. When there are existing clusters, the solution will be
compared with the first cluster in the pool. If the similarity requirement is satisfied, it
will be put into the cluster. Otherwise, it will be compared with the next cluster following
the sorted order. The comparison may continue until the solution is placed into a cluster
or it does not satisfy the similarity requirement with any existing cluster. Under such
a circumstance, a new cluster will be created and the solution will be put into the new
cluster.

Moreover, a pair of status flags is attached to each solution that enters a cluster
for signaling whether it has been used. The two flags are used for intensification and
diversification respectively. After a solution is selected and sent to an intensification TS
thread, its status flag for intensification will be set accordingly. Likewise, the status flag
for diversification will be set after a solution is sent to a diversification TS thread. By
setting these flags, usually each solution can be selected and sent to each type of search
threads only once.

Three parameters are used to control the clustering process. The first one is the
minimal similarity requirement, called minSim, which controls the number of common
edges the solutions in a cluster share. The second one is the maximal number of clusters,
maxNC, which are allowed to exist in the solution pool. Too many clusters will decelerate
the clustering process. Whenever a new cluster is created, the clustering procedure will
check the number of existing clusters. If there are more clusters than allowed, a cluster
that does not contain any feasible solution or has the largest average feasible solution
value will be eliminated. The last parameter is the maximal number of solutions in a
cluster, maxNS. When there are more solutions than allowed, the worst solution in terms
of the solution value will be removed. It is essential to restrict the number of the clusters
and the number of solutions in each cluster for the sake of efficiency, especially when a
large number of threads are employed.

2.1.2 Solution selection for intensification threads

For a cluster that contains mainly high quality solutions, indicated by the average feasible
solution value of the cluster, the search region represented by the cluster is usually worth
further intensive investigation. In CPM, the cluster having the lowest average feasible
solution value is assigned as the target of the TS threads that pursue intensification.
These search threads will only receive starting solutions from this best cluster so that
the neighborhoods of high quality solutions can be thoroughly investigated. During the
whole search process, this best cluster may dynamically be replaced by the newly emerged
clusters that have lower average feasible solution value than the current one. In this way,
the intensification search threads will always target the vicinity of current best solutions.

6

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

Whenever an intensification thread needs a starting solution, the solutions in the best
cluster will be checked. The intensification flag of each solution is examined one at a
time, starting from the solution with the lowest solution value, following the sorted order.
The first unused solution will be selected. When there are no unused solutions in the
best cluster, a solution is randomly selected from the cluster. This selected solution will
be sent to the search thread.

If there are infeasible solutions in the best cluster, they will be examined and selected
first. The reason for this decision is that preliminary experiments show there are usually
many more feasible solutions than infeasible solutions in the clusters. The infeasible
solutions will seldom be selected if the feasible solutions are checked first.

2.1.3 Solution selection for diversification threads

The search regions that have been less thoroughly explored can be indicated by the num-
ber of feasible solutions that have been put into the clusters. The fewer feasible solutions
have been put into a cluster, the less thoroughly the region has been searched. Since the
tabu search threads seeking diversification are expected to concentrate mainly on less
explored search regions, they will receive starting solutions only from any cluster whose
feasible solution counter is below a threshold. We term this threshold the diversification
threshold. When the feasible solution counter of a cluster exceeds the diversification
threshold, the cluster will be neglected while selecting solutions for the diversification
threads.

Whenever a diversification thread requires a starting solution, the solution selection
procedure starts with the cluster with the lowest average feasible solution value in the
solution pool. If the feasible solution counter of the cluster is below the diversification
threshold, the solutions in the cluster are then examined. If an unused solution is found,
this solution is sent to the search thread, otherwise, the next cluster following the sorted
order will be checked. The examination continues until an unused solution is found or
all available clusters have been checked. When an unused solution is not found after
examining all clusters, a solution is randomly selected.

When examining the solutions in a cluster, the infeasible solutions will be checked
and selected first, as for intensification threads.

