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Abstract. We propose a methodological approach to build strategies for grouping 

scenarios as defined by the type of scenario decomposition, type of grouping, and the 

measures specifying scenario similarity. We evaluate these strategies in the context of 

stochastic network design by analyzing the behavior and performance of a new 

progressive hedging-based meta-heuristic for stochastic network design that solves 

subproblems comprised of multiple scenarios. We compare the proposed strategies not 

only among themselves, but also against the strategy of grouping scenarios randomly and 

the lower bound provided by a state-of-the-art MIP solver. The results show by solving 

multi-scenario subproblems generated by the strategies we propose, the meta-heuristic 

produces better results in terms of solution quality and computing efficiency than when 

either single-scenario subproblems or multiple-scenario subproblems that are generated 

by picking scenarios at random are solved. The results also show that, considering all the 

strategies tested, the covering strategy with respect to commodity demands leads the 

highest quality solutions and the quickest convergence. 
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1 Introduction

Network design models define an important class of combinatorial optimization prob-
lems with a wide gamut of applications. These problems naturally appear in various
forms in the planning of complex systems, e.g., logistics, transportation and telecom-
munications, at the strategic, tactical and operational levels. In such contexts, network
design models are used to produce plans that define the structure, services, allocation
of resources, or adjustments to be applied to the respective networks. Such plans are
then used for varying periods of time depending on the decision level considered. In the
case of either strategic or tactical planning, decisions are made for relatively long peri-
ods of time. Therefore, managers responsible for such planning decisions generally face
uncertainty (i.e., stochastic parameters) at the moment when plans are being drawn.

Demand usually entails a certain level of uncertainty for network design problems,
defining stochastic parameters relative to, e.g., origins, destinations, or demand volumes.
In this paper, we assume origins and destinations are known, but volumes are uncertain.
To account for such uncertainty, forecasting is traditionally used to obtain estimates in
replacement of stochastic parameters. Managers may also apply some form of sensitivity
analysis to provide alternative plans and networks. This type of approach can lead to
arbitrarily bad solutions, however (Wallace, 2000). Moreover, recent studies have shown
that cost-effective networks obtained in stochastic settings are structurally different than
the ones obtained in deterministic settings (Lium et al., 2009; Thapalia et al., 2012).

Stochastic programming has become the methodology of choice to properly account
for uncertainty in planning problems. The goal of stochastic programming approaches
for network design is to build a single design that remains cost-effective when differ-
ent demand realizations are encountered. To do so, uncertainty in demand is typically
modeled with a finite set of scenarios, which must be generated with care to ensure
that they, collectively, closely approximate the uncertainty in the planning setting (e.g.,
Crainic et al., 2011b). Once the appropriate set of scenarios is generated, a two-stage
stochastic network design problem is generally solved, the first stage modeling the choice
of design (e.g., selection of transportation services and schedules to operate during the
next season or of components to include in the logistics network), the second modeling
its cost-effectiveness in servicing the demand (e.g., routing) for each scenario. See Klibi
et al. (2010) for a thorough review of such models.

Even though such problems have recently received increased attention from the scien-
tific community, they remain notoriously hard to solve. The reasons for this are that, on
the one hand, deterministic network design problems are NP-Hard in all but trivial cases
and, thus, formulations of even moderate size are generally difficult to address and, on
the other hand, modeling uncertainty with scenarios generally yields very large instances.
Thus, much like with the deterministic case, we need heuristic methods for producing
high-quality designs for realistically-sized instances, and we need efficient methodology
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to address problem settings involving large numbers of scenarios.

Strategies decomposing the set of scenarios have been used to address these challenges
and build solution methods for stochastic combinatorial optimization problems. Meta-
heuristics based on this approach and the progressive hedging idea (Rockafellar and Wets,
1991) have proved computationally successful in several such settings, including stochas-
tic network design (e.g., Crainic et al., 2011b; Haugen et al., 2001; Løkketangen and
Woodruff, 1996). Yet, the instances addressed are still of relatively modest dimensions,
as the scenario decomposition used by these meta-heuristics generated single-scenario
subproblems, each a NP-Hard deterministic network design formulation.

Revisiting the scenario-decomposition strategy by grouping scenarios to yield multi-
scenario subproblems thus appears methodologically interesting as it could reduce sig-
nificantly the number of subproblems, at the price of an increase in the difficulty of
addressing each subproblem. The interest is also motivated by recent studies showing
that exact methods using scenario decomposition to address integer stochastic problems
can be significantly improved by applying a decomposition strategy based on scenario
groups (Escudero et al., 2012, 2013). The general idea was to adapt the Lagrangean
relaxation to produce subproblems defined on randomly defined groups of scenarios. Es-
cudero et al. (2013) observed improved lower bounds obtained by solving the associated
Lagrange dual problem, and have numerically shown that the computational burden of
solving the Lagrange dual problem is also reduced when grouping is used. Although
grouping scenarios has clearly proven to be efficient in this case, no studies that we are
aware of have focused on how such strategies should be defined and scenario groups be
created. Furthermore, no scenario-decomposition strategy based on scenario grouping
has yet been applied in the context of meta-heuristics.

The goal of this paper therefore is twofold. First, to propose a systematic method-
ological approach to build strategies for grouping scenarios as defined by the type of
scenario decomposition (partition or cover), type of grouping (similar or dissimilar sce-
narios), and the measures specifying scenario similarity. Second, to study these strategies
experimentally in the context of stochastic network design in order to characterize their-
behavior and recommend how to use the proposed methodology. To perform this study,
we introduce a new progressive hedging-based meta-heuristic for stochastic network de-
sign that solves subproblems comprised of multiple scenarios as defined by the proposed
scenario-grouping methodology. Notice that, while the scenario-grouping strategies we
propose are derived in the context of addressing stochastic network design problems, they
can be applied to other stochastic programs as well.

We evaluate the performance of the proposed strategies for grouping scenarios through
the effectiveness of the resulting progressive hedging meta-heuristic. We use a state-of-
the-art commercial solver to solve subproblems to optimality. This enables us to focus
the analysis on the benefits of solving multi-scenario subproblems and reduce any po-
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tential noise that may occur by solving them with a heuristic method. The results show
that solving multi-scenario subproblems based on a random partition of scenarios often
enables the progressive hedging meta-heuristic to achieve a solution that is 25% better
than when single-scenario subproblems are solved, and in fewer than half the iterations.
Moreover, the results also show that, compared to grouping scenarios randomly, parti-
tioning scenarios with the grouping strategy we propose can enable the meta-heuristic
to obtain a solution that is 16% better. The number of iterations and time required to
achieve this result is always reduced, often by half. Finally, the results show that a cov-
ering of scenarios enables the meta-heuristic to find solutions that are 16% better than
partitioning them. Thus, covering produces an overall improvement in solution qual-
ity of approximately 27% with respect to the original strategy of solving single-scenario
subproblems.

