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Abstract.  This paper introduces the Cycle Hub Location Problem. It considers the 

location of a set of hub facilities, which are connected by means of a cycle, and the 

allocation of user nodes to hubs so as to minimize the total cost for routing flows through 

the network. This problem is useful to model applications in telecommunication and 

transportation systems, where large set-up costs on the links and reliability requirements 

make cycle topologies a prominent network architecture. We extend the commonly used 

path based and flow based formulations for the problem. Furthermore, we present a family 

of mixed-dicut inequalities that improve the LP bounds of the latter formulation. These 

inequalities are embedded into a branch-and-cut method to solve the problem to 

optimality. We also present a GRASP metaheuristic that efficiently produces high quality 

solutions. Numerical results on a set of benchmark instances with up to 100 nodes are 

reported. 
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1. Introduction

Hub location problems (HLPs) arise in the design of hub-and-spoke net-
works. They have a wide variety of applications in airline transportation,
freight transportation, rapid transit systems, trucking industries, postal op-
erations, telecommunication networks, to name a few. These systems serve
demand for transportation of passengers, commodities, and/or transmission
of information (data, voice, video) between many origins and destinations.
Instead of connecting every origin-destination (O/D) pair directly, hub-and-
spoke networks serve customers via a small number of links, where hub facil-
ities consolidate the flows from many origins, transfer them through the hub
network, and eventually distribute them to their final destinations. The use
of fewer links in the network concentrates flows at the hub facilities, allowing
economies of scale to be applied on routing costs, besides helping to reduce
setup costs and to centralize commodity handling and sorting operations.
Broadly speaking, HLPs seek to locate a set of hubs and allocate user nodes
to hubs so as to minimize the total flow cost.

Since the seminal work of O’Kelly (1986), several classes of fundamental
HLPs, such as p-hub median problems, uncapacitated hub location problems,
p-hub center problems, and hub covering problems, have been studied in the
literature. For a detailed classification and review of these HLPs, readers are
referred to Campbell et al. (2002), Alumur and Kara (2008), and Campbell
and O’Kelly (2012). Even though these problems are different on a number
of characteristics, primarily due to their particular applications, the vast
majority of them share four assumptions in common. The first assumption
is that flows have to be routed via hubs and thus, paths between O/D nodes
have to include at least one hub. Secondly, it is possible to connect hubs with
more effective pathways that allow a constant discount factor to be applied
to the flow cost between hub nodes. The third assumption is that hub arcs
have no setup cost and thus, hub facilities can be connected between them
at no extra cost. The forth one is that distances between nodes satisfy the
triangle inequality.

To some extent, the above mentioned assumptions and their implications
simplify the network design decisions. The last two assumptions allow the
backbone network to be fully interconnected (i.e. a complete graph), whereas
the access network is determined by the allocation pattern of O/D nodes to
hub facilities. Moreover, the combination of the first, third and fourth as-
sumptions creates O/D paths on the solution network having at least one
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and at most two hub nodes. These result in HLPs to have a number of at-
tractive theoretical features, which have given rise to mathematical models
(Campbell, 1994; Ernst and Krishnamoorthy, 1998a; Labbé and Yaman, 2004;
Hamacher et al., 2004) and specialized solution algorithms (Ernst and Krish-
namoorthy, 1998b; Labbé et al., 2005b; Contreras et al., 2011b,a) that exploit
the structure of the hub-and-spoke networks to solve real-size instances. In
several applications, these assumptions are reasonable and provide a good
approximation to reality. However, in other applications they can lead to
unrealistic results.

It is known that fully interconnected networks may be prohibitive in ap-
plications where there is a considerable setup cost associated with the hub
arcs (see, for instance, O’Kelly and Miller, 1994; Klincewicz, 1998). To over-
come this deficiency, several models considering incomplete hub networks
have been introduced. The so-called hub arc location problems (Campbell
et al., 2005b,a), relax the assumption of full interconnection between hubs
and consider the location of a set of hub arcs that may (or may not) require
a particular topological structure of their induced network. Some of these
models do not even require the hub arcs to define a single connected com-
ponent. Alumur et al. (2009) and Calık et al. (2009) study the design of
incomplete hub networks with single assignments in which no network struc-
ture other than connectivity is imposed on the backbone network. Other
works have also proposed models that do not consider a complete backbone
network but rather, a particular topological structure. For example, Contr-
eras et al. (2009, 2010) and de Sá et al. (2012) study the design of tree-star
hub networks in which the hubs are to be connected by means of a tree and
the O/D nodes are assigned to exactly one hub. These papers considers the
minimization of the total flow cost whereas Kim and Tcha (1992); Lee et al.
(1996), and Lee et al. (1993) focus on minimizing the setup costs associated
with the design of tree-star networks. Labbé and Yaman (2008) and Yaman
(2008) consider the design of start-star networks in which hub nodes are di-
rectly connected to a central node (i.e. star backbone network) and the O/D
nodes are assigned to exactly one hub node. Yaman (2009) studies the prob-
lem of designing a three-layer hub-and-spoke network, where the top layer
consists of a complete network connecting the central hubs, and the second
and third layers are unions of start networks connecting the remaining hubs
to central hubs and the O/D nodes to hubs, respectively. Yaman and Elloumi
(2012) consider the design of two-level start networks, while taking into con-
sideration the service quality in terms of the length of paths between pair of
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O/D nodes. de Sá et al. (2013) study the problem of designing a hub-line
network in which hubs are connected by means of a line and the aim is to
minimize the total service time between pairs of nodes. Other studies on
incomplete hub networks include Campbell (2009), Contreras and Fernández
(2012b), and Davari et al. (2013).

In this paper we study the cycle hub location problem (CHLP), which
consist of locating exactly p hub facilities that are connected with a set of
hub arcs with a cycle topology. Each O/D node must be allocated to exactly
one hub (i.e. single assignment) and flows between pair of nodes have to
be routed through the cycle-star network so as to minimize the total flow
cost. The CHLP is a challenging NP -hard problem that combines location
and network design decisions. The location decision focuses on the selection
of the set of nodes to locate facilities, whereas the network design decisions
deals with the design of the cycle-star network, by selecting the access and
hub arcs as well as the routing of flows through the network. To the best of
our knowledge, the CHLP was first introduced in Contreras and Fernández
(2012a) in the context of general network design problems, but there is no
paper in the literature dealing with approximate or exact solution methods
for solving it.