2.2 The Tabu search threads

The general structure of the TS threads included in CPM is displayed in in Algorithm 2.
The rest of the sub-section is dedicated to detailing the common features and differences

7

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

between these TS threads.

lined 2 Tabu search
1: Construct si, set s∗f = si, s

∗
inf = si, s = si;

2: Initialize tabu lists and penalty multipliers;
3: while termination condition not met do
4: Select a neighborhood and LS;
5: Generate and evaluate neighboring solutions;
6: Select a neighboring solution s̄ minimizing F (s̄) and is non-tabu or

satisfies the aspiration criterion,and set s = s̄;
7: Declare the attributes of the reverse moves tabu for tt iterations;
8: Refine the routes modified;
9: Update s∗f and s∗inf ;
10: Update penalty multipliers;
11: If reaching the iteration limit, halt and exchange solutions with the

solution pool; reset s∗f , s∗inf , s, and tabu lists;
12: end while

2.2.1 The common features of the tabu search threads

The TS threads included in CPM are developed on the basis of the granular tabu search
that was first introduced by Toth and Vigo (2003). Below, the main features of the TS
threads are introduced.

The initial solution
The initial solution of each TS thread is constructed by using the parameterized Clarke-
Wright algorithm described in Yellow (1970) with a randomly generated shape parameter.
The range for the shape parameter is set to (0.5, 2) as suggested in Groër et al. (2011).

Objective function and constraint relaxation mechanism
To explore the solution space more thoroughly, infeasible intermediate solutions are al-
lowed. To this end, capacity and route length constraints are relaxed and their violations
are penalized in the objective function. This augmented objective function is computed
as F (s) = C(s) +αQ(s) + βD(s), where C(s) is the total travel distance, Q(s) and D(s)
stand for the total violations of the capacity and route length constraints respectively,
α and β are penalty multipliers. The values of the penalty multipliers are self-adjusted
during the course of the search. To be precise, every 10 iterations, α is set to α/2 if all
the previous 10 visited solutions were feasible with respect to the capacity constraints, it
is set to 2α if all were infeasible, and left unchanged otherwise. The adjustment rule for
β is similar. The two multipliers are initially set to 1. The neighboring solutions, both
feasible and infeasible, generated during the search process are evaluated in terms of the
augmented objective function.

8

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

Inter-route neighborhood structures
Three neighborhood structures for inter-route operations, namely reinsertion (Savels-
bergh, 1992), 2-opt* (Potvin and Rousseau, 1995) and CROSS-exchange (Taillard et al.,
1997), which are commonly used in the previously published metaheuristics for the CVRP,
are implemented in the TS threads. All the three neighborhood structures are imple-
mented in each TS thread. One of them is randomly selected every TS iteration and
each of the neighborhoods has equal probability to be selected.

To speed up the search, the granular neighborhood reduction technique applied in
Jin et al. (2012) is adopted in CPM. Let R(u) stand for the route containing node u in
a given solution, and (u, x) be the partial route from node u to node x. Define Nu as
the set of the nearest neighbors of customer u. Assume node v is a member of Nu and
R(v) 6= R(u). Each neighborhood is generated in the following way.

• Reinsertion: For each customer u, for each v, reinsert u right after v.

• 2-opt*: Let x be the successor of u in R(u) and y be the successor of v in R(v).
For each customer u, for each v, replace (u, x) and (v, y) by (u, v) and (x, y).

• CROSS-exchange: The procedure introduced in Taillard et al. (1997) is adopted.
To reduce the computational effort, one restriction is imposed. For a route R1, only
a couple of routes are chosen for neighborhood generation. Those routes are selected
in the following way. First, a node u is randomly selected from the middle part
of route R1. Then the routes which contain at least one customer node belonging
to Nu are identified. Only these routes are used to form route pairs with R1 for
neighborhood generation.

The size of the nearest neighbors set is randomly chosen within a certain range at
each iteration.

Four types of reinsertion strategies
For local search based metaheuristics for the CVRP, one drawback is that the edges
close to the depot are usually more frequently involved in selected moves compared
to more remote edges. The main reason for this phenomenon is the larger differences
observed between remote edges than those for the edges close to the depot and, thus, non-
improving moves involving remote edges often bring larger deterioration in the objective
function value. To improve this situation, reinsertion neighborhood structure for inter-
route improvement is implemented in four distinct ways. The main idea is to partition
the customer nodes into groups according to their distance to the depot, and each group
should have an approximately equal number of nodes. At each iteration, neighborhood
generation and move selection are carried out separately for each group. In such a way,
the frequency of modifying the route structures distant from the depot can be increased.

9

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

An example is shown in Figure 2. In the figure, the small square stands for the depot
and the dots represent customer nodes. The customer nodes are divided into two groups,
the dots inside the big circle belong to the first group while the dots outside the big circle
constitute the other group. Nevertheless, the nearest neighbors (the dots inside the small
circle) of a customer do not need to be in the same group as the customer.

Figure 2: Customer nodes partition

The first type of reinsertion strategy is to put all customer nodes in one group, and
at each iteration only one move is performed. For the second strategy, the customer
nodes are partitioned into two groups and two moves are carried out at each iteration,
one from each partition. Likewise, for the other two strategies, the customer nodes are
divided into 3 or 4 groups and 3 or 4 moves are performed at each iteration respectively.
These four types of strategies are termed Type 1 reinsertion, Type 2 reinsertion, Type 3
reinsertion and Type 4 reinsertion accordingly. For a given TS thread, only one type of
reinsertion is applied.

Solution acceptance and tabu mechanism
Among the neighboring solutions, the best move in terms of the augmented objective
function that is non-tabu or satisfies the aspiration criterion is accepted. The aspiration
criterion overrides the tabu status of a move if this move leads to a new best solution in
the current search.

The tabu list is neighborhood dependent. The tabu tenure tt of each neighborhood
is set to be proportional to the number of nodes in the instance. For reinsertion, if
u is relocated, u is declared tabu for tt iterations and any moves relocating u cannot
be performed unless it satisfies the aspiration criterion. For CROSS-exchange move
swapping route segments (X1, Y1) and (X2, Y2), node X1 and X2 are declared tabu and
any moves involving the two nodes cannot be performed unless it satisfies the aspiration
criterion. For 2-opt* move adding edge (u, v) and (x, y), node u, v and y are declared
tabu, any moves involving any one of these three nodes are forbidden unless it satisfies
the aspiration criterion.

Route refinement
In the TS threads, at each iteration, after an inter-route move, the two modified routes
are refined separately by an intra-route improvement procedure. The procedure consists

10

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

of two simple heuristics developed by implementing 2-opt (Flood, 1956) and reinsertion
(Savelsbergh, 1992) neighborhood structures in a local search setting. The two heuristics
are applied to a route alternately. The procedure terminates when no improvement can
be found.

Solution exchange
The TS threads halt and exchange solutions with the solution pool periodically. Each
TS thread exports its best found solution and receives a new solution to resume the
search. Each search thread decides when to exchange solutions with the solution pool
according to its own search trajectory, the communication is asynchronous. No direct
communication takes place between the search threads.

The search effort between two solution exchanges is termed a search period. During
a search period, if the best feasible solution a TS thread has found is better than its
starting solution, this solution will be sent to the pool, otherwise, the best infeasible
solution the thread has found will be sent to the pool. The rationale behind the decision
to exchange infeasible solutions is that infeasible solutions generated by one thread may
be improved by another thread so that better feasible solutions can be found.

The TS threads can stop and exchange solutions with the solution pool after either
running for a certain number of iterations or failing to find improving feasible solutions
for a certain number of iterations. The first stopping mechanism is identified SM1 and
the second one as SM2. The TS threads for intensification and diversification can adopt
the same (all use SM1 or SM2) or different (some use SM1 and the others use SM2)
stopping mechanisms. Several settings are compared in Section 3.3.

Solution representation and transformation
To speed up the computation, the solutions are stored in a data structure of four arrays,
namely next-array, pred-array, start-array and end-array. The first two arrays keep the
successor and predecessor of each node while the other two record the first customer
and the last customer of each route. Using this structure, changes to a solution can
be performed very quickly. The detailed description of this application can be found
in Kytöjoki et al. (2007) and Groër et al. (2010). On the other hand, to simplify the
information exchanged between the search threads and the solution pool, the solutions
are transformed to a giant tour format (without route delimiters) before they are sent to
the solution pool. When a TS thread receives a solution from the pool, the giant tour
is transformed back to the four-array format with a split algorithm presented by Prins
(2004). This split algorithm considers both vehicle capacity and route length constraints,
and all solutions will become feasible after split.