The rest of this paper is organized as follows. We recall the two-stage formulation of
the stochastic network design problem in Section 2 and review the related literature. We
analyze the issue of grouping scenarios in Section 3 and introduce the various strategies
we propose. We start Section 4 dedicated to the description of the computational exper-
iments we performed by introducing the new progressive hedging-based meta-heuristic
that can solve subproblems comprised of multiple scenarios. We then proceed to compu-
tationally study the behavior and performance of the proposed methodology for grouping
scenarios. We draw conclusions based on these experiments and outline future efforts in
in Section 5.

2 A Brief Tour of Stochastic Network Design

We first recall the two-stage formulation of the stochastic network design problem
and review the main applications and models present in the literature (Subsection 2.1),
and then provide a general description of the algorithmic strategies used to develop the
solution methods proposed for these problems (Section 2.2).

2.1 Stochastic Network Design Models

Network design models entail two general groups of decisions: design decisions, that
define the structure and characteristics of the network, and flow decisions, which relate
to how the network is used to perform the operational activities considered, see Crainic
and Laporte (1997). When using the a priori approach (Birge and Louveaux, 2011) in a
stochastic setting, decisions are made in stages according to when stochastic parameters
become known. Problems are therefore formulated by defining which decisions are taken
before all information is available (first stage decisions) and which decisions are made
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afterwards (second stage decisions and onward). Traditionally, in the case of stochastic
two-stage network design models, design decisions define the first stage (i.e., the a priori
solution) and flow decisions the second (i.e., the available recourse), see Klibi et al. (2010).

Formally, given a directed network with node set N, arc set A, commodity set K, and
scenario set S, we wish to

min
∑

(i,j)∈A

fijyij +
∑
s∈S

ps(
∑
k∈K

∑
(i,j)∈A

ckijx
ks
ij )

subject to ∑
j∈N+(i)

xksij −
∑

j∈N−(i)

xksji = dksi ∀i ∈ N, k ∈ K, s ∈ S, (1)

∑
k∈K

xksij ≤ uijyij ∀(i, j) ∈ A, s ∈ S, (2)

yij ∈ {0, 1} ∀(i, j) ∈ A, (3)

xksij ≥ 0 ∀(i, j) ∈ A, k ∈ K, s ∈ S, (4)

where, yij indicates whether arc (i, j) is installed in the network, fij is the cost (often
called the fixed charge) of doing so, xksij is the amount of commodity k’s demand that flows
on arc (i, j) in the resulting solution for scenario s, and ckij is the cost per unit of demand
flowed on arc (i, j). Constraints (1) ensure that in each scenario s, each commodity’s
demand may be routed from its origin node to its destination node. Constraints (2)
ensure that the same design is used in each scenario, and that arc capacity (uij) is never
violated. When dks < uij, the disaggregate inequalities xksij ≤ dksyij can be added to
the formulation to strengthen its linear relaxation. We refer to this problem as the
CMND(S); its optimal solution is a single design that is cost-effective for all scenarios.

Various applications of stochastic network design models can be found in the litera-
ture. Most, but not all, of the existing research may be found in the fields of logistics or
telecommunications. In transportation service network design with stochastic demands,
two stage formulations decide on the structure of services to offer in the first stage, while
the routing of flows is decided at the second stage (e.g., Lium et al., 2009; Crainic et al.,
2011b). More complex formulations are encountered in multi-tiered transportation sys-
tems, e.g., two-tier City Logistics, where the first stage targets the design of the first tier
service network, and the second stage addresses both the design of the corresponding
service network and the routing of flows (Crainic et al., 2011a).

In the context of logistics, two-stage models have been proposed to formulate a wide
range of planning problems related to the design of multi-echelon supply chain networks
under uncertainty, see, e.g., Alonso-Ayuso et al. (2003) and Bidhandi and Yusuff (2011)
for thorough studies on the subject of strategical and tactical planning in this context.
In such models, the first stage traditionally involves decisions that define the topology
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and capabilities of the supply chain. Such decisions may include: the choice of facilities
(plants, warehouses and distribution centers) (Tsiakis et al., 2001), the selection of ma-
chinery to use at processing points (Santoso et al., 2005), the choice of market segments
to target (Vila et al., 2007) and the selection of operational processes to apply at each
location in the supply chain (Schütz et al., 2009). The second stage variables generally
group all flow decisions that define how the supply chain is used to perform a given
set of operations (i.e., the supply, production and distribution of commodities) once all
stochastic parameters become known. Finally, the objective in such models is usually to
minimize the sum of both the total fixed cost incurred given the designed supply chain
and the resulting expected total flow cost.

As for applications in telecommunications, stochastic programming models have been
proposed to solve a wide gamut of network-related problems, see Gaivoronski (2005)
for a thorough review. However, when compared to the supply chain context, fewer
design models, where either the size or the structure of the network is changed, have
been proposed. This is explained by the fact that in telecommunications applications,
it is usually assumed that a physical network already exits and that it cannot be easily
expanded or reduced. Stochastic models are therefore used to determine what equipment
to install in the network to provide services when given parameters are stochastic (e.g., the
demands for the considered services). Many such problems take the form of stochastic
location models where in the first stage a series of equipment is installed, while the
following stages formulate the operations performed to provide the considered services.
The planning of an internet based information service, as presented in Gaivoronski (2005),
defines such a problem. Stochastic network models can also be used to solve capacity
planning problems under uncertainty. Riis and Andersen (2002) propose a two-stage
formulation for such a problem when demands are stochastic. In this case, the first stage
decisions determine how much capacity is included on the links of the network and the
second stage contains the flow decisions that establish how the information transits in
the network to satisfy demands. Finally, specific design models have also been proposed,
as in the case of Smith et al. (2004), who developed an integer stochastic programming
model for a ring design problem in an optical network. Consider a network, defined
here as a set of client nodes, a set of client-pair demand edges and, for each client-pair
demand, a set of rings on which the data of the demand can transit. The ring design
problem consists in choosing which rings to use in order to satisfy demands which, in this
case, are stochastic. A two-stage model is proposed in Smith et al. (2004) to formulate
this problem. The first stage decisions define the assignment of the client nodes to rings
that are then used in the second stage to transit the demands. In the model proposed in
Smith et al. (2004), it is assumed that all demands are not necessarily satisfied (a penalty
being applied for unfulfilled demands). Therefore, the second stage decisions are defined
as the proportions for each demand that are either satisfied or not.
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2.2 Solution Approaches

The solution methods developed to address stochastic network design problems gener-
ally share two common features. First, as is traditionally done in stochastic programming,
scenarios are used to estimate the distributions of the stochastic parameters. Therefore,
stochastic network design problems are either formulated using a static set of scenarios,
or, they are solved using algorithms that employ sampling. If a static set of scenarios
is used, then either such a set is assumed available (Tsiakis et al., 2001; Alonso-Ayuso
et al., 2003; Smith et al., 2004), or, it needs to be generated using appropriate methods.
For example, in Høyland and Wallace (2001) and Høyland et al. (2003), methods are
proposed to generate sets of scenarios that enforce specified statistical properties. In
contrast to using a static set of scenarios, sampling based solution methods, such as the
sample average approximation (SAA) algorithm, dynamically generate sets of represen-
tative scenarios for the problem. In the SAA algorithm, these sets are used to obtain
different approximations of the original stochastic model that are then solved to produce
feasible solutions. In this method, sampling is also applied to evaluate the optimality
gaps associated with the solutions obtained. The SAA solution approach has been ap-
plied to stochastic network design by, e.g., Santoso et al. (2005); Azaron et al. (2008);
Vila et al. (2007); Schütz et al. (2009); Bidhandi and Yusuff (2011). Whenever scenarios
are used, it may happen that the set of scenarios that is considered produces a model
whose solution time is prohibitive. Scenario reduction techniques, as the frameworks
defined in Heitsch and Römisch (2007, 2009), have been proposed to reduce the scenario
set, and thus produce easier models to address, while limiting the errors caused by such
reductions.

Once a scenario set is defined, it can be used to formulate the stochastic problem as
a large-scale deterministic model, referred to as the extensive form in Birge and Lou-
veaux (2011). Commercial solvers have been applied directly to the models formulated
using scenario sets, see Tsiakis et al. (2001); Vila et al. (2007); Azaron et al. (2008).
However, given the complexity of these problems, the direct use of commercial solvers
generally limits the size of the instances that can be solved in acceptable times. There-
fore, a second common feature among algorithms specifically developed for stochastic
network design models is the use of decomposition strategies taking advantage of the
block structure characterizing the extensive form models (blocks being defined according
to the considered scenarios Birge and Louveaux (2011)).

Two such strategies have been successfully applied for network design. The first is
based on Benders decomposition (Benders, 1962) which, when applied in the stochastic
setting, is referred to as the L-shaped algorithm, introduced in Slyke and Wets (1969),
see also e.g., Birge and Louveaux (2011). Following this strategy, the stochastic net-
work design model is first projected onto the space defined by the first stage variables
(i.e., the design variables). By doing so, the problem decomposes according to the con-
sidered scenarios (i.e., a flow model for each scenario). The problem is then solved by
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reformulating the scenario subproblems using an outer linearization approach and then
applying a relaxation algorithm on the resulting equivalent model, see Riis and Ander-
sen (2002); Smith et al. (2004); Santoso et al. (2005); Bidhandi and Yusuff (2011). The
second decomposition strategy used for stochastic network design models is referred to
as scenario decomposition, see Birge and Louveaux (2011). Scenario decomposition is
obtained by applying Lagrangean relaxation to the non-anticipativity constraints (i.e.,
the constraints ensuring that a single design is used under all considered scenarios). The
original stochastic problem is again decomposed per scenario (i.e., a deterministic net-
work design defined for each scenario). The resulting scenario subproblems can then
be used to obtain a general lower bound, by solving the Lagrangean dual as in Schütz
et al. (2009), or as a means to produce a more efficient solution approach, as in the
case of the branch-and-fix with coordination algorithm developed in Alonso-Ayuso et al.
(2003) and strongly refined in Escudero et al. (2012), or the progressive hedging-based
metaheuristics proposed in Crainic et al. (2011b).

To conclude, while scenario decomposition has been applied to stochastic network de-
sign, as in many other problem settings, the applications aimed to generate single-scenario
subproblems. Moreover, despite advances in MIP solver sophistication and power, the
inherent difficulty of network design and the number of scenarios required for a correct
representation of uncertainty still drastically limits the problem dimensions one can ad-
dress in acceptable computing times. Revisiting the decomposition of the scenario set
into multi-scenario subproblems then appears a methodological avenue worth studying,
as also indicated by the work of Escudero et al. (2013) on randomly grouped scenarios.

We now proceed to define a comprehensive set of grouping strategies and experimen-
tally evaluate their behavior and performance on stochastic network design models using
a progressive hedging-based meta-heuristic.

3 Scenario Grouping

Strategies for grouping scenarios aim to enhance solution methods, here, a progressive
hedging-based meta-heuristic for stochastic network design. Several questions need to be
answered in order to achieve achieve this goal, e.g., how many groups should be created?
should scenarios that are grouped be similar or not? should the groups induce a partition
of the scenario set or not? what criteria should be used to measure similarity among
scenarios, and so on.

We start the presentation of the proposed strategies with a general discussion of these
issues (Section 3.1), and then proceed to address the issues of the number of groups
to create and of grouping similar scenarios (Section 3.2), grouping dissimilar scenarios
(Section 3.3), creating covers or partitions of the scenario set (Section 3.4) and, finally,
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of the measures we use to decide scenario similarity (Section 3.5).

3.1 Issues and General Strategies

We begin by providing some general insights regarding how the proposed grouping
strategies for the new scenario-decomposition approach are developed. Recall that the
evaluation of these strategies will be performed by means of the new progressive hedging
meta-heuristic solving multi-scenario subproblems (Algorithm mS-PH of Section 4.1).

The main question one desires to answer can be stated as follows: is grouping sce-
narios efficient, that is, does solving subproblems comprised of multiple scenarios enable
our proposed algorithm to be more efficient when compared to the original procedure
where single scenario subproblems were solved? This question has already been partially
addressed in Escudero et al. (2013), where the authors showed that grouping scenarios in
progressive hedging can produce a more efficient strategy for obtaining lower bounds for
scenario-based integer stochastic problems. Our aim is to see if such benefits are also pos-
sible in the context of stochastic network design. Therefore, the first grouping strategy
is to simply generate scenario groups randomly. This strategy will serve as a benchmark
to both evaluate the possible gains in grouping versus not grouping and investigate the
more refined strategies that we propose to generate the groups.

