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1. Introduction 

The Rural Postman Problem with Time Windows (RPPTW) involves finding the minimum- cost tour 

that goes through a set of required edges in a network. A vehicle leaves the depot, visits the required 

edges, and returns to the depot. A release time and a due time are given for each required edge. The tour 

is feasible if the visits are carried out during the defined time windows. Waiting times are allowed, i.e., 

the vehicle may arrive at any required edge earlier than its release time, but the service cannot start until 

the time window “opens.” Costs of service are associated with required edges and traversal costs with 

non-required edges. The vehicle may go through a required edge more than once, and the cost is 

normally lower when it does not service the edge.   

The real-world application underlying this study is the monitoring of roads for black-ice detection. This 

activity is carried out by the Ministry of Transport in the province of Quebec from mid-October to mid-

December. The goal is to check the state of roads and take measures to prevent accidents. During this 

period, black ice on roads is almost invisible to the users; timely detection avoids pedestrian falls or 

automobile accidents. 

Currently, a patrol must cover a network and generate reports about the state of the roads. The available 

information refers to to short-term weather forecast and a characterization of roads with high likelihood 

of black-ice formation; for example it is known that bridges and roads located near rivers are 

particularly susceptible to ice formation when certain meteorological conditions occur. The patrol 

determines the roads to be checked weighting their risk level and the meteorological conditions in the 

area where they are located. The weather forecast induces the time windows for monitoring the road 

segments over a large region; so the patrol should check the state of road segments of the network 

during established time intervals. Normally the patrol has enough time to visit all the roads defined 

previously in the schedule.    

The RPPTW reduces to the Rural Postman Problem (RPP) when the time-window constraints are not 

taken into account, so it is NP-hard. Little attention has been paid to the RPPTW. To the best of our 

knowledge the works of  Nobert and Picard (1994) and Kang and Han (1998) are the only two.   

Norbert et al. (1994) introduce a heuristic algorithm for the RPPTW. In their problem the required arcs 

are of two types: arcs that must be visited during the morning and arcs that may be visited all day long. 

They propose a heuristic method based on the solution of two rural path problems and on the 

computation of appropriate penalties. Numerical results are not published. Kang and Han (1998) 

consider the problem as a multiobjective optimization problem because they allow arrival at the 

required arcs after the due times, which incurs a cost penalty. The objective is to reduce the total 

traveling cost and total penalty. The authors present a genetic algorithm and compare three crossover 

operators.  

A similar problem, the RPP with deadline classes, has been studied by Letchford and Eglese (1998). 

They consider a single-vehicle arc routing problem in which the required edges are partitioned into a 

number of classes according to priorities, each class having its own deadline. An optimization algorithm 

is presented based on the use of valid inequalities as cutting planes. They tested the algorithm on a set 

of instances for the RPP from Corberán and Sanchis (1994) and found optimal solutions for all cases up 

to 67 required edges. 
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Our work addresses the undirected version of the problem. We assume that the costs of service are 

equal to the traversal costs, but our approaches could be easily modified if this is not the case. Our main 

is to present the problem for a real-life application and several ways to model it. Three formulations are 

presented: one where the decision variables explicitly express the number of times an edge is traversed 

and two based on graphs equivalent to the original one. We then explore the third formulation, obtained 

when we transform the original problem to a Traveling Salesman Problem with Time Windows and 

side constraints. 

 

For the Traveling Salesman Problem (TSP), polyhedral approaches have been extremely successful 

(Fischetti and Toth, 1997, Jünger et al., 1995, Padberg and Rinaldi, 1991). Ascheuer et al. (2001) solve 

the Asymmetric TSP with Time Windows (ATSP-TW) by a branch-and-cut method; they solve in a 

satisfactory way real-world instances of the control of a stacker crane in a warehouse. We have chosen 

to use the polyhedral approach. The RPPTW is formulated as an integer linear program that is solved by 

a cutting plane algorithm.      

 

The paper is organized as follows. Section 2 presents three different models for the undirected case. In 

Section 3 we summarize the valid inequalities that we use as cutting planes in our algorithm. We briefly 

describe the solution algorithm in Section 4. Section 5 outlines the computational experiments. In 

Section 6 an extension of the formulations is given for the directed version of the problem, and Section 

7 provides concluding remarks. 

 

2. Undirected RPPTW 

We propose three different formulations for the problem. The first considers the classical point of view 

of formulations of arc routing problems, i.e., an edge can be traversed more than once in any feasible 

solution, and defines decision variables that explicitly express the number of times an edge is traversed. 

The other two formulations are based on transformed graphs. The first transformation considers the 

required edges as nodes and joins them by means of arcs that represent the shortest paths among them 

in the original graph. The second transformation considers the nodes incident to the required edges and 

connects them with an arc that again corresponds to their shortest paths in the original graph.    

 

2.1. Model on the edges 

 

This formulation is based on the work presented by Gueguen (1999). He proposes a MIP for the 

Capacitated Arc Routing Problem with Time Windows (CARP-TW). Apparently this is the only 

formulation on edges for the CARP-TW, i.e., based on the classical point of view; however, the author 

does not present numerical results. Basically, we modify Gueguen’s formulation by adding a duplicate 

of each required edge to keep track of the direction in which the vehicle travels along these edges. This 

is necessary to guarantee conservation of flow on the nodes of the network. 

  

Consider a graph  (   ) where   is the set of vertices and   is the set of edges. The required edges are 

the subset      . Let   be the set of edges that includes  , a duplicate    of each required edge 

    , and an artificial edge      that represents the depot. The duplicate edges have the same cost and 

time windows as the originals. Let   be the set of pairs of edges (    ) such that      correspond to the 

same required edge (the order      is determined arbitrarily), and   the set that contains all      and 
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their duplicates. Additionally,  ̇  is the traversal cost of edge  ,  ̇  is the traversal time of edge  , [ ̇    ̇ ] 

is the time window for edge    and for the edge      we set  ̇    .   is a large integer value and    is 

the set of vertices incident to edge  .   = |  |    is the maximum number of times an edge can be 

traversed when time windows are considered (Gueguen, 1999). The decision variables defined hereafter 

allow us to keep track of the number of times (each time corresponds to a “copy” of an edge) that the 

vehicle traverses each edge. 

   

Let the decision variables       1 if copy   of edge   is traversed immediately after copy   of edge  , 

and 0 otherwise; and let     be the time to start traversing copy   of edge  . The formulation on the 

edges is as follows: 
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The objective is to minimize the total traversal cost. Services are ensured by constraints (2.2). 

Constraint (2.3) forces the tour to start at the depot. Flow conservation is ensured by constraints (2.4). 

Constraints (2.5) avoid solutions with subcycles between any pair of edges in   that represents the same 

edge in  . Inequalities (2.6), (2.7), and (2.8) are the time-window constraints. Constraints (2.9), not in 

Gueguen (1999), allow us to reduce the number of equivalent solutions. Finally, constraints (2.10) and 

(2.11) define the decision variables.  

This model is intractable for large networks because the number of copies of each edge could be, in the 

worst case, equal to the cardinality of the set of required edges plus one. Our tests have shown that for 

large networks the number of times the same edge is traversed never exceeds five, so we set     in 

our implementation. 

2.2. Model on the required edges 

Since the model on the edges (Section 2.1) is not practical, we propose an equivalent formulation. Let 

the original problem be defined on the graph   (   ) as in Section 2.1. In this graph two required 

edges can be connected successively on a route in four ways, depending on the traversal direction of the 

two edges. This leads us to define the problem on a new graph    (    ).  

For each required edge   in   we define two nodes      in   , where         represent the two possible 

directions in which edge   in   can be traversed. Each arc of    connects a node     with a node 

    if they do not correspond to the same edge in     The cost of the arc that connects node    to node 

  in    is equal to the cost of the edge represented by   plus the length of the shortest path in   from the 

final node of the edge represented by   to the initial node of the edge represented by  , according to the 

traversal directions.   

              
             Required edges 

                                      a) Original graph                                           b) Transformed graph 

Figure 1. Transformed graph for model on required edges 

 

Figure 1 shows an example of the transformation. The original graph is presented in a). The depot is 

located at the black node; the edge indices are shown near each edge; and the traversal costs are in 

parentheses. There are three required edges (2, 4, and 5). The transformed graph is illustrated in b). Its 

nodes are labeled with the same number as their corresponding required edges. Arrows over and under 
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(2) (1) 
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the nodes indicate the traversal direction that each node represents. Note that pairs of nodes 

corresponding to the same required edge are not connected.  

 

Finally we add an artificial node labeled     to represent the depot. We join     to all nodes in   by 

means of two arcs with a cost equal to the length of the shortest path in   from the depot to the edges, 

and from the edges to the depot respectively, again according to the traversal direction. Table 1 

indicates the cost of the arcs of the transformed graph.  The time window for each node is the same as 

for the corresponding edge. 

 

Table 1. Costs of the transformed graph – Model on the required edges 

         To  
From  

0 2 2° 4 4° 5 5° 

0 0 6 8 2 4 1 2 

2 10 0 0 7 5 8 7 

2° 8 0 0 6 7 7 6 

4 6 7 5 0 0 5 4 

4° 4 6 7 0 0 3 2 

5 3 5 6 1 3 0 0 

5° 2 6 7 2 4 0 0 

In the transformed graph    we look for a minimum-cost tour that visits one of the two nodes that 

represent the same required edge. The tour starts and ends at the depot, and the visits must satisfy the 

time windows. 

 

Let us consider the set   that includes the pairs of nodes (    ) , where    °  , such that    ° represent 

the same required edge. We consider the following parameters:     is the traversal cost from node   to 

node  ,     is the traversal time from node   to node  , [     ] is the time window for node  , and      

     {             }. We set      for the depot node.   

 

We define the decision variables     to be equal to 1 if node   is serviced immediately after node  , and 

0 otherwise, and    to be the arrival time at node  . The formulation on the required edges is as follows: 

  

      ∑ ∑       
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The objective is to minimize the total traversal cost. Constraints (2.13) and (2.14) ensure that only one 

node is included in the tour for each pair of nodes that represent the same required edge. Constraints 

(2.15) and (2.16) force the tour to start and end at the depot. The time-window constraints are (2.17), 

(2.18), and (2.19). Constraints (2.20) guarantee flow conservation. Finally, the decision variables are 

defined in (2.21) and (2.22). 

2.3. Model on the nodes 

We now propose a transformation from the original problem to an equivalent problem on nodes. We 

define a new graph    (     ), where all the vertices incident to the required edges in the original 

graph   (   ) are included in the set of nodes     It should be pointed out that if a vertex of   is 

incident to more than one required edge in  , then this vertex will have as many copies in    as the 

number of incident required edges in       is the set of arcs that connects the nodes of   . The cost of 

an arc that joins node   to node   is equal to the cost of the edge that starts at node   plus the length of 

the shortest path in   from the final vertex of that edge to the initial vertex   of the other edge. We set 

the cost to zero when nodes   and   represent vertices incident to the same edge in   or when    .  

We obtain a complete directed graph. Figure 2 shows an example of the transformation. The original 

graph is presented in a). The vertices are numbered, the depot is located at the black vertex, and the 

numbers in parentheses represent traversal costs. Figure 2b) illustrates the transformed graph. Note that 

there are two nodes labeled  4  and  4°  because they represent vertex     of a), which is incident to 

two required edges.  
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                             Required edges 

                            a) Original graph                                                  b) Transformed graph 

Figure 2. Transformed graph for model on nodes 

 

We add an artificial node     to represent the depot. We join     to all nodes in    by means of two 

arcs with costs equal to the length of the shortest path in   from the depot to the vertices, and from the 

vertices to the depot respectively. The time windows of each required edge in   are assigned to its 

incident nodes. 

 

In the transformed graph, we look for a minimum-cost tour that starts and ends at the depot and satisfies 

the time windows for all nodes. Additionally, two nodes incident to the same required edge must be 

placed one after the other in the tour sequence. Table 2 shows the cost matrix for the transformed graph. 

Table 2. Costs of the transformed graph – Model on the nodes 

     To 

From  
0 1 2 4 3 5 4° 

0 0 6 8 2 4 1 2 

1 10 0 0 7 5 8 7 

2 8 0 0 6 7 7 6 

4 6 7 5 0 0 5 4 

3 4 6 7 0 0 3 2 

5 3 5 6 1 3 0 0 

4° 2 6 7 2 4 0 0 

 

Let us define    as the set of pairs of nodes that are incident to the same required edge, and   as the set 

of nodes that includes one of the two nodes incident to the same required edge. Furthermore, let the 

parameters    ,    , [     ],   , and     and the decision variables     and    be as defined in Section 

2.2. The formulation on the nodes is as follows: 
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subject to: 

                  (   
 )                                                                                                                  (    ) 

∑                  { }                                                                                                       (    )

      { }|
    

 

∑                    { }

     { }|
    

                                                                                                     (    ) 

             (     )                     { }|                                                           (    ) 

               { }                                                                                                                           (    ) 

                                                                                                                                                     (    ) 

           (   
 )                                                                                                                                 (    ) 

     {   }           { }       { }|                                                                                (    ) 

    
           { }                                                                                                                         (    ) 

 

The objective is to minimize the total traversal cost. Constraints (2.24) are related to the required 

services. Constraints (2.25) and (2.26) ensure that each node is visited. The time-window constraints are 

(2.27), (2.28), (2.29), and (2.30). The decision variables are defined in (2.31) and (2.32).  

The model on the edges (Section 2.1) is intractable for large graphs and uses a large real value   that 

creates weak relaxations and numerical difficulties in the solution methods. The models based on the 

transformations have fewer variables and constraints. They also use large integer values    , but these 

can be bounded to minimum values that allow us to find feasible solutions. The variables of model on 

edges need two index k, l to identify the number of times each edge could be traversed in a deadheading 

mode if it computes on the minimum-distance objective. We cannot associate a unique starting and 

completion time for each edge. We augment the graph by k x l times whereas the transformations are 

models better bounded because they compact the graph by taking into account only information related 

to required edges. The other edges (no required) are considered only for getting the shortest path among 

required edges. Therefore, the variables do not need an extra index to identify the number of times 

edges are traversed in a deadheading mode and we can make the assumption that elements representing 

the required edges are visited no more than once. The model on the nodes (Section 2.3) results in the 

Asymmetric TSP with Time Windows and side constraints. Therefore, existing algorithms for the 

Asymmetric TSPTW can be used.     

 

 

3. Valid inequalities 

 

We focus on the model on the nodes (Section 2.3), taking advantage of its structure. This model has 

elements of the Precedence Constrained Asymmetric TSP (PC-ATSP). Polyhedral approaches to solve 

problem instances to optimality are known to work well for the PC-ATSP (Ascheuer et al., 2000), and, 

as already mentioned, for the TSP. We study some of the known valid inequalities with respect to the 

two problems that are also valid for the formulation (2.23)–(2.32). In the following, we summarize the 

classes of inequalities that we use in our solution method.  
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Notation 

Given the set of arcs   , for any arc set      we define   ( )  ∑(    |(   )   ). Given the set 

of nodes    that includes the depot    , for any two node sets        we define         (   )  

 {(   )      |         } and write   (   ) for   ((   ))  

Lifted t-bounds.  Desrochers and Laporte (1991) observed that the bounds of the  -variables (see 

inequalities 2.28 and 2.29) can be strengthened. Indeed, let        {           } and     

   {           }. Then the inequalities  

 

                                                         ∑       
 
   
|   

            { }                                               (3.1) 

                                                         ∑       
 

   
|   

            { }                                            (   ) 

are valid for the formulation (2.23)–(2.32). 

Strengthened MTZ-inequalities.  Desrochers and Laporte (1991) propose a lifted version of the MTZ 

subtour-elimination constraints (2.27). Let  ̅      {         } and               . Then for 

all               the inequality   

                                          – (     )    (         –  ̅  )                                           (   ) 

is valid for the formulation (2.23)–(2.32). 

According to Desrochers and Laporte (1991), when precedence relations exist, the MTZ-inequalities 

can be further strengthened. Assume    . Since   must be scheduled before  , we have      , and the 

inequality  

                                                                                                                                               (   ) 

is also valid. If             holds, inequality (3.4) can be strengthened to  

                                                                                                                                                       (   ) 

Subtour elimination constraints. We include the subtour elimination constraints, since they are the 

best known inequalities for the Asymmetric Traveling Salesman polytope (Balas et al., 1995). These 

inequalities  (    )  | |    can be written in the equivalent cut form 

                                                      (    ̅)                                                                          (   ) 

where  ̅      , and (3.6) is valid for the formulation (2.23)–(2.32).  
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The Predecessor/Successor inequalities. The PC-ATSP is a relaxation of the ATSP-TW. We use 

some valid inequalities for the PC-ATSP that allow us to strengthen the subtour elimination inequalities 

(3.6). Balas et al. (1995) introduced these classes of inequalities.  

For       { },  ̅      , the                        ( -inequality) 

                                                           (   ( )    ̅   ( ))                                                            (   )  

and the successor inequality ( -inequality) 

                                                    ( ̅   ( )      ( ))                                                             (   ) 

are valid for the formulation (2.23)–(2.32). 

For any given        { } such that  ( )       ( )     and any        such that      , the 

inequalities     

                                                        (   ( )    ̅   ( ))                                                            (   ) 

                                                             ( ̅   ( )      ( ))                                                        (    ) 

are called weak  - and weak  -inequalities respectively. 

4. Solution algorithm  

 

We implement the following algorithm to solve the Undirected RPPTW.   

 

4.1. Data preprocessing 

 

Data preprocessing is important for efficient implementations. It allows the construction of tighter 

equivalent formulations of the problems, such that no optimal solution of the original problem is lost 

and each solution of the tighter problem corresponds to a solution of the original problem.   

The structures of the formulations on the required edges (Section 2.2) and on the nodes (Section 2.3) 

permit such a preprocessing procedure. It is based on the work of Ascheuer et al. (1999). We tighten the 

time windows iteratively until no more changes are made. We then identify precedence relations, fix 

variables permanently, and detect infeasible paths of size two and three to reduce the set of variables. 

 

We now present the separation procedures for the classes of valid inequalities (3.6)–(3.10).  

 

4.2.  Cutting plane algorithm 

 

Initial linear program. We solve the relaxation of the model on nodes (2.23)–(2.32), i.e., when the 

decision variables     are restricted to be nonnegative and less than or equal to one. Constraints (3.1) 

and (3.2) are included in the initial model instead of constraints (2.28) and (2.29) because the former are 

stronger. We also include the strengthened MTZ-inequalities (3.3), (3.4), and (3.5) instead of the MTZ-

inequalities (2.7) when possible. 
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Separation routines. Let (     ) be a solution where    is fractional. We want to identify a member of 

a family   of valid inequalities listed in Section 3. for the formulation on the nodes that is violated by 

   or else show that    satisfies all members of F. The implemented separation procedures are an 

adaptation of routines described in the literature. 

 

 Subtour elimination constraints: For the cutset inequalities (3.6) we can solve the separation 

problem by computing the connected component   that includes the depot in the graph    induced 

by    
      If this component does not include all the nodes in   , the subtour elimination 

constraint is violated by   , and we obtain the set   that includes all nodes in    This procedure 

detects inequalities (3.6) that are violated only in the case where there is no path in    from the 

depot to any      { }. 

 

 Predecessor inequalities: We implement the exact separation algorithm presented by Balas et al. 

(1995) for the separation problem of predecessor inequalities. Although this algorithm detects only 

a violated weak  -inequality, if one exists, rather than a stronger  -inequality of the class (3.7), the 

detected violated inequality (3.9) can be replaced with a strictly stronger violated inequality of the 

class (3.7) when we include  ( ) instead of  ( ). If we apply the algorithm for      { } such 

that  ( )   ,  we detect the known cutset inequality, and obtain an algorithm that simultaneously 

solves the separation problem for both the subtour elimination inequalities and the  -inequalities. 

 

 The successor inequalities: With an analogues procedure to Balas et al. (1995) we can detect if    

violates a weak  -inequality. For any fixed   with  ( )     delete  ( ) from    and in the 

resulting network with arc capacities    
  try to send one unit of flow from node 0 to node  . If this 

is possible, all inequalities (3.10) associated with the given   are satisfied by   ; otherwise the 

minimum capacity identified by the failed attempt to send a unit of flow specifies the  -inequality 

most violated by   . We reverse the sets   and  ̅, i.e.,   will be replaced by  ̅ and vice versa. As in 

the previous case, if a violated inequality (3.10) is found, it is replaced with a strictly stronger 

violated inequality of the class (3.8), when we include  ( ) instead of  ( ). 

 

Steps for the separation routine  

 

 Subtour elimination constraint 

 “Shrinking”: The separation algorithm for the predecessor/successor inequalities implies the 

computation of the maximum flow for each pair         We use “shrinking” procedures (Padberg 

and Rinaldi, 1990) to reduce the problem size and to avoid as many maximum-flow calculations as 

possible. “Shrinking” checks whether or not certain nodes lie on the same side of a minimum-

capacity cut. If the results are positive, the subset is contracted or “shrunk” to a single node. We 

contract nodes   and   if they are incident to the same required edge. Also, we contract nodes   and   

if    
    in the fractional solution   . 

 Predecessor inequalities: We use the separation problem for the predecessor inequalities, and we 

simultaneously check the subtour elimination constraints when there is one connected component in 

the fractional solution   . 
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 Successor inequalities: We use the separation problem for the successor inequalities, and we 

simultaneously check the subtour elimination constraints when there is one connected component in 

the fractional solution    

 

We generate at most one cutting plane for each separation routine per iteration. The linear problems are 

solved using standard parameters of CPLEX 12.4.0.  

 

4.3.  Solution of the MIP program 

 

We stop the cutting plane algorithm whenever the last 10 linear problems produce no improvement in 

the lower bound, or in case the improvement in less than 0.1%, or when the running time reaches three 

hours. In those scenarios the decision variables     are restricted to be binary, and we solve the problem 

using the callable library of CPLEX 12.4.0.0. with its default parameters except the threads set on value 

1.     

 

5. Computational results 

In this section we describe the results of the comparison of the models on a set of generated instances 

and the performance of our cutting plane algorithm which was tested also on a set of instances based on 

the real network of the Estrie region in Quebec. Our implementation is coded in Python 2.6 and runs on 

a 2.38 GHz AMD 250. 

5.1. Generated instances 

There are no published benchmark instances for the undirected RPPTW. We modified the CARP-TW 

instances of Wøhlk (2005). The author combines five values for the number of nodes 

({              } ) and the number of edges ({              }) and generates five different graphs 

for each combination.  

Basically, we selected some required edges randomly and found a path through all of them using the 

nearest-neighbor heuristic. Then, we established the time-window intervals by reducing and extending 

by 10, 20, and 30% the values of the arrival time given by the heuristic. By combining the percentage of 

required edges {        } and the width of the time windows {        } we generated 225 instances. 