To facilitate the solution clustering and sorting in the pool, the feasibility and the
objective function value of each solution are required. To this end, these two attributes
are attached to the giant tour during the transformation and are exchanged together. In

11

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

the pool, each solution is stored as an augmented giant tour.

2.2.2 The differences between the tabu search threads

To explore the search space effectively and efficiently, some of the TS threads are desig-
nated to concentrate on intensification while the others are assigned to pursue diversifi-
cation. The intensification threads are implemented with smaller tabu tenures than the
threads seeking diversification. Additionally, each TS thread uses only one of the 4 types
of reinsertion neighborhoods.

3 Computational results

In this section we describe the experimental platform, the test data sets, the algorithm
configurations and compare the experimental results against the results of the state-
of-the-art methods and the best known solutions (BKS) reported in the literature. The
current best known results have been updated to include the new best solutions identified
by Groër et al. (2011), Jin et al. (2011) and Vidal et al. (2012).

The analysis of the impact on the performance of several algorithmic components and
the evaluation of the parallel speedup are provided in this section as well.

3.1 Experimental platform and implementation issues

The proposed metaheuristic is implemented in C++ and uses the message passing in-
terface (MPI) for the inter-processor information exchange. The results were obtained
by running the algorithm on a compute cluster in which each node consists of two AMD
6172 processors with 12 cores at 2.1 GHz.

The basic configuration of CPM has 8 threads. Among them, one thread is used for
the solution pool, 4 TS threads using Type 1, 2, 3 and 4 reinsertion respectively are for
diversification and the remaining 3 TS threads using Type 1, 2, and 3 reinsertion respec-
tively are for intensification. These 7 TS threads are regarded as the basic search threads.
When more processors are employed by CPM, the 7 basic search threads can be dupli-
cated and run on the available processors. The standard configuration of CPM (called
CPM standard) utilizes 24 threads with one for the solution pool, 14 for diversification
and 9 for intensification.

12

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

3.2 The test data sets

The computational tests were carried out on the CVRP benchmarks of Golden et al.
(1998) and Li et al. (2005). The 20 benchmark instances of Golden et al. (1998) have
200 to 483 customers. The first eight instances also have route length restrictions. The
benchmark instances of Li et al. (2005) have 560 to 1200 customers and route length
restrictions. For each instance under each experimental scenario, CPM was executed 10
times with different random seeds. The average result and best result of these 10 runs
are reported.

3.3 Evaluating search stopping mechanisms

As mentioned in Section 2, the overall search of CPM can be terminated according to
two conditions, TC1 and TC2. For the TS threads, there are two stopping mechanisms
(SM1 and SM2) for deciding when to exchange solutions with the solution pool. In
addition, some of the TS threads are designated to concentrate on intensification while
the others are assigned to pursue diversification. Considering these three aspects, six
ways of controlling the search of CPM are compared. The settings of the six variants are
shown in Table 1.

Table 1: Search stopping mechanisms
Variant 1 2 3 4 5 6

Overall search TC1 TC1 TC1 TC2 TC2 TC2

Diversification TS threads SM1 SM2 SM1 SM1 SM2 SM1

Intensification TS threads SM1 SM2 SM2 SM1 SM2 SM2

In general, TC1 and SM1 can explicitly control the search effort while TC2 and SM2
may stop the search dynamically according to the progress of the TS threads. Preliminary
testing gave no significant difference among the six variants in terms of the solution
quality and the search time. Therefore we choose variant 1 to perform the remaining
computational experiments since it allows us to explicitly control the search effort.

3.4 Algorithm calibration

The parameters of CPM were selected according to the computational results of prelim-
inary experiments on the benchmarks of Golden et al. (1998). A number of different
alternative values were tested and the ones selected are those that gave the best com-
putational results concerning both the quality of solutions and the computational times
needed to achieve these solutions. The selected parameter values are given in Table 2.