The second main question we investigate is how to create groups. Recall that, by
solving multi-scenario subproblem, the proposed progressive hedging algorithm produces
a single solution for each group used in the decomposition. Therefore, part of the differ-
ences in the solutions of the subproblems, which would have been observed had scenarios
been treated separately, are now directly reconciled within each cluster. Less iterations
of the algorithm are therefore expected to be necessary to reach consensus over all sub-
problem solutions but, at the same time, more effort is expected to be required to address
each subproblem, as multi-scenario subproblems are generally harder to solve than single-
scenario ones. We also expect the choice of grouping strategy to significantly influence
the solutions obtained at each iteration. The efficiency of the algorithm will thus be
measured both in terms of the computational effort needed and the quality of the overall
solution produced.

In order to design grouping strategies that attain the right balance between the effort
needed to solve the subproblems and the quality of the final solution obtained, two general
principles are established. The first principle concerns whether groups should consist of
scenarios that are similar to or dissimilar from each other. The general idea is that
by including similar scenarios in the groups, the subproblems obtained are expected to
be easier to solve at each iteration of the progressive hedging algorithm. On the other
hand, differences between the subproblem solutions are likely to be more pronounced, as
scenario groups tend to be different from one another when similar scenarios are grouped.
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In such a case, more iterations are needed to reach consensus. In contrast, if groups are
made up of dissimilar scenarios, the subproblems are expected to be harder to solve but
fewer iterations are likely to be needed to reach consensus. To investigate this issue,
three grouping strategies are proposed: group similar scenarios, group similar scenarios
but introduce a dissimilar group, and group dissimilar scenarios. The first and last of
these strategies will help to test the two polar opposite approaches to scenario grouping,
while the second qualifies as an in-between strategy that enables to measure the marginal
impact of introducing dissimilarity in grouping.

The second principle established is the characteristics of the resulting groups. We
mainly investigate whether the groups should define a partition, wherein each scenario
is included in a single group, or a cover, wherein scenarios are allowed to appear in
several groups. Or, put another way, should scenarios be used in the definition of more
than one subproblem? By using a partition in the decomposition strategy, the resulting
subproblems are necessarily different from one another and consensus is expected to be
harder to obtain. In contrast, when a cover is used and scenarios are replicated in more
than one subproblem, then the iterative process of the progressive hedging meta-heuristic
can be accelerated.

3.2 Grouping Similar Scenarios

In this section, we discuss the methods we use for grouping scenarios and determining
the number of groups. Let ws be the vector of descriptive statistics associated to each
of the s = 1, . . . , |S| scenarios to be grouped. The statistics, described in Section 3.5,
are then used to measure scenario similarity and assemble them into g groups, C̄ =
{C1, . . . , Cg}, corresponding to the groups of descriptive statistics. We then refer to a
scenario s being in group Ci when its vector ws is in that cluster.

Our methodology for creating groups of similar scenarios is inspired by the k-means
clustering algorithm proposed to partition n data points into m clusters such that each
data point is in the cluster whose mean is closest (Marsland, 2009). The standard form
of this method is displayed in Algorithm 1.

Algorithm 1 K-Means

Require: n data points;
Require: k, the number of clusters to create;
1: Find an initial clustering of n points into k clusters;
2: while have a new clustering do
3: Calculate the mean of each cluster;
4: Assign each point to the cluster with the closest mean;
5: end while
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The number of groups, k, is not known a priori. To determine it, we assume we are
provided with a lower and upper bound on the number of groups, and execute Algorithm
1 for each number of groups between those bounds. We then choose the number k such
that the difference between the error associated with groups k and k − 1 is the greatest.
For example, when searching between 4 and 8 groups with the group error for each size
given in Figure 3.2, we would choose k = 6.
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Figure 1: Comparing Clustering Errors to Choose k

We determine the distance from a point (scenario) to another point or from a point
to the mean of a group based on the Euclidean distance. The error associated with a
group is then the total distance of the scenarios from the mean of the group to which
they are assigned.

To create an initial set of k groups, we first identify k core scenarios, each of which
will represent the mean of a group. We then assign each remaining scenario to the closest
core scenario. To identify the k core scenarios, we use the methodology developed by
Arthur and Vassilvitskii (2007), which iteratively chooses the core scenarios randomly
from the set of scenarios, but with weighted probabilities that reflect the distance of
each scenario (not selected as core) from the previous core scenario chosen. Along with
approximation guarantees relating to the error of the resulting clustering, the authors
provided compelling computational evidence that this methodology is superior to simply
choosing at random.

We present the method in detail in Algorithm 2. The core scenario si is chosen
randomly in Step 2 through a lottery process in which the probability of picking a

given scenario p is defined as
‖wsp−wsi−1‖∑|S|
q=1 ‖wsq−wsi−1‖

, where function ‖ · ‖ is the Eucledean

distance defined on the number of dimensions in the vectors of statistics. In all gen-
erality, assuming that the vectors of statistics associated with scenarios s ∈ S are
|J |−dimensional vectors defined as ws = [wjs]j∈J then, given two scenarios s and s′,
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we have ‖ws − ws′‖ =
√∑

j∈J

(
wjs − wjs′

)2
. Therefore, scenarios that are distant when

compared to the previous core point si−1 (i.e., scenarios p that have a high ‖wsp −wsi−1‖
value) have a higher probability of being picked than scenarios that are close to it (i.e.,
scenarios p with low ‖wsp −wsi−1‖ values). Diversity is thus favored in the choices made
concerning the core scenarios.

Algorithm 2 Choose Initial Set of Core Scenarios

Require: Statistics ws for describing scenario s = 1, . . . , |S|;
Require: Number of core scenarios, k, to find;
1: Take one scenario, s1, chosen randomly among s1, . . . , s|S|;
2: Define a new core scenario, si, by randomly selecting among the scenarios not yet

core with probabilities sp =
‖wsp−wsi−1‖∑|S|
q=1 ‖wsq−wsi−1‖

;

3: Repeat Step 2 until k core scenarios are selected.

3.3 Considering Scenario Dissimilarity

We consider two approaches in introducing dissimilarity into our scenario-grouping
strategies. The first, addresses the issue “locally”, by starting with groups of similar
scenarios and creating a new group that introduces dissimilarity to the grouping. The
second is a “global” approach where groups are created by directly considering dissimi-
larity measures.