All the instances can be downloaded from 

http://ftpprof.uniandes.edu.co/~pylo/inst/RPPTW/instances.htm.  

5.2.  Instances of Estrie network  

We tested the cutting plane algorithm in a real undirected network that represents a part of the Estrie 

administrative region in Quebec. The network has 1472 km in total, 140 nodes and 187 edges. We 

simulated nine weather forecasting for one day with 4 or 5 time slots. If any edge is located in a time 

slot where rain is presented, the edge will be required to be visited in its respective time slot. Figure 3 

shows an example of simulated weather forecasting for Estrie region. We defined the cost of traverse as 

the length of the road multiplied by a fractional number in order to get scalar representation, and the 

time of traverse proportionally to this value.    
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Figure 3. Estrie network – Weather forecast with 5 time slots  

5.3. Preprocessing 

As noted earlier, the structures of the formulations on the required edges (Section 2.2) and on the nodes 

(Section 2.3) allow data preprocessing. Table 3 shows the effect of data preprocessing, giving the 

average percentage of removed variables. In general, there was a considerable reduction in the problem 

size. When the time windows are tighter more variables can be fixed.    

Table 3. Reduction in number of variables 

T.W. Width Model on 

the required 

edges 

Model on 

the nodes 

10 47.44% 40.15% 
30 36.96% 30.43% 

50 26.09% 21.88% 

 

5.4. Preliminary test and cutting plane algorithm 

In this section we present a summary of the presented models performance as well the cutting plane 

algorithm performance. We solved the models using CPLEX 12.4.0 with the callable library, setting a 

running time of up to three hours excluding the data-preprocessing time.  

We compare only the models based on the transformations because the model on the edges (Section 

2.1) is too large even when the number of copies of required edges is small. Table 4 summarizes the 

results for subsets of instances grouped by size. However detailed results for each instance are available 

at http://ftpprof.uniandes.edu.co/~pylo/inst/RPPTW/instances.htm. Column TW lists the different time-

window widths, n is the number of nodes, e is the number of edges, |R| is the average number of 

required edges, N is the total number of instances in the set, sol is the number of problems solved to 

optimality, and t is the average running time in seconds. 

The model on the nodes (Section 2.2) is superior to the model on the required edges (Section 2.3) 

because it finds more optimal solution and optimal solutions for harder instances, and the computational 

times are smaller.   
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The results for the cutting plane algorithm are summarized in the follow columns. Column gap shows 

the average gap (%) given by the aggregation of cuts with respect to the optimal solution. Columns mic 

and mac show the minimum and maximum number of added cuts. Finally, ave t and t max present the 

average and maximum running times. 

Our algorithm was able to solve 222 of 225 instances. The cutting plane approach solved 78 problems 

to optimality when the decision variables     were restricted to be less than or equal to one. We solved 

to optimality 10 of the hardest instances (60 nodes, 90 edges, 45 required edges, and time windows 

width equal to 50 with an average computational time of 814.9 seconds. Detailed results for each 

instance are available at http://ftpprof.uniandes.edu.co/~pylo/inst/RPPTW/instances.htm 

Table 4. Models comparison and cutting plane algorithm 

TW n e |R| N Model on 

the required 

edges 

Model on 

the 

Nodes 

Cutting plane algorithm 

(Model on nodes) 

sol t sol t sol gap mic mac ave t t max 

10       9 9 0.003 9 0.004 9 0 0 2 0.057 0.19 

30 10 15 5 

 

9 9 0.016 9 0.010 9 0 0 5 0.08 0.13 
50       9 9 0.018 9 0.018 9 1.2 0 22 0.21 0.82 

10       27 27 0.016 27 0.011 27 0.2 0 10 0.21 0.81 

30 13 23 7.4 27 27 0.267 27 0.069 27 1.6 0 17 0.61 2.85 
50       27 27 0.286 27 0.098 27 2.6 0 22 0.50 1.99 

10       9 9 0.050 9 0.028 9 0.1 0 6 0.66 2.31 
30 20 31 10 9 9 4.901 9 1.641 9 2.7 0 19 1.30 7.27 

50       9 9 8.491 9 0.590 9 4.6 0 17 1.82 6.53 

10       18 18 51.84 18 2.43 18 1.1 4 25 11.18 25.19 
30 40 69 21 18 15 1085.69 17 824.08 18 3.5 2 25 17.11 83.02 

50       18 14 285.88 17 510.49 17  5.2 0 24 764.52 6675.22 
10       12 11 405.02 12 104.31 12 2.1 5 27 17.83 60.23 

30 60 90 27 12 7 361.78 10 1398.49 11 1.2 0 25 168.83 1659.91 
50       12 5 6028.02 8 2354.40 11 4.0 3 24 1101.85 6030.17 

The results of the cutting plane algorithm on the set of real instances are summary in table 5. Colum 

O.F. presents the value of the objective function, suc the number of cuts for subtour elimination added, 

pc the cuts for precedence relations and sc the cut for successor relations.  We were able to solve 5 of 

the 9 instances in less than 3,5 minutes. Instances that do not show values were not solved by the 

algorithm.   