Besides HLPs, the CHLP shares some similarities with other network de-
sign problems in which a cycle-star network is sought. The so-called ring-star
problem (RSP), introduced by Labbe et al. (2004), aims to locate a simple
cycle through a subset of nodes with the objective of minimizing the sum of
setup costs of the cylce and assignment costs from the vertices (not in the
cycle) to their closest vertex on the cycle. Another closely related problem
is the median cycle problem (MCP), studied by Labbé et al. (2005a). This
problem arises in the design of ring-shaped infrastructures and consists of
finding a simple cycle that minimizes the setup costs of the cycle, such that
the total assignment cost of the non-visited nodes do not exceed a given bud-
get constraint. Current and Schilling (1994) and Gendreau et al. (1997) study
covering versions of the RSP in which all nodes must be within a prespecified
distance from the cycle. Baldacci et al. (2007) present the capacitated m-ring
star problem, which deal with the location of m cycles that pass through a
central node and the assignment of nodes to cycles. Lee et al. (1998) and
Xu et al. (1999) study the Steiner ring-star problem, in which the cycle only
contains Steiner nodes chosen from a given set. Current and Schilling (1994)
consider the median tour problem, where a cycle with p nodes has to be
located. It is a bicriterion problem, which consists of minimizing the setup
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cost of the cycle as well as minimizing the total assignment cost of nodes
to their closest facilities. Liefooghe et al. (2010) study a bi-objective ring-
star problem, in which the setup cost of the cycle and the assignment costs
are considered. See Labbé et al. (1998) and Laporte and Mart́ın (2007) for
additional models related to the location of cycle structures on a network.

Potential applications of models where cycle start networks are used arise
when the setup cost of the arcs of the network are very high. When minimiz-
ing such setup cost, tree-star topologies are particularly attractive as they
minimize the number of links on the network as it contains exactly one path
between pair of nodes. However, in the design of reliable networks, cycle
topologies may be preferred to tree topologies as they offer an alternative
path between any pair of nodes when a link connecting two nodes fails for
some reason. That is, a cycle topology guarantees connectivity of the re-
maining network. Particular applications of these models arise in the design
of telecommunication networks and rapid transit systems planning. In the
former case, terminal nodes are usually connected to concentrators (or facil-
ities) by point-to-point links, resulting in a star structure, and concentrators
are interconnected by a ring. See Xu et al. (1999) for an example of digital
data service design. In the latter case, the goal is to select a set of facilities,
which are served by a single vehicle route (a cycle), and the assignment of
demand nodes to their closest facility. Laporte and Mart́ın (2007) provide
additional applications considering cycle-star structures.

The contributions of this paper are threefold. Firstly, we introduce two
mixed integer programming (MIP) formulations for the CHLP and to com-
putationally compare them with a general purpose solver. One of them is
based on flow variables that compute the amount of flow that passes through
particular hub arcs, whereas the other is based on path variables that deter-
mine if a hub arc is used on the path between two pair of nodes. Secondly,
we present an exact branch-and-cut method to solve the problem to optimal-
ity. It uses the flow-based formulation and an adaptation of the well-known
mixed dicut inequalities, together with an efficient heuristic method for the
separation problem, as a bounding procedure in each node of the enumera-
tion tree. The third one is to develop a greedy randomized adaptive search
procedure (GRASP) based metaheuristic to obtain high quality feasible solu-
tions to the CHLP. A series of computational experiments are performed to
compare the efficiency of both formulations and the proposed solution meth-
ods. Computational results on benchmark instances confirm the efficiency of
our algorithms.
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The remainder of the paper is organized as follows. Section 2 formally
defines the problem and presents the two MIP formulations. In Section 3, we
describe the proposed branch-and-cut method and GRASP metaheuristic.
The computational results and analysis are presented in Section 4. Finally,
conclusions are given in Section 5.

2. Problem Description

Let G = (N,A) be a complete digraph, where N = {1, 2, . . . , n} repre-
sents the set of O/D nodes as well as the potential sites for locating hubs. For
each ordered pair i, j ∈ N × N , let Wij denote the amount of flow between
origin i and destination j. Thus, Oi =

∑
i∈N Wij is the total flow originating

at node i ∈ N , and Di =
∑

j∈N Wij, is the total flow with destination node
i ∈ N . The distances, or flow costs dij between nodes i and j are assumed
to be symmetric, however, they need not satisfy the triangle inequality prop-
erty. Given that hub nodes are no longer fully interconnected, O/D paths
on the solution network may contain more than two hub nodes. Then, the
per unit flow cost is given by the length of the path between an origin and
destination, where the discount factor 0 < α < 1 is applied to all hub arcs
contained on the path.

The CHLP seeks to determine the location of exactly p hubs that are
connected by means of a cycle, and the routing of flows through the hub-
and-spoke network. Each node has to be allocated to exactly one hub and if a
node is selected as a hub, then it is self-assigned. The objective is to minimize
the total transportation cost. In every feasible solution to the CHLP: i) there
exist p hub arcs; ii) every hub node is connected with exactly two other hub
nodes; iii) the graph induced by the hubs does not contain subtours, and
iv) there are exactly two paths between every pair of nodes on the network.
This makes the CHLP more difficult to formulate and solve, as the shortest
path between O/D nodes, containing an undetermined number of hub nodes
and hub arcs, needs to be determined to compute the objective function.
Note that when p ∈ {1, 2, 3}, the CHLP reduces to a classical hub location
problem in which all nodes are fully interconnected.

The routing decisions of the CHLP are affected by both the allocation
and the network design decisions. Hence, formulations for this problem must
keep track of O/D paths. In what follows, we present two MIP formulations
for the CHLP. The first one uses path variables to determine the set of arcs
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on each O/D paths, whereas the second one uses flow variables to compute
the amount of flow routed through a particular arc.

