
 
 
 
 
 
 
 
 
 
 

 

 
 

A Fast and Efficient Adaptive Large 
Neighborhood Search Heuristic for 
the Passenger Train Timetabling 
Problem with Dynamic Demand 
 
Eva Barrena 
David Canca Ortiz 
Leandro C. Coelho 
Gilbert Laporte 
 
 
October 2013 
 
 

 CIRRELT-2013-64 

  



A Fast and Efficient Adaptive Large Neighborhood Search Heuristic for 
the Passenger Train Timetabling Problem with Dynamic Demand  

Eva Barrena1,2, David Canca Ortiz3, Leandro C. Coelho1,4,*, Gilbert Laporte1,2  

1
 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT) 

2
 Department of Management Sciences, HEC Montréal, 3000 Côte-Sainte-Catherine, Montréal, 
Canada H3T 2A7 

3
 School of Engineering, University of Seville, Avenida de los Descubrimientos s/n, 41092,Seville, 
Spain 

4
 Department of Operations and Decision Systems, Université Laval, 2325, de la Terrasse, 
Québec, Canada G1V 0A6 

Abstract. The railway planning process is a complex activity which is usually decomposed 
into a succession of stages, traditionally network design, line design, timetabling, rolling 
stock, and personnel planning. In this paper, we study the design and optimization of train 
timetables adapted to a dynamic demand environment. The objective is to minimize 
passenger waiting times at the stations. We first describe an integer linear programming 
formulation which generalizes the non-periodic train timetabling problem under a dynamic 
demand pattern. We then introduce a fast adaptive large neighborhood search (ALNS) 
heuristic in order to deal with larger instances and to solve the problem efficiently within 
short computational times. The algorithm provides timetables that may not be regular or 
periodic, but adjusted to a dynamic demand behavior. Through extensive computational 
experiments on artificial and real-world based instances, we demonstrate the 
computational superiority of ALNS compared with a truncated branch-and-cut algorithm. 
The average reduction on passenger waiting times is 26%, while the computational time of 
our ALNS algorithm is less than 1% of that required by the alternative algorithm. Out of 
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on 10 out of 14 instances with known optimal solutions. 

Keywords. Train timetabling, dynamic demand, regular timetable, exact algorithm, 
branch-and-cut. 

Acknowledgements. This work was partly supported by the Natural Sciences and 
Engineering Research Council of Canada (NSERC) under grant 39682-10. This support is 
gratefully acknowledged. We also thank Calcul Québec for providing parallel computing 
facilities. 

 

 

Results and views expressed in this publication are the sole responsibility of the authors and do not 
necessarily reflect those of CIRRELT. 

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
 

_____________________________ 

* Corresponding author: Leandro.Coelho@cirrelt.ca  

Dépôt légal – Bibliothèque et Archives nationales du Québec 
Bibliothèque et Archives Canada, 2013 

© Copyright  Barrena, Canca Ortiz, Coelho, Laporte and CIRRELT, 2013 



1 Introduction

The railway planning process is a complex activity which is usually decomposed into a

succession of stages, traditionally network design, line design, timetabling, rolling stock,

and personnel planning [19, 23]. The train timetabling problem consists of determining

departure and arrival times of each train service to and from each station along a railway

line or a network.

A service is defined as a trip from an origin to a final destination. Here, a train refers

to the service it operates. We consider the case of a double direction rapid transit line

with two tracks, in which case departure and arrival times can be designed independently

for each direction. We develop an efficient heuristic to the timetabling problem, yielding

solutions that are adapted to the demand pattern. The proposed heuristic works with

small discrete time intervals, as fine as needed. In what follows, we review the relevant

literature before positioning our contribution.

When designing passenger railway timetables it is essential to respect the track capaci-

ties, and it is common to optimize an objective function relevant to the operator, such

as minimizing the deviations from an ideal timetable, or minimizing the services’ run-

ning times [6]. This can be achieved in two ways. The first is to construct a periodic

schedule, i.e., the schedule that is constantly repeated, for example with departures at 03,

21 and 46 minutes every hour. Periodic timetabling models follows the Periodic Event

Scheduling Problem (PESP) formulation of Serafini and Ukovich [35]. Periodic timeta-

bles have the advantage of being easily memorized by passengers and have proved their

ability to deal with large-scale railway networks [26]. The alternative, which consists of

constructing a non-periodic timetable, is appropriate when demand cannot be assumed

to be constant over time or when the service operates in long corridors with a high track

density. Several different integer linear programming models have been proposed for the

non-periodic timetabling problem. The model of Carey [15] uses binary variables to de-

scribe the precedences between services, and continuous variables to represent departure
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and arrival times. It minimizes the total service running time. Caprara et al. [13] use

a time discretization and a representation of the problem on a time-space graph. They

have applied their model to a single one-way line. Their objective consists of minimizing

the deviation with respect to an ideal timetable. Vansteenwegen and Van Oudheusden

[37] have studied the problem of improving the passenger service on a small part of the

Belgian railway network, taking into account waiting times and delays. They define a set

of ideal train buffer times to ensure connections and minimize deviations with respect to

them. None of the above contributions considers passenger demand in the design of the

timetables.

Heuristics have been extensively employed to solve variants of this problem, including

greedy heuristics with different objectives [10, 39], mathematical programming-based

methods to minimize interchange waiting times [38], graph theory-based methods [29],

cut-based algorithms [28], and sequential decomposition [11]. Local search algorithms

include a hybrid of tabu search and branch-and-bound [21], a combination of insertion,

backtracking and dynamic route selection [5], and a hybridization of simulated annealing

with particle swarm optimization [25]. Population-based algorithms include ant colony

optimization [16, 32] and genetic algorithms [17, 30, 36]. Constraint satisfaction tech-

niques have been used by Odijk [31], Abril et al. [1], and Ingolotti et al. [24], whereas

methods based on linear programming relaxations and duality-based methods have been

frequently applied [3, 7, 8, 9, 14, 20, 27, 40]. Other recent heuristics are those of Bur-

dett and Kozan [4] and of Furini and Kidd [22], which are based on a disjunctive graph

representation of the timetable and on relaxed dynamic programming, respectively.

Most of these papers optimize an objective function relevant to the service provider. One

commonly used objective is to minimize the deviation from a solution proposed by the op-

erator. This objective is frequently used in the periodic case. From the users’ perspective,

the objective of minimizing total travel time has been frequently considered. However,

these contributions do not explicitly take variable passenger demand into consideration.

Passenger demand is commonly considered to be constant and is represented by a set of
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meaningful origin-destination matrices corresponding to different hours of a typical day.

In this paper, we consider a generalization of the non-periodic train timetabling problem

under a dynamic demand pattern [12]. We first recall the linear integer formulation

introduced by Barrena et al. [2]. This model does not assume any shape for the demand

function, but can deal with non-monotonic and even non-convex demand functions. The

objective is to minimize passenger average waiting time at stations, and the solutions are

train timetables adjusted to a dynamic demand pattern which may neither be regular nor

periodic. Barrena et al. [2] have proposed an exact branch-and-cut algorithm applicable to

this model, but it can only solve relatively small instances to optimality. As a result, here

we propose an adaptive large neighborhood search (ALNS) algorithm capable of solving

larger and more realistic instances of the problem. We compare the solutions obtained by

our ALNS algorithm with those obtained with the truncated branch-and-cut algorithm

of [2], both in terms of average passenger waiting time and of computing time.

This paper is organized as follows. In Section 2 we formally describe the problem and

present its mathematical formulation. We then describe our ALNS heuristic in Section 3.

We present the results of extensive computational experiments in Section 4, and conclu-

sions in Section 5.

2 Problem description and mathematical model

We focus on constructing timetables adapted to a dynamic demand pattern using the

same criteria as Barrena et al. [2] who presented train timetables in the form of time-space

diagrams, as shown in Figure 1. The horizontal axis represents the planning horizon, and

the vertical axis the distance from each station to the first one. Figure 1(a) illustrates

a regular timetable, i.e., the headway between consecutive trains is constant, whereas

Figure 1(b) depicts a non-regular timetable.

Let S = {1, . . . , n} be the ordered set of stations defining a two-track railway line. The
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(a) Regular timetable (b) Non-regular timetable

Figure 1: Time-space diagrams of train timetables for a one line corridor. Source: Barrena

et al. [2]

planning horizon is discretized into time intervals of length δ. Thus, the time instant

t ∈ T = {0, 1, . . . , p} corresponds to δt time units elapsed since the beginning of the

planning horizon. The discretization constant δ represents the length of the smallest time

interval considered in the problem and therefore, from now on we will consider it as the

time unit which can be as small as desired. Let dtij be the passenger demand between

stations i, j ∈ S, i < j during the interval [t − 1, t]. Let lij be the length of the segment

between stations i and j, hmin the minimum headway, i.e., the minimum amount of time

required between the departure of two consecutive trains at each station, wmin and wmax

the minimum and maximum allowed dwell time at stations, and smin and smax the inverse

of the maximum and minimum traveling speed of a train. The inverse of the speed is used

to avoid non-linearities in the constraints of the problem.

The aim of the problem is to determine train departure times at stations and train speeds

on rail segments in order to minimize the average waiting time of passengers at the

stations.

In what follows, we describe one of the formulations proposed by Barrena et al. [2]. This

formulation is the one that yielded the best results out of the three formulations presented

in that paper. The model makes use of a setM = {1, . . . ,m} of possible trains. It works

with binary variables xtki equal to one if and only if train k leaves station i at time t, integer

variables uti representing the number of passengers boarding the train leaving station i at
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time t, and variables f ti representing the number of passengers waiting at station i at the

end of interval [t − 1, t]. We assume that f 0
i = 0 since no initial demand is considered.