Table 5. Cutting plane on real instances 

Instance T.W |R| O.F. suc pc sc gap t 
Inst-00 Tight 74 -- -- -- -- -- -- 

Inst-01 Intermediate 74 259,7 2 10 11 7.6 165,46 

Inst-02 Wide 74 -- -- -- -- -- -- 
Inst-03 Tight 104 289,2 2 11 11 2.3 202,29 

Inst-04 Intermediate 104 -- -- -- -- -- -- 
Inst-05 Wide 104 -- -- -- -- -- -- 

Inst-06 Tight 93 299,7 2 11 10 7 193,41 

Inst-07 Intermediate 93 299,7 2 11 9 7 208,75 
Inst-08 Wide 93 299,7 1 11 11 7 137,76 
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6. Directed case 

 

In this section we present two formulations for the directed case, which are extensions of the 

formulations for the undirected problem. The first is a formulation on the arcs, i.e., the decision 

variables express the number of times an arc is traversed. The second is based on a transformed graph, 

where the required arcs are connected by an arc that represents the shortest path among them. We carry 

out some preliminary tests to evaluate the performance of the models. 

  

6.1. Model on the arcs 

As in the undirected case, this formulation is based on the work presented by Gueguen (1999). 

Consider a directed graph   (    ), where    is the set of vertices,      represents the depot , and   

is the set of arcs. Let  ̂ be the set that includes   and two artificial arcs      and      leaving and 

entering the depot respectively.  ̂ is the set of required arcs plus      and     . Furthermore, we define 

the following parameters:  ̂ = | ̂|    is the maximum number of times an arc can be traversed in a 

feasible solution,  ̂  is the traversal cost of arc  ,  ̂  is the traversal time of arc  , [ ̂   ̂ ] is the time 

window for arc  ,   is a large real value,   
( )

 is the end vertex of arc  , and   
( )

 is the initial vertex of 

arc    

The decision variables for this formulation are defined as       1 if copy   of arc   is traversed 

immediately after copy   of arc  , and 0 otherwise, and     indicates the arrival time at copy   of arc  . 

The model is given below: 

      ∑ ∑ ∑∑ ̂       
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       {   }         ̂    ̂|  
( )    

( )           ̂                                                            (   ) 

     
          ̂        ̂                                                                                                      (   ) 

 

The objective function minimizes the total traversal cost. Services are ensured by constraints (6.2). 

Constraints (6.3) define the flow conservation. Inequalities (6.4), (6.5), and (6.6) are the time-window 

constraints. Inequalities (6.7) reduce the set of equivalent feasible solutions. Finally, the decision 

variables are defined in (6.8) and (6.9). 

As in the undirected case, the set of constraints (6.7) is added to obtain a strengthened formulation, and 

we set  ̂    in our implementation. 

6.2. Model on the required arcs 

This formulation is equivalent to the previous one; it reduces the size of the problem by considering 

only the network information related to the required arcs. Let the original problem be defined on the 

directed graph    (    ) described in Section 8.1. If  ̂    is the set of required arcs without the 

artificial arcs      and     , the formulation on the required arcs is defined on the graph   ̇  (  ̇    ) 

with | ̂| nodes in   ̇. Each node in   ̇ corresponds to a required arc in  ̂, and each arc in    represents 

the length of the shortest path in    between a pair of required arcs.   ̇ results in a complete graph. 

                    
     Required arcs 

a) Original graph                                              b) Transformed graph 

Figure 4. Transformed graph for model on required arcs 

 

Figure 4 shows an example of the transformation. In the original graph presented in a) the depot is 

located at the black node. The numbers in parentheses represent traversal costs, and the other numbers 

are the arc indices. There are three required arcs (2, 4, and 5). The graph in b) with three nodes is 

complete. The nodes are labeled with the same number as their respective required arcs, and the 

distances are indicated in parentheses. 

