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Abstract. The paper reports on the analysis of parallelization strategies for Local Search 

(LS) when the neighborhood size varies throughout the search, the Multiprocessor 

Scheduling Problem with Communication Delays (MSPCD) illustrating the methodology 

and results. The dynamic load distribution strategy implemented within a master-slave 

framework is shown to offer the best performance. Experimental results on several sets of 

instances with up to 500 tasks show excellent speedups (super-linear in most cases) while 

preserving the quality of the final solution. The proposed parallel LS is incorporated into 

Multistart Local Search and Variable Neighborhood Search meta-heuristic frameworks to 

analyze its efficiency in a more complex environment. The comparison between the 

sequential and parallel versions of each meta-heuristic, using various numbers of 

processors, shows improvement in the solution quality within proportionally smaller CPU 

time. 
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1 Introduction

Local Search (LS ) is a well-known methodological tool for finding good suboptimal solu-
tions for combinatorial optimization problems. It is widely used to improve the quality
of solutions obtained by constructive heuristics. More importantly, it serves as a basic
building block for a wide variety of meta-heuristic methods, neighborhood-based ones in
particular. Although meta-heuristics have proven efficient for many combinatorial op-
timization problems and real-life applications, there are still problems that cannot be
treated appropriately in a reasonable amount of time due to their complexity or the
large size of the practical instances, or both. As the recent literature shows [6], the
parallelization of search procedures offers a promising approach to increase the efficiency
of heuristic and meta-heuristic methods. LS is generally computationally intensive and
one wants it to be very efficient, especially within a meta-heuristic framework where it
will be called upon very frequently. Parallel strategies are very promising in this respect
and, yet, there is a little work dedicated to the parallelization of LS procedures. The
main objective of this paper is to propose efficient parallelization strategies for the LS
procedure.

We address the parallelization of LS operating in a solution environment comprised of
neighborhoods of variable sizes. To the best of our knowledge, there are no papers dealing
with this problem in the recent literature. We show that any static parallelization of such
a highly dynamical search process yields an inefficient utilization of available resources.
Our approach, involving the dynamic fine-grained partition of the neighborhood, leads to
an efficient load balanced parallel execution of LS. Moreover, we show that the proposed
parallel LS highly increases the performance of the corresponding neighborhood-based
meta-heuristics.

We illustrate these strategies and show results through an application of parallel LS
to the Multiprocessor Scheduling Problem with Communication Delays (MSPCD). The
MSPCD is an essential problem not only in computer science, but also in various ap-
plications involving scheduling of multiple resources (robotics, aircraft control, etc.). It
was shown in [11] how hard may be to find good solutions for this problem, even with
meta-heuristic methods. Therefore, we aim to provide an efficient method for improving
the existing scheduling results for MSPCD. As also shown in [11], LS takes the main part
of the computational burden in meta-heuristic search, 99% of the execution time was
devoted to constructing and evaluating neighbors. We show in this paper the benefits of
varying the neighborhood size in MSPCD and experimentally verify that fixed neighbor-
hood partitions perform badly. The experimental evaluation underlines the usefulness of
our approach in addressing the MSPCD.

The main contributions of this paper are 1) identifying and analyzing the issues related
to variable neighborhood dimensions, for which static decomposition is very inefficient
as a parallelization strategy of the corresponding LS; 2) the development of appropriate
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parallelization strategies for this type of LS procedure; 3) the experimental evaluation of
various parallel LS strategies; and 4) improving the best known results for the MSPCD.
Note however that, the proposed parallelization strategy does not depend on the par-
ticular application and can be easily adapted to different combinatorial optimization
problems. Moreover, our efficient implementation of the selected parallelization strategy
on a distributed-memory multiprocessor architecture using the MPI communication li-
brary supports the conclusion of Jin et al. [17] stating that “MPI is a de facto standard
for parallel programming (especially on distributed memory systems) assuring achievable
performance and portability”.

The paper is organized as follows. Section 2 recalls the formulation of the MSPCD and
the sequential, permutation-based LS procedure. The proposed parallelization strategies
are described in Section 3, while the implementation details are given in Section 4.
Section 5 contains the results of extensive experimentation with the proposed parallel
LS procedures. The experimental evaluations of VNS and MLS with the selected parallel
LS procedure are described in Section 6. We conclude in Section 7.

2 MSPCD Definition and Sequential LS

The Multiprocessor Scheduling Problem with Communication Delays can be described
as follows: tasks (or jobs) have to be executed on a multiprocessor system containing
several identical processors; we have to decide where and when each task will be executed,
such that the total completion time (makespan) is minimum. The duration of each task
is known as well as the precedence relations among tasks, i.e., what tasks should be
completed before some other could begin. In addition, if dependent tasks are executed on
different processors, the data transferring time (or communication delay) is also known.
Task preemption and duplication (redundant executions) are not allowed.

In the next subsection, we recall the formulation of the MSPCD for which the sequen-
tial LS procedure was proposed. The two mathematical programming formulations, the
first one based on task ordering and the second one inspired by rectangles packing are
detailed in [10]. The second subsection is dedicated to a brief overview of the sequential
LS proposed in [11], including the data structures and neighborhood definitions. We are
thus introducing the definitions used to present the parallel LS strategies we propose.

2.1 Multiprocessor Scheduling with Communication Delays

The tasks to be scheduled are represented by a directed acyclic graph (DAG) [8, 20, 31],
called Task Graph (TG), defined as a tuple G = (T, L, E, C). Here T = {t1, . . . , tn}
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stands for the set of tasks; L = {l1, . . . , ln} represents the computation times of the
tasks (execution times, lengths, durations); E = {eij | ti, tj ∈ T} describes the set
of communication edges; and C = {cij | eij ∈ E} is the set of edge communication
costs. The set E defines precedence relations between tasks. A task cannot start its
execution unless all its predecessors are completed and all relevant data is available. The
communication cost cij ∈ C represents the amount of data transferred between tasks ti
and tj when they are executed on different processors. When both tasks are scheduled
to the same processor no communication is required. An example of the task graph
containing 12 nodes (tasks) is given in Fig. 1. The numbers within the circles represent
the task indexes. Weights on the task-graph edges represent the communication cost.
Task durations are listed in the table presented below the task graph.

ti 1 2 3 4 5 6 7 8 9 10 11 12
li 45 26 36 37 27 34 37 55 22 30 26 25

Figure 1: Task graph example

The multiprocessor architectureM is assumed to contain p identical processors with
their own local memories, communicating by exchanging messages through bidirectional
links of the same capacity. This architecture is modeled by a distance matrix [8, 12].
The element (i, j) of the distance matrix D = [dij]p×p is equal to the minimum distance
between the processors i and j calculated as the number of links along the shortest
path between the two processors. The distance matrix is therefore symmetric with zero
diagonal elements. The multiprocessor system containing 4 processors connected in a
ring architecture and the corresponding distance matrix are presented in Figure 2.

The scheduling of TG G onto M consists in determining the index of the associated
processor and starting time instant for each of the tasks from TG in such a way as to
minimize some objective function. The usual objective function (that we use in this
paper as well) is the completion time Cmax [4] of the scheduled task graph (referred to
as makespan or schedule length) Cmax = maxi∈T{Si + li}. The starting time Si of a
task ti depends on the completion times of its predecessors and the amount of required
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Figure 2: 2-dimensional hypercube multiprocessor architecture

communication. The communication time between tasks ti assigned to processor pk and
tj assigned to processor pl is calculated as γklij = cij · dkl · ipc, where ipc represents the
inter-processor-communication speed (the communication-to-computation-ratio (CCR)
from [23]). If l = k, then dlk = 0 implying γklij = 0.

Since MSPCD is known to be NP-hard, only a few researchers have developed exact
algorithms [23, 32] for solving moderate-size instances. The classical approach to this
problem involves developing heuristic methods, which can give suboptimal solution of
good quality [12, 20, 21, 31]. These heuristic methods are constructive, building the
solution from a particular problem representation. Most of of these heuristics are based on
the list-scheduling technique, which usually consists of two steps [see 24, 30, for scheduling
techniques using different approaches] The first step orders the tasks in a priority list,
and the second one selects the most suitable processor for each task following the order
of the list. The most widespread task ordering rule is based on the Critical Path (CP)
[8, 18, 21]. Regarding the processor selection strategy, we point out the Earliest Start
(ES ) selecting the processor with minimum value of Si [27]. The two-step heuristics offer
a very suitable environment for LS and meta-heuristic search procedures. Different lists
of tasks enable the definition of transformation rules from one list to another, which is
the initial step in defining neighborhoods and search strategies based on this solution
representation.

Different meta-heuristics were proposed to improve the heuristic solutions, sequential
[28] and parallel [29] Tabu Search (TS), parallel Genetic Algorithm (GA) [22], sequential
permutation-based GA, TS, MLS and VNS [11]. The last paper performed an in-depth
analysis of MSPCD and showed that, for the benchmark instances with known optimal
solutions from [9], even the best performing meta-heuristic (VNS) produced solutions that
were sometimes more than ten percent worse then the optimum. This is an indication
that improvements can be obtained with parallelization.

4

Parallel Local Search to Schedule Communicating Tasks on Identical Processors

CIRRELT-2013-54



2.2 Solution representation, neighborhoods and sequential lo-
cal search

We develop parallel LS procedures starting from the sequential method proposed in [11],
using the same solution representation and neighborhood definition. The solution space
S is defined as the set of all feasible permutations of tasks with respect to the precedence
relations. An example of an unfeasible permutation the task graph from Figure 1 is

2 5 9 1 3 4 6 7 8 10 11 12

where task 9 appears before its predecessor 3. Considering such an unfeasible permuta-
tion can lead to schedules that will not execute correctly on the target multiprocessor
architecture. The same solution representation was used in [8, 22, 19]. Changing the
permutations,one obtains different lists of tasks for scheduling. We use the ES schedul-
ing rule [8] to compute the makespan objective function value, which is to be minimized,
as it provided the best performance in previous works [11, 9].

Given the solution representation, there is an indirect connection only between the
solution space and the value of the objective function. Therefore, it is not straightforward
to update the objective function value following a solution modification. It is actually
generally necessary to perform the complete rescheduling of tasks to processors when a
permutation is changed. The complexity of ES is O(n2p), as one has to calculate the
starting time on each processor p for each task n, given the allocation of all its predecessors
(O(n)). Two tricks were proposed in [11] to minimize the needed calculations and to
improve the efficiency of LS. First, the changed part of the solution is identified and only
that part is rescheduled. Second, the induced symmetry between solutions (the fact that
several different feasible permutations can yield the same final schedule) is taken into
account. If there is no change in the schedule for the first task belonging to the changed
part, the corresponding neighbor is not considered, since obviously it is leading to the
same final schedule.

Representing a MSPCD solution as a feasible permutation of tasks, provides the means
to explore well-known several neighborhood structures used in addressing the traveling
salesman problem, while imposing the restriction to keep the feasibility of the generated
neighbors [11]. In this paper, we use the Swap-1 neighborhood to define the proposed
parallel LS strategies.

A Swap-1 neighbor of a feasible solution x is obtained by moving a task from one
position to another (Figure 3). The worst case cardinality of the Swap-1 neighborhood
is O(n2), but the feasibility constraints make it usually much smaller. To further reduce
the neighborhood cardinality,citeDHM04 introduced a new search parameter, the search
direction. The neighborhood is thus searched by moving tasks only to the right (forward
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Figure 3: Swap-1 neighborhood search directions

search) or only to the left (backward search) as illustrated in Figure 3.

The LS procedure usually represents a systematic search in the given neighborhood
of an initial solution for the ”better” solutions. The pseudo-code for the sequential LS
is given in Figure 4. The initial solution can be selected randomly or by applying some
constructive heuristic. At the beginning, it also represents the current best solution. The
LS of Figure 4 adopts the Best Improvement (BI ) search principle according to which all
neighbors are visited and evaluated. The LS can be reduced by imposing that only some
specified part of the neighborhood is searched. Alternatively, one can perform a First
Improvement (FI ) search, i.e., stop the search in the given neighborhood of the current
solution as soon as the first improving solution is found.

1. Initialization. Choose initial solution x; Set xmin = x; fmin = f(x).
2. repeat

IMPROVEMENT = 0;
for all x′ ∈ N (xmin)

if (f(x′) < fmin) then
xmin = x′; fmin = f(x′); IMPROVEMENT = 1;

endif
until IMPROVEMENT == 0;

return (xmin, fmin)

Figure 4: Pseudo-code for the sequential local search procedure

It is obvious that the restrictions described above, feasibility constraints, savings in
the computations of the schedule length, search direction, and improvement strategy,
highly influence the neighborhood size of each particular solution. One must, therefore,
account for the fact that the number of neighbors varies throughout the execution of the
LS procedure, when designing parallel strategies.

