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Abstract. The progressive hedging algorithm (PHA) is a classical method for solving 
stochastic programs (SPs) defined on scenario trees. To use the traditional PHA, all non-
anticipativity constraints (NACs) must be formulated explicitly as linear equality constraints 
to ensure that any feasible solution is scenario in variant at each tree node. An augmented 
Lagrangian relaxation is applied on NACs. The resulting auxiliary problem is decomposed 
into smaller scenario subproblems containing a linear and a quadratic penalty term for 
each NAC. Unfortunately, the number of NACs grows exponentially with the number of 
branching stages in the tree and applying the PHA is particularly challenging when this 
number is large. The large number of penalty terms slows down the PHA by increasing 
the difficulty of individual scenario-subproblems and by increasing the total number of 
iterations to be performed. In this paper, we propose a new approach to improve the PHA 
running time when solving multistage SPs (MSPs). Our method builds an optimal 
partitioning scheme which minimizes the total number inter-subtree NACs that need to be 
relaxed. Each subproblem is formulated as small MSPs defined a particular scenario 
subtree and is solved directly using a readily-available solver. Intra-subtree NACs are 
represented implicitly using a mathematical formulation based on a node-wise index 
system. The proposed approach is tested on an hydroelectricity generation planning 
problem with stochastic inflows. 
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scenario tree, progressive hedging. 
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1. Introduction

Practical applications of stochastic programming (SP) methods for solving
uncertain optimization problems are quite numerous cover a wide spectrum
of domains (Dupačová , 2002; Rusczynzki and Shapiro , 2003). The book by
Gassman and Ziemba (2013) presents different applications of these methods
in energy, logistics and production planning, finance and telecommunications.
Most of these applications contain one or several random parameters (e.g. in-
flows, prices, interest rates, yield, demand, electrical load, wind/solar genera-
tion) that are characterized by a (joint) continuous probability distribution. A
popular approach to represent continuously distributed parameters in SP models
consists in replacing the original continuous distribution by a discrete distribu-
tion possessing a finite number of possible outcomes (scenarios). This type of
approximation leads to a scenario tree representation of uncertainty. Fig. 1a
shows a simple example of a scenario tree with three stages, four scenarios and
seven nodes. Different methods were proposed over the years for constructing a
scenario tree from a set of synthetic or historical time series (e.g. Pflug , 2001;
Høyland and Wallace , 2001; Latorre et al. , 2007). Heitsch and Römisch (2009)
proposed a construction method based the theoretical results of Heitsch et al.
(2006). The SCENRED2 package of the General Algebraic Modeling System
(GAMS) is a computer implementation of this technique.

Multistage stochastic programs (MSPs) defined on scenario trees can be
reformulated into deterministic equivalent programs (DEPs) of finite size (vari-
ables, contraints). The number of decision variables and constraints is usually
proportionnal to the number of nodes contained in the scenario tree. Therefore,
the size of DEPs grows exponentially with the discretization level (number of
branching stages, number of branches per stage) used to describe the original
probability distribution. In general, most real-world MSPs cannot be solved
directly using a commercial solver (e.g. GLPK, Gurobi, XPress-MP, CPLEX)
when an accurate representation of random parameter is used. The required
amount of random access memory (RAM) is typically the main limiting factor
when solving large-scale linear or quadratic programs directly.

Over the past decades, different decomposition methods were proposed in
the literature for solving efficiently large-scale SPs (Rusczynzki , 2003; Sagas-
tizábal , 2012). Solution methods based on Benders (1962) decomposition (e.g.
Van Slyke and Wets , 1969; Birge , 1985; Birge and Louveaux , 1988; Pereira
and Pinto , 1991; Laporte and Louveaux , 1993; Küchler and Vigerske , 2007;
Carpentier et al. , 2013b) are widely used for solving linear MSPs. These meth-
ods use a stage-wise decomposition scheme and work by constructing convex
and piecewise linear recourse functions.

The progressive hedging algorithm (PHA) proposed by Rockafellar and Wets
(1991) is another popular method for solving SPs defined on scenario trees. This
method was applied successfully in various type of problems including electricity
generation planning (Gonçalves et al. , 2011; Carpentier et al. , 2013a), network
design (Crainic et al. , 2011), network flow (Mulvey and Vladimirou , 1991),
lot-sizing (Haugen et al. , 2001) and resources allocation (Watson and Woodruff
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Figure 1: (a) Example of a scenario tree. (b) Illustration of the scenario-decomposition scheme.

, 2011). To use the the traditional version of the PHA, a decision vector xtω ∈
R

m must be defined at each stage (time period) t = 1, ..., T for all scenarios
ω ∈ Ω contained in the tree. All non-anticipativity constraints (NACs) must
formulated explicitly as linear equality constraints

xt(n)ω = x̂n, ∀ω ∈ Ω, n ∈ N ∗
ω : λnω (1)

to ensure that feasible solutions are scenario-invariant at each tree node. The
function t(n) returns the stage index associated with tree node n, x̂n ∈ R

m is
the decision vector at node n, λnω ∈ R

m is the vector of Lagrange multipliers
associated for scenario ω at node n, N ∗

ω is a set that contains all nodes visited
by scenario ω and by at least another scenarios. The PHA works by applying a
scenario-decomposition scheme on the resulting mathematical formulation and
by applying an augmented Lagrangian relaxation on constraints (1). Fig. 1b
illustrates an application of the scenario-decomposition scheme on the scenario
tree shown on Fig. 1a. In this example, N ∗

1 = N ∗
2 = {0, 1} and N ∗

3 = N ∗
4 =

{0, 2}. An augmented Lagrangian relaxation must be applied on the following
NACs

x1,1 = x1,2 = x1,3 = x1,4 = x̂0, (2)

x2,1 = x2,2 = x̂1, x2,3 = x2,4 = x̂2. (3)

A different version of the PHA was proposed by Crainic et al. (2013)
for solving two-stage stochastic network design problems. Instead of applying
the traditional scenario-decomposition scheme, these authors applied a multi-
scenario decomposition scheme. In this approach, the scenario set Ω is parti-
tioned into disjoint subsets (clusters) Ωc for c ∈ C and a decision vector x̃nc is
defined at each node n contained in each scenario cluster c. The following NAC
are formulated as linear equality constraints

x̃nc = x̂n, ∀c ∈ C, n ∈ N ∗
c : λ̃nc (4)

where C is the set of clusters, N ∗
c is the set of nodes contained in cluster c

and λ̃nc is the vector of Lagrange multipliers. Each subproblem corresponds
to a small two-stage SP (TSP) defined on a cluster c of scenarios which are
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Figure 2: Examples of clustering schemes for a multistage scenario tree.

aggregated according to a similarity (or dissimilarity) level. An AL relaxation
is applied on all NAC and the resulting problem is decomposed into cluster-
subproblems. Decomposing the TSP into less (and larger) subproblems allows
to reduce the number of relaxed NACs (RNACs) which, in turn, reduces the
number of linear-quadratic penalty terms that need to be included in subprob-
lems. Doing this makes individual subproblems easier to solve and enhances the
algorithm converence rate.

The similarity-based method proposed by Crainic et al. (2013) works well
on TSPs because the topology of the underlying scenario tree is quite simple.
In two-stage scenario trees, all leaves possess the same ancestor node (the root).
Consequently, the total number of RNACs is always equal to the number of
clusters no matter which scenarios are grouped together. Therefore, the only
relevant metric that can be used for grouping scenarios would be a function
of the similarity (or dissimilarity) level between scenarios. However, general
multi-stage scenario trees usually possess a complex branching structure and,
consequently, the number of RNACs will vary importantly depending on which
partitioning scheme is used. Fig. 2 shows a simple illustrative example where
two different partitioning schemes are applied to the tree shown on Fig. 1a.
For the scheme shown on Fig. 2a, the clusters c = 1 and c = 2 are defined on
scenarios Ω1 = {1, 2} and Ω2 = {3, 4}, respectively. With this scheme, only the
two following NACs need to be formulated explicitly (and relaxed)

x̃0,1 = x̃0,2 = x̂0

where x̃nc is the decision at node n in cluster c. The remaining NACs associated
with nodes 1 and 2 are dealt with directly when solving subproblems defined on
clusters 1 and 2, respectively. For the scheme shown on Fig. 2b, the clusters c =
1 and c = 2 are defined on scenarios Ω1 = {1, 3} and Ω2 = {2, 4}, respectively.
The following NACs need to be formulated explicitly

x̃0,1 = x̃0,2 = x̂0, x̃1,1 = x̃1,2 = x̂1, x̃2,1 = x̃2,2 = x̂2.

In this paper, we propose an new approach to improve the PHA running
time when solving multi-stage SPs (MSPs). Our method aims at building an
partition of the scenario set which minimizes the total number inter-subtree
NACs (4) that need to be relaxed. Reducing the number of RNACs makes
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individual subproblems easier to solve (less penalty terms) and improves the
PHA’s convergence rate (less iterations).

The paper is organized as follows. A general mathematical formulation for
MSPs is presented in Section 2. Section 3 presents the progressive hedging
algorithm applied in the context of a subtree decomposition scheme. Section 4
describes a numerical experiment performed to evaluate the solution method.
Numerical results are presented in Section 5. Comments and conclusions are
drawn in Section 6.

2. Problem formulation

2.1. Multistage stochastic program

We consider the following optimization problem defined on T time periods
(stages)

(P) minE

[

T
∑

t=1

gt(xt, ξt)

]

(5)

subject to

At(ξt)xt +Bt(ξt)xt−1 = bt(ξt) , ∀t = 1, ..., T (6)

xt ∈ Xt , ∀t = 1, ..., T (7)

xt ∈ Ft(ξ1, ..., ξt) , ∀t = 1, ..., T (8)

where E [ · ] is the expectation operator, gt(·, ·) is a convex function that rep-
resent the operating costs at time period t, xt ∈ R

m is the decision vector at
time period t and ξt is a random vector at time period t. Each component of ξt
represents one of the problem’s random parameter at time period t. Equations
(6) and (7) represent dynamic (e.g. water budget, inventory dynamics, ramping
constraints) and static (e.g. system limits, ...) constraints, respectively. Co-
efficient of technological matrices At, Bt and vectors bt are treated as random
variables. The sets of static constraints Xt are assumed to be non-empty and
convex. Non-anticipativity constraints (8) ensure that each xt is chosen using
only past (known) observations (ξ1, ..., ξt) and cannot depend on future (un-
known) realizations of random parameters ξt+1, ..., ξT . Each set Ft contains all
solutions that meet this criterion at time t.

2.2. Scenario tree

Each random vector ξt is characterized by a known probability distribution
Pt( · ξ1, ..., ξt−1) which is conditional to previous observations ξ1, ..., ξt−1. We
assume that Pt possess a finite number of possible outcomes at each t = 1, ..., T .
We also assume that all random parameters are exogenous to the controlled
system. Therefore, Pt is not influenced by xt. Making these assumptions enables
us to represent the stochastic process {ξt : t = 1, ..., T} using a finite scenario
tree T . Each node n ∈ N has an occurence probability of pn. Each scenario ω ∈
Ω in T corresponds to a path from the root 0 ∈ N to a particular leaf ℓ(ω) ∈ L.

Optimal Scenario Set Partitioning for Multistage Stochastic Programming with the Progressive 
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The probability of a given scenario ω correspond to the probability pℓ(ω) of its
leaf ℓ(ω). The branching structure of T is represented by a function a(n) which
returns the ancestor of any node n. The vector ξn represents the realization
of random parameters at node n. The set Ω(n) contains all scenarios visiting
node n. Each set ∆(n) contains all child nodes of n. Fig. 1a shows a simple
example with T = 3, N = {0, 1, 2, 3, 4, 5, 6}, L = {3, 4, 5, 6}, Ω = {1, 2, 3, 4},
a(1) = a(2) = 0.

2.3. Node-wise formulation

The problem P defined on a scenario tree T can be transformed into the
following deterministic equivalent program (DEP)

(E) min
∑

n∈N

pngt(n)(x̂n, ξn) (9)

subject to

Anx̂n +Bnx̂a(n) = bn , ∀n ∈ N , (10)

x̂n ∈ Xn , ∀n ∈ N . (11)

The program E is obtained from P by replacing all occurences of stage-wise
decision vectors xt by a node-wise decision vector x̂n at node n. In the objective
function, the expectation operator is replaced by a finite sum. Each term is
weighted by the probability of the corresponding tree node. Non-anticipativity
constraints (8) are represented implicitly with this formulation because we use
a node-wise index system.

3. Decomposition method

3.1. Scenario clusters

We partition the scenario set Ω into disjoint subsets (clusters) Ωc where
c ∈ C. We denote by Tc the subtree associated with all scenarios in Ωc. Each
set Nc contains all the nodes that are visited by the scenarios in Ωc. The
occurence probability of cluster c is defined as follow

p̃c :=
∑

ω∈Ωc

pℓ(ω). (12)

The probability p̂nc of node n conditional to cluster c is defined as follow

p̂nc := pn/p̃c. (13)

Optimal Scenario Set Partitioning for Multistage Stochastic Programming with the Progressive 
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3.2. Cluster-wise formulation