Introducing Dissimilarity into Groups of Similar Scenarios . We introduce
dissimilarity into the groups of similar scenarios produced by the method presented in
the previous subsection by creating an additional group that consists of one scenario
from each of those created groups. We illustrate this method with Figures 2(a) and 2(b).
Four scenario groups, C1, C2, C3, and C4, were created. A fifth scenario group, called the
Dissimilarity Group (C5 in Figure 2(b)), is created by choosing the scenario from each
group that is closest to the center of that group. Let wi = [wji ]j∈J be the |J |−dimensional
vector representing the center of each group Ci, where wji =

∑
s∈Ci

ps
pCi
× wjs, ∀j ∈ J ,

with pCi =
∑
s∈Ci

ps. The Dissimilarity Group is then created by adding the scenario

si = arg min
s∈Ci
‖ws − wi‖ from each group Ci.

Whether the scenarios chosen for the Dissimilarity Group are removed from their
initial clusters (C1, . . . , C4) is an algorithm parameter determined by the selection of
grouping type, partition or cover (Section 3.4).

Grouping Dissimilar Scenarios. Our methodology for creating such groups is
very similar to how we group similar scenarios in Section 3.2. Specifically, for a fixed
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C1 C2

C3

C4

(a) Initial Set of Similar Scenarios Groups

C1 C2

C3

C4

C5

(b) With Dissimilarity Group

Figure 2: Introducing Dissimilarity Into Similar Scenario Groups

number of groups, we execute an algorithm for grouping dissimilar scenarios that only
differs from Algorithm 1 in Step 4, where points are instead assigned to the group whose
mean is the furthest away. Similarly, when finding the initial groupings, we use Algorithm
2 to find the initial core scenarios, but then assign the remaining scenarios to the groups
that are the furthest away. To choose the number of groups, we again assume a lower and
upper bound on the possible number of groups, and execute our method for each number
between those bounds. We then evaluate the quality of a grouping of fixed cardinality by
calculating for each group the distance between the mean of that group and the scenario
closest to that mean and then finding the average of these distances. We choose the
number k such that this average distance is greatest.

3.4 Grouping Scenarios into Covers or Partitions

In (nearly) all of the methods we have discussed so far we create groups of scenarios
that partition the set of scenarios. As indicated previously, however, the methodology
may also consider covers such that a scenario may appear in multiple groups.

To create covers of scenarios, we first create groups of similar scenarios (Section 3.2).
Next, for each scenario s ∈ S, we find the group Ci, other than the one it is currently
assigned, for which value ‖ws − wi‖ is minimal, and add s to it. Note that, we do not
update the vector wi associated to Ci after adding this new scenario. Thus, we have
that each scenario will appear in exactly two groups. Note that, the grouping algorithm
building partitions calculated the probability of scenario group pCτ as

∑
s∈Cτ ps. With

each scenario appearing in exactly two groups we set pCτ =
∑

s∈Cτ ps/2.
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3.5 Descriptive Statistics

The proposed scenario-grouping methodology requires that one specifies the scenario
characteristics according to which scenario similarity or dissimilarity is to be measured.
Such statistics can relate either to structural properties of the scenario, or a solution to
the deterministic network design problem associated with that scenario. In this paper
we consider the following statistics for scenario s:

Demand-based . The first descriptive statistic we use relates to commodity de-
mands. Thus, wdemands = [dks]k∈K is a |K|−dimensional vector, with the kth element
containing the demand volume associated to commodity k in scenario s.

Solution-based . The second descriptive statistic we use relates to attributes of
a solution, (xs, ys), produced by solving CMND(s) with the original fixed charges, fij.
Specifically, we consider the total commodity volume that flows on each arc in the solution
(xs, ys). In this case, warc−flows = [xsij](i,j)∈A is an |A|-dimensional vector, where the
element corresponding to arc (i, j) is calculated as xsij =

∑
k∈K x

ks
ij .

4 Computational Experiments

We experimentally evaluated the proposed scenario-decomposition approach and the
strategies for grouping scenarios. Our goal is twofold. First, to explore the performance
of the proposed strategies with respect to the various choices described in Section 3.
Second, to evaluate the performance of scenario grouping in addressing stochastic net-
work design problems by means of a new progressive hedging-based meta-heuristic for
stochastic network design that solves subproblems comprised of multiple scenarios.

We initiate the section by introducing the multiple-scenario progressive hedging meta-
heuristic, followed by the description of the experimental environment (Section 4.2),
and the presentation of the comparative results for grouping similar scenarios (Section
4.3), introducing dissimilarity into grouping (Section 4.4), grouping dissimilar scenarios
(Section 4.5), and building partitions or covers (Section 4.6).

4.1 A Progressive Hedging-Based Metaheuristic

Progressive hedging (Rockafellar and Wets, 1991) has computationally proven to both
produce effective meta-heuristics (Crainic et al., 2011b; Haugen et al., 2001; Løkketangen
and Woodruff, 1996) and efficiently compute lower bounds (Escudero et al., 2013) for
scenario-based stochastic integer problems. The method may also be an integral part
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of larger sampling-based solution procedures (Birge and Louveaux, 2011). The general
strategy is based on the use of scenario decomposition (obtained through Lagrangean
relaxation), which produces a set of single-scenario subproblems. A solution to the
stochastic problem is then constructed by applying an iterative procedure which updates
the Lagrange multipliers of each subproblem to tend toward a consensus solution among
subproblems.

When applied to network design, each single-scenario subproblem solved at each it-
eration of the progressive hedging procedure represents a deterministic network design
problem yielding a (potentially different) design (Crainic et al., 2011b). These designs
are reconciled in order to create a single reference point. Then, at the beginning of the
next iteration, the fixed cost associated with each arc is altered through an augmented
Lagrangian-type technique to hopefully induce the resulting subproblems to yield so-
lutions closer to the current reference point. Differences between the designs are thus
reconciled indirectly. A progressive hedging approach converges when all subproblems
yield the same design. While convergence is guaranteed for continuous optimization prob-
lems, the presence of integer variables in stochastic network design models eliminates that
guarantee.

We introduce a new meta-heuristic, named mS-PH and displayed in Algorithm 3,
that solves subproblems that may be comprised of multiple scenarios produced by the
scenario-grouping strategies. The new meta-heuristic generalizes the method proposed
by Crainic et al. (2011b) for the CMND(S).

Specifically, the algorithm begins by creating a list of scenario groups, C̄ = {C1, . . . , Cg},
where Cτ ⊆ S and ∪gτ=1Ci = S. Note , the list C̄ is static throughout the course of Al-
gorithm 3. Then, at each iteration, we set ps = ps/pCτ where pCτ =

∑
s∈Cτ ps, and solve

CMND(Cτ ), for τ = 1, . . . , g, to produce the designs yCτν .

Having determined the designs yCτν for τ = 1, . . . , g at iteration ν, we can derive a
single design for CMND(S), ỹν , by setting the design variables ỹνij to

ỹνij =

{
1, if yCτνij = 1 for any τ = 1, . . . , g
0, otherwise,

∀(i, j) ∈ A. (5)

A feasible solution is thus obtained in Step 11, at each iteration of Algorithm mS-PH.
As consensus is driven through the updating strategy applied on the fixed costs of the
subproblems (i.e., Step 14), the differences observed between the designs yCτν , for τ =
1, . . . , g, are expected to gradually decrease as the number of iterations ν increases. In
Step 12, the best network found yBest is updated based on the quality (i.e., total cost) of
the feasible solution obtained at the current iteration.

To update the fixed costs of the subproblems in Step 14 of Algorithm mS-PH, we use
the same strategy as Crainic et al. (2011b). Namely, with parameters, clow, chigh, and β,
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Algorithm 3 Multi-Scenario Progressive Hedging Meta-heuristic mS-PH

1: Initialization: Determine the g scenario groups;
2: ν ← 0;
3: f νij ← fij, ∀(i, j) ∈ A;
4: Construct the list of scenario groups C̄ = {C1, . . . , Cg};
5: First phase: Seek consensus on the arcs (i, j) that should exist in the design
6: while stopping criterion not met do
7: for all τ = 1→ g do
8: Solve CMND(Cτ ) for design yCτν ;
9: end for
10: ν ← ν + 1;
11: Construct a feasible network ỹν by applying (5);
12: Update best solution, yBest = ỹν , if appropriate;
13: ȳνij ←

∑g
τ=1 pCτy

Cτν
ij , ∀(i, j) ∈ A;

14: Global update of the fixed costs f νij using the reference point ȳνij,∀(i, j) ∈ A, by
applying (6);

15: end while
16: Let ȳ = ȳν and ỹ = ỹν

17: Second phase: Solve a restriction of CMND(S) as a mixed integer program if a
consensus solution was not obtained

18: if ȳ 6= ỹ then
19: Fix design variables in CMND(S) for which consensus is obtained in ȳ;
20: Solve CMND(S) as a restricted mixed integer program for design yFinal;
21: Update best solution, yBest = yFinal if appropriate;
22: end if
23: return yBest

we set

f νij =


βf ν−1ij , if ȳν−1ij < clow,
1
β
f ν−1ij , if, ȳν−1ij > chigh,

f ν−1ij , otherwise

∀(i, j) ∈ A. (6)

Parameters clow and chigh define thresholds on the level of consensus that are consid-
ered to be sufficient to warrant either an increase of the value of the fixed cost of an arc
(if consensus is towards not including the arc in the design) or, a decrease of the value
of the fixed cost of an arc (if consensus is towards including the arc in the design). As
for parameter β, it defines the factor by which the fixed costs are adjusted. At iteration
ν, a measure of the current level of consensus for each arc is obtained in Step 13 by
computing the values ȳνij, ∀(i, j) ∈ A (i.e., the expected value of including each arc in the
network). We consider consensus to have been reached regarding arc (i, j) at iteration ν
when ȳνij ∈ {0, 1}. Otherwise, 0 < ȳνij < 1 and thus consensus is not yet observed over all
networks yCτν , τ = 1, . . . , g.
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We use similar stopping criteria in Step 6 as presented in Crainic et al. (2011b).
Namely, we stop after 1,000 iterations, 25 iterations without an improving solution, 10
hours of CPU time, or there are fewer than γ (0 ≤ γ ≤ 1) of the arcs for which consensus
has not been reached. Therefore, when the First phase of Algorithm mS-PH is completed,
consensus on all arcs may not be observed (i.e., ȳ 6= ỹ). When such a situation occurs,
the Second phase is used to resolve it. This phase produces the network yFinal, which
represents the final solution obtained once the restricted CMND(S) is solved. In Step
21, yBest is updated one last time if yFinal improves it.

4.2 Experimental environment

To avoid “noise” introduced by addressing subproblems approximately, we solve single
and multi-scenario subproblems to (near-) optimality with CPLEX version 12. When
solving subproblems, CPLEX was executed with an optimality tolerance of 1% and a
time limit of 1,800 seconds. Other parameters were left at their default values. We
provided the disaggregate inequalities xksij ≤ dksyij to CPLEX as User Cuts, meaning
CPLEX will only add them to the formulation when they are violated by a solution to
the linear relaxation. Algorithm mS-PH was executed with γ = .1, meaning that Phase
1 of the algorithm terminates when consensus has been reached for at least 90% of the
arcs.

We also compare the performance of the strategies we propose to that of grouping
scenarios randomly (Escudero et al., 2012, 2013). To do so, we randomly determine the
number of groups between |S|/2 and |S|/4 (i.e., between 4 and 8 for 16 scenarios and 8
and 16 for 32 scenarios) and then randomly assign scenarios to groups.

All experiments were performed on a machine with 8 Intel Xeon CPUs running at
2.66 GHz with 32 GB RAM. Unless otherwise noted, computation times are reported
in seconds. To evaluate the quality of the solutions produced by Algorithm mS-PH, we
also solved these instances with CPLEX, in which case CPLEX was executed with an
optimality tolerance of 1% and a time limit of 10 hours. We refer to the dual bound
produced by CPLEX in these experiments as CPLEX LB. For the scenario grouping
methods requiring the commodity flows on each arc (warc−flows ) in a deterministic solution
to each scenario-based instance, we solve the single scenario network design problem with
CPLEX.

We used 6 problem classes (groups 4 to 9) from the set of R instances taken from
Crainic et al. (2011b). The attributes of each class are given in Table 1. Each of these
classes contains five networks, labeled 1, 3, 5, 7, 9, yielding a total of 40 networks. The
labels 1, 3, 5, 7, and 9 reflect an increasing ratio of fixed to variable costs. For each of
these networks, there are instances with 16 and 32 scenarios (|S| = 16, 32). While the
instances in our computational study are rather small, and in some cases, easily solved
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by CPLEX, we chose them because we want to run experiments where CPLEX can solve
both the single and multi-scenario subproblems to near-optimality in a reasonable time.
We believe that by doing so, the experiments provide a clearer understanding of the
impact of grouping scenarios and solving multi-scenario subproblems.

Table 1: Problem Class Characteristics

Group |N | |A| |K|
4 10 60 10
5 10 60 25
6 10 60 50
7 10 82 10
8 10 83 25
9 10 83 50

In all the experiments reported in the next subsections, we ran Algorithm mS-PH
multiple times for each instance, once with single-scenario subproblems and once for
every strategy for creating multiple-scenario subproblems. We allow for between |S|/2
and |S|/4 groups of scenarios of size between 1 and 8. The tables displayed in these
subsections report summary statistics (averages) for these instances when solving single-
scenario subproblems (rows Single), multiple-scenario subproblems with randomly built
groups (rows Random), and multiple-scenario subproblems with the strategies proper to
each analysis/subsection.