3 Parallel LS Procedures

A significant amount of work was performed regarding the development and analysis
of various parallelization strategies for meta-heuristics. A number of main ideas can
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be identified in the literature [see the survey papers 6, 7, 33] starting from the low
level parallelization realized by distributing neighborhoods among processors, up to the
cooperative multi-thread parallel search [6, 5]. In the traditional, classical approach, the
main goal of parallelization is to speedup the computations needed to solve a particular
problem by engaging several processors and dividing the total amount of work between
them. When meta-heuristics are considered, the goals are richer [6]. Parallelization is
changing the original algorithm and, therefore, a new class of meta-heuristics is obtained
[1]. The non-determinism and the design of parallel search procedures involving several
computations proceeding simultaneously interacting according to various mechanisms,
yield more robust algorithms that perform a better exploration of the solution space,
achieving the desired gains in generating better-quality solution within reduced amounts
of running time. The parallelization of LS was rarely studied in details, however. It is,
therefore, the object of our work reported in this paper.

Notice that, even when the sequential LS proceeds deterministically, parallelization
often transforms it into stochastic search, since the final result generally depends on the
number of processors, the distribution of computations, and the communication mech-
anisms. Two main issues have to be considered therefore when analyzing the efficiency
of parallelization strategies: the division of computations and the communication mech-
anisms. The former is key to a good computation-load balancing among processors and
significant overall speedup. With regards to communications, the goal is to minimize
them while still exchanging information meaningful for the search. Three main aspects
should be considered 1) what is communicated; 2) when the communications take place;
and 3) where the information is sent or, more generally, between which tasks/processors
communications are taking place. Communication can be synchronous or asynchronous.
According to [6], parallel LS with synchronous communication is more similar to the
sequential one with respect to directing the search process. The issue with synchroniza-
tion is the occurrence of idle time intervals if the load of processors is not well balanced.
Asynchronous inter-processor communication can mitigate this impact and minimize the
idle time intervals, but then the search is performed non-deterministically, yielding a
parallel LS that is quite different from the original, sequential one. On the other hand,
asynchronous communications generally enable different regions of solution space to be
explored, which may result in a better quality of the final solution.

In the rest of this section, we describe several strategies for parallel LS for MSPCD.
These strategies can be classified according to [5] as 1C/RS/SPSS and 1C/KS/SPSS
(which correspond to the neighborhood decomposition class from [7]). A number of papers
in the recent literature that applied 1C/RS/SPSS strategies to LS, for example, within
Tabu Search [3, 29], Simulated Annealing [34], and Variable Neighborhood Search [13].
To the best of our knowledge, none of the works dealing with parallel LS considered
the case when the size of the neighborhood can vary during the search process. This
case requires detailed analysis and different approaches to parallelization, and we aim to
contribute to address this issue.
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3.1 Neighborhood decomposition parallelization strategies

Neighborhood decomposition means the partition of the neighborhood and the explo-
ration of the resulting regions in parallel, each region by a different processor, as il-
lustrated by the block-diagram presented in Figure 5. Each processor examines the
neighbors from the associated region within a single iteration of LS. In the general case,
this strategy does not change the original sequential algorithm, and aims just to speedup
the search process.
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Figure 5: PNE - Neighborhood decomposition parallel LS

We refer to this parallelization as parallel neighborhood exploration (PNE ). From a
computational point of view, linear speedup should be expected since these computa-
tions are independent. Regarding the communication issues, all the improved solutions
(local minima with respect to each region of the neighborhood) should be exchanged
among processors at the end of the current iteration and the best one propagated to
the next iteration for further exploration. The described PNE falls into the synchronous
category, since the communications are performed at strictly defined execution points
among all processors. According to the taxonomy proposed in [5], PNE can be classified
as 1C/RS/SPSS.

Several PNE strategies may be devised according, in particular, to how the partition
is performed. In an uniform partition strategy, tasks are equally distributed among
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processors. Applying this strategy to the Swap-1 neighborhood (Section 2.2), means
to divided the n tasks, ordered within a feasible permutation, into q parts, where q
represents the number of available processors involved in the parallelization (Figure 6).
The partition depends on the task position (index) in the current feasible permutation.
A subset of indexes is associated to each processor that then searches the region of the
neighborhood defined by this subset.

x0: . . .︸ ︷︷ ︸
n

q

︸ ︷︷ ︸
n

q

︸ ︷︷ ︸
n

q

︸ ︷︷ ︸
n

q

n︷ ︸︸ ︷
��������...��������...

-�

Figure 6: Uniform partition of Swap-1 neighborhood

During the parallel search, each processor moves tasks that are initially in its search
range. The new position of a task can be anywhere in the permutation, however, it is
not limited by the search range of the particular processor (Figure 6). Therefore, each
processor operates on a complete feasible solution, generating and evaluating the new
permutations obtained by moving tasks from the associated part only. According to the
uniform-partition idea, each region should contain approximately n/q succeeding tasks
and, thus, processor r (r = 1, 2, . . . , q) has to search the interval[

(r − 1) ∗
⌈
n

q

⌉
+ 1, r ∗

⌈
n

q

⌉]
,

where dxe indicates the minimal integer grater than or equal to x.

Uniform-partition PNE was used within TS for scheduling dependent tasks onto het-
erogeneous multiprocessor systems in [29]. The authors noticed an equal distribution
of computations among the neighbors of a current solution, each solution had the same
number of neighbors, and the complexity of the objective function value calculation was
also fixed. Therefore, the neighborhood could be partitioned into equal parts (up to the
modulo n%q factor). With a master-slave multiprocessor architecture containing up to
16 processors, almost linear speedup was reported.

Contrary to [13, 29], the equal partition of neighborhoods is not appropriate in our
case. First, the number of neighbors is not the same for all solutions and depends
on the improvement-rate strategy (FI or BI). In our experiments, for example, when
n = 200, the number of neighbors varied between 1860 and 2060 for the BI search.
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The deviations were larger for FI where, sometimes, the first visited neighbor yielded
the solution improvement and thus its evaluation completed the current LS iteration.
The second reason against equal partition is the variable duration of neighbor evaluation
(Section 2.2). Moreover, the number of neighbors within each region of the neighborhood
does not have to be the same due to the feasibility constraints. Therefore, the appropriate
load-balanced partition of the permutation among processors has to be determined. An
attempt to generate such a partition is described in the next subsection.

3.2 Variable size neighborhood decomposition

Experiments with the uniform-partition PNE for parallel LS showed that the expected
load imbalance took indeed place. The fact that the load imbalance was the consequence
of an inappropriate distribution of calculations among processors appeared clearly since
we were always able to identify at least one processor where the values of the measured
total execution time (ttot) and computation time (tCPU) were almost the same, while for
the others the difference between these was significant. This difference contains both the
communication and idle times produced by load imbalance. Since the communication
time is the same for all processors, it follows that computations were imbalanced. The
curves illustrating Load imbalances of FI and BI searches performed by four processors
in backward in a single LS run are illustrated in Figure 7.

Figure 7: Load imbalance, 4 processors searching in backward direction

We therefore define the fixed coarse, variable-size, load-balanced neighborhood par-
tition, identified as PNEC in the following, which we expect to yield better load bal-
ances between processors. Our initial experimental results showed that the task parti-
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Table 1: Percentages of tasks allocated to each processor (backward search)

BI search FI search
q % of tasks % of tasks
1 100 100
2 75 25 50 50
3 65 18 17 20 20 60
4 55 20 12 13 17 15 15 53
5 53 22 11 7 7 10 10 15 15 50
6 53 21 10 6 5 5 12 8 10 10 15 45
7 41 18 11 10 8 6 6 12 7 7 10 10 19 35
8 35 17 13 10 6 8 5 6 7 5 6 7 7 14 21 33
9 35 12 11 9 6 6 6 8 7 5 3 5 8 9 10 14 18 28
10 32 12 10 10 6 6 5 7 7 5 5 5 4 5 7 9 9 12 19 25

tion should be different for the cases when neighborhood is explored in forward and
backward directions. An example of the experimentally determined distribution for
backward search for q ≤ 10 is given in Table 1. The main issue with this distribution
is that the percentage of tasks to be handled by each processor has to be determined all
over again when q increases. We therefore propose a dynamic PNE strategy in the next
subsection.

3.3 Dynamic fine-grained neighborhood decomposition

We propose the fine-grained, dynamic partitioning of the permutation and neighborhood,
where each processor is given a single task at a time, in the order defined by the feasible
permutation, until all the tasks are explored or the FI criterion is satisfied. We identify
this strategy as PNEF in the following.

We expect PNEF to offer the “ideal” strategy. On the negative side, such a parti-
tioning may result in an significant increase in communications and, therefore, its per-
formance should be measured when used on an arbitrary multiprocessor architecture.
Yet, multiprocessor modern machines with highly integrated processors very enable fast
communications. This is true even for the somewhat older machine used for the experi-
mentation reported in this paper, a SUN Enterprise 10000, where we observed practically
negligible communication times (equal ttot and tCPU in the initial unbalanced tests). For
such high-speed communication architectures, the PNEF strategy becomes highly rele-
vant.
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The main characteristic of PNEF is its nondeterminism, resulting in differences in
solutions and performance between the BI sequential and parallel versions, as well as
between parallel executions involving different numbers of processors. Recall that, since
there is no unique correspondence between the feasible permutation and the resulting
schedule [11], several feasible permutations can yield the same schedule (or at least sched-
ule with the same length) of tasks among processors . In an sequential execution, the
neighborhood is searched always in the same direction (forward or backward, Fig-
ure 3) until the first occurrence of a solution leading to the desired improvement, which
is then used to direct the next search iteration. When the neighborhood is explored in
parallel, the definition of “the first occurrence” is no longer the same. The starting point
for further exploration is the first reported solution, which may occur anywhere in the
permutation, by any processor. We hope these variations may induce the exploration of
different regions of the search space and attain the objective of improving the quality
of the final solution without increasing the parallel execution time. According to the
described characteristics, the PNEF strategy can be classified as 1C/KS/SPSS.

4 Implementation details

In this section, we describe the implementation environment and the ideas we applied
in order to ensure an efficient exploitation of the available parallel architecture for both
variants of parallel LS.

4.1 Experimentation environment

The multiprocessor architecture is assumed to contain q identical processors organized in
a master-slave architecture (Figure 8). We define Processor 0 as the supervising processor
(master) with the main role of performing I/O, communication, and coordination tasks.
In the case of PNEC, the master performs its part of calculations too. The other q−1 are
working processors (slaves), which perform the computations needed for the execution of
the LS procedure. Our multiprocessor system is based on SUN computers and Message
Passing Interface (MPI) communication protocol (library for C programming language)
[14, 15].

The master-slave architecture has been selected for several reasons. First, it ensures
the minimization of communications. Having a small diameter (the maximum distance
between any two processors is 2), it allows us to minimize the number of messages required
to distribute all necessary data among the processors. Second, its simplicity allows us to
perform the detailed analysis of the performance of the proposed parallelization strategies
given multiprocessor characteristics (defined by ipc).
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Figure 8: Multiprocessor architecture for parallel LS experimentation

It is very important to distinguish between the multiprocessor architecture for the
parallel execution of LS (the machine on which experiments are run) and the target
multiprocessor architecture of the scheduling problem. For the execution of parallel LS,
we always use a master-slave architecture with q processors as explained above. The
target multiprocessor architecture for scheduling task graphs consists of p processors
connected in an arbitrary way. For our experiments we used hypercubes of various sizes,
as suggested in [11, 9].

We performed several optimization steps in our code to minimize the amount of
data to be exchanged between processors and to balance the computational load among
them. The data types were appropriately chosen to reduce the quantity of required
data transfers. Moreover, we exchanged only the necessary information (the solution
quality, i.e., schedule length) not the entire feasible permutation, unless improvement
was observe.

To determine the performance of a parallelization strategy, it is important to mea-
sure the communication and computation times properly. Each worker measures the time
between receiving two important messages from the supervisor, the START and STOP
commands. This is its total execution time (ttot). Each processor is also calculating the
computation time (tCPU) as a sum of all time intervals that do not involve communica-
tions. This means that the difference ttot − tCPU includes the communication time and
the processor idling time. Based on the obtained time measuring results, we were able
to find the best balance between computation and communication amounts, described in
Section 5.

Finally, we use both the speedup factor S [2], calculated as the ratio between execution
time of the best performing sequential algorithm and the the greatest ttot among all the
processors, and the solution quality to evaluate the efficiency of the proposed parallel LS
procedures.
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4.2 Implementation of the PNE strategies

The initial solution x0 is created by each processor applying the CPES heuristic [11].
This ensures savings in the communications and reduces the idle time intervals of the
processors. At the end of the parallel LS execution, be it either the PNEC or PNEF
variant, the workers send to the supervisor the time measurement data (ttot and tCPU)
to be reported.

4.2.1 Implementation of the PNEC strategy

The PNEC parallelization strategy followed the load balanced partition described in Sec-
tion 3.2. Starting and ending task indexes defining each region are determined by the
corresponding processor at the beginning of the program execution. Once the partition
is fixed, each of the q processors starts exploring its part of the neighborhood by moving
tasks with indexes in the associated range. Upon completion of the parallel neighbor-
hood exploration, all processors are synchronized to communicate the obtained results.
Working processors send their minima to the supervisor and wait for the next instruction.
The supervisor collects all schedule lengths and decides on the next step. If the current
best solution is improved, the new one (obtained upon request from the corresponding
processor) is sent to all workers as the initial solution for the next iteration. In the case
when the current incumbent is not improved, the STOP message is sent to all workers
and the best found solution is reported.