The program E defined on scenarios clusters c ∈ C is reformulated into the
following equivalent program

(Ẽ) min
∑

c∈C

p̃c
∑

n∈Nc

p̂ncgt(n)(x̃nc, ξn) (14)

subject to

Anx̃nc +Bnx̃a(n)c = bn , ∀c ∈ C, n ∈ Nc (15)

x̃nc ∈ Xn , ∀c ∈ C, n ∈ Nc, (16)

x̃nc = x̂n , ∀c ∈ C, n ∈ N ∗
c : λ̃nc. (17)

The formulation Ẽ can be obtained from E by making the following transfor-
mations. The objective function (14) and constraints (15)–(16) are obtained by
replacing all occurences of x̂n at nodes n ∈ N by an alternative decision vector
x̃nc defined at nodes n ∈ Nc visited by clusters c ∈ C. In (14), the probability
pn of node n is replaced p̃cp̂nc by according to (13). The NACs (17) ensure that
any feasible solution of Ẽ is subtree-invariant at all tree nodes and λ̃nc is the
vector of Lagrange multipliers associated with node n and cluster c. Each set
N ∗

c contains all nodes visited by cluster c and by at least another cluster. For
the example shown on Fig. 2a, N ∗

1 = N ∗
2 = {0}.

3.3. Augmented lagrangian

We apply an augmented Lagrangian relaxation on constraints (17) and the
resulting objective function to be minimized is

Aρ(x̃, x̂, λ̃) =
∑

c∈C

p̃c





∑

n∈Nc

p̂ncgt(n)(x̃nc, ξn) +
∑

n∈N∗

c

(

λ̃′
nc(x̃nc − x̂n) +

ρ

2
‖x̃nc − x̂n‖

2
)





(18)
subject to constraints (15)–(16). The penalty parameter ρ is a positive constant,
x̃ = (x̃nc) is the vector of cluster-wise decision vectors, x̂ = (x̂n) is the vector
of node-wise decision vectors, λ̃ = (λ̃nc) is the vector of Lagrange multipliers
associated with constraints (17). All vectors are assumed to be column vectors,
(·)′ is the transpose operator and ‖ · ‖ is the euclidian norm.

3.4. Progressive hedging algorithm

The algorithm begins with an initial penalty parameter ρ0, a suboptimal
node-wise solution x̂0 = (x̂0

n) and Lagrange multiplier λ̃0 = (λ̃0
nc). Then, at

each iteration k = 0, 1, 2, ... , the two following steps are performed.

Step 1. Find a new cluster-wise solution x̃k+1 = (x̃k+1
nc ) by minimizing

Aρk
(x̃, x̂k, λ̃k) for x̃ subject to constraints (15)–(16). Because we consider
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(x̃k, λ̃k) as fixed values, this problem is separable by cluster. Each cluster-
subproblem is a relatively small MSP defined on a subtree Tc associated with a
particular cluster c. The subproblem associated with cluster c is

(Skc ) min p̃c
∑

n∈Nc

p̂ncgt(n)(x̃nc, ξn)+
∑

n∈N∗

c

(

(λ̃k
nc)

′(x̃nc − x̂k
n) +

ρk
2
‖x̃nc − x̂k

n‖
2
)

subject to

Anx̃nc +Bnx̃a(n)c = bn , ∀n ∈ Nc, (19)

x̃nc ∈ Xn , ∀n ∈ Nc. (20)

Step 2. a) Compute the new cluster-averaged solution

x̂k+1
n ←

∑

c∈C(n)

p̃cp̂ncx̃
k
nc/

∑

c∈C(n)

p̃cp̂nc, ∀n ∈ N∗

where C(n) is the set of clusters visiting node n.
b) Update the Lagrange multipliers

λ̃k+1
nc ← λ̃k

nc + ρk(x̃
k+1
nc − x̂k+1

n ), ∀c ∈ C, n ∈ N ∗
c .

c) Update the penalty parameter using

ρk+1 ← µρk (21)

where µ ≥ 1 is a constant. This formula is the traditional update formula used
in general augmented Lagrangian methods (Nocedal and Wright , 2006).

d) Stop if

ζk ←
1

T

∑

c∈C

p̃c
∑

n∈N∗

c

‖x̃k+1
nc − x̂k+1

n ‖2 < ǫ. (22)

Otherwise, return to step 1. The stopping criterion ǫ is a positive constant
and ζk the total violation of NAC at iteration k. The constraints (15)–(16) are
satisfied by x̃k

nc at each k. The NACs (17) are violated at early iterations and
the feasibility will improve gradually as the number of iteration increases. In
this problem, all decision variables are continuous and all constraints and the
objective function are convex. Therefore, the PHA is an exact solution method
for this problem. Rockafellar and Wets (1991) presented a proof of convergence
for the PHA.