 

An artificial node     is added to represent the depot. We connect this node with each node in   ̇ by 

means of two arcs, one entering and one leaving the depot. Finally, each node in   ̇ adopts the time 

window corresponding to that for the arc that it represents.   
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In the transformed graph we look for a minimum-cost tour that starts and ends at the depot and satisfies 

the time-window constraints for each node. Given the parameters    ,    , [     ], and    , and the 

decision variables     and    defined in Section 2.2, the formulation is as follows: 

      ∑ ∑       
    ̇ { }|   

                                                                                                   (    )

    ̇ { }

 

subject to: 

∑                 ̇  { }                                                                                                     

     ̇ { }|
    

(    ) 

∑                   ̇
    ̇ { }|
    

 { }                                                                                                     (    ) 

             (     )           ̇        ̇   { }                                                          (    ) 

              ̇   { }                                                                                                                         (    ) 

              ̇                                                                                                                                       (    ) 

     {   }            ̇   { }|                                                                                                     (    ) 

    
          ̇  { }                                                                                                                         (    ) 

 

The formulation corresponds to the ATSP-TW. The objective is to minimize the total traversal cost. 

Inequalities (6.11) and (6.12) are the assignment constraints. The time-window constraints are (6.13), 

(6.14), and (6.15). Finally, the decision variables are defined by (6.16) and (6.17). 

To solve this model we refer to Ascheuer et al. (2001), who solved the ATSP-TW using a branch-and-

cut method with satisfactory results.    

 

6.3. Preliminary results 

 

To evaluate the performance of the proposed formulations, we tested the models on two sets of 

instances.  

  

We adapted a set of instances for the directed RPP presented by Campos (1995). The author presents 60 

instances with different numbers of nodes (80, 160, and 240). We use only those with 80 and 160 

nodes. The number of arcs ranges from 211 to 539, and the required arcs from 16 to 127. We 

implemented a process similar to that in the undirected case, and we varied the width of the time 

windows, i.e., {        }  We thus created 120 instances for the directed case. All the instances can be 

downloaded from http://ftpprof.uniandes.edu.co/~pylo/inst/RPPTW/instances.htm 

  

The model on the arcs (Section 6.1) did not find any solution in less than three hours. We therefore 

generated some smaller random planar graphs with the aim of identifying the size of problem that this 

model can solve.   
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The three largest instances (with the highest number of required arcs) solved to optimality (in less than 

three hours) have the following characteristics: {            }, {             }, and 

{           } for respectively the number of nodes, the number of arcs, the number of required arcs, 

and the width of the time window. Table 6. shows the summary of results for this set of instances.  

Detailed results for each instance are available at 

http://ftpprof.uniandes.edu.co/~pylo/inst/RPPTW/instances.htm. As it was mentioned before our 

interest points to the undirected case; the transformation to the model on the required arcs (Section 6.2) 

emerges to the TSP with time windows and this is the most accurate way to deal with the problem 

because again we obtain a formulation with less variables and better bounded. Our aim in this case is to 

evaluate the problem size solved for the model on arcs.   

Table 6. Model on the arcs 

TW %|R| n a |R| N sol t 

10 
10  41.57  70.64  7.57 14 9 75.85 

30 35.29 59.64 18.35 17 8 67.28 

50 35.29 59.41 29.94 17 7 2.23 

30 
10  41.57  70.64  7.57 14 11 32.88 

30 35.29 59.64 18.35 17 8 20.20 
50 35.29 59.41 29.94 17 6 86.64 

50 
10  41.57  70.64  7.57 14 9 30.65 

30 35.29 59.64 18.35 17 9 16.95 
50 35.29 59.41 29.94 17 9 64.93 

7. Conclusions    

We have introduced several formulations for the undirected and directed RPPTW, and we have tested 

them on instances adapted from the literature and on a real network.  

The results show that the models on the arcs and edges are not practical because they are too large and 

use the “big M.” For the directed case the model on the arcs could solve instances with up 36 

requirements and wide time windows.  

We propose two transformations for the undirected case. Preliminary results show that the model on the 

nodes is superior to the model on the required edges, i.e., it finds twelve more optimal solutions, and the 

running times are smaller.    

In the undirected version of the problem, we exploited the formulation called “Model on the nodes”. 

The resulting problem is an Asymmetric TSP with Time Windows and side constraints. This model is 

solved using a cutting plane algorithm. On one hand, we were able to solve to optimality 222 of 225 

generated instances in less than two hours. We solved to optimality 10 of the 12 hardest instances (60 

nodes, 90 edges, 45 required edges, and time-window width equal to 0.5) in less than 15 minutes on 

average. On the other hand, we solved 5 of 9 instances of a real network with up 104 required edges in 

less than 3.5 minutes.  

For the directed case the problem is transformed to an equivalent Asymmetric TSP with Time 

Windows. Existing methods for large instances, such as cutting plane algorithms, can be used. 

Future research will develop a branch-and-cut algorithm to solve the problem. We will study efficient 

strategies to decide on which variables to branch and we hope to improve the performance of the 
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cutting plane algorithm. We also believe that metaheuristics should be explored to get good solutions in 

a short time when the dynamic case of the black-ice detection problem is considered, i.e., when the time 

windows or the road segments to visit vary over time.  
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