2.1. Path-Based Formulation

For each i, k ∈ N ; i 6= k, we define binary location/allocation variables,

zik =

{
1 if non hub i is allocated to hub k,
0 otherwise.

When zkk = 1, node k is selected as a hub and assigned to itself. For each
k,m ∈ N , k < m, we also introduce binary hub arc variables

ykm =

{
1 if hub arc (k,m) is selected,
0 otherwise.

Finally, we define for each i, j, k,m ∈ N , we define binary routing variables
as follows:

Xijkm =

{
1 if the the flow from i to j traverses arc (k,m),
0 otherwise,
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The CHLP can be stated as follows:

(PF ) min
∑
i∈N

∑
k∈N

(cikOi + ckiDi)zik +
∑
i∈N

∑
j∈N

∑
k∈N

∑
m∈N
m6=k

αWijckmXijkm

s.t.
∑
k∈N

zik = 1 ∀i ∈ N (1)∑
m∈N
m6=k

Xijkm + zjk −
∑
m∈N
m6=k

Xijmk − zik = 0,∀i, j, k, i 6= j, k 6= j

(2)

Xijkm +Xijmk ≤ ykm ∀i, j, k ∈ N,∀m > k
(3)∑

k<m

ykm +
∑
k>m

ymk = 2zkk k ∈ N (4)∑
k∈N

zkk = p (5)∑
k∈N

∑
m>k

ykm = p (6)

Xijkm ≥ 0 ∀i, j, k,m ∈ N, k 6= m
(7)

zik ∈ {0, 1} ∀i, k ∈ N (8)

ykm ∈ {0, 1} ∀k ∈ N, ∀m > k. (9)

The first and second terms of the objective function represent the trans-
portation cost between access arcs and hub arcs, respectively. Constraints
(1) ensure that each node is allocated to one hub. Constraints (2) are the
well-known flow conservation constraints used to model O/D paths. Con-
straints (3) ensure that paths between origins and destinations will use open
hub arcs. Constraints (4) guarantees that each hub node must be connected
to exactly two other hub nodes. Constraint (5) is a cardinality constraint on
the number of hubs that can be opened, whereas constraint (6) state that
the number of hub arcs required to define the cycle is equal to p. Finally,
constraints (7)–(9) are the integrality constraints. The combination of con-
straints (1)–(6) will create paths between all pair of nodes and will form a
cycle-star topology with a single connected component. As a consequence,
classical sub-tour elimination constraints, commonly used to model cycles,
are not necessary to describe the set of feasible solutions to the CHLP.
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2.2. Flow-Based Formulation

In order to keep track of the path that is used to send the flow between
O/D nodes, we use a flow variable that is commonly used in the hub location
literature (see, for instance Ernst and Krishnamoorthy, 1998b, 1999; Boland
et al., 2004; Maŕın, 2005; Contreras et al., 2010). For each i ∈ N and
(k,m) ∈ A, we define

xikm= amount of flow with origin in node i ∈ N that traverses arc (k,m).

We also use the zik and ykm binary variables for the location/allocation and
network design decisions.

The CHLP can be formulated as follows:

(FF ) min
∑
i∈N

∑
k∈N

(cikOi + ckiDi)zik +
∑
i∈N

∑
k∈N

∑
m∈N
m6=k

αckmxikm

s.t.
∑
k∈N

zik = 1 ∀i ∈ N (10)

Oizik +
∑
m∈N
m6=k

ximk =
∑
m∈N
m6=k

xikm +
∑
m∈N

Wimzmk ∀i, k ∈ N ; k 6= i

(11)

zkm + ykm ≤ zmm ∀k,m ∈ N ;m > k (12)

zmk + ykm ≤ zkk ∀k,m ∈ N ;m > k (13)

xikm + ximk ≤ Oiykm ∀i, k,m ∈ N ;m > k (14)∑
k<m

ykm +
∑
k>m

ymk = 2zkk k ∈ N (15)∑
k∈N

zkk = p (16)∑
k∈N

∑
m∈N

ykm = p (17)

xikm ≥ 0 ∀i, k,m ∈ N (18)

zkm, ykm ∈ {0, 1} ∀k,m ∈ N (19)

Constraints (10), (15)–(19) have the same interpretation as in the previ-
ous path based formulation. For all m > k, constraints (12) ensure that each
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demand node is assigned to an open hub. When ykm = 1, a hub is located at
node k, so that zkk = 1, and, therefore, by constraints (10), zkm = 0. Simi-
larly, constraints (13) link x and y variables when m < k. Constraints (14)
ensure that the flow between hubs will only be routed through the hub cy-
cle. Constraints (11) are the flow conservation constraints. The assumption
that the graph of flows contains a single connected component together with
constraints (10)–(19) eliminates the need for subtour elimination constraints
to describe the set of feasible solutions.

3. Solution Algorithms

In this section, we present two different solution algorithms for solving
the CHLP. The first one is an exact branch-and-cut algorithm that uses the
linear programming (LP) relaxation of the flow-based formulation, together
with a family of strong valid inequalities, as a lower bounding procedure
at nodes of the enumeration tree to obtain optimal solutions to the CHLP.
The second one is a GRASP metaheuristic that is used to efficiently obtain
feasible solutions to the problem.

3.1. Valid Inequalities

We present a family of valid inequalities for the CHLP, which are an
extension of the so-called mixed dicut inequalities introduced for the fixed-
charge network flow problem in Ortega and Wolsey (2003). Let Z denote the
set of feasible integer solutions of FF .

Proposition 1. For i,m ∈ N , F ⊆ N \ {m}, J ⊆ N \ {i,m}, and Q =∑
j∈J∪{m}

Wij the inequality

∑
k∈N\(F∪{m})

xikm +Q(
∑
k∈F
k<m

ykm +
∑
k∈F
k>m

ymk) ≥
∑

j∈J∪{m}

Wij(zjm − zim) (20)

is valid for Z.