These variables give rise to a linear representation of the objective function with respect

to a dynamic demand function. In order to compute the average waiting time (AWT) per

passenger, we assume that a passenger arriving within the interval [t, t+1] waits half of this

time interval, i.e., δ/2, plus the full δ for each of the remaining time intervals until boarding

the next train. The total waiting time is then δ
2

∑
t∈T

∑
i,j∈S,j>i

dtij + δ
∑

i∈S\{n}

∑
t∈T \{p}

f ti . Since

the first term is a constant, it is not considered in the objective function. The problem

can be formulated as follows:

minimize δ
∑

i∈S\{n}

∑
t∈T \{p}

f ti (1)

subject to

f ti = f t−1i +
∑

j∈S,j>i

dtij − uti i ∈ S \ {n}, t ∈ T (2)

uti ≤
∑
k∈M

xtki

t∑
t′=0

∑
j∈S,j>i

dt
′

ij i ∈ S \ {n}, t ∈ T (3)

xtki ≤
t∑

t′=0

xt
′

k−1,i i ∈ S, k ∈M \ {1}, t ∈ T (4)

∑
t∈T

∑
k∈M

xtk1 ≤ m (5)

∑
t∈T

xtki ≤ 1 i ∈ S, k ∈M (6)

∑
t∈T

txtk+1,i ≥
∑
t∈T

txtki + hmin
∑
t∈T

xtki i ∈ S, k ∈M \ {m} (7)

∑
t∈T

txtk,i+1 ≤
∑
t∈T

txtki + smaxli,i+1 + wmax i ∈ S\{n}, k ∈M (8)

∑
t∈T

txtki + sminli,i+1 + wmin ≤
∑
t∈T

txtk,i+1 i ∈ S\{n}, k ∈M (9)

xtki ∈ {0, 1} i ∈ S, k ∈M, t ∈ T (10)
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f ti , u
t
i ≥ 0 i ∈ S, t ∈ T . (11)

The objective function (1) minimizes the total waiting time of passengers. Constraints

(2) define the flow of passengers waiting at station i at time t. It is equal to the sum

of passengers who were already at the station and arrived in previous periods, plus all

passengers who arrived at station i at time t, minus the number of passengers who boarded

the train leaving station i at time t. Constraints (3) define upper bounds on the number

of passengers boarding a train. In particular, if no train is launched at time t, the flow

of passengers boarding the train is zero. If a train is launched, the right-hand side of

constraints (3) constitutes an upper bound on the number of passengers boarding the

train. From constraints (3) and (11), uti is zero if no train is assigned to leave station

i at time t. Constraints (4) order the trains by their indices and are imposed to break

the symmetry of this formulation. Constraints (5) limit the number of available trains.

Constraints (6) ensure that a train is launched at most once. Constraints (7) establish

the relationship between departure times of two consecutive trains at station i, ensuring

that the minimum headway hmin is respected. Constraints (8) and (9) define the bounds

on the departure time from station i + 1 according to the departure time from station

i, and the minimum and maximum speeds and stopping times. Finally, constraints (10)

and (11) enforce integrality and non-negativity conditions on the variables. For a detailed

analysis of this formulation, the interested reader is referred to Barrena et al. [2].

3 Adaptive large neighborhood search heuristic

The train timetabling problem is NP-hard [13, 19], which explains why it can be solved

exactly only for small instances. In Barrena et al. [2], the formulations proposed could

only be solved exactly for instances with three stations and at most 300 time units in

the planning horizon. Therefore a heuristic becomes necessary for larger and realistic

instances. We have designed a powerful ALNS metaheuristic capable of handling a large

number of origin-destination pairs and of simultaneously determining departure times,
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speeds, stopping times, while minimizing the average passenger waiting times. The ALNS

metaheuristic [33] is based on destroy and repair operators randomly selected at each

iteration. It has already been adapted to several transportation problems including vehicle

routing [33], arc routing [34], and inventory-routing [18]. This heuristic presents itself as

a natural framework for the problem at hand, which combines several types of decision

variables and constraints. Our ALNS implementation follows the general scheme proposed

by Ropke and Pisinger [33]. Basically, train services are removed and inserted in the

initial time space diagram by means of destroy and repair operators. A roulette wheel

mechanism controls the choice of the operators, with a probability that depends on their

past performance.

More concretely, to each operator i are associated a score πi and a weight ωi whose values

depend on the past performance of the operator. Then, given h operators, operator j will

be selected with probability ωj/
h∑
i=1

ωi. Initially, all weights are set to one and all scores

are set to zero. The search is divided into segments of ϕ iterations each, and the weights

are computed by taking into account the performance of the operators during the last

segment. At each iteration, the score of the selected operator is increased by σ1 if the

operator finds a new best solution, by σ2 if it finds a solution better than the incumbent,

and by σ3 if the solution is not better but is still accepted. After ϕ iterations, the weights

are updated by considering the scores obtained in the last segment as follows: let oij be

the number of times operator i has been used in the last segment j. The updated weights

are then:

ωi :=

ωi if oij = 0

(1− η)ωi + ηπi/oij if oij 6= 0,

(12)

where η ∈ [0, 1] is called the reaction factor and controls how quickly the weight adjust-

ment reacts to changes in the operator performance. The scores are reset to zero at the

end of each segment.

As in other implementations [18, 33], we use an acceptance criterion based on simulated

annealing. Given a solution s, a neighbor solution s′ is always accepted if z(s′) < z(s),
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and is accepted with probability e−(z(s
′)−z(s))/τ otherwise, where z(s) is the solution cost

and τ > 0 is the current temperature. The temperature starts at τstart and is decreased

by a cooling rate factor φ at each iteration, where 0 < φ < 1.

We now describe the main features of our algorithm.

3.1 Initial solution

The algorithm can be initialized from an empty solution or from an arbitrary solution,

for example, a regular solution as in Figure 1(a). In our implementation, we start with

an empty solution. Later, we assess the effect of providing an initial solution on the

performance of the algorithm.