13

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

Table 2: Parameter values for CPM
Parameter Value

Tabu tenure of 0.03|N | for diversification threads
of reinsertion, 0.01|N | for intensification threads
2-opt* and CROSS-exchange

Nearest neighbors (10 + random [0, 10])
set size

Solution exchange 200×
√
|N | iterations.

minSim 0.7

maxNC 100

maxNS 300

Diversification threshold 100

Termination condition 150000×
√
|N | for |N | < 500

30000×
√
|N | for |N | > 500

|N | represents the instance size.

3.5 Results for the benchmarks of Golden et al. (1998)

In Table 3 we compare the results for the 20 benchmark instances of Golden et al. (1998).
In the table, the first column describes the instances (instance number and number of
nodes). The second column lists the best known solutions previously reported in the
literature. The third and fourth columns provide the best results presented by Groër
et al. (2011) and Vidal et al. (2012). The remaining columns give the average results,
average wall-clock time, standard deviations and best results of CPM standard. The third
last row presents the average deviation of all instances from the best known solutions.
The second last row provides the average wall-clock time per instances for a single run.
The last row shows the number of runs performed for each instance in each algorithm.

From the table, we see that CPM standard has found new best solutions to 7 instances
(numbers in bold font) while the average deviation of the best results from the best known
solutions is 0.00%. In terms of this metric, the best results generated by CPM standard
are better than those of Groër et al. (2011) and Vidal et al. (2012). The wall-clock time
required by CPM standard appears shorter than what was used in Vidal et al. (2012)
and longer than for Groër et al. (2011).

3.6 Results for the benchmarks of Li et al. (2005)

The results for the 12 benchmark instances of Li et al. (2005) are presented in Table
4. The format of this table is identical to the one of Table 3. For this set of instances,
CPM standard has found new best solutions to three instances (numbers in bold font).
In terms of the average deviation from the best known solutions, both the average and

14

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

Table 3: Comparison of results for benchmarks of Golden et al. (1998)
Instances Previous Groër Vidal CPM standard

best et al. et al. Aver. Time SD. Best
known (2011) (2012) (min)

129p

1(240) 5623.47 5623.47 5623.47 5623.65 22.05 0.38 5623.47
2(320) 8404.61 8435.00 8404.61 8434.78 34.22 14.45 8405.81
3(400) 11036.22 11036.22 11036.22 11036.22 44.64 0.00 11036.22
4(480) 13592.88 13624.52 13624.52 13620.30 60.87 10.90 13590.00
5(200) 6460.98 6460.98 6460.98 6460.98 15.83 0.00 6460.98
6(280) 8400.33 8412.90 8412.9 8404.06 26.76 4.97 8400.33
7(360) 10102.70 10195.59 10102.70 10134.93 39.01 11.48 10107.49
8(440) 11635.30 11649.89 11635.30 11635.34 54.61 0.00 11635.34
9(255) 579.71 579.71 579.71 580.04 19.43 0.29 579.71
10(323) 736.26 737.28 736.26 737.16 28.82 0.46 735.66
11(399) 912.84 913.35 912.84 912.72 41.33 0.28 912.03
12(483) 1102.69 1102.76 1102.69 1103.20 58.29 1.28 1101.50
13(252) 857.19 857.19 857.19 858.57 18.06 1.20 857.19
14(320) 1080.55 1080.55 1080.55 1080.55 25.08 0.00 1080.55
15(396) 1337.92 1338.00 1337.92 1340.13 36.33 1.38 1337.87
16(480) 1612.50 1613.66 1612.50 1614.73 48.14 1.80 1611.56
17(240) 707.76 707.76 707.76 707.80 16.39 0.07 707.76
18(300) 995.13 995.13 995.13 998.90 25.01 0.96 997.58
19(360) 1365.60 1365.60 1365.60 1366.12 32.60 0.37 1365.60
20(420) 1818.25 1818.25 1818.32 1819.76 41.93 1.10 1817.89
Aver. deviation (%) 0.10 0.02 0.11 0.00
Time (min) 5.00 58.56 34.47
Runs per instances 5 10 10 10

15

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

best results of CPM standard excel the best results of Mester and Bräysy (2007) and
Groër et al. (2011). The wall-clock time required by CPM standard turns out shorter
than what was used in Mester and Bräysy (2007) and longer than for Groër et al. (2011).