4.2.2 Implementation of the PNEF strategy

PNEF was implemented with q − 1 processors performing LS in parallel, while the su-
pervisor performs the dynamic distribution of tasks and verifying the quality of each
obtained improved solution (potentially n of them). It also determined the initial solu-
tion for the next iteration by selecting one of these solutions according to the predefined
criterion.

At the beginning of each iteration the first q−1 tasks are taken by each worker in a
deterministic manner: the first working processor performs movements of the first task,
and so on. Once a worker completes the search connected to the currently associated
task, it sends the results (new feasible permutation and the corresponding makespan)
to the supervisor. The worker then receives from the supervisor either the index of the
next task to be processed or an indication that the new iteration is about to start and
a new solution to arrive. When the iteration is completed, and the current best solution
is improved, the supervisor broadcasts the new solution among the workers. When the
current best solution is not improved, the STOP message is sent to all of the workers.
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5 Experimentations with parallel LS

Our programs are developed in the C programming language, and the MPI commu-
nication library is used for the data exchange between processors. The experimental
evaluation is performed on a SUN Enterprise 10000 multiprocessor system containing 64
processors, each with 400MHz clock and 64Gb of RAM. The parallel LS procedures were
tested on up to 30 processors.

5.1 Parameter calibration

The first phase of any experimental evaluation is certainly the decision on parameter
values. In our case, we have to reason about both the parameters of the LS procedure
and the parameters for parallelization. The parameters for LS are (see Section 2) the
type if improvement rate (FI or BI) and the search direction (forward or backward).
Regarding the parallelization, we have to select the type of neighborhood partition and
to determine the most suitable value for the number of processors q.

For parameter selection and the quality evaluation of our procedures, we experi-
mented with “hard” test instances with known optimal solutions [9]. This set contains
10 instances, which are sparse task graphs similar to the one given in Figure 1 with
optimal solutions of the type presented in Figure 9. The number of tasks in these graphs
ranges from 50 to 500, with the increment of 50, while the edge density is around 30%
of the maximum allowed density (calculated from the corresponding optimum solution).
In this phase, we assumed that the target multiprocessor architecture for scheduling is
the 2-dimensional hypercube given in Figure 2.

P1

P2

P3

P4

t1 t8

t2 t5 t9 t12

t3 t6 t10

t4 t7 t11

Figure 9: Optimal schedule for task graph with 12 nodes

The results of the experiments with the PNEC and PNEF variants are are summarized
in Table 2 for all LS parameter combinations. Detailed results are available from the
authors.

The third and the sixteenth rows of Table 2 contain the sequential execution infor-
mation, the average schedule length and execution time. The data we present for the
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Table 2: Comparison of PNEC and PNEF variants, instances with known optimal solu-
tions

forward search
BI search FI search

1 2781.4 131.79 2781.4. 131.79 2772.5 59.38 2772.5 59.38
PNEC PNEF PNEC PNEF

q % imp. S % imp. S % imp. S % imp. S
2 0.00 1.83 0.00 0.97 -0.003 1.56 0.00 0.96
3 0.00 2.46 -0.001 2.50 -0.005 1.69 0.001 1.72
4 0.00 3.04 -0.001 3.74 -0.005 1.65 0.00 3.43
5 0.00 3.56 -0.001 4.98 -0.004 2.01 0.001 4.51
6 0.00 3.58 -0.001 6.20 -0.003 2.37 0.00 4.98
7 0.00 5.61 -0.001 7.41 -0.004 1.97 -0.003 5.75
8 0.00 5.33 -0.001 8.66 -0.002 1.62 -0.003 6.58
9 0.00 6.52 -0.001 9.91 -0.004 2.35 -0.003 7.46
10 0.00 6.92 -0.0007 11.44 -0.004 2.57 -0.004 11.20

backward search
1 2737.9 104.64 2737.9 104.64 2771.6 65.14 2771.6 65.14

PNEC PNEF PNEC PNEF
q % imp. S % imp. S % imp. S % imp. S
2 0.00 1.82 0.00 0.96 -0.003 1.06 0.00 0.95
3 0.00 2.15 0.00 1.90 -0.001 1.26 0.019 1.52
4 0.00 3.51 0.00 2.82 -0.001 1.56 0.019 2.25
5 0.00 3.40 0.00 3.78 0.002 2.25 0.016 3.30
6 0.00 3.63 0.00 4.68 0.013 2.27 0.018 4.35
7 0.00 4.86 0.00 5.51 0.001 2.04 0.019 4.85
8 0.00 5.21 0.00 6.68 -0.001 2.38 0.017 5.39
9 0.00 6.26 0.00 7.65 -0.002 2.48 0.017 6.12
10 0.00 6.50 0.00 8.89 -0.002 2.38 0.016 6.99

parallel executions (rows 6 to 14 and 18 to 26) are average improvements with respect to
the sequentially obtained schedule length and the speedup of the corresponding parallel
PNE. A negative figure means that the parallel solution is worse then the sequential one.
It is obvious that the BI parallel execution of PNEC is the same as the sequential one,
while the execution of PNEF is completely nondeterministic for all the combinations of
parameters.

The main conclusion regarding both variants of PNE is that the proposed decompo-
sition provides significant speedups, although sometimes yielding a small degradation in
solution quality. Neither degradation nor improvement is significant, however. Hence,
we do not consider this factor relevant. Moreover, one notices the systematic increase in
speedup with the number of processors growing.

Examining the results in Table 2, we can conclude that PNEF performs better then
PNEC for the given multiprocessor architecture. This is a consequence of the ideal load
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Figure 10: Communication and idling time of processors in PNEC and PNEF

balancing achieved by the fine grained decomposition, which is powerful enough to cancel
the increase in the amount of communications. To support this conclusion, we present
in Figure 10 the normalized value of the percentage of non-computing time (the time
spent for communication and idling of processors) tNC as a function of q for the two PNE
strategies. For PNEC, tNC is calculated as

tPNEC
NC =

∑q
i=1(ttot(i)− tCPU(i))∑q

i=1 ttot(i)
.

The formula in the PNEF case is slightly different since one processor (the supervisor)
is not performing computations. We considered its total execution time as the non-
computing part, and therefore,

tPNEF
NC =

ttot(1) +
∑q

i=2(ttot(i)− tCPU(i))∑q
i=1 ttot(i)

.

We used the results from the FI-forward search for completely random instances to
generate Figure 10. The conclusion also holds for the other instances, the non-computing
time for PNEF decreases with an increase in q.

Since we obtained a constant increase in speedup by adding new processors (up to
10), we could conclude that scalability is achieved at least for q ≤ 10. In the subsection
to follow, we experiment with architectures containing more processors (10, 15, ...). We
use only PNEF for further evaluations since, in our case, it obviously outperforms PNEC.
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5.2 Scheduling results for PNEF

In this section, we describe the results obtained by the proposed PNEF variant of the
parallel LS to the extended set of instances. We use representative subsets of the two
benchmark sets proposed in [9]. The first consists of 36 sparse task graphs (ρ = 20%), for
which n = 50, 100, 200, 300, 400, 500 and 6 graphs for each n. Graphs were generated ran-
domly as described in [9]. We varied the target multiprocessor architecture (by changing
Dp×p) and compare the local minima obtained by the sequential and parallel variants.
For the target multiprocessor systems we selected 1D-, 2D-, and 3D-hypercubes. We
varied the target multiprocessors architecture in order to examine how the structure of
the problem influences the performance of the parallel LS. The second subset consists of
100 task graphs with known optimal solutions for 2D-hypercube multiprocessor networks
(with the number of task varying from 50 to 500 with the increment 50 and ten different
densities for the each number of tasks).

Table 3: Scheduling results for random task graphs on p = 2 processors

n\q 1 2 4 6 8 10 15 20 25 30
SL % improvement

50 405.83 0.00 0.00 -0.0004 0.00 0.00 0.00 -0.0004 -0.0004 0.00
100 894.17 0.00 0.00 0.00 -0.0002 -0.0002 -0.0009 -0.0033 -0.0009 -0.0002
200 1876.50 0.00 -0.0003 0.0003 0.0003 -0.0004 -0.0005 0.0001 -0.0004 -0.0004
300 2812.17 0.00 0.0002 -0.0004 -0.0001 -0.0005 -0.0004 -0.0010 -0.0012 -0.0015
400 3686.83 0.00 -0.0001 -0.0003 -0.0006 -0.0007 0.00 0.0001 -0.0005 -0.0013
500 4609.00 0.00 -0.0005 0.0003 0.0004 -0.0002 -0.0008 -0.0008 -0.0001 -0.0003
av. 2380.75 0.00 -0.0001 -0.0001 -0.0004 -0.0003 -0.0004 -0.0009 -0.0006 -0.0006

CPU time Speedup
50 0.14 0.87 2.33 4.67 4.67 7.00 7.00 14.00 7.00 4.67
100 2.07 0.98 2.69 4.31 5.59 7.14 10.35 14.79 8.28 10.35
200 36.02 0.99 3.07 5.67 6.91 10.12 16.15 20.35 12.29 16.15
300 189.27 1.00 3.37 6.21 9.22 12.27 17.94 26.92 18.78 22.35
400 763.42 1.00 3.25 5.48 8.37 11.56 17.62 24.67 18.56 21.18
500 2137.03 0.63 3.84 6.40 8.86 13.35 20.76 31.81 20.34 25.79
av. 521.32 0.91 3.09 5.46 7.27 10.24 14.97 22.09 14.21 16.75

The scheduling results for random task graphs are presented in Tables 3, 4, and
5. We present each row of the tables the average results for the six instances of the
same size when q was varied up to 30 processors. The search parameter combination is
FI-backwards.

The tables are divided into two parts, the upper part containing solution quality
measures, and the lower one presenting speedup factors. The number of tasks is given in
the first column, the sequential execution characteristics (average schedule length for the
upper part and wall-clock execution time for the lower one) are in the second column.
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Table 4: Scheduling results for random task graphs on p = 4 processors

n\q 1 2 4 6 8 10 15 20 25 30
SL % improvement

50 292.33 0.00 0.0011 0.0011 0.0040 0.0040 0.0040 0.0040 0.0040 0.040
100 617.33 0.00 0.0016 0.0011 0.0011 0.0016 0.0041 0.0019 0.0019 0.0013
200 1273.33 0.00 -0.0015 0.0006 0.0012 0.0016 0.0006 -0.0001 -0.0008 -0.0007
300 1913.00 0.00 -0.0031 -0.0027 -0.0031 -0.0031 -0.0029 -0.0011 0.0011 -0.0022
400 2555.17 0.00 -0.0001 0.0013 0.0011 -0.0006 -0.0008 -0.0014 -0.0012 -0.0010
500 3225.17 0.00 0.0001 -0.0033 -0.0032 0.0008 0.0005 -0.0033 -0.0034 -0.0030
av. 1646.06 0.00 -0.0003 -0.0003 0.0002 0.0007 0.0009 0.0000 0.0003 0.0057

CPU time Speedup
50 0.08 0.89 2.00 2.67 4.00 4.00 8.00 8.00 4.00 4.00
100 1.18 0.72 2.11 3.19 4.37 5.62 7.87 9.08 6.55 7.87
200 16.69 0.99 2.89 4.64 6.54 8.65 12.45 14.02 10.30 12.09
300 109.93 1.01 3.43 5.57 7.44 9.23 15.42 19.18 11.94 15.27
400 383.43 0.99 3.09 4.79 7.18 9.97 16.91 21.38 14.14 15.50
500 1004.65 0.99 3.21 5.70 7.87 10.45 15.56 23.92 15.09 17.72
av. 252.66 0.93 2.79 4.43 6.23 7.99 12.70 15.93 10.34 12.06

The remaining 9 columns of the upper part contain percentages of the improvement with
respect to the sequential solution using different numbers of processors for PNEF.

Note that PNEF on two processors (q = 2) performs the same as the sequential
LS, only the communication between supervisor and worker is added. Therefore, the
percentage of improvement in this case is always zero, while the speedup factor is a
little bit less than 1, since some time is spent on communications. The real gains with
parallel LS are obtained by engaging more processors. On the other hand, as can be
seen from Tables 3–5, too many processors do not provide an increase in solution quality.
Moreover, by adding new processors, we increase communications and this results in the
decrease of the speedup factor when using more than 20 processors. It should be noted
that the dependence between the amount of communications and the speedup is not
quite straightforward, as speedup is also influenced by the non-determinism of the search
process.