Proof:
Observe that the right-hand-side of inequality (20) can only be non-negative
when m is a hub and i is not assigned to m since, otherwise it would be
smaller than or equal to zero. When m is a hub and node i is not allocated
to m, the right-hand-side

∑
j∈J∪{m}Wij(zjm − zim), denotes the total flow
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coming from i and destined to either the hub node m or a non-hub node j
assigned to hub m. Hence, the right-hand-side of (20) is a lower bound on the
total flow arriving to m from i. In the case of the left-hand-side, we note that
in any feasible solution that node i is not allocated to hub m, any amount
of flow routed from i to m will arrive to m via another hub k̂ (possibly node
i). Moreover, given that all flow originating at node i and entering hub k
will be routed through the shortest path between these nodes, only one of
the two terms in the left-hand-side will be positive, depending on whether
k̂ ∈ F or not. On one side, if k̂ /∈ F then the first term will be the positive
one, which represents the total flow originated at i arriving to m through
hub k̂ and thus, will be an upper bound on the value of the right-hand-side
of the inequality. On the other side, if k̂ ∈ F the second term will be the
positive one, which is the total flow from i to m and other nodes allocated
to it and thus, will be an upper bound on the value of the right-and-side of
the inequality and the result follows. �

3.2. Separation Problem of Valid Inequalities

Given a fractional solution (x̄, ȳ, z̄) to the LP relaxation of the FF , the
separation problem of inequalities (20) must be solved to find the most vio-
lated inquality at (x̄, ȳ, z̄) for each i,m ∈ N , if any. Contreras et al. (2010)
show that the extended mixed-dicut inequalities (20) are also valid for the
tree of hubs location problem and propose an exact algorithm to separate
them. Given that this algorithm has an exponential running time due to the
solution of several knapsack problems, finding the most violated inequality
is rather time consuming. For this reason, we next propose a fast heuris-
tic algorithm to find violated inequalities (20) without having to solve the
separation problem to optimality.

For each pair of nodes i,m ∈ N , we want to find sets F and J such that

∑
k∈N\(F∪{m})

x̄ikm +Q(
∑
k∈F
k<m

ȳkm +
∑
k∈F
k>m

ȳmk)−
∑

j∈J∪{m}

Wij(z̄jm − z̄im) < 0.

Note that the set J ⊆ N \ {i,m} affects both the left-and right-hand-side
of the inequality, whereas the set F ⊆ N \ {m} affects only the left-hand-
side. Moreover, given a set J and its associated Q =

∑
j∈J∪{m}Wij, we can

efficiently select the set F that minimizes the value of
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L(Q) = min
F⊆N\{m}

∑
k∈N\(F∪{m})

x̄ikm +Q(
∑

k∈F :k<m

ȳkm +
∑

k∈F :k>m

ȳmk), (21)

using the following result.

Proposition 2. Let i,m ∈ N , Q ≥ 0, and (x̄, ȳ, z̄) be given. Then, a set
F ⊆ N \ {m} that minimizes the value of L(Q) is given by F = F< ∪ F>,
where

F< = {k ∈ N : k < m and
x̄ikm
ȳkm

≥ Q},

and

F> = {k ∈ N : k > m and
x̄ikm
ȳmk

≥ Q}.

The proof of this result is given in Contreras et al. (2010) and is thus omitted.
The proposed heuristic works by iteratively evaluating different subsets

J ⊆ N \{i,m} and evaluating L(Q) to check whether the associated inequal-
ity is violated or not. It first constructs an initial set J0 by considering all
j ∈ N such that (z̄jm − z̄im) > 0. It then modifies the set J0 by removing
elements from it one at a time and evaluating the magnitude of the (possi-
ble) violation of the inequality. The outline of the algorithm is depicted in
Algorithm 3. Let δ denote the smallest difference between the left-hand-side
and right-hand-side of the constraint. If the output of the algorithm gives
δ < 0, it means that a violated inequality has been found.
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Algorithm 3: Separation of inequalities (20) for (i,m)

J0 ← ∅
for (j ∈ N) do

if (z̄jm − z̄im > 0) then
J0 ← J0 ∪ {j}

end if
end for

δ ← L

( ∑
j∈J0∪{m}

)
−

∑
j∈J0∪{m}

Wij(z̄jm − z̄im)

J ← J0
for (l ∈ J0) do

J ← J \ {l}

if

(
δ > L

( ∑
j∈J∪{m}

)
−

∑
j∈J∪{m}

Wij(z̄jm − z̄im)

)
then

δ ← L

( ∑
j∈J∪{m}

)
−

∑
j∈J∪{m}

Wij(z̄jm − z̄im)

else
J ← J ∪ {l}

end if
end for

3.3. Branch-and-Cut Algorithm

We present an exact branch-and-cut method based on the flow-based
formulation for solving the CHLP to optimality. The idea is to solve the
LP relaxation of FF with a cutting-plane algorithm by initially including
only constraints (10)-(13), (15)-(17) at the root node and iteratively adding
constraints (14) and (20) only when violated by the current LP solution.
When no more violated inequalities are found, we resort to CPLEX for solv-
ing the resulting formulation by enumeration, using a call-back function for
generating additional violated constraints (14) and (20) at the nodes of the
enumeration tree. The separation problem of inequalities (14) is solved by
inspection at every node of the tree. The separation of inequalities (20) is
carried out using Algorithm 3 at the root node and at every other nodes in
which its depth is multiple of 25. For the case of constraints (20), we limit
the number of generated cuts at every iteration of the separation phase by
using a threshold value equal to 1 for the minimum violation required for a
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cut to be added. We use a branching strategy in which the highest priority
is given to the location variables zkk, and then the hub arc variables ykm and
finally, to the allocation variables zik.

3.4. GRASP

The Greedy Randomized Adaptive Search Procedure (GRASP) is a multi-
start meta-heuristic used for solving combinatorial optimization problems
(Festa and Resende, 2011). Each iteration consists of two phases: a con-
structive phase and a local search phase. In the constructive phase, we
obtain a feasible solution using a three-stage procedure. In the first step,
a set of p hubs is randomly selected among a set of candidate nodes. The
remaining nodes are then assigned to their closest open hub. Finally, a set
of p hub arcs, associated with the selected hub nodes, are then chosen in
such a way that they form a cycle on the backbone network. A local search
phase is later used to improve the initial solution by sequentially exploring
different types of neighbourhoods that modify the structure of the network
but always considering feasible solutions (i.e., ring-star networks).