Table 4: Comparison of results for benchmarks of Li et al. (2005)
Instances Previous Mester Groër CPM standard

best and et al. Aver. Time SD. Best
known Bräysy (2011) (min)

(2007) 129p

21(560) 16212.74 16212.74 16212.83 16214.12 14.25 1.05 16212.83
22(600) 14575.19 14597.18 14584.42 14562.10 19.35 11.98 14539.79
23(640) 18801.12 18801.12 18801.13 18853.80 18.18 106.69 18801.13
24(720) 21389.33 21389.33 21389.43 21390.96 22.41 1.39 21389.43
25(760) 16739.84 17095.27 16763.72 16733.07 33.05 16.91 16709.44
26(800) 23971.74 23971.74 23977.73 23981.30 28.73 1.26 23980.12
27(840) 17408.66 17488.74 17433.69 17380.24 38.05 24.26 17343.38
28(880) 26565.92 26565.92 26566.03 26569.96 33.14 1.88 26567.23
29(960) 29154.34 29160.33 29154.34 29157.42 40.85 1.98 29154.33
30(1040) 31742.51 31742.51 31742.64 31746.20 51.17 1.60 31742.64
31(1120) 34330.84 34330.84 34330.94 34333.66 62.63 2.12 34330.94
32(1200) 36919.24 36928.70 37185.85 37188.36 72.36 16.29 37162.54
Aver. deviation (%) 0.23 0.09 0.07 -0.01
Time (min) 104.30 5.00 36.18
Runs per instances 1 5 10 10

3.7 Impact of algorithmic components

To examine the impact on the performance of CPM of the main algorithmic components,
a set of experiments was conducted. In each experiment, the CPM standard was altered
to deactivate or remove some components respectively. The experiments are described
below.

• Only use Type 1 reinsertion (R1): All TS threads employ Type 1 reinsertion strat-
egy. In this experiment, the other three reinsertion strategies are removed from
CPM.

• Only use Type 2 reinsertion (R2): All TS threads employ Type 2 reinsertion strat-
egy.

• Only use Type 3 reinsertion (R3): All TS threads employ Type 3 reinsertion strat-
egy.

• Only use Type 4 reinsertion (R4): All TS threads employ Type 4 reinsertion strat-
egy.

16

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

• Only exchange feasible solutions (OF): All TS threads only exchange feasible solu-
tions with the pool. When a TS thread does not improve its starting solution, the
solution can still be sent to the solution pool so as to keep the frequency of solution
exchange identical.

• No guidance (NG): In this experiment, both intensification and diversification
mechanism are deactivated. Set cluster size threshold for diversification to a large
number (e.g. 5000) so that the threads for diversification can obtain solutions from
any clusters all the time no matter how many solutions a cluster contains. Set the
tabu tenures and solution selection rule of the intensification threads identical to
those for the diversification threads.

These modified versions were tested on benchmarks of Golden et al. (1998) and the
average results are compared against those of CPM standard. The comparison is shown in
Table 5. At first glance the impact on the performance of the algorithmic components may
seem small, but it is in fact crucial because for these well-studied instances, even minute
improvements are difficult to obtain. The results thus show that all these algorithmic
components contribute to the high performance of CPM.

Table 5: Impact of the algorithmic components
Experiment CPM st. R1 R2 R3 R4 OF NG
Aver. deviation from BKS (%) 0.11 0.67 0.17 0.19 0.23 0.15 0.15
Average wall-clock time 34.47 33.00 33.87 34.45 35.12 34.63 34.53
per instance (min)

3.8 Effect of search effort on performance

To examine the performance of the proposed metaheuristic when dissimilar search effort
is employed, the CPM standard was executed with several settings on benchmarks of
Golden et al. (1998). In each setting, the total number of iterations are altered. The
results are showed in Table 6.