3.2 List of operators

Given a solution, destroy and repair operators will delete and insert train services in

the time-space diagram. Restrictions about the headway, dwell times and speeds are

considered by each operator in order to maintain the feasibility of the solution. We now

list the destroy and repair operators we have developed. In what follows, ρ1 is the number

of train services removed from the solution and ρ2 is the number of trains services inserted

in the solution at each iteration. The parameters ρ1 and ρ2 are integers randomly drawn

from the interval [1,mr] (r = 1, 2), where m1 = ms, m2 = m−ms, and ms is the number

of train services of the incumbent solution s. More precisely, ρr follows a semi-triangular

distribution with a negative slope, i.e., ρr = bmr −
√

(1− u)(mr − 1)2 + 0.5c, where u is

a random value in the interval [0, 1].

3.2.1 Destroy operators

1. Randomly remove ρ1 train services

This operator randomly selects ρ1 trains and removes them. It is useful for refining the
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solution since it does not change the solution much when ρ1 is small, which happens

frequently due to the shape of the probability distribution of ρ. However, it still yields a

major transformation of the solution when ρ1 is large.

2. Remove ρ1 train services from the smallest interval

This operator identifies the two consecutive trains with the smallest interval, and removes

the earlier one. This procedure is repeated ρ1 times.

3. Remove ρ1 train services with the smallest demand

This operator removes the train with the smallest passenger demand in one of its tracks,

and this is repeated ρ1 times.

3.2.2 Repair operators

1. Randomly insert ρ2 train services

This operator randomly inserts ρ2 trains. Each insertion is achieved by randomly selecting

a time instant from the planning horizon at the first station and inserting a train starting

at this time instant with random speed and dwell times at the next stations, while ensuring

feasibility.

2. Insert ρ2 train services in the biggest interval

This operator inserts a train in the largest inter-departure interval. Insertions are per-

formed at a random time instant at the first station of this interval, and speed and dwell

times at the following stations are selected randomly within their bounds while ensuring

feasibility. This process is repeated ρ2 times.

3. Insert ρ2 train services near those having the largest demand

This operator inserts a train just before the train with the most loaded track. The

insertion is carried out by assigning the departure of the new train from the first station

just hmin time units before the departure of the most loaded train from first station. The

new train runs parallel to the most loaded one, i.e., with the same speed and the same
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stop time at the same stations. This process is repeated ρ2 times.

3.3 Parameter settings and pseudocode

In this section we describe the parameter settings we have used. These were set after

an early tunning phase. The maximum number of iterations imax is dependent on two

parameters, namely the starting temperature τstart, and the cooling rate φ. We have

decided to set them as follows:

τstart = 60000 (13)

φ = (0.01/τstart)
1/imax (14)

These makes the cooling rate a function of the desired number of iterations, adjusting

accordingly the probability that the ALNS mechanism will accept worse solutions. The

stopping criterion is reached when the temperature reaches 0.01.

In our implementation, the maximum number of iterations imax was set to 70000, the

segment length ϕ was set to 200 iterations, and the reaction factor η was set to 0.7, thus

defining the new weights by 70% of the performance on the last segment and 30% of the

last weight value. Scores are updated with σ1 = 10, σ2 = 5 and σ3 = 2. Algorithm 1

shows the pseudocode of our ALNS implementation. In our experiments, we consider 20

reheatings, that is, after finishing the algorithm, the temperature is set to τstart and the

process is repeated 20 times.

4 Computational experiments

We now provide some implementation specifications, we describe the instances used to

perform the computational experiments, and we present the results of extensive computa-

tional experiments. All computations were performed on a grid of Intel XeonTM processors

running at 2.66 GHz with up to 24 GB of RAM installed per node, with the Scientific
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Algorithm 1. ALNS heuristic - part 1

1: Initialize: set all weights equal to 1 and all scores equal to 0.

2: sbest ← s← initial solution, τ ← τstart, reheatings = 0.

3: while (τ > 0.01 and reheatings < 20) do

4: s′ ← s.

5: Select a destroy and a repair operator using the roulette-wheel mechanism based

on the current weights. Apply the operators to s′ and update the number of times

they are used.

6: if z(s′) < z(s) then

7: s← s′;

8: if z(s) < z(sbest) then

9: sbest ← s;

10: update the score for the operators used with σ1;

11: else

12: update the score for the operators used with σ2;

13: end if

14: else

15: if s′ is accepted by the simulated annealing criterion then

16: s← s′;

17: update the scores for the operators used with σ3.

18: end if

19: end if

20: if the iteration count is a multiple of ϕ then

21: update the weights of all operators and reset their scores.

22: end if
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Algorithm 1. ALNS heuristic - part 2 (continued)

23: τ ← φτ ;

24: if τ ≤ 0.01 then

25: reheatings← reheatings+ 1.

26: end if

27: end while

28: return sbest;

Linux 6.1 operating system. A single thread was used. Our algorithm was coded in C++

and makes use of only one processor and a maximum of only one GB of memory.