3.5. Optimal subtree decomposition

The aim of the optimal subtree decomposition problem (OSDP) is to par-
tition the scenario set Ω into disjoint subsets (clusters) Ω1, ...,Ω|C| to minimize
the PHA running time. Any feasible partitioning scheme should ensure that the
size of subproblems Skc is manageable. The total running time depends on the
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algorithm’s convergence rate (number of iterations) and on the difficulty level
of individual subproblems Skc (time per iteration).

In this paper, we formulate the OSDP as follow

min
∑

c∈C

|N ∗
c | (23)

subject to

|Ωc| ≤ Nmax , ∀c ∈ C (24)
⋃

c∈C

Ωc = Ω , (25)

Ωc ∩ Ωd = ∅ , ∀c, d ∈ C, c 6= d (26)

The objective function (23) to be minimized is the total number of RNACs
linking clusters c ∈ C. This performance metric makes sense in the context
of MSPs because a linear and a quadratic penalty term must be included in
subproblems for each RNAC. By reducing the number of RNAC, we expect that
the convergence rate will improve. We also expect subproblems to be easier to
solve. The constraints (24) ensures that all clusters cannot contain more than
Nmax scenarios. The constraints (25) ensure that all scenarios are assigned to a
particular cluster. The constraints (25) ensure that all subsets Ωc are disjoint.

3.6. Heuristic method

We propose a heuristic method which enables to a good solutions to the
OSDP. The Algorithm 1 summmarizes all steps of our method. This algorithm
receives a general scenario tree T and the parameter Nmax which represent the
maximal number of scenarios that can be contained in a single cluster. The
proposed method choses how many clusters are required and returns Ωc, p̃c and
p̂nc for each c ∈ C.

The Algorithm 1 builds a finite number of clusters c sequentially for c =
1, 2, ..., |C| by selecting a different reference node ñ among the set of candidate
nodes Ñ . The algorithm starts by building cluster c = 1 and only the root
node 0 is contained in Ñ . At each iteration the main while loop, the algorithm
selects a new reference node ñ and removes it from Ñ . The node ñ chosen is
the one that is visited by the most scenarios in the tree. If the node ñ is visited
by more scenarios than is allowed in a single cluster Nmax, then this node is
not the reference node of current cluster c to be constructed and all child nodes
of ñ are added to the set Ñ . Otherwise, the node ñ is the reference node of
cluster c, Ωc is defined by all scenarios visiting node ñ, the probability of cluster
c correspond to the occurence probability of n and the conditional probability
of each node n ∈ Nc visited by ω ∈ Ωc is computed as follow:

• The conditional probability of tree nodes n ∈ D(ñ) that are located down-
stream of ñ is computed using equation (13).

• The conditional probability of tree nodes n ∈ K(ñ) that are located up-
stream of ñ (including ñ itself) is equal to one.

Optimal Scenario Set Partitioning for Multistage Stochastic Programming with the Progressive 
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Algorithm 1 Scenarios clustering heuristic.

c← 1, Ñ ← {0}
while Ñ 6= ∅ do
ñ← argmax{|Ω(n)| : n ∈ Ñ}
Ñ ← Ñ − {ñ}
if |Ω(ñ)| > Nmax then

Ñ ← Ñ ∪∆(ñ)
else

Ωc ← Ω(ñ)
p̃c ← pñ
for n ∈ D(ñ) do
p̂nc ← pn/p̃c

end for

for n ∈ K(ñ) do
p̂nc ← 1

end for

c← c+ 1
end if

end while

Figure 3: Example of a scenario tree.

For the example shown on Fig. 3, D(4) = {7, 8, 12, 13, 14} and K(4) = {0, 2, 4}.
The algorithms continues as long as the set Ñ is non-empty.

We illustrate how the Algorithm 1 works by applying it on the scenario tree
shown on Fig. 3 with Nmax = 3. The algorithm returns three clusters as shown
on Fig. 4. The probability of each cluster is p̃1 = 0.35, p̃2 = 0.4 and p̃3 = 0.25.
The following NACs must be formulated explicitly

x̃0,1 = x̃0,2 = x̃0,3 = x̂0

x̃2,1 = x̃2,3 = x̂2.