Table 6: Comparison of the effect of search effort

Iterations (1000×
√
|N |) 30 60 90 150 180

Aver. deviation from BKS of best results (%) 0.08 0.05 0.01 0.00 0.00
Aver. deviation from BKS of average results (%) 0.18 0.14 0.12 0.11 0.11
Average wall-clock time per instance (min) 6.84 13.87 20.51 34.47 40.95

In the table, the first row provides the number of iterations for each experiential
setting. The second row presents the average deviations from the best known solutions
of the best results for each setting. Likewise, the average deviations of the average results

17

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

for each setting are shown in the third row. The last row provides the average wall-clock
time per instance for each setting. From the results, it is noticeable that the quality of
the solutions obtained gradually improves until a peak level is reached as the search effort
increases. Additionally, we can see that CPM standard can identify solutions at similar
quality to those of Groër et al. (2011) and Vidal et al. (2012) even when less search effort
is utilized.

3.9 Measuring the parallel speedup

The parallel speedup is one of the most widely used measures of a parallel algorithm’s
effectiveness. This metric is defined as the ratio between the sequential and parallel
times. The sequential time is the amount of time required for running the algorithm on
a single computer, and the parallel time refers to the amount of time required for the
parallel computation when using multiple processors. However, in this experiment, we
do not compare the parallel time against the sequential time since it may impair the
effectiveness of CPM to run it on a single computer. We instead compare the quality
of average results and the wall-clock time when using a different number of processors
and a fixed amount of search effort (i.e., the total iterations per thread times the number
of processors). This experiment is carried out on benchmarks of Golden et al. (1998)
and the fixed search effort is set to (((150000 ×

√
|N |) iterations) × (24 processors)).

The results are shown in Table 7. From the results, it is observable that, for up to
240 processors, increasing the number of processors generally allows CPM to discover
solutions of approximately equivalent quality in roughly linearly reduced time.

Table 7: Analyzing the parallel speedup
Number of processors 8 16 24 72 120 240

Iterations (1000×
√
|N |) 450 225 150 50 30 15

Aver. deviation from BKS (%) 0.113 0.109 0.110 0.111 0.116 0.117
Average wall-clock time 101.44 50.88 34.47 11.72 7.00 3.63
per instance (min)

4 Conclusions and Perspectives

In this paper, we have presented a cooperative parallel metaheuristic for the capaci-
tated vehicle routing problem. The computational experiments on the two sets of large
scale CVRP benchmarks show that the suggested metaheuristic is quite effective and
competitive in comparison to state-of-the-art methods from the literature. Though the
benchmarks used have been well-studied, the proposed parallel metaheuristic is still able
to identify new best solutions to 10 of the 32 instances within reasonable computational

18

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

time. From a parallel computation point of view, the proposed parallel metaheuristic is
efficient and flexible as it can employ at least up to 240 processors and achieve a roughly
linear speedup.

In addition, several new features are introduced in this paper. First, using the struc-
tural information (edge residence counters) of solutions enables the solution clustering
to be carried out rapidly, even when thousands of solutions are involved. Search history
information can thus be extracted from the solution clusters, helping the search to better
achieve intensification and diversification. Second, the novel way of implementing rein-
sertion neighborhoods based on the distance to the depot of customers makes it easier to
seek improvement for different parts of the solutions. Moreover, for cooperative search, it
appears beneficial to also exchange infeasible solutions among search threads. The com-
bination of these features largely contributes to the high performance of the proposed
metaheuristic.

In this paper, we focus on cooperation and information exchange and use the co-
operation concept where all exchanges proceed through the common solution pool. The
solution clustering based intensification and diversification introduced is very general and
problem domain independent. It can be easily applied in different contexts for solving
other combinatorial problems. The modification required is to select the solution ele-
ments on which common features are built and use them in a similarity measure for the
problem in question. Future work will focus on pursuing other approaches of applying
the information extracted from the solution clustering and adopt the proposed parallel
metaheuristic to other classes of problems.

Acknowledgements

The authors thank Compute Canada and the Norwegian Metasenter for Computational
Science (NOTUR) for providing computing resources to conduct the experiments of this
research.

References

Alba, E., editor (2005). Parallel Metaheuristics: A New Class of Algorithms. John Willey
& Sons, Hoboken, NJ.

Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Comput Surveys, 35(3):268–308.