A very interesting observation is that the sequential LS for p = 4 requires only half
the time needed for the sequential scheduling for p = 2. This may look strange since the
problem size is increased. However, in our case, it just reflects the problem characteristic
that it is easier to improve the current solution when there is more space to search
(more processors to transfer tasks to). Moreover, the FI strategy makes the increase in
sequential search speed quite natural. On the other hand, scheduling onto 3D-hypercube
(p = 8 processors) is not so fast, as no significant improvement could be obtained while
we still have twice more processors to check (let us remind here that the complexity of
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Table 5: Scheduling results for random task graphs on p = 8 processors

n\q 1 2 4 6 8 10 15 20 25 30
SL % improvement

50 291.17 0.00 0.00 0.00 0.00 -0.0023 -0.0023 -0.0023 -0.0011 -0.0011
100 609.50 0.00 0.0003 0.0003 -0.0019 -0.0019 -0.0049 -0.0081 -0.0073 -0.0024
200 1260.67 0.00 0.00 -0.0005 -0.0007 -0.0010 -0.0032 -0.0029 -0.0029 -0.0030
300 1900.83 0.00 0.00 0.0005 0.0002 0.0002 -0.0028 -0.0028 -0.0026 -0.0042
400 2551.67 0.00 0.0001 0.0012 0.0012 0.0012 0.0017 0.0019 0.0033 0.0020
500 3228.83 0.00 0.0007 0.0009 0.0008 0.0019 0.0020 0.0014 0.0009 0.0004
av. 1640.44 0.00 0.0002 0.0004 -0.0001 -0.0003 -0.0016 -0.0021 -0.0016 -0.0014

CPU time Speedup
50 0.12 0.92 3.00 4.00 6.00 6.00 12.00 12.00 6.00 6.00
100 2.14 0.97 2.97 4.55 6.29 7.64 14.26 15.28 10.19 10.70
200 22.98 0.83 2.73 4.48 6.02 8.24 12.84 15.53 10.54 11.55
300 99.23 0.99 3.11 4.89 6.60 8.27 13.02 16.76 10.93 12.56
400 438.47 0.99 3.09 5.15 7.10 9.40 14.14 18.77 11.69 14.02
500 1253.67 1.00 2.83 4.75 6.80 9.01 13.78 19.46 12.56 14.65
av. 302.77 0.95 2.95 4.64 6.47 8.09 13.34 16.30 10.32 11.58

the ES scheduling algorithm is O(n2p)).

Another interesting fact is that scheduling on p = 4 processors seems to be easier
for the parallel execution. We obtain an improvement in solution quality in most cases.
On the other hand, the experiments show that this improvement does not increase with
the number of engaged processors q (sometimes one even observes a degradation in the
solution quality). We therefore conclude that for the problem and instances addressed,
PNEF performs best on a modest number of processors (around 10). Regarding the
scheduling for p = 8, it is not possible to increase the solution quality, as the strong
data dependency characteristic of the problem studied reduces the inherent parallelism.
Moreover, adding new processors for parallel execution yields a degradation in solution
quality. The main reason seems to be that, increasing the number of processors, increases
the number of permutation partitions while decreasing their size. This results in a rather
large, potentially overlapping number of solutions that may be discovered more or less
simultaneously, the first improving one not being necessarily the one that would give the
best trajectory. A small improvement in solution quality is however observed for large
instances (n > 300), as the size of each region is also relatively larger mitigating the
issue.

The results for the second part of our experimental evaluation are presented in Table 6.
We present the average (over 10 values) percentage of deviation from the known optimal
solution (including for the sequential execution) in the upper part of the table. The lower
part, illustrating the speedup of PNEF, contains the same type of data as the previous
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tables.

Table 6: Results for random task graphs with known optimal solution on p = 4 processors
n\q 1 2 4 6 8 10 15 20 25 30

% deviation
50 34.50 34.50 33.91 28.39 28.39 27.24 28.72 28.72 28.72 28.72
100 49.21 49.21 45.60 52.00 52.15 52.15 48.17 45.79 52.69 48.49
150 59.10 59.10 59.61 59.54 59.59 60.01 59.17 59.33 58.93 59.01
200 59.78 59.78 65.05 65.73 68.67 71.46 69.94 72.71 71.48 72.10
250 68.79 68.79 68.35 74.93 70.16 70.28 70.55 70.69 70.32 73.80
300 73.51 73.51 83.64 79.75 82.32 71.14 71.47 75.69 75.85 75.85
350 67.93 67.93 74.41 74.50 74.56 73.98 70.77 70.47 74.54 74.53
400 89.94 89.94 90.00 90.05 80.10 79.34 89.89 86.19 75.40 75.85
450 65.39 65.39 51.66 51.35 51.21 51.45 51.10 50.88 51.10 51.10
500 42.88 42.88 45.39 53.57 50.04 50.07 49.68 48.93 48.69 48.47
av. 61.10 61.10 61.76 62.98 61.72 60.07 60.95 60.94 60.77 60.79

CPU time Speedup
50 0.22 0.92 2.75 5.50 7.33 7.33 11.00 11.00 11.00 11.00
100 1.93 0.97 2.97 5.68 7.15 9.19 10.72 13.79 9.19 9.19
150 4.02 0.97 2.26 4.02 4.79 6.38 8.55 9.57 5.58 6.00
200 15.47 0.98 2.72 3.91 4.96 6.31 8.41 11.54 21.49 8.19
250 23.78 0.99 2.96 3.90 5.75 7.79 11.98 15.26 9.65 13.93
300 67.22 0.99 3.07 3.35 6.61 4.54 6.64 11.22 7.34 8.74
350 161.99 1.00 4.48 7.92 9.87 12.49 11.77 15.40 15.43 19.24
400 80.43 1.00 2.46 4.13 5.30 5.86 9.27 6.90 3.34 5.20
450 369.57 1.00 3.58 6.56 9.37 12.45 15.63 20.44 13.70 15.65
500 840.61 1.00 2.32 4.70 8.36 11.19 17.49 25.05 16.51 17.79
av. 156.52 0.98 2.96 4.97 6.95 8.35 11.15 14.02 11.32 11.49

As can be seen from Table 6, the deviations of the local minima from the known
optimal solutions are quite large. This is consistent with the results presented in [11]
for the sequential case. We can also note that nondeterminism of PNEF sometimes
improves and sometimes degrades the quality of the obtained local minimum. Regarding
the speedup of the parallel search, conclusion is almost the same as in the previous case;
parallelization is always good, and it appears most efficient for q ≤ 10. The feneral
conclusion about the proposed LS parallelization strategies is that the gain is mostly
in significantly speeding up the search process, while the solution quality cannot be
improved much.

The question then is, what is the impact of parallel LS on the performance of meta-
heuristics that call upon it, always with respect to solution quality and computational
efficiency. We address this question in the next subsection.
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6 Meta-heuristics with Parallel LS

We analyze the impact of parallel LS on the performance of meta-heuristics through two
solution approaches, Multistart Local Search and Variable Neighborhood Search. Both
methods rely on the efficiency of LS but are quite different in the sophistication of their
search mechanisms.