The following intermediary results are obtained at five iterations of the while
loop

Optimal Scenario Set Partitioning for Multistage Stochastic Programming with the Progressive 
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Figure 4: Subtrees.

1. Ñ = {0} and, consequently, the ñ = 0 is selected and removed from Ñ .
The selected node is visited by all scenarios (Ω(ñ) = {1, ..., 6}). Because,
|Ω(ñ)| = 6 > 3, the child nodes ∆(0) = {1, 2} are added to Ñ .

2. Ñ = {1, 2}. The node ñ = 2 is selected because |Ω(2)| = 4 > 2 = |Ω(1)|.
Because |Ω(2)| = 4 > 3, the child nodes ∆(2) = {4, 5} are added to Ñ .

3. Ñ = {1, 4, 5}. The node ñ = 4 is selected and removed from Ñ because
|Ω(4)| = 3 > 2 = |Ω(1)| < 1 = |Ω(5)|. Because |Ω(4)| = 3 ≤ 3, the
cluster c = 1 is defined by the scenarios Ω1 = {3, 4, 5} and has a total
probability p̃1 = 0.35. The sets K1 = {0, 2, 4} and D1 = {7, 8, 12, 13, 14}.
The probability of each node in c = 1 is p̂0,1 = p̂2,1 = p̂4,1 = 1, p̂7,1 =
p̂12,1 = p̂14,1 = 0.15/0.35, p̂8,1 = 0.2/0.35 and p̂13,1 = 0.05/0.35. We now
start constructing the cluster c = 2.

4. Ñ = {1, 5}. The node ñ = 1 is selected and removed from Ñ because
|Ω(1)| = 2 > 1 |Ω(5)|. Because |Ω(1)| = 2 ≤ 3, the cluster c = 2 is defined
by the scenarios Ω1 = {1, 2} and has a total probability p̃2 = 0.4. The sets
K2 = {0, 1, 3, 6} and D2 = {10, 11}. The probability of each node in c = 2
is p̂0,2 = p̂1,2 = p̂3,2 = p̂6,2 = 1, p̂10,2 = 0.15/0.4 and p̂10,2 = 0.25/0.4. We
now start constructing the cluster c = 3.

5. Ñ = {5}. The node ñ = 5 is selected and removed from Ñ . Because
|Ω(5)| = 1 ≤ 3, the cluster c = 3 is defined by the scenarios Ω1 = {5, 6} and
has a total probability p̃3 = 0.25. The sets K3 = {0, 2, 5} and D3 = {15}.
The probability of each node in c = 3 is p̂0,3 = p̂2,3 = p̂5,3 = p̂9,3 = p̂15,3 =

1. Ñ = ∅. This is the last iteration because Ñ = ∅.

4. Numerical experiment

We apply the PHA described in subsection 3.4 on a typical reservoir man-
agement problem (RMP) with stochastic inflows. This problem is formulated as
a particular case of the general mathematical program P and hydrologic uncer-
tainty is modeled by a finite scenario tree. Over the past decades, many stochas-
tic optimization methods were proposed in the literature for solving RMPs (Yeh
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, 1985; Labadie , 2004; Rani and Moreira , 2010). Among those methods, only a
few can be applied on large reservoir systems (20–40 reservoirs). The PHA was
rarely used in this field, but this method is nevertheless a promising alterna-
tive to traditional methods such as the Nested Benders decomposition (NBD)
algorithm (Birge , 1985) for managing high dimensional reservoir systems. For
example, Carpentier et al. (2013a) and Gonçalves et al. (2011) applied the
classical version of the PHA on large hydroelectric reservoir systems in Québec
and Brazil, respectively.

4.1. Problem statement

We consider an hydroelectricity producer that operates I hydro plants and
J interconnected reservoirs over a T -period planning horizon. The objective
function to be maximized is the expected value of

T
∑

t=1

I
∑

i=1

Pit∆t+

J
∑

j=1

αj(vjT − vj) (MWh) (27)

where Pit (MW) is the power output of hydro plant i during time period t, ∆t
(hours) is the time step, vjT (hm3) is the volume of water stored in reservoir j
at the end of time period T , vj (hm

3) is the minimum storage of reservoir j and

αj (MWh/hm3) is the production factor of reservoir j. The objective function
(27) contains two parts. The first part represents the amount energy generated
by all hydro plants i = 1, ..., I during time periods t = 1, ..., T . The second part
represents the amount of potential energy stored in reservoirs j = 1, ..., J at the
end time period t = T .