Crainic, T. G. (2008). Parallel solution methods for vehicle routing problems. In Golden,

19

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

B., Raghavan, S., and Wasil, E., editors, The Vehicle Routing Problem: Latest Ad-
vances and New Challenges, pages 171–198, New York. Springer.

Crainic, T. G. and Hail, N. (2005). Parallel metaheuristics applications. In Alba, E.,
editor, Parallel Metaheuristics: A New Class of Algorithms, pages 447–494, Hoboken,
NJ. John Willey & Sons.

Flood, M. M. (1956). The traveling-salesman problem. Operations Research, 4:61–75.

Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer.

Golden, B. L., Wasil, E. A., Kelly, J. P., and Chao, I. M. (1998). The impact of meta-
heuristics on solving the vehicle routing problem: algorithms, problem sets, and com-
putational results. In Crainic, T. and Laporte, G., editors, Fleet management and
logistics, pages 33–56, Boston. Kluwer.

Groër, C., Golden, B., and Wasil, E. (2010). A library of local search heuristics for the
vehicle routing problem. Mathematical Programming Computation, 2:79–101.

Groër, C., Golden, B., and Wasil, E. (2011). A parallel algorithm for the vehicle routing
problems. INFORMS Journal on Computing, 23:315–330.

Jin, J., Crainic, T. G., and Løkketangen, A. (2011). A guided cooperative parallel tabu
search for the capacitated vehicle routing problem. In Norsk Informatikkonferanse NIK
2011, pages 49–60, Tapir Akademisk Forlag. ISBN 978-82-519-2843-4.

Jin, J., Crainic, T. G., and Løkketangen, A. (2012). A parallel multi-neighborhood
cooperative tabu search for capacitated vehicle routing problems. European Journal of
Operational Research, 222(3):441–451.

Kytöjoki, J., Nuortio, T., Bräysy, O., and Gendreau, M. (2007). An efficient variable
neighborhood search heuristic for very large scale vehicle routing problems. Computers
& Operations Research, 34:2743–2757.

Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4):408–416.

Le Bouthillier, A. and Crainic, T. G. (2005). A cooperative parallel metaheuristic for
the vehicle routing problem with time windows. Computers & Operations Research,
32:1685–1708.

Li, F., Golden, B. L., and Wasil, E. A. (2005). Very large-scale vehicle routing: New test
problems, algorithms, and results. Computers & Operations Research, 32:1165–1179.

Mester, D. and Bräysy, O. (2007). Active-guided evolution strategies for large-scale
capacitated vehicle routing problems. Computers & Operations Research, 34:2964–
2975.

20

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

Potvin, J.-Y. and Rousseau, J.-M. (1995). An exchange heuristic for routing problems
with time windows. Journal of the Operational Research Society, 46:1433–1446.

Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing
problem. Computers & Operations Research, 31(12):1985–2002.

Savelsbergh, M. W. P. (1992). The vehicle routing problem with time windows: mini-
mizing route duration. INFORMS Journal on Computing, 4:146–154.

Taillard, E., Badeau, P., Gendreau, M., Geurtin, F., and Potvin, J.-Y. (1997). A tabu
search heuristic for the vehicle routing problem with soft time windows. Transportation
Science, 31:170–186.

Toth, P. and Vigo, D. (2002). The vehicle routing problem. SIAM Monographs on Discrete
Mathematics and Applications, Philadelphia. PA.

Toth, P. and Vigo, D. (2003). The granular tabu search and its application to the vehicle
routing problem. INFORMS Journal on Computing, 15:333–346.

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., and Rei, W. (2012). A hybrid
genetic algorithm for multidepot and periodic vehicle routing problems. Operations
Research, 60(3):611–624.

Voß, S. (1995). Solving quadratic assignment problems using the reverse elimination
method. In Nash, S. and Sofer, A., editors, The Impact of Emerging Technologies on
Computer Science and Operations Research, pages 281–296, Boston. Kluwer.

Yellow, P. C. (1970). A computational modification to the savings method of vehicle
scheduling. Operational Research Quarterly, 21(2):281–293.

21

A Cooperative Parallel Metaheuristic for the Capacitated Vehicle Routing Problem

CIRRELT-2013-50