4.1 Set of instances

We have used the set of instances initially proposed by Barrena et al. [2] in order to

compare the results of our heuristic algorithm with those obtained by their branch-and-

cut algorithm. A real-world based instance was obtained for the line C5 of the Madrid

Metropolitan Railway. The set of artificial instances was generated according to the

following parameters:

• number of stations n: 3, 6, 10;

• horizon p: 200, 400, 600, 800, 1200 minutes;

• discretization constant δ: 1, 2, 4 minutes;

• maximum number of trains m: 5, 10;

• maximum inverse speed of the trains smin: 0.0015 min/m (speed = 40 km/h);

• minimum inverse speed of the trains smax: 0.00075 min/m (speed = 80 km/h);

• minimum headway hmin: 12 minutes;

• minimum stopping time at the stations wmin: 4 minutes;
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• maximum stopping time at the stations wmax: 12 minutes.

These instances will be referred to as TT -n-p-δ-m, e.g., TT -3-800-2-10, corresponding

to a train timetabling instance with three stations, a planning horizon of 800 minutes,

discretization constant of two minutes, and a maximum of 10 trains. The set of instances

as well as their solutions are available on http://www.leandro-coelho.com.

4.2 Computational results

We first analyze the performance of Algorithm 1 with respect to its parameters, after

having performed various preliminary tests to adjust their settings. The following results

are typical of those obtained across all instances. For presentation reasons we have chosen

instance TT -3-200-1-5 because it is a small instance for which the optimal solution is

known [2]. In Figure 2 we depict the cost of the incumbent solution at the end of each

iteration. This figure illustrates how the algorithm converges and also how it can escape

from local optima by accepting worse solutions. In our tests, we have executed up to

70000 iterations, but in Figure 2 we only show the results corresponding to the first

30000 iterations since the algorithm has already converged. It can be observed that,

as expected, at the beginning of the running process, the algorithm accepts a relatively

large number of worse solutions while it becomes more conservative towards the end, and

finally converges to the optimal solution. After considering 20 reheatings, the running

time for the presented instance TT -3-200-1-5 was equal to 20 seconds. In Figure 2, we

show the results of the first run since the algorithm already yields the optimal solution.

The running time is then equal to one second.

Regarding the use of an initial solution, we have run all the tests with and without an

initial solution and no differences were observed in the results. These findings are typical

of other ALNS implementations for different problems and indicates that the algorithm

is quite robust since its performance is not affected by the quality of the initial solution.

We present in Table 1 a summary of the AWT per passenger and running time over all
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Figure 2: Cost of the solution accepted at the end of each iteration for instance TT-3-

200-1-5

instances, along with a comparison with other algorithms. The rows represent the differ-

ent instance sizes containing three, six and 10 stations, as well as the real-world based

case of the line C5 of Madrid Metropolitan Railway. The columns present the AWT when

using a regular timetable, the best upper on the AWT obtained by the branch-and-cut

algorithm of Barrena et al. [2], which was truncated after three hours of computation, and

the solutions of our ALNS algorithm. We note that most instances could not be solved to

optimality within the time limit used in [2], and optimal solutions were obtained only for

some instances with three stations. It can be observed that the AWT is considerably im-

proved with respect to a regular timetable, and that our ALNS algorithm can significantly

improve the previous best known AWT. Our ALNS implementation can solve the problem

within much shorter computation times than the truncated branch-and-cut algorithm. On

average, the AWT is reduced by 26.58%, and the ALNS heuristic finishes within less than

1% of the running time required by the truncated branch-and-cut algorithm, most of the

time converging much earlier.

In order to compare the results of our ALNS algorithm with those obtained by means

of branch-and-cut methods [2], we provide in Tables 2, 3, 4 and 5 detailed results for

instances with three, six, and 10 stations, and the line C5 of Madrid Metropolitan Railway,

respectively. In these tables we show the AWT per passenger for a regular timetable, as
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Table 1: Summary of the average waiting times and running time for the two algorithms

Regular Barrena et al. [2] ALNS

AWT AWT Time (s) AWT Time (s)

3 stations 45.19 10.54 6656 10.04 33

6 stations 60.06 32.09 10803 21.09 85

10 stations 60.56 49.18 10803 27.15 148

Madrid C5 52.35 49.78 10802 45.71 73

Average 54.54 35.40 9766 25.99 84.75

well as for the timetables obtained in [2] and with our ALNS heuristic. We also show

the upper bound (UB) on the objective function, and the running time needed by both

algorithms, as well as the lower bound obtained in [2]. In order to compare the two

methods, we provide in the last column the improvement (%) statistic, which represents

the improvement of the upper bound UB2 obtained with the ALNS over the upper bound

UB1 obtained by [2]. It is computed as Improvement (%) = 100(UB1−UB2)/UB1. Out

of 106 open instances without a known optimal solution, we obtain 84 new best known

solutions.

The results of Tables 2–5 were obtained with 20 reheatings, that is, after finishing the

algorithm, the temperature τ is set to the initial one and the process is repeated for 20

times. We have also stored the solutions after each reheating and observed that the same

solutions are often obtained after the first reheating. So, we could have avoided the 20

reheatings and reduced the computational time by a factor of 20 without much impact

on the quality of the results.

In Table 2, if we disregard the cases where the optimum is reached (marked with *), the

resulting average improvement then becomes 7.33%. If we only consider the instances with

known optimal solutions, our ALNS heuristic is able to find the optimum in more than

70% of the cases in only a fraction of the computational time used by the exact branch-

and-cut algorithm. When ALNS does not reach the optimum, the worst optimality gap
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is only 2.83%. The average results of Tables 2–4 show that, as expected, ALNS is able to

obtain better improvements on the larger instances than on the smaller ones. Moreover,

we see from Tables 2–5 that ALNS tends to provide better improvements on the instances

having larger planning horizons, larger number of trains, and smaller time units, i.e., on

the most difficult instances.

In order to derive a graphical insight of the results, we depict in Figures 3 and 4 the

improvement of the AWT obtained with ALNS and with the algorithm of [2] over a

regular timetable for the cases of six and 10 stations. Once again, it can be observed

that the improvement of ALNS over [2] is remarkable, especially on the larger instances.

These figures also clearly show that there is nearly no difference between the ALNS

results obtained with and without initial solution, except for the smaller instances, where

an initial solution provided by a regular timetable enables the ALNS heuristic to reach

marginally better final solutions.

Figure 3: Percentage improvement of the AWT on instances with six stations with respect

to a regular timetable
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Table 2: Summary of computational results of a regular timetable, of Barrena et al. [2],

and of our ALNS on instances with three stations
Regular Barrena et al. [2] ALNS Barrena et al. [2] vs. ALNS

Instance AWT UB1 LB Time (s) AWT UB2 Time (s) AWT Improvement (%)

TT -3-200-1-5* 19.39 37368 37368 366 6.27 37368 20 6.27 0.00

TT -3-200-2-5* 18.51 35210 35210 28 6.90 35210 10 6.90 0.00

TT -3-200-4-5* 15.81 29428 29428 1 6.93 29428 5 6.93 0.00

TT -3-400-1-5 44.05 102418 52149 10800 9.08 102456 32 9.08 −0.04

TT -3-400-2-5* 43.50 98412 98412 476 9.72 98412 17 9.72 0.00

TT -3-400-4-5* 39.75 87260 87260 35 9.73 87260 8 9.73 0.00

TT -3-600-1-5 44.99 167941 31144 10801 12.34 167175 49 12.29 0.46

TT -3-600-2-5* 43.33 162008 162008 7979 12.90 162008 25 12.90 0.00

TT -3-600-4-5* 39.44 150748 150748 906 13.07 150748 13 13.07 0.00

TT -3-800-1-5 87.36 290061 29381 10802 17.01 290068 60 17.01 0.00

TT -3-800-2-5 89.26 282996 65078 10801 17.60 282996 31 17.60 0.00

TT -3-800-4-5* 97.84 270468 270468 3480 17.85 270468 15 17.85 0.00

TT -3-1000-1-5 112.70 393820 25130 10802 23.10 301576 74 17.69 23.42

TT -3-1000-2-5 111.55 294992 50677 10801 18.30 294992 39 18.30 0.00

TT -3-1000-4-5* 108.02 283516 283516 4627 18.62 283516 20 18.62 0.00

TT -3-200-1-10* 6.48 28961 28961 153 4.86 29032 31 4.87 −0.25

TT -3-200-2-10* 8.17 26366 26366 18 5.42 26502 16 5.44 −0.52

TT -3-200-4-10* 8.17 20744 20744 2 5.48 21332 8 5.58 −2.83

TT -3-400-1-10 22.48 59715 29887 10801 5.29 61717 49 5.47 −3.35

TT -3-400-2-10 19.24 55714 54734 10800 5.94 56338 26 5.99 −1.12

TT -3-400-4-10* 19.24 45592 45592 140 6.04 45592 13 6.04 0.00

TT -3-600-1-10 24.47 99034 17418 10801 7.28 89538 62 6.58 9.59

TT -3-600-2-10 21.75 83512 43803 10801 7.13 84062 32 7.17 −0.66

TT -3-600-4-10* 21.75 70460 70460 8649 7.17 70584 16 7.18 −0.18

TT -3-800-1-10 40.43 167218 19581 10803 9.81 141642 77 8.31 15.30

TT -3-800-2-10 43.65 168932 29814 10801 10.91 135556 42 8.95 19.76

TT -3-800-4-10 43.66 127528 54541 10801 9.47 119832 22 9.02 6.03

TT -3-1000-1-10 55.08 205169 16550 10805 12.03 143477 92 8.42 30.07

TT -3-1000-2-10 52.76 158180 26658 10801 10.28 137028 46 9.04 13.37

TT -3-1000-4-10 52.76 130460 53162 10801 9.65 119736 24 9.02 8.22

Average 45.19 137808 64875 6656 10.54 129188 32.47 10.04 3.91
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Table 3: Summary of computational results of a regular timetable, of Barrena et al. [2],

and of our ALNS on instances with six stations
Regular Barrena et al. [2] ALNS Barrena et al. [2] vs. ALNS

Instance AWT UB1 LB Time (s) AWT UB2 Time (s) AWT Improvement (%)