We report the average number of CPU seconds (P1 Time) and iterations (P1 # Iter)
required to complete Phase 1, the average time spent solving the restricted MIP in Phase
2 (P2 Time), the average optimality gap (P1 Gap CPLEX LB) of the best solution
produced during Phase 1 of Algorithm mS-PH as measured against the dual bound
produced by CPLEX, calculated as (Phase 1 Solution Value - CPLEX LB)/(Phase 1
Solution Value), and the average optimality gap (Gap CPLEX LB) of the final solution
produced by Algorithm mS-PH as measured against the dual bound produced by CPLEX,
and calculated as (Phase 2 Solution Value - CPLEX LB)/(Phase 2 Solution Value).

4.3 Effectiveness of Grouping Similar Scenarios

We report the results for the strategies yielding groups of similar scenarios (inducing
a partition of S), when similarity is measured with respect to the vectors of demand and
arc flows in rows Similar wdemands ) and Similar warc−flows , respectively. Tables 2 and 3
display these results (averages) for the instances with 16 and 32 scenarios, respectively.

Comparing the Single row with the others in both tables, we see that solving multi-
scenario subproblems in Algorithm mS-PH, regardless of how the scenarios are grouped,
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Table 2: Performance when Grouping Similar Scenarios - 16 Scenarios
Method P1 Time P1 # Iter. P2 Time P1 Gap Gap

(sec.) (sec.) CPLEX LB CPLEX LB

Single 3,682.34 91.28 5.48 4.22 1.51

Random 3,524.70 40.70 35.43 3.21 1.14

Similar
wdemand

1,701.97 5.53 9.63 2.14 1.07

Similar
warc−flow

1,224.93 36.07 3.00 2.04 1.08

Table 3: Performance when Grouping Similar Scenarios - 32 Scenarios
Method P1 Time P1 # Iter. P2 Time P1 Gap Gap

(sec.) (sec.) CPLEX LB CPLEX LB

Single 7,176.86 128.55 44.62 4.65 1.85

Random 8,113.73 60.33 26.20 4.30 1.64

Similar
wdemand

5,459.50 25.73 9.97 3.02 1.37

Similar
warc−flow

4,371.77 48.70 69.37 2.91 1.26

enables Phase 1 of Algorithm 3 to converge in significantly fewer iterations, and find
a better solution. Overall, when solving multi-senario subproblems, Algorithm mS-PH
always finds a better solution than when solving single-scenario subproblems.

While grouping scenarios randomly is better (in terms of solution quality and num-
ber of iterations required for Phase 1 to converge) than not grouping at all, a more
refined grouping strategy enables Algorithm mS-PH to produce an even higher quality
solution and for Phase 1 to converge in fewer iterations. We also see that the grouping
strategies we propose enable the algorithm to terminate in less time than when solving
single-scenario subproblems or multi-scenario subproblems created by grouping scenarios
randomly. Ultimately, we see that each grouping strategy proposed outperforms both
random grouping and not grouping at all with respect to the quality of the solution pro-
duced and the number of iterations and time required for the proposed meta-heuristic to
complete.

4.4 Effectiveness of Introducing Dissimilarity into Grouping

We next study whether introducing dissimilarity into a grouping of similar scenar-
ios with respect to the wdemand and warc−flow scenario characteristics can improve the
performance of Algorithm mS-PH. Tables 4 and 5 report results when introducing a Dis-
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similarity Group, as illustrated in Figure 2(b), for instances with 16 and 32 scenarios,
respectively. We report on the two variants of the Dissimilarity Group approach produc-
ing a partition or a cover of the scenario set. The first, rows Similar w− - DG (P), yields
partitions by creating the Dissimilarity Group and removing the scenarios in that group
from the groups to which they were initially assigned. The second, rows Similar w− -
DG (R), yields covers by not removing the scenarios assigned to the Dissimilarity Group
from the scenarios of their initial groups.

The results show that, for any scenario statistic, introducing the Dissimilarity Group
often leads to higher quality solutions at the expense of longer run times. In fact, for both
the 16 and 32 scenario instances, a method that includes the Dissimilarity Group yielded
the highest quality solution (Similar wdemand- DG (P) for 16 scenario instances, Similar
warc−flow-DG(R) for 32 scenario instances). We can also observe that, for any particular
statistic, building a cover, i.e., repeating the scenarios in the Dissimilarity Group often
results in fewer iterations needed for Phase 1 to converge than when partitions are built.
However, the same conclusion can not be drawn regarding solution quality.

Table 4: Impact of Introducing Dissimilarity - 16 Scenarios
Method P1 Time P1 # Iter. P2 Time P1 Gap Gap

(sec.) (sec.) CPLEX LB CPLEX LB

Similar wdemand 1,701.97 5.53 9.63 2.14 1.07

Similar wdemand - DG (P) 1,872.73 10.20 4.53 2.63 0.93

Similar wdemand - DG (R) 2,021.27 6.90 5.70 3.33 1.02

Similar warc−flow 1,224.93 36.07 3.00 2.04 1.08

Similar warc−flow - DG (P) 3,026.83 83.63 4.47 2.72 1.03

Similar warc−flow - DG (R) 2,722.37 36.80 3.83 2.30 1.01

Table 5: Impact of Introducing Dissimilarity - 32 Scenarios
Method P1 Time P1 # Iter. P2 Time P1 Gap Gap

(sec.) (sec.) CPLEX LB CPLEX LB

Similar wdemand 5,459.50 25.73 9.97 3.02 1.37

Similar wdemand - DG (P) 4,508.17 23.43 20.93 2.92 1.26

Similar wdemand - DG (R) 6,097.63 35.63 21.47 3.79 1.32

Similar warc−flow 4,371.77 48.70 69.37 2.91 1.26

Similar warc−flow - DG (P) 4,790.33 59.03 81.45 3.38 1.27

Similar warc−flow - DG (R) 5,035.63 56.47 48.10 4.10 1.25

4.5 Effectiveness of Grouping Dissimilar Scenarios

We now turn to comparing grouping of similar or dissimilar scenarios, for the two
scenario statistics. Tables 6 and 7 display the average results for these cases for instances
with 16 and 32 scenarios, respectively. Based on these results, it appears that, while
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grouping dissimilar scenarios is superior to grouping them randomly or not at all, we can
not conclude that doing so is better than grouping similar scenarios with respect to the
impact on solution quality. Yet, it does appear that grouping dissimilar scenarios can
significantly reduce the number of iterations needed for Phase 1 to converge.

Table 6: Group Similar or Dissimilar Scenarios - 16 Scenarios
Method P1 Time P1 # Iter. P2 Time P1 Gap Gap

(sec.) (sec.) CPLEX LB CPLEX LB

Similar wdemand 1,701.97 5.53 9.63 2.14 1.07

Dissimilar wdemand 2,045.97 3.07 2.40 1.76 1.08

Similar warc−flow 1,224.93 36.07 3.00 2.04 1.08

Dissimilar warc−flow 1,926.03 7.10 3.90 2.42 1.17

Table 7: Group Similar or Dissimilar Scenarios - 32 Scenarios
Method P1 Time P1 # Iter. P2 Time P1 Gap Gap

(sec.) (sec.) CPLEX LB CPLEX LB

Similar wdemand 5,459.50 25.73 9.97 3.02 1.37

Dissimilar wdemand 5,875.40 9.13 51.47 4.41 1.41

Similar warc−flow 4,371.77 48.70 69.37 2.91 1.26

Dissimilar warc−flow 4,708.30 11.43 14.23 3.28 1.35

4.6 Effectiveness of Covering Instead of Partitioning Scenarios

The last part of the experimental results address the question whether one should
create groups of scenarios that cover or partition the set of scenarios. We report in
Tables 8 and 9 the average results obtained for grouping similar scenarios within covers
and partitions, for instances with 16 and 32 scenarios, respectively. The results show
that, for both 16 and 32 scenarios and each statistic, using a cover of scenarios both
increases solution quality and significantly decreases the number of iterations necessary
for Phase 1 of Algorithm mS-PH to converge.

We then summarize in Table 10 the results obtained with the best cover strategy (i.e.,
Similar wdemand) and benchmark them against the original progressive hedging strategy
of solving single-scenario subproblems. Overall, on the instances with 16 scenarios, the
algorithm using the cover strategy converges to solutions that are, on average, 29% better
than the ones obtained when solving single-scenario subproblems. Furthermore, these
results were obtained in less than half the time. As for the instances with 32 scenarios,
the average improvement in solution quality is 26% for the cover strategy while solution
times are again significantly reduced by 24%.
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Table 8: Cover or Partition Similar Scenarios - 16 Scenarios
Method P1 Time P1 # Iter. P2 Time P1 Gap Gap

Statistic Type CPLEX LB CPLEX LB

wdemand partition 1,701.97 5.53 9.63 2.14 1.07

wdemand cover 680.13 3.50 7.43 2.36 0.82

warc−flow partition 1,224.93 36.07 3.00 2.04 1.08

warc−flow cover 2,386.63 4.50 14.50 2.50 1.03

Table 9: Cover or Partition Similar Scenarios - 32 Scenarios
Method P1 Time P1 # Iter. P2 Time P1 Gap Gap

Statistic Type CPLEX LB CPLEX LB

wdemand partition 5,459.50 25.73 9.97 3.02 1.37

wdemand cover 6,299.00 12.27 84.93 4.07 1.20

warc−flow partition 4,371.77 48.70 69.37 2.91 1.26

warc−flow cover 5,777.20 11.37 23.70 4.43 1.21

Table 10: Not grouping vs. Covering
16 scenarios 32 scenarios

Total time Gap Total time Gap
Method (sec.) CPLEX LB (sec.) CPLEX LB

Single 3,687.82 1.51 7,221.48 1.85
Similar wdemand cover 1,711.60 1.07 5,469.47 1.37
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5 Conclusions and future work

We proposed a methodological approach to build strategies for grouping scenarios
as defined by the type of scenario decomposition (partition or cover), type of grouping
(similar or dissimilar scenarios), and the measures specifying scenario similarity. We ex-
perimentally studied these strategies in the context of stochastic network design by com-
paring the behavior and performance of a new progressive hedging-based meta-heuristic
for stochastic network design that solves subproblems comprised of multiple scenarios.
We compared the proposed strategies not only among themself, but also against the strat-
egy grouping scenarios randomly and the lower bound provided by the state-of-the-art
MIP solver, CPLEX.

We have shown that by solving multi-scenario subproblems, the metaheuristic pro-
duces better results in terms of solution quality and computing efficiency. Grouping
scenarios is always beneficial and doing it the smart way even more so, as the manner
in which the multi-scenario subproblems are constructed has a definite impact on the
performance of the algorithm. Thus, the results show that solving multi-scenario sub-
problems based on a random partition of scenarios often enables the progressive hedging
meta-heuristic to achieve a solution that is 25% better than when single-scenario sub-
problems are solved, and in fewer than half the iterations. Moreover, the results also show
that, compared to grouping scenarios randomly, partitioning scenarios with the grouping
strategy we propose can enable the meta-heuristic to obtain a solution that is 16% bet-
ter. The number of iterations and time required to achieve this result is always reduced,
often by half. Finally, the results show that a covering of scenarios enables the meta-
heuristic to find solutions that are 16% better than partitioning them. Thus, considering
all strategies tested, the covering strategy with respect to commodity demands leads the
highest quality solutions, with an overall improvement in solution quality of approxi-
mately 27% with respect to the original strategy of solving single-scenario subproblems,
and the quickest convergence. Notice that, while the scenario-grouping strategies we pro-
pose are derived in the context of addressing stochastic network design problems, they
can be applied to other stochastic programs as well, and we believe similar performance
will be observed.

The significant benefits to the performance of the progressive hedging-based meta-
heuristics brought by the proposed scenario decomposition strategy, resulting in solving
multi-scenario subproblems, suggest multiple avenues for future research. Network de-
sign problems of more than a modest size are notoriously difficult to solve with even
the best integer programming solvers, and thus many effective meta-heuristics have been
developed. Thus, adapting one of these to multi-scenario network design problems will
be one of our next efforts. We also think that grouping scenarios dynamically, together
with a method that incorporates memory, will be beneficial for larger instances, and thus
we will investigate methods for doing so. The extension of our grouping strategies to
multistage stochastic problems will also be considered. In this context, determining how

22

Scenario Grouping in a Progressive Hedging-Based Meta-Heuristic for Stochastic Network Design

CIRRELT-2013-52



the methods should be adapted to multistage scenario trees will both define interesting
questions to investigate and pose important methodological challenges. Lastly, we believe
that scenario decomposition strategies based on grouping scenarios may be beneficial for
a broader set of solution methods. We are therefore in the process of investigating how
these principles can be used in the context of Benders decomposition applied to stochastic
problems.
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