In what follows, solutions are represented by a set of hub nodes H, a
set of hub arcs E, and an assignment mapping a. Therefore, solutions are
designated by the form S = (H,E, a) ,where H ∈ N denotes the set of
selected sites to locate hubs, i.e., H(i) = 1 if node i ∈ N is selected to be a
hub, E : e→ R represents the set of arcs between hub nodes, i.e., E(e) = 1
if hub arc e is exists, and a : N → H is the assigning mapping, i.e., a(j) = m
if node j ∈ N is assigned to hub node m ∈ H.

3.4.1. Constructive Phase

Let S = (H,E, a) be a partial solution where H(i) = null, E(e) = null
and a(j) = null. To generate a feasible solution, three stages are considered;
the selection of a set of hubs, the assignment of nodes to hubs and the
connection of hubs so as to construct a cycle structure. A restricted candidate
list (RCL) is built using a greedy function, where, at each iteration t a sub-
region N t

i (r) = {j ∈ N t : dij ≤ r} of candidate nodes N t around a node i
with a radius of size r is considered. We define the greedy function as

ψti =


∑

j∈Nt
i (r)

(Wij +Wji) , if t = 1,∑
j∈Nt

i (r)

(Wij +Wji) +
∑

j∈Nt
i (r)

∑
k∈{1,...,t−1}

∑
m∈Nk

i(k)
(r)

(Wjm +Wmj), if t > 1,
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where i(k) denotes the node selected as a hub at iteration k. The first
term represents the flow originated at node i with destination N t

i (r), and
the total flow going into node i coming from nodes in N t

i (r). That is, node
i is considered as a potential hub to serve nodes j ∈ N t

i (r). The second
term represents the amount of flow that needs to be routed between nodes
inside the sub-region N t

i (r) of a candidate hub node i and the nodes inside
the sub-regions Nk

i(k)(r) of the open hubs i(k) selected in previous iterations
k = 1, . . . , t− 1.

In order to achieve a trade-off between quality and diversity, a partially
randomized greedy procedure is considered. At each iteration, one element
is randomly selected from the RCL to become a hub. The RCL is updated
at each iteration of the construction phase and contains the best candidate
nodes N t with respect to the greedy function . Let ψtmin = min{ψti : i ∈ N t}
and ψtmax = max{ψti : i ∈ N t}, then

RCL = {i : ψti ≥ ψtmin + α
(
ψtmax − ψtmin

)
},

where 0 ≤ α ≤ 1. Once a hub is located at a candidate node i, we remove
all nodes in N t

i (r) from the set of candidate nodes N t+1. When p hubs are
opened, all the non-hub nodes are simply assigned to their closest opened
hub. In order construct a feasible solution, a nearest neighbor algorithm (see,
Cook et al., 1998) is applied to connect the set of selected hubs by means of a
cycle. This algorithm works by arbitrarily selecting hub node and connecting
it to the nearest hub not yet connected. The process continues until all hubs
are connected and finally connects the last hub with the first one. An outline
of the constructive phase is provided in Algorithm 1.
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Algorithm 1: Constructive Phase of GRASP

LetH be the subset of selected hub nodes
Let N t be the set of candidate nodes at iteration t
H ← φ
t← 1
N t ← N
while (| H |6= p) do

Evaluate ψti for all i ∈ N t

RCL = {i : ψti ≥ ψtmin + α (ψtmax − ψtmin)}
Select randomly i∗ ∈ RCL
H ← H ∪ i∗
N t ← N t−1\{i∗ ∪N t

i∗(r)}
t← t+ 1

end while
Assign each node j ∈ N t to its closest hub in H.
Connect hubs using the Nearest Neighbor Algorithm.

3.4.2. Local Search Phase

The local search procedure is used to improve the initial solution obtained
by the constructive phase. To do so, it explores three types of neighbourhood
structures. The first type consist in the classical shift and swap neighbour-
hood. The latter one tries to improve the current solution by changing the
assignment of one node, whereas the former one considers all solutions that
differ from the current one by swapping the assignment of two nodes. Let
S = (H,E, a) be the current solution, then

Nshift(s) = {s′ = (H,E, a
′
) : ∃!j ∈ N, a′(j) 6= a(j)},

and

Nswap(s) = {s′ = (H,E, a
′
) : ∃!(j1, j2), j

′

1 = a(j2), j
′

2 = a(j1), ∀j 6= j1, j2}.

To explore Nshift, all pairs of the form (i, j) are considered, where a(j) 6= i
and for Nswap all pairs of the form (j1, j2) are considered, where a(j1) = a(j2).
In both cases we use a best improvement strategy.

The second type of neighbourhood structure affects the current set of
open hubs. Let S = (H,E, a) be the current solution and let i ∈ N\H
be the nodes which are candidate to replace the open hubs located at site
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m ∈ H, then

Nopen/close = {S ′ = (H
′
, E
′
, a
′
) : S

′
= H

′\{m} ∪ {i},m ∈ S ′ , i ∈ N\H}.

To explore Nopen/close all nodes m ∈ N\H are considered, and a set of so-
lutions is obtained from the current one by interchanging an open hub by a
closed one and reassigning all the non-hub nodes to their closest open hub.
If we find an improved solution within this neighbourhood, we explore the
Nshift neighbourhood to try to further improve the solution.

The third type of neighbourhood structure is the so-called 2-opt (Cook
et al., 1998), commonly used in other optimization problems in which cycle
structures are sought. The procedure works by deleting two hub arcs and
reconnecting the network with a new cycle. Let S = (H,E, a) be the current
solution, then

T2−opt = {S = (H,E
′
, a) : E

′
= E\{(i1, j1), (i2, j2) ∪ {(i1, i2), (j1, j2)}}}.