Multistart Local Search (MLS) is the simplest meta-heuristic method. It consists
in restarting the LS procedure from different (usually randomly selected) initial solutions
until some predefined stopping criterion is satisfied. The usual stopping criteria are
maximum number of iterations, maximum number of iterations without improvement of
the current best solution, maximum allowed CPU time, etc.

Variable Neighborhood Search (VNS) meta-heuristic was proposed by Mladen-
ović and Hansen [25]. It uses multiple neighborhoods Nk, (k=1, . . . , kmax) to avoid being
trapped in a local optimum. Usually, the initial solution is determined by some construc-
tive scheduling heuristic and then improved by LS before the beginning of the actual VNS
procedure. The main loop of VNS consists of four steps: shaking, improving, moving and
stopping-criterion checking. In shaking, the diversification step, a random point x′ in the

kth neighborhood of the current best solution x is generated. Then, some LS procedure
is performed starting from x′ within the improving step. The improved solution, that is,
the local optimum, x′′ is used in the moving step to guide further the search: when it is
the new incumbent, the search is concentrated around this solution, otherwise the next
neighborhood for shaking is selected, i.e., the value for k is incremented. The final step
is used to verify if the stopping criterion is met. Recent developments and applications
of VNS may be found in [26, 16].

To implement MLS or VNS with parallel LS, we need only to incorporate the selected
parallel LS procedure (PNEF) into the respective meta-heuristic. We run the resulting
parallelized version of the two meta-heuristics on different number of processors with
the maximum allowed execution time as the stopping criterion. We put the same time
limit (regardless the number of processors used for the parallel execution) for all task
graphs of the same size in order to check for the improvement of the final solution. We
thus analyzed the number of iterations performed by each meta-heuristic method as the
speedup indicator. The scheduling results for the sparse task graphs used in Section 5.1
are presented in Table 7.

The results displayed in Table 7 show that, except in a few isolated cases, the final
solution quality improves when the number of processors increases, and the improvement
is significant. The corresponding increase in the number of performed iterations is also
evident, showing an almost linear growth (speedup) for both methods. The difference
between the number of iterations observed for the two tested methods is due to the
differences in the definitions of the term iteration: for MLS, a single iteration involves
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Table 7: MLS and VNS results on instances with known optimal solution for p = 4
q = 1 2 3 4 5 6 7 8 9

Average schedule length
MLS 2725.3 2714.7 2714.6 2563.9 2561.0 2541.5 2542.1 2532.1 2539.4
VNS 2255.8 2153.8 2212.6 2179.2 2020.4 1987.7 1981.3 1800.7 1786.6

Average number of iterations
MLS 154.8 303.3 452.6 593.9 692.2 870.5 1015.0 1107.9 1286.6
VNS 10.9 18.2 32.1 39.7 49.0 55.2 69.9 75.8 78.8

the execution of LS from a random initial solution, while in the case of VNS, the number
of iterations represents how many times neighborhood kmax was visited.

Figures 11 to 18 illustrate the behavior of the two meta-heuristics with PNEF parallel
LS on one sparse and one dense graph from each set of task graphs of size n = 300, sched-
uled onto 2D-hypercubes (with time limit set to tmax = 1200s). The figures represent
improvement in time of the schedule length for different q. Vertical lines correspond to
the proportionally shorter execution time, i.e., when we use q processors for the parallel
execution, we are interested in the solution quality starting from point t = tmax/q. The
illustrations emphasize the quality of the solutions obtained and the speedup estimations.
In most of the cases, the sequential solution is significantly improved by parallelization
and this improvement is obtained in proportionally shorter time. The gain due to parallel
LS is evident for both meta-heuristics, especially for the task graphs with known optimal
solution, which were proven to be very hard.

These results are impressive. They clearly show the importance of parallel LS for the
performance of the meta-heuristics for hard combinatorial optimization problems.

23

Parallel Local Search to Schedule Communicating Tasks on Identical Processors

CIRRELT-2013-54



Figure 11: Scheduling results for MLS with PNEF for sparse random task graph (ρ = 20)
with known optimal solution SLopt = 1600

Figure 12: Scheduling results for MLS with PNEF for dense random task graph (ρ = 60)
with known optimal solution SLopt = 1600
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Figure 13: Scheduling results for MLS with PNEF for sparse random task graph (ρ = 20)

Figure 14: Scheduling results for MLS with PNEF for dense random task graph (ρ = 60)
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Figure 15: Scheduling results for VNS with PNEF for sparse random task graph (ρ = 20)
with known optimal solution SLopt = 1600

Figure 16: Scheduling results for VNS with PNEF for dense random task graph (ρ = 60)
with known optimal solution SLopt = 1600
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Figure 17: Scheduling results for VNS with PNEF for sparse random task graph (ρ = 20)

Figure 18: Scheduling results for VNS with PNEF for dense random task graph (ρ = 60)
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7 Conclusions

We addressed the parallelization of Local Search operating on neighborhoods of variable
sizes. LS is a basic building block of many meta-heuristic methods. At the same time, it
is usually computationally very intensive and it is called upon intensively during a meta-
heuristic search. It is thus important to enhance its efficiency and parallel algorithmic
design offers a very promising avenue in this respect.

We therefore proposed several parallel LS strategies, using the successful sequential
LS developed for the MSPCD as our very challenging illustrative environment. We
analyzed fixed and dynamic neighborhood-partition strategies and identified the fine-
grained dynamic partition approach as the most appropriate, as it provides an ideal load-
balancing of the processors involved in the parallel LS. Extensive numerical experiments
have shown that this parallel LS strategy yields solutions of better quality significantly
faster than the sequential procedure.

We also analyzed the performance of the proposed parallel LS through its impact on
the behavior and performance of meta-heuristics, which is, after all, the ultimate goal
of developing parallel LS. We used two very different meta-heuristics, the Multi-start
Search and the Variable Neighborhood Search. Experimental results show remarkable
improvements in solution quality and significant speedups, emphasizing the value of the
proposed parallel LS strategy.

In all experiments, the results showed that best results were obtained when a modest
number of processors was used. For the instances tested, both solution quality and
speedup were the best for q = 10. Yet, the experiments also hinted that a larger number
of processors may be beneficial when instance dimensions grow, pointing to the scalability
of the method.

An interesting and challenging research avenue is now to combine the fine-grained
parallel LS method and coarse-grained cooperative search. We hope to report results on
this topics in the near future.
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