TT -6-400-1-5 38.94 697886 31357 10801 17.70 657026 66 16.67 5.85

TT -6-400-2-5 39.42 618322 89743 10800 16.66 642086 34 17.26 −3.84

TT -6-400-4-5 39.42 575780 235328 10801 16.58 610176 18 17.45 −5.97

TT -6-600-1-5 38.76 1583040 64565 10802 29.12 1272434 109 23.41 19.62

TT -6-600-2-5 39.27 1446760 105349 10800 27.57 1252694 54 24.01 13.41

TT -6-600-4-5 39.29 1091000 260442 10800 22.03 1205644 29 24.13 −10.51

TT -6-800-1-5 91.73 4501100 44831 10803 71.63 1930834 114 30.73 57.10

TT -6-800-2-5 92.21 2331550 52831 10801 38.05 1908152 65 31.32 18.16

TT -6-800-4-5 92.22 1815690 216420 10801 30.83 1853772 31 31.44 −2.10

TT -6-1000-1-5 93.19 2655010 48904 10804 42.25 2009144 151 31.98 24.33

TT -6-1000-2-5 93.73 2281690 63335 10801 37.26 1987872 78 32.59 12.88

TT -6-1000-4-5 93.72 1904200 244483 10801 32.24 1936144 38 32.75 −1.68

TT -6-1200-1-5 145.75 8653510 39394 10806 137.72 2055965 181 32.72 76.24

TT -6-1200-2-5 146.20 3079810 67542 10802 49.94 2035826 84 33.35 33.90

TT -6-1200-4-5 146.14 1973860 133449 10801 33.35 1984188 47 33.51 −0.52

TT -6-400-1-10 18.32 541427 31841 10802 13.73 367925 95 9.33 32.05

TT -6-400-2-10 18.81 299506 54620 10800 8.59 349606 53 9.86 −16.73

TT -6-400-4-10 18.81 264824 112558 10801 8.71 299864 29 9.59 −13.23

TT -6-600-1-10 25.18 1289140 43125 10804 23.72 725086 126 13.34 43.75

TT -6-600-2-10 25.67 738628 85181 10801 14.57 680844 60 13.51 7.82

TT -6-600-4-10 25.68 585832 162597 10800 12.76 652088 33 13.97 −11.31

TT -6-800-1-10 44.29 1964960 18149 10805 31.27 998887 161 15.90 49.17

TT -6-800-2-10 44.77 1292330 59877 10802 21.54 972616 84 16.46 24.74

TT -6-800-4-10 44.78 1123040 159611 10801 19.83 924604 46 16.68 17.67

TT -6-1000-1-10 51.55 2301980 21797 10807 36.64 1022806 196 16.28 55.57

TT -6-1000-2-10 52.07 2803080 54501 10803 45.55 1000818 113 16.90 64.30

TT -6-1000-4-10 52.07 1360370 118285 10802 23.60 954772 54 17.16 29.82

TT -6-1200-1-10 49.60 2420880 27191 10812 38.53 1023010 223 16.28 57.74

TT -6-1200-2-10 50.11 2290650 50684 10803 37.40 1011344 119 17.07 55.85

TT -6-1200-4-10 50.11 1339860 90199 10801 23.28 945752 61 17.02 29.41

Average 60.06 1860857 92940 10802 32.09 1175733 85.07 21.09 22.12
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Table 4: Summary of computational results of a regular timetable, of Barrena et al. [2],

and of our ALNS on instances with 10 stations
Regular Barrena et al. [2] ALNS Barrena et al. [2] vs. ALNS

Instance AWT UB1 LB Time (s) AWT UB2 Time (s) AWT Improvement (%)