In this neighbourhood, a best improvement strategy is also considered. An
outline of the local search procedure is depicted in Algorithm 2.

Algorithm 2 Local Search phase of GRASP

stoppingcriteria← false
while (stoppingcriteria = false) do

explore T2−optt
if (solution not improved in T2−opt) then

exploreNshift

if (solution not improved in T2−opt and Nshift) then
exploreNswap

if (solution not improved in T2−opt, Nshift and Nswap ) then
exploreNopen/close

if(solution has not been updated ) then
stoppingcriteria← true

end-if
end-if

end-if
end-if

end-while
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4. Computational Results

We conduct computational experiments to analyse and compare the per-
formance of the two formulations, the branch-and-cut method, and the the
GRASP metaheuristic. All formulations and algorithms were coded in C and
run on a Lenovo ThinkStation with an Intel Xeon CPU E31230 processor at
3.20 GHz and 16 GB of RAM under Windows 7 environment. All integer pro-
grams were solved using the callback library of CPLEX 12.4. The numerical
tests were performed using the well-known Australian Post (AP ) instances
(mscmga.ms.ic.ac.uk/jeb/orlib/phubinfo.html). These instances comprise of
postal flow and Euclidean distances between 200 cites in Australia. In our
experiments, we have selected instances for which |N | = 10, 20, 25, 40, 50,
60, 70, 75, 90, and 100; p = 4, 6 and 8; and α =0.2, 0.5 and 0.8.

The first set of computational results compares the path based formu-
lation (PF) and flow based formulation (FF) when solved with a general
purpose solver, such as CPLEX. The detailed results of this comparison on
a set of instances ranging from 10 to 40 nodes are shown in Table 1. The
first three columns provide the number of nodes (|N |), the numbers of hubs p
and the discount factor α, respectively, for each instance. The next columns
report the linear programming relaxation gap (%LP ), the percent devia-
tion between final upper and lower bound (%Gap), the CPU time in seconds
(CPU), and the number of explored nodes in the branching tree (Nodes), for
both formulations. The %LP Gap is computed as (UB−LP )/(UB)×100%,
where UB denotes the best upper bound (or optimal solution value) obtained
with CPLEX and LP is the optimal value of the LP relaxation. The final
gap (%Gap) is computed as (UB − LB)/(UB) × 100%, where UB and LB
denote the best upper and lower bounds obtained by CPLEX at termination,
respectively. Throughout this experiment, the maximum time limit is set to
14,400 seconds of CPU time on CPLEX. Whenever CPLEX fails to solve an
instance to optimally within the time limit, we write time.
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Instance Path-Based Formulation(PF) Flow-Based Formulation(FF)
|N | p alpha %LP %Gap CPU Nodes %LP %Gap CPU Nodes
10 4 0.2 2.25 0.0 1.5 4 3.66 0.0 2.08 25
10 4 0.5 0.00 0.0 0.48 0 5.41 0.0 0.67 43
10 4 0.8 0.00 0.0 0.5 0 6.96 0.0 0.97 16
10 6 0.2 0.00 0.0 51 0 5.66 0.0 1.14 73
10 6 0.5 0.00 0.0 0.52 0 8.70 0.0 1.26 261
10 6 0.8 0.00 0.0 0.52 0 10.92 0.0 1.54 877
20 4 0.2 1.05 0.0 890.13 9 1.73 0.0 3.78 36
20 4 0.5 0.29 0.0 470.92 2 4.33 0.0 17.69 485
20 4 0.8 0.00 0.0 346.68 0 5.17 0.0 29.16 1024
20 6 0.2 0.78 0.0 511.5 4 5.60 0.0 30.48 753
20 6 0.5 0.00 0.0 320.8 0 8.26 0.0 350.89 9693
20 6 0.8 0.60 0.0 614.46 8 9.73 0.0 1127.92 32563
20 8 0.2 1.37 0.0 753.16 15 7.35 0.0 180.73 4837
20 8 0.5 1.93 0.0 2159.55 56 12.84 0.0 2736.87 58631
20 8 0.8 1.17 0.0 883.06 20 12.78 0.0 8516.44 245771
25 4 0.2 4.89 4.0 time 6 1.79 0.0 13.65 66
25 4 0.5 0.05 0.0 2661.86 0 3.15 0.0 46.69 248
25 4 0.8 0.00 0.0 707.68 0 4.51 0.0 118.65 928
25 6 0.2 0.00 0.0 2658.85 0 3.47 0.0 32.26 312
25 6 0.5 0.00 0.0 1289.08 0 6.35 0.0 327.76 3435
25 6 0.8 0.25 0.0 7554.94 3 8.88 0.0 4065.04 37955
25 8 0.2 1.08 1.1 time 32 7.51 0.0 3169.96 22421
25 8 0.5 0.45 0.0 7285.53 12 10.12 0.0 7711.25 68475
25 8 0.8 0.98 0.0 7393.37 50 11.09 1.1 time 110994
40 4 0.2 time time time time 1.65 0.0 71.232 127
40 4 0.5 time time time time 3.40 0.0 3445.22 1816
40 4 0.8 time time time time 2.45 1.7 time 7195
40 6 0.2 time time time time 4.10 0.0 4119.21 3332
40 6 0.5 time time time time 8.56 7.0 time 4056
40 6 0.8 time time time time 9.21 7.5 time 4929
40 8 0.2 time time time time 6.55 4.6 time 3217
40 8 0.5 time time time time 12.42 11.2 time 4600
40 8 0.8 time time time time 14.82 14.1 time 5093

Table 1: Comparison between path-based and flow-based formulation.

In Table 1, we can observe that path based formulation is able to solve 22
out of the 33 instances to optimality within the time limit. The % LP gap
for the instances that were solved is relatively small, as is always less than
2.25% and in 11 instances it is equal to zero. However, CPLEX is not able to
solve the LP relaxation of all 40-node instances in four hours of CPU time.
In the case of flow based formulation, CPLEX is able to solve 26 out of the
33 instances to optimality. As expected, the % LP gap for the instances that
were solved is always larger than that of the PF. Nevertheless, given that
there is a considerable smaller number of variables and constraints in FF, it
is able to solve three 40-node instances and one 25-node instance that the
PF cannot solve.