We assume that the power output Pit of hydro plant i during time period t
is a concave and piecewise linear function of the turbined outflow qit (m

3 s−1)
at i during t and of the volume of water vj(i)t (hm

3) stored in the reservoir j(i)
located immediatly upstream of i at the end of t. This assumption enables us
model head and generation efficiency variations at hydro plants. Fig. 5 shows
an illustrative example with two pieces h ∈ {1, 2}. In the optimization model,
the relationship between the Pit, qit and vj(i)t is represented by the following
linear inequality constraints

Pit ≤ γ0
ih + γ1

ihqit + γ2
ihvit, ∀i, t, h. (28)

where γ0
ih, γ

1
ih, γ

2
ih are the linear coefficients of piece h.

The volume of water stored in reservoirs j = 1, ..., J at time periods t =
1, ..., T evolves from a known initial state vj0 according to

vjt = vj,t−1 +





∑

u∈U(j)

Qut −Qjt + Ijt



β∆t, ∀j, t (29)

where U(j) is a set that contains all reservoirs that are located immediatly
upstream of reservoir j, Qjt (m3 s−1) is the controlled outflow of reservoir j
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Figure 5: Hydroelectricity generation function.

during t, β = 0.0036 is a constante used for converting flow units into volumetric
units and Ijt (m3 s−1) is a random parameter representing the intensity of
natural inflows in reservoir j during t. The controlled outflow of reservoir j
during t is defined as follow

Qjt := sjt +
∑

i∈I(j)

qit (hm)
3

where sjt (m3 s−1) is the spilled outflow of j during t and I(j) is a set that
contains all hydro plants connected directly to reservoir j.

All decision variables should also satisfy the following box constraints

vj ≤ vjtvj , ∀j, t (30)

sj ≤ sjtsj , ∀j, t (31)

P i ≤ PitP i, ∀i, t (32)

q
i
≤ qitqi, ∀i, t. (33)

where (vj , sj , P i, qi) and (vj , sj , P i, qi) are parameters representing the lower
and upper bounds on decision variables (vjt, sjt, Pit, qit), respectively.

The RMP is a particular case of the general mathematical formulation P
with random right-hand side vectors bt(ξt) at t = 1, ..., T . Each component of
random vectors

ξt := (Ijt)

represents the intensity of natural inflows in a particular reservoir j at the
corresponding time period t. The matrices At, Bt and cost functions gt are
deterministic and each decision vector is defined as follow

xt := (Pit, qit, vjt, sjt).
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The cost functions at t = 1, ..., T − 1 are defined as follow

gt(xt) := −
I

∑

i=1

Pit∆t.

The cost function at t = T is

gT (xT ) := −
I

∑

i=1

PiT∆t−
J
∑

j=1

αj(vjT − vj).

The water balance equations (29) corresponds to dynamic constraints (6). The
linear inequality (28) and box constraints (30)–(30) corresponds to static con-
straints (7).

4.2. Experimental set-up

We test our method on a power system containing I = 4 hydro plants and
J = 4 reservoirs. The power system is located in Québec, Canada and has
an installed capacity of 1,572 MW. The reservoir system has a total storage
capacity of 3,710 hm3. Fig. 6 shows the structure of the hydrosystem. The
characteristics of each hydro plant and reservoir are summarized on Tables 1
and 2, respectively. Three hyperplanes (h = 1, 2, 3) are used to describe each
concave and piecewise linear hydroelectric generation functions. The planning
horizon is discretized in T = 52 time periods and a time step of ∆t = 168 hours
is used.

We implemented two optimization model. The first model solved the DEP
directly and the second model solves the same problem using the PHA with
subtree decomposition. Both models were implemented in object-oriented C++
using the ILOG CPLEX/Concert library version 12.5.1 and solved using the
barrier solver in parallel mode. The stopping condition used in this experiment
is ǫ = 10−3. We used ρ0 = 10−4 and µ = 1.1.

Two different methods were implemented to build scenario subtrees. The
first method correspond to Algorithm 1. The second method is based on a
random selection of scenarios. Both methods are implemented in MATLAB
R2013a.

All the numerical results presented in this paper were obtained using a per-
sonal computer running on Ubuntu 12.04 with a AMD Phenom II X6 2.8 GHz
processor and 6 GB of RAM.

4.3. Scenario tree

In this experiment, we represent the hydrological stochastic process {ξt : t =
1, ..., T} using the scenario tree shown on Fig. 7. This tree contains 500 scenar-
ios, and 16,275 nodes. It was generated from 1,000 input synthetic time series
using the SCENRED2 package which is part of the General Algebraic Modeling
System (GAMS) version 23.9.3. The MPAR(1) stochastic model that was used
for generating synthetic time series was tuned using historical data observed
during the period 1962–2003. Table 3 shows the decomposition schemes that
are considered in this experiment.
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Table 1: Characteristics hydro plants

Plant Maximum power output Maximum turbined outflow
(MW) (m3 s−1)

1 259 315
2 404 375
3 647 467
4 262 485

Table 2: Characteristics reservoirs

Reservoir Minimum storage Maximum storage Initial storage Production factor
(hm3) (hm3) (hm3) (MWh/hm3)

1 952 2,710 1,831 1,091
2 1,403 1,878 1,840 872
3 2,260 3,720 3,645 562
4 129 147 144 158

Table 3: Decomposition schemes.

Scheme Nmax Number of clusters Number of NAC
A 1 500 13,174
B 10 84 666
C 25 32 147
D 50 17 53
E 100 12 30
F 250 3 3
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Figure 6: Reservoir system.
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Figure 7: Scenario tree.

5. Results

Tables 4 show the numerical results obtained for decomposition schemes A
to F. The best results were obtained using scheme D. This scheme used the least
amount of RAM and lead to the fastest running time. For schemes A to D, the
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amount of RAM and the running time decreases as the subproblems size grow.
This is due to the decreased number of Lagrange multipliers that need to be
stored. Inversely, the amount of RAM increases from D to F as the subproblems
size grow.

Table 4: Numerical results.

Scheme Iterations Total time Time per iteration RAM
(seconds) (seconds) (MB)

A 51 11,361 222.8 1,489.6
B 34 1,498 44.0 313.6
C 21 468 22.3 168.0
D 1 16.3 16.3 145.6
E 1 17.4 17.4 156.8
F 1 24.7 24.7 240.8

6. Conclusions

In this article, we propose a new approach to enhance the performance of the
PHA for solving MSPs defined on scenario trees. Instead of using traditional
scenario decomposition scheme which is typically used with the PHA, we apply
an multi-scenario decomposition scheme designed to minimize the total number
of RNACs. A heuristic algorithm is proposed do achieve this efficiently. We
test the proposed decomposition scheme on a RMP with stochastic inflows in
Québec, Canada over a 52-period planning horizon with weekly time steps. Nu-
merical results show that minimizing the total number of RNACs decreases the
PHA running time substantially and enables to reduce the amount of memory
required by the PHA.

References

Archibald, T.W., Buchanan, C.S., McKinnon, K.I.M, & Thomas, L.C. (1999).
Nested Benders decomposition and dynamic programming for reservoir opti-
mization. Journal of the Operational Research Society, 50, 468–479.

Benders, J.F. (1962). Partitioning procedures for solving mixed-variables pro-
gramming problems. Numerische mathematik, 4, 238–252.

Birge, J.R. (1985). Decomposition and Partitioning Methods for Multistage
Stochastic Linear Programs. Operations Research, 33, 989–1007.

Birge, J.R., & Louveaux, F.V. (1988). A multicut algorithm for two-stage
stochastic linear programs.European Journal on Operational Research, 34,
384–392.

Birge, J.R., & Louveaux, F.V. (2011). Introduction to Stochastic Programming.
(2nd edition). New York: Springer.

Optimal Scenario Set Partitioning for Multistage Stochastic Programming with the Progressive 
Hedging Algorithm

16 CIRRELT-2013-55



Carpentier, P.-L., Gendreau, M., & Bastin, F. (2013a). Long-term management
of an hydroelectric multireservoir system under uncertainty using the progres-
sive hedging algorithm. Water Resources Research, 49, 2812–2827.

Carpentier, P.-L., Gendreau, M., & Bastin, F. (2013b). The Extended L-Shaped
Method for Mid-Term Planning of Hydroelectricity Generation IEEE Trans-

actions on Power Systems, (Submitted).

Crainic, T.G., Fu, X., Gendreau, M., Rei, W., Wallace, S.W. (2011). Progressive
hedging-based metaheuristics for stochastic network design. Networks, 58,
114–124.

Crainic, T.G., Hewitt, M., Rei, W. (2012). Scenario Clustering in a Progres-
sive Hedging-Based Meta-Heuristic for Stochastic Network Design. Publica-
tion CIRRELT-2013-52, 1–25.

Dantzig, G.B. (1955). Linear programming under uncertainty. Management Sci-

ence, 3, 197–206.
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