TT -10-400-1-5 43.59 3033290 237065 10801 21.61 3808505 120 27.13 −25.56

TT -10-400-2-5 44.16 2833700 615530 10800 21.17 3778528 62 27.89 −33.34

TT -10-400-4-5 45.69 2531620 1116720 10800 20.01 3583692 36 27.49 −41.56

TT -10-600-1-5 49.64 7519990 767088 10803 42.18 4510632 157 25.30 40.02

TT -10-600-2-5 50.37 6895040 994635 10801 39.62 4480222 86 26.10 35.02

TT -10-600-4-5 50.72 4721520 1299070 10801 28.43 4301624 46 26.08 8.89

TT -10-800-1-5 78.24 16622200 178477 10804 76.40 7828656 214 35.98 52.90

TT -10-800-2-5 78.75 12715800 194557 10801 59.37 7931410 116 37.41 37.63

TT -10-800-4-5 76.97 8954050 404503 10800 43.08 7584952 57 36.80 15.29

TT -10-1000-1-5 100.55 19846900 96539 10806 91.14 8463409 258 38.87 57.36

TT -10-1000-2-5 101.10 20319300 120569 10802 94.18 8387908 138 39.46 58.72

TT -10-1000-4-5 100.51 10387000 381954 10800 49.60 8142144 74 39.31 21.61

TT -10-1200-1-5 136.81 29476600 155406 10808 135.36 8897358 350 40.86 69.82

TT -10-1200-2-5 137.30 29013600 115835 10802 134.05 8891232 170 41.77 69.35

TT -10-1200-4-5 133.25 22723500 214828 10801 106.13 8720024 86 41.96 61.63

TT -10-400-1-10 30.11 3983120 195417 10802 28.37 3022055 169 21.53 24.13

TT -10-400-2-10 33.84 3292210 364183 10800 24.43 3012880 105 22.44 8.48

TT -10-400-4-10 33.75 1285320 534844 10800 11.14 2798428 50 21.91 −117.72

TT -10-600-1-10 28.38 4816760 614681 10805 27.02 2959429 203 16.60 38.56

TT -10-600-2-10 28.86 4314360 750225 10801 25.17 2919640 114 17.35 32.33

TT -10-600-4-10 28.74 2498310 998377 10800 15.99 2750996 60 17.40 −10.11

TT -10-800-1-10 37.08 8006310 28024 10808 36.80 4136948 259 19.02 48.33

TT -10-800-2-10 36.79 7689280 110549 10802 36.30 4040168 155 19.55 47.46

TT -10-800-4-10 36.53 6324230 178630 10801 31.01 3859848 81 19.71 38.97

TT -10-1000-1-10 44.33 9627130 7267.72 10813 44.21 4399797 325 20.20 54.30

TT -10-1000-2-10 45.18 9578170 117209 10803 44.92 4368718 175 21.03 54.39

TT -10-1000-4-10 45.21 8321170 289559 10800 40.14 4173512 93 21.13 49.84

TT -10-1200-1-10 53.80 11534900 14218 10818 52.97 4550840 374 20.90 60.55

TT -10-1200-2-10 53.53 10365300 97221 10805 48.53 4486944 203 21.58 56.71

TT -10-1200-4-10 53.13 9601930 194502 10801 46.00 4300716 94 21.71 55.21

Average 60.56 9961087 379589 10803 49.18 5169707 147.67 27.15 28.97
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Table 5: Summary of computational results of a regular timetable, of Barrena et al. [2],

and of our ALNS on C5 instances
Regular Barrena et al. [2] ALNS Barrena et al. [2] vs. ALNS

Instance AWT UB1 LB Time (s) AWT UB2 Time (s) AWT Improvement (%)

C5-400-1-5 32.04 351578 44711 10801 28.07 347774 60 27.77 1.08

C5-400-2-5 32.27 366436 62644 10801 28.87 365958 32 28.84 0.13

C5-400-4-5 32.17 368016 144576 10801 29.33 367672 17 29.31 0.09

C5-600-1-5 49.99 713138 30773 10801 45.87 657123 84 42.27 7.85

C5-600-2-5 50.26 712808 62346 10801 44.74 685316 43 43.05 3.86

C5-600-4-5 49.87 697884 100063 10800 43.94 691816 23 43.58 0.87

C5-800-1-5 69.22 1420300 44429 10802 69.22 1167838 105 56.91 17.78

C5-800-2-5 69.08 1295520 69211 10801 61.77 1204986 53 57.53 6.99

C5-800-4-5 68.03 1297920 130709 10801 61.57 1222216 28 58.09 5.83

C5-1000-1-5 84.98 2232260 37783 10804 84.94 1920051 129 73.06 13.99

C5-1000-2-5 85.44 2117930 73783 10801 78.77 1985946 66 73.92 6.23

C5-1000-4-5 84.63 2069540 132404 10801 76.83 2009336 34 74.66 2.91

C5-1200-1-5 109.00 3273840 34870 10806 109.00 2716630 154 90.45 17.02

C5-1200-2-5 108.70 3350500 67301 10802 108.70 2796192 80 90.88 16.54

C5-1200-4-5 107.73 2961000 127146 10800 96.02 2815152 44 91.39 4.93

C5-400-1-10 17.56 205070 21974 10802 16.37 197638 88 15.78 3.62

C5-400-2-10 18.96 221142 38235 10801 17.82 200196 47 16.23 9.47

C5-400-4-10 18.98 194616 56767 10800 16.45 197020 26 16.63 −1.24

C5-600-1-10 25.73 400063 15834 10803 25.73 358608 113 23.07 10.36

C5-600-2-10 26.26 396106 38197 10801 25.31 372610 59 23.86 5.93

C5-600-4-10 26.30 389040 71623 10801 25.38 368204 32 24.13 5.36

C5-800-1-10 35.13 720960 20380 10807 35.13 649808 136 31.67 9.87

C5-800-2-10 35.34 732108 32511 10802 35.34 667874 71 32.33 8.77

C5-800-4-10 35.44 697328 92559 10801 34.00 667392 38 32.63 4.29

C5-1000-1-10 44.44 1167870 18472 10808 44.44 1063456 163 40.47 8.94

C5-1000-2-10 44.68 1189540 30750 10802 44.68 1092802 85 41.13 8.13

C5-1000-4-10 44.79 1177340 108988 10801 44.57 1089628 45 41.40 7.45

C5-1200-1-10 54.50 1637000 11019 10811 54.50 1489795 189 49.60 8.99

C5-1200-2-10 54.43 1662340 22438 10803 54.43 1531472 101 50.23 7.87

C5-1200-4-10 54.63 1562580 101524 10801 51.62 1527444 54 50.50 2.25

Average 52.35 1186059 61467 10802 49.78 1080932 73.3 45.71 6.87
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Figure 4: Percentage improvement of the AWT on instances with 10 stations with respect

to a regular timetable

5 Conclusions

We have proposed an ALNS algorithm for a train timetabling problem adapted to a

dynamic demand pattern, with the objective of minimizing the AWT per passenger. Ex-

act formulations for this problem are available [2] but these can only be used to solve

very small instances, and yield very large optimality gaps for medium and large size

ones. Through extensive computational experiments on real-world based and randomly

generated instances, we have compared our ALNS against a state-of-art truncated branch-

and-cut algorithm. We have reduced the average passenger waiting time by 26% by using

less than 1% of the computation time required by this algorithm. Out of the 120 open

instances, we were able to improve the best known solution in 84 cases and to reach the

optimum for 10 out of 14 instances with known optimal solutions. These clearly confirm

the superiority of our ALNS heuristic.
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