In order to analyse the efficiency of our proposed approximate and exact
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algorithms we have run a second series of computational experiments using a
set of instances ranging from 10 to 50 nodes. In particular, we investigate the
effect of the valid inequalities (20) within a branch-and-cut framework and
the quality of the obtained solutions with the GRASP algorithm. For these
experiments, we set the maximum time limit to 86,400 seconds of CPU time.
The results are summarized in Table 2. The first five columns have the same
meaning as in Table 1. The results of the columns under the heading branch-
and-cut give: %LP-cuts the LP relaxation bound at the root node after
adding constraints (20), and %Gap the final percent deviation at termination.
In order to assess the quality and robustness of GRASP, the algorithm was
run 30 times for each instance and the results are reported under the heading
GRASP . The best objective value obtained in all runs is used to compute
the best percentage deviation (%Dev) with respect to the optimal solution
value or the best LB bound obtained (i.e.,%Dev = (best solution GRASP−
LB)/(best solution GRASP ) × 100%). The robustness of the GRASP is
measured by using the average percent deviation (%Avg Dev) using the best
solutions obtained in each or the 30 runs. An asterisk is used to indicate that
GRASP was not able to obtain the optimal (or the best known) solution. The
average CPU time in seconds for all runs of the GRASP is reported in the
last column of the table.
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Instance Flow-based formulation (FF) Branch-and-Cut GRASP
|N | P α % LP % Gap CPU Nodes %LP-cuts %Gap CPU Nodes % Dev % Avg CPU
10 4 0.2 3.66 0.00 2.08 25 0.92 0.00 0.09 14 0.00 0.00 0.03
10 4 0.5 5.41 0.00 0.67 43 0.72 0.00 0.09 6 0.00 0.00 0.03
10 4 0.8 6.96 0.00 0.97 16 0.69 0.00 0.11 10 0.00 0.00 0.03
10 6 0.2 5.66 0.00 1.14 73 0.91 0.00 0.13 16 0.00 0.00 0.04
10 6 0.5 8.70 0.00 1.26 261 1.54 0.00 0.22 20 0.00 0.00 0.04
10 6 0.8 10.92 0.00 1.54 877 2.82 0.00 0.26 78 0.00 0.00 0.04
20 4 0.2 1.73 0.00 3.78 36 0.04 0.00 0.59 6 0.00 0.00 0.21
20 4 0.5 4.33 0.00 17.69 485 1.58 0.00 4.27 120 0.00 0.00 0.21
20 4 0.8 5.17 0.00 29.16 1024 1.53 0.00 3.45 120 0.00 0.00 0.25
20 6 0.2 5.60 0.00 30.48 753 1.23 0.00 6.65 157 0.00 0.00 0.32
20 6 0.5 8.26 0.00 350.89 9693 2.89 0.00 49.02 683 0.00 0.00 0.35
20 6 0.8 9.73 0.00 1127.92 32563 4.58 0.00 254.7 4243 0.00 0.04 0.39
20 8 0.2 7.35 0.00 180.73 4837 3.06 0.00 61.18 1365 0.00 0.00 0.45
20 8 0.5 12.84 0.00 2736.87 58631 6.51 0.00 4172.21 16191 0.00 0.00 0.52
20 8 0.8 12.78 0.00 8516.44 245771 6.32 0.00 7108.94 43676 0.00 0.03 0.51
25 4 0.2 1.79 0.00 13.65 66 0.18 0.00 2.4 14 0.00 0.00 0.42
25 4 0.5 3.15 0.00 46.69 248 0.61 0.00 4.77 30 0.00 0.00 0.49
25 4 0.8 4.51 0.00 118.65 928 1.81 0.00 9.22 131 0.00 0.00 0.5
25 6 0.2 3.47 0.00 32.26 312 0.31 0.00 5.96 32 0.00 0.00 0.66
25 6 0.5 6.35 0.00 327.76 3435 1.99 0.00 20.27 420 0.00 0.00 0.79
25 6 0.8 8.88 0.00 4065.04 37955 4.39 0.00 456.65 4195 0.00 0.00 0.88
25 8 0.2 7.51 0.00 3169.96 22421 3.59 0.00 503.71 2846 0.00 0.00 0.97
25 8 0.5 10.12 0.00 7711.25 68475 4.76 0.00 15580.55 10230 0.00 0.00 1.11
25 8 0.8 11.09 0.00 18229.57 152835 5.99 0.00 40142.86 70163 0.00 0.55 1.11
40 4 0.2 1.65 0.00 71.23 127 0.34 0.00 24.63 32 0.00 0.00 2.16
40 4 0.5 3.40 0.00 3445.22 1816 1.09 0.00 95.28 70 0.00 0.00 2.39
40 4 0.8 2.45 0.00 24354.44 16182 2.54 0.00 476.58 596 0.00 0.00 2.62
40 6 0.2 4.10 0.00 4119.21 3332 1.87 0.00 323.42 622 0.00 0.00 3.67
40 6 0.5 8.56 2.10 time 41396 4.19 0.00 12949.04 4144 0.00 0.00 3.87
40 6 0.8 9.21 1.40 time 46600 4.95 0.89 time 16503 0.89 0.89 3.68
40 8 0.2 6.55 0.70 time 52491 4.04 0.00 16318.49 9536 0.00 0.00 5.45
40 8 0.5 12.42 8.70 time 42625 6.65 4.01 time 8992 4.01 4.01 5.32
40 8 0.8 14.82 8.00 time 43053 6.16 3.59 time 11814 3.59 3.59 4.83
50 4 0.2 1.15 0.00 233.55 190 0.19 0.00 36.91 47 0.00 0.00 5.64
50 4 0.5 2.57 0.00 6729.47 4332 0.73 0.00 919.38 162 0.00 0.00 5.9
50 4 0.8 5.08 1.80 time 12659 2.65 0.00 32122.6 1795 0.00 0.00 5.41
50 6 0.2 3.56 0.00 25218.14 7791 1.42 0.00 2160 771 0.01 0.00 8.75
50 6 0.5 7.99 6.60 time 13173 5.17 2.28 time 4931 2.36∗ 2.36 9
50 6 0.8 9.02 7.70 time 8609 5.39 3.12 time 4901 3.12 3.14 8.44
50 8 0.2 7.98 6.60 time 11128 4.1 1.58 time 4803 1.58 1.58 12.54
50 8 0.5 10.76 9.60 time 10109 7.31 5.56 time 3628 5.56 5.56 12.37
50 8 0.8 11.26 10.10 time 14139 7.3 5.89 time 3746 5.89 5.96 10.54

Table 2: Computational results for branch-and-cut and GRASP with AP instances

The results presented in Table 2 show that the branch-and-cut algorithm
was able to optimally solve 34 out of the 42 considered instances within the
time limit. For the 8 unsolved instances, the final gaps are in the range
of 0.8% to 6%. On the other hand, we were able to solve the flow based
formulation of 31 instances to optimality and the final gaps on the remaining
instances range from 0.6% to 10.10%. Column %LP-cuts shows that the
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addition of constraints (20) have a significant impact in the improvement of
the lower bound at the root node of the tree. The branch-and-cut algorithm
is faster than CPLEX (FF formulation) on 28 out of 31 instances that were
solved to optimality using both the algorithms. Moreover, our branch-and-
cut algorithm is able to solve 3 instances that CPLEX is unable to solve
within the time limit. For the instances that were not solved to optimality,
the branch-and-cut always provides smaller final percent gaps than CPLEX.

The results in Table 2 also show that the GRASP algorithm is very ef-
fective in finding high quality solutions for the CHLP. In particular, it finds
the optimal solution (or the best known solution) for 41 out of the 42 tested
instances, requiring just a fraction of time that is taken by the branch-and-
cut. Just in one instance (n = 50, p = 6, and α = 0.5), the branch-and-cut
algorithm was able to improve the best solution obtained with GRASP by
0.1%. The percent average deviations over 30 runs depict the robustness of
the GRASP algorithm. On 37 instances, GRASP yield the same solution in
each run whereas the average deviation for the other 5 instances range from
0.02% to 0.55%.

In order to further analyse the efficiency and robustness of our algorithms,
we conducted a final series of computational experiments using instances
ranging from 60 to 100 nodes. The results are summarized in Table 3. The
columns have the same meaning as in the previous tables.
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Instance FF Branch-and-Cut GRASP
|N | P α % LP %LP-cuts % Gap CPU % Dev % Avg Dev CPU
60 4 0.2 1.69 1.04 0.0 242.22 0.00 0.00 8.52
60 4 0.5 2.99 1.22 0.0 805.66 0.00 0.00 10.06
60 4 0.8 5.41 3.09 0.0 11398.67 0.00 0.00 11.45
60 6 0.2 3.84 2.47 0.0 16420.4 0.00 0.02 14.06
60 6 0.5 7.54 5.31 3.60 time 3.60 3.72 19.45
70 4 0.2 1.57 0.67 0.0 810.5 0.00 0.00 13.54
70 4 0.5 3.33 1.82 0.0 4982.43 0.00 0.00 15.22
70 4 0.8 5.59 3.72 0.0 66799.58 0.11∗ 0.22 18.37
70 6 0.2 3.88 2.21 0.0 14662.31 0.00 0.00 24.58
70 6 0.5 7.83 5.91 4.64 time 4.64 4.64 27.86
75 4 0.2 1.52 1.12 0.0 1330.54 0.00 0.00 15.83
75 4 0.5 3.40 1.99 0.0 6201.98 0.00 0.00 20.97
75 4 0.8 5.64 3.83 0.65 time 0.70∗ 0.70 22.83
75 6 0.2 3.94 2.66 0.22 time 0.22 0.22 28.93
75 6 0.5 7.61 5.88 4.54 time 4.54 4.54 34.91
90 4 0.2 1.45 1.37 0.0 7512.22 0.00 0.00 30.41
90 4 0.5 3.14 2.09 0.0 53820.77 0.00 0.00 34.74
90 4 0.8 5.40 4.21 3.18 time 3.18 3.30 38.60
90 6 0.2 3.91 3.35 2.61 time 2.61 2.63 47.74
90 6 0.5 7.63 6.34 5.85 time 5.85 5.85 59.61
100 4 0.2 1.50 1.41 0.00 14112.44 0.00 0.00 39.55
100 4 0.5 3.24 2.35 1.05 time 1.05 1.05 48.25
100 4 0.8 5.52 4.48 3.96 time 3.96 3.96 49.59
100 6 0.2 4.12 3.76 3.17 time 3.17 3.17 64.33

Table 3: Computational results for branch-and-cut and GRASP with large-scale instances
of AP dataset

The results in Table 3 assess the efficiency of our proposed approaches
for solving large-scale instances. Given the dimension and complexity of
the considered instances, the exact algorithm is able to solve 13 out the
24 instances to optimality and for the remaining instances, the final % gap
never exceeds 5.85%. It is worth mentioning that CPLEX is not able to
solve any of the considered instances within the time limit. In the case of the
GRASP algorithm, it is able to obtain the optimal solution in 12 out of the
13 instances that were solved to optimality. For the remaining one instance,
the branch-and-cut was able to improve the best GRASP solution by 0.05%.

5. Conclusions

In this paper, we have introduced and studied the cycle hub location
problem. Potential applications of this model appears in telecommunication
and transportation systems, where large set-up costs on the links as well
as the reliability requirements make cycle topologies a prominent network
structure. We have presented and compared the bath based and flow based
formulations for the problem. An exact algorithm based on a branch-and-cut
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approach was proposed to solve the problem to optimality. This algorithm
uses a family of extended mixed dicut inequalities to improve the lower bound
at some nodes of the enumeration tree. A GRASP metaheuristic was also
presented to efficiently obtain high quality solutions. Computational results
on benchmark instances involving up to 100 nodes confirm the efficiency and
robustness of the proposed approaches.
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