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Abstract. Given a connected and undirected graph G, the degree preserving spanning 
tree problem (DPSTP) asks for a spanning tree of G with the maximum number of vertices 
with the same degree in the tree and in G. These are called full degree vertices. We 
introduce integer programming formulations, valid inequalities and four exact solution 
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computational experiments are conducted with the solution algorithms introduced in this 
study. 
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1 Introduction

Assume we are given a connected undirected graph G = (V,E) with n = |V | vertices and m = |E| edges,

and let G′ = (V,E′) be a subgraph of G. Denoting by δG(i) and δG′(i) the sets of edges incident to vertex i

respectively in G and G′, whenever |δG′(i)| = |δG(i)|, i is of full degree in G′. Otherwise, if |δG′(i)| < |δG(i)|,

i is of incomplete degree in that subgraph. The degree preserving spanning tree problem (DPSTP) asks for a

spanning tree of G with as many full degree vertices as possible. The problem is also known in the literature

as the full degree spanning tree problem [1].

DPSTP has also been investigated in [9] under a complementary problem named the vertex feedback

edge set Problem (VFESP). The VFESP looks for a cotree (the complement of a tree) of G incident to the

minimum number of vertices. Since the vertices that are not incident to the edges of a cotree are exactly

those with full degree in its corresponding tree, a solution to one problem directly leads to a solution to the

other.

The most widely known application of DPSTP originates from a VFESP context: one is given a water

distribution network where flows in the edges (pipes) are to be measured [15]. That could be accomplished by

simply installing flow meters in all network edges. However, a cheaper alternative is to install flow meters only

in the edges of a cotree of the network. Flow for the remaining edges could then be inferred by assuming

that conservation laws apply. In doing so, precisely m − n + 1 flow meters would be required. Another

attractive alternative is to install pressure meters in the vertices of the network and then use the pressure

drop in the endpoints of a pipe to calculate its flow. According to [15], it suffices to install pressure meters

at vertices that are incident to the edges of a cotree of the network. An advantage of the latter approach is

that pressure meters are much cheaper than flow meters [15]. As a result, minimizing the number of vertices

incident to the cotree leads to the most economical choice. Finally, as long as Kirchoff’s conservation laws

apply, such a DPSTP/VFESP application could be found in other types of networks (electrical, acoustical

or thermal, for example), where one wishes to measure different types of flows [2].

On the complexity side, DPSTP was proven to be NP-complete, even if G is a split or bipartite planar

graph [1, 2]. If G is planar, DPSTP admits a linear time approximation algorithm. The problem is polynomi-

ally solvable when G has a bounded treewidth [2]. Additional polynomial time algorithms for DPSTP were

suggested in [2] for cocomparability graphs and for graphs with bounded asteroidal number. The directed

version of DPSTP was investigated in [11].

Lewinter [10] proved that the number of full degree vertices in spanning trees of G interpolates, meaning

that if there exist two spanning trees T1 and T2 with respectively t1 and t2 full degree vertices, there must

exist a spanning tree T with exactly t full degree vertices, for t1 < t < t2. Such a property is of key

importance for the development of one of the exact solution approaches introduced here.

To date, solution approaches to DPSTP are mostly restricted to approximation algorithms [2] and heuris-
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tics [9, 15]. Bhatia et al. [1] propose a polynomial time approximation algorithm with an O(
√
n) approxi-

mation factor. To the best of our knowledge, the only existing exact solution approaches to DPSTP are the

branch-and-bound (BB) algorithm in [1] and the branch-and-cut (BC) algorithm in Gendron et al. [5]. The

former algorithm is based on linear programming (LP) upper bounds given by a multi-commodity network

flow formulation of the problem. However, virtually no computational results are available for it.

This paper improves on our previous results [5] in various ways. Specifically, we introduce additional

families of valid inequalities for DPSTP and three new exact solution approaches for the problem, a combi-

natorial Benders decomposition method and two BB algorithms. One of the BB algorithms indirectly relies

on Lagrangian relaxation upper bounds while the other is based on a technique known as reformulation by

intersection [6]. These new algorithms are compared here to an improved version of the BC algorithm in [5].

In this process, additional optimality certificates are obtained for the test instances used in [5].

The paper is organized as follows. In Section 2, we describe four Integer Programming formulations of

DPSTP and some families of valid inequalities for the problem. Each formulation gives rise to a different

exact solution algorithm, described in Section 3. Computational experiments are reported in Section 4 and

the paper is closed in Section 5, with suggestions for future research.

2 Integer Programming Formulations

Let D = (V,A) be the directed graph originating from G after taking A = {(i, j) ∪ (j, i) : {i, j} ∈ E}. For

any S ⊆ V , denote by Γ(S) the closed neighborhood S ∪ {j ∈ V : {i, j} ∈ δG(i), i ∈ S} of S. Additionally,

let E(S) = {{i, j} ∈ E : i, j ∈ S} and δG(S) = {{i, j} ∈ E : i ∈ S, j 6∈ S} denote, respectively, the subset

of edges of E with both endpoints in S and the subset formed by the edges of E with only one endpoint in

S. Corresponding notation for D is A(S, V \ S) = {(i, j) ∈ A : i ∈ S, j 6∈ S}, which denotes the set of arcs

pointing from a vertex in S to a vertex in V \ S. We assume that T denotes the set of all spanning trees of

G, while F denotes the collection of all cycle-free subgraphs of G. For a given spanning tree T = (V,ET ) of

G and an edge e ∈ E \ET , we use CT,e for the set of vertices in the unique cycle of subgraph (V,ET ∪ {e}).

Given any real valued function f defined over a finite set Q and a subset Q′ ⊆ Q, f(Q′) =
∑
q∈Q′ fq applies.

For simplicity, from now on, for a given S ⊆ V , whenever we refer to edges of the input graph G and not

to those of a subgraph of G, we will be using δ(S) instead of δG(S). Additionally, for any formulation P of

DPSTP, the LP upper bound implied by it will be denoted by w(P ). Finally, if S contains a single element,

say i, δ(i) will be used instead of δ({i}).

Optimization problems that ask for optimal trees with side constraints can be formulated in many different

ways, depending on how solution connectivity is enforced. In this investigation, a formulation that only

involves decision variables associated with choosing full degree vertices in cycle free subgraphs is initially
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presented. Then, we describe an undirected formulation for which LP upper bounds, although very weak,

can be computed very efficiently. A third formulation is a directed model that is reinforced with additional

valid inequalities. Some of these inequalities turn the formulation into a non-symmetrical model, i.e., LP

upper bounds vary according to the vertex chosen as the arborescence root. Accordingly, we resort to the

reformulation by intersection technique [6] to obtain a fourth DPSTP model, originating from the previous

one, for which LP upper bounds are symmetrical.

No matter how and if connectivity conditions are explicitly imposed, all formulations above contain

inequalities to enforce those properties of full degree sets of vertices to be presented next.

Proposition 1 Given V ′ ⊆ V , there exists a spanning tree T = (V,ET ) of G such that |δT (i)| = |δ(i)| for

all i ∈ V ′, if and only if subgraph (Γ(V ′), δ(V ′) ∪ E(V ′)) belongs to F .

Proof: If subgraph (Γ(V ′), δ(V ′)∪E(V ′)) contains a cycle, at least one of its edges must not be a spanning

tree edge. Accordingly, a spanning tree of G where all vertices in V ′ are full degree would not exist. On

the other hand, if (Γ(V ′), δ(V ′)∪E(V ′)) is cycle free, then there must be a spanning tree (V,ET ) such that

(δ(V ′) ∪ E(V ′)) ⊆ ET , otherwise G would not be connected. 2

Corollary 2 If GV ′ = (V ′, E(V ′)) 6∈ F , for V ′ ⊆ V , then at least two vertices of V ′ must not be of full

degree. A particular case of these subgraphs occurs when there exists a simple cycle of GV ′ visiting all vertices

of V ′.

The formulations that follow use binary 0-1 variables {yi : i ∈ V } to select full degree vertices. Accord-

ingly, yi = 1 if i is of full degree and yi = 0, otherwise.

2.1 Formulation based only on the y variables

Proposition 1 and Corollary 2 respectively translate into the split cuts (1) and the cycle cuts (2) that follow:

y(V ′) ≤ |V ′| − 1, for V ′ ⊂ V such that (Γ(V ′), δ(V ′) ∪ E(V ′)) 6∈ F (1)

and

y(V ′) ≤ |V ′| − 2, for V ′ ⊂ V such that (V ′, E(V ′)) 6∈ F . (2)

Notice that cycle cuts (2) can be understood as a stronger particular case of split cuts (1), i.e., when

there exists at least one edge in E(V ′) that is surely not in any spanning tree of G. Notice as well that both

(1) and (2) may be lifted to:

y(V ′) ≤ α(V ′), (3)
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where α(V ′) is the optimal objective function value for the following combinatorial optimization problem:

α(V ′) = max{|V | : V ⊆ V ′, (Γ(V ), δ(V ) ∪ E(V )) ∈ F}. (4)

Obtaining optimal values α(V ′) is as hard as solving the original problem. However, when some particular

structures apply, the picture changes for the better. For instance, if (V ′, E(V ′)) defines a clique of G, the

right hand side of (2) could be decreased to 1. Likewise, if |E(V ′)| ≥ |V ′| + 1 holds, at least two edges of

E(V ′) may not be used in a degree preserving spanning tree. Therefore, the right hand side of cycle cuts (2)

could be lifted to |V ′| − 3. Obviously, when no alternative is available, valid upper bounds on α(V ′) may be

used to produce weaker versions of the cuts.

Finally, if PC represents the intersection of all constraints (1) and (2), a formulation of DPSTP is given

by

w = max {y(V ) : y ∈ PC ∩ Bn} . (5)

2.2 Undirected formulation of DPSTP

Binary 0-1 variables {zij : {i, j} ∈ E} are used to select spanning tree edges. Accordingly, zij = 1 holds if

edge {i, j} is selected while zij = 0 applies, otherwise. DPSTP is then formulated as:

w = max
{
y(V ) : (z, y) ∈ Pu ∩ Bm+n

}
, (6)

where Pu denotes the intersection of the spanning tree polytope PSTP , i.e.,

z(E) = n− 1 (7a)

z(E(S)) ≤ |S| − 1, S ⊂ V, S 6= ∅, (7b)

ze ≤ 1, e ∈ E, (7c)

ze ≥ 0, e ∈ E, (7d)

with the degree-enforcing inequalities

yi|δ(i)| ≤ z(δ(i)), ∀i ∈ V. (8)

Constraints (8) guarantee that all edges incident to i must be selected, whenever yi = 1 holds. However,

they do not explicitly forbid selection of any of these edges when yi = 0 holds, instead. In any case,

irrespective of that, due to the objective function used, the latter type of solution would never be optimal.

Therefore, although (6) is not a DPSTP formulation in the strict sense, it may be used to find optimal

solutions for DPSTP. Likewise, valid DPSTP upper bounds are given by the LP relaxation of (6).

It is not difficult to check, at the LP relaxation of (6), that inequalities (8) must be tight. That remark

holds because inequalities (8) involve only one entry of y at a time and it would thus be suboptimal to leave
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any constraint (8) slack. Therefore, replacing yi in the objective function by 1
|δ(i)|z(δ(i)), for all i ∈ V , and

dropping inequalities (8), DPSTP upper bounds can be obtained by solving the following LP:

w(Pu) = max{
∑
{i,j}∈E

(1/|δ(i)|+ 1/|δ(j)|)zij : z ∈ PSTP }. (9)

If constraints (8) are relaxed and dualized in a Lagrangian fashion, with multipliers {µi ≥ 0 : i ∈ V } attached

to them, the corresponding Lagrangian subproblem is L(µ) = max{
∑
i∈V (1− µi|δ(i)|)yi +

∑
i∈V µiz(δ(i)) :

z ∈ PSTP ∩ Bm}. Given that the Lagrangian subproblem has the integrality property, the Lagrangian dual

gives the same bound as the LP relaxation. Hence, optimal multipliers are µi = 1
|δ(i)| forall i ∈ V and (9) is

precisely the (optimal) Lagrangian subproblem.

As our computational results demonstrate, DPSTP upper bounds w(Pu) are weak. However, a quite

effective BB algorithm results from them. That remark holds because these bounds are very efficiently

obtained by generating maximum weight spanning trees of G, under the conveniently defined weight function

that results from (9).

A similar formulation and exact solution algorithm were originally proposed by Fujie [4] for the maximum

leaf spanning tree problem. In that case, constraints akin to (8) are used to characterize leaf nodes in spanning

trees. Accordingly, LP relaxation bounds for Fujie’s formulation are obtained by essentially following the

procedure described above.

Formulation Pu can be significantly strengthened with valid inequalities such as yi ≤ zij and yj ≤ zij

forall {i, j} ∈ E. These inequalities imply that a vertex cannot be of full degree if an edge incident to it is

missing from the spanning tree. We do not use them in Pu since the efficient bounding procedure outlined

above would not apply anymore. Directed versions of these inequalities are going to be considered next, in

a directed formulation of the problem.

2.3 Directed formulation for DPSTP

The topology behind the DPSTP formulation to be described next is that of a spanning arborescence of

digraph D = (V,A), rooted at a pre-selected vertex r. Besides the previously defined variables {yi : i ∈ V },

the formulation also involves binary variables {xrij : (i, j) ∈ A}, to establish whether or not an arc (i, j) ∈ A

appears in the arborescence. In case it does, xrij = 1 holds; otherwise, xrij = 0 applies. The formulation is

given by

w = max
{
y(V ) : (xr, y) ∈ Pd ∩ R2m × Bn

}
, (10)
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where polytope Pd is defined as

xr(A) = n− 1 (11a)

xr(A(V \ {i}, {i})) = 1, ∀ i ∈ V \ {r} (11b)

xr(A(V \ S, S)) ≥ 1, ∀ S ⊂ V \ {r}, S 6= ∅ (11c)

yi − xrij − xrji ≤ 0, ∀ i ∈ V, {i, j} ∈ δ(i) (11d)

xrij ≥ 0, ∀ (i, j) ∈ A, (11e)

yi ≥ 0, ∀ i ∈ V. (11f)

Constraints (11a) enforce that as many arcs as it is necessary to obtain a spanning arborescence of D

are selected. Directed cutset inequalities (11c) guarantee that there must exist a path connecting r to every

other vertex in the solution. Although indegree constraints (11b) are implied by (11a) and (11c), they are

kept in the model because, somehow, they make it faster to compute the corresponding LP relaxation bound.

Constraints (11d) enforce that i is of full degree only if an arc corresponding to every edge {i, j} ∈ δ(i), i.e.,

(i, j) or (j, i), appears in the arborescence. Finally, notice that variables xr need not be explicitly restricted

to assuming integral values. Indeed, due to (11d), that is naturally implied by y ∈ Bn.

In addition to xr and y, the multi-commodity flow DPSTP formulation in [1] relies on real valued flow

variables and flow balance constraints to ensure solution connectivity. The projection of that formulation

into the xr space is precisely the intersection of (11a),(11b),(11c) and (11e) [12]. The formulation in [1] also

uses constraints (11d) to define full degree vertices. As a result, Pd and the formulation in [1] produce the

same LP bound, w(Pd).

Consider now the following degree enforcing inequalities:

xr(A({i}, V \ {i}))− yi ≤ |δ(i)| − 2, ∀i ∈ V \ {r} (12a)

xr(A({r}, V \ {r}))− yr ≤ |δ(r)| − 1 (12b)

xr(A({i}, V \ {i}))− (|δ(i)| − 1)yi ≥ 0 ∀i ∈ V \ {r}. (12c)

Constraints (12a) impose that, if i ∈ V \ {r}, at most |δ(i)| − 2 arcs must point outwards of i (resp.

|δ(i)|−1, in case yi = 1). Similar reasoning applies to inequalities (12b). On the other hand, constraints (12c)

guarantee that, if yi = 1, exactly |δ(i)| − 1 arcs must leave vertex i. Notice that, summing up constraints

(11d) for all {i, j} ∈ δ(i) and using (11b), one ends up with x(A({i}, V \ {i})) ≥ |δ(i)|yi− 1, which is weaker

than (12c). Thus, stronger LP upper bounds are likely to be obtained if the three families of inequalities

indicated above are appended to Pd.

Although for our test bed instances, no bound improvements were observed after appending (12a) and

(12b) to the formulation, it is not difficult to establish that these inequalities are not redundant. To that

6

Formulations and Exact Solution Approaches for the Degree Preserving Spanning Tree Problem

CIRRELT-2013-70



aim, one can simply pick any vertex i and optimize the linear function xr(A({i}, V \ {i})) − yi over P rd ,

together with (12c). In doing that, it could be shown that the objective function of that LP exceeds the

right-hand-side of (12a). In addition, our computational experiments indicate that fewer BC nodes result

when these two inequalities are kept in the model.

After appending inequalities (12) to Pd, the resulting formulation may become non symmetrical with

respect to the root choice. In other words, depending on which vertex r is used as the arborescence root,

different DPSTP LP relaxation upper bounds may result. We denote by P rD the intersection of Pd with

inequalities (12), for a choice of r as the root vertex.

2.3.1 Additional valid inequalities

Under the spanning arborescence representation of feasible DPSTP solutions, the following inequalities,

derived from cycle cuts (2), are valid.

Proposition 3 Assume that a set of vertices C ⊂ V is given where GC = (C,E(C)) 6∈ F , |δGC
(i)| ≥ 2,

i ∈ C, GC is connected, and there exists a simple cycle of G that visits every vertex in C. Let j and k be

the neighbor vertices to i in that simple cycle. A valid inequality for DPSTP is then given by

y(C \ {i}) + xrij + xrji + xrik + xrki ≤ |C| − 1, {i, j, k} ⊂ C, {i, j}, {i, k} ∈ E(C), GC 6∈ F . (13)

Proof: We have three cases to consider for a feasible solution (xr, y):

• Case 1: xrij + xrji = xrik + xrki = 0.

From (2) and yi ≥ 0, one has: y(C \ {i}) ≤ y(C) ≤ |C| − 2 ≤ |C| − 1.

• Case 2: Only one edge incident to i exists in the cycle, say {i, j}, i.e., xrij + xrji = 1. For the other

edge, xrik + xrki = 0.

Then, since neither (i, k) nor (k, i) is included in the arborescence, the maximum number of vertices

in C \ {i} having full degree is |C| − 2. Thus y(C \ {i}) + xrij + xrji + xrik + xrki ≤ |C| − 2 + 1 = |C| − 1

holds.

• Case 3: xrij + xrji = xrik + xrki = 1.

Then at least one edge in the remaining cycle edges (E(C) \ {{i, j}, {i, k}}) cannot have arcs corre-

sponding to it in the arborescence. Since the endpoints of that edge cannot be of full degree, the

maximum number of full degree vertices in C \ {i} is |C| − 3. Thus y(C \ {i}) + xrij + xrji + xrik + xrki ≤

|C| − 3 + 2 = |C| − 1 holds and the proof is complete. 2
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2.4 Reformulation by intersection

One drawback of formulation P rD is that we cannot anticipate, beforehand, a root vertex leading to the

strongest LP relaxation bound. Attempting to overcome that limitation and obtain a symmetric formulation

that hopefully provides stronger LP relaxation bounds, we make use of a technique known as reformulation

by intersection, proposed by Gouveia and Telhada [6]. The procedure was originally introduced for the multi-

weighted Steiner tree problem and was later on used to derive stronger formulations for other combinatorial

optimization problems like the min-degree constrained minimum spanning tree problem [13, 14] and the

minimum spanning tree problem with a lower bound on the number of leaves [7].

The idea is to reformulate DPSTP by simultaneously taking into account all polytopes P rD, for r ∈ V ,

and then impose that the individual arborescences resulting from each of them originate from a same set of

edges of E. That condition is imposed by intersection constraints

zij = xrij + xrji, {i, j} ∈ E, r ∈ V, (14)

and DPSTP may thus be reformulated as

w = max
{
y(V ) : (x1, . . . , xn, z, y) ∈ PI ∩ (R2mn × Rm × Bn)

}
, (15)

where polytope PI is given by the intersection of (14) and
⋂n
r=1 P

r
D. An important property associated

with formulation PI is its compactness, i.e., neither subtour breaking constraints (7b) nor directed cutset

constraints (11c) are required by it (see [6, 13] for details). Indeed, once the intersection constraints (14) are

imposed, (7b) and (11c) become redundant.

3 Algorithms

In this section, we introduce four exact solution procedures for DPSTP. Namely, a combinatorial Benders

decomposition algorithm based on formulation PC , CBEN, a BB algorithm based on Pu, BBU, a BC algo-

rithm based on P rD reinforced with inequalities (1),(2) and (13), BCD, and, finally, a BB algorithm based

on PI , BBI.

BBI was implemented by means of the XPRESS solver Mosel programming language. All XPRESS default

parameters for heuristics, branching rules and cutting policies were kept for that algorithm. Since PI is

compact, other than loading the corresponding DPSTP model into XPRESS, no significant implementation

work for BBI was actually conducted by us. Therefore, no further details are provided on that algorithm.

BCD and CBEN, on the other hand, were implemented with calls to the XPRESS MIP libraries. Except for

BBI, all remaining exact solution algorithms considered here make use of the primal DPSTP heuristics to

be described next.
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3.1 Heuristics

The first heuristic, called MWTREE(c), associates weights {cij : {i, j} ∈ E} to the edges of E and then

computes a maximum weight spanning tree of G, according to these edge weights. The number of full degree

vertices in such a tree is taken as a lower bound on w. The heuristic is used not only to initialize CBEN

and BCD, but also throughout these algorithms. That strategy has two objectives in mind. The first one is

to attempt to improve the primal bounds obtained at the root node of the enumaration tree. The second,

as we shall see, is to characterize violated inequalities (1) and (2), as well as (13) for the case of BCD. As

it will be explained later, that is done by assigning different weights to the edges of G. These weights, in

turn, originate from the different LP relaxations at hand. For the initialization of CBEN and BCD, weights

cij = 1
|δ(i)| + 1

|δ(j)| , {i, j} ∈ E are applied.

The second heuristic, STAR(p), is the Greedy Star Insertion Algorithm proposed in Bhatia et al. [1]. The

heuristic is used for algorithms BCD, BBU and CBEN. Using the union-find data structure [16], STAR(p)

runs in time O(mα(m,n)), where α(m,n) denotes the inverse Ackermann function. It is proven to produce

a spanning tree with at least w
2
√
n+1

full degree vertices [1].

STAR(p) is a Kruskal-like algorithm where one attempts to build a forest (V,EF ) by adding stars {δ(i) :

i ∈ V } of G to EF (initially EF = ∅). Instead of selecting one edge at a time, as imposed by Kruskal’s

algorithm, STAR(p) selects all edges in δ(i)\EF , for a given chosen i ∈ V , provided none of these edges induce

a cycle with previously selected edges. If at least one edge in δ(i)\EF , say e, is such that (V,EF ∪{e}) 6∈ F ,

no edge in δ(i) \EF is selected. Then, the edges incident to another (uninvestigated) vertex are considered.

When no vertex remains to be investigated, whenever necessary, additional edges are inserted to the forest,

to make it a spanning tree of G. In the original implementation in [1], the sequence under which stars are

investigated is the lower the degree of a vertex, the sooner it is investigated (ties are broken arbitrarily).

Given that our aim is to call the heuristic several times throughout our exact solution algorithms, a priority

vector p ∈ Rn is used in an attempt to bring dual information into the picture and ultimately defining

the order in which vertices are to be investigated. For the first call of the heuristic, the priority vector is

such that vertices scanned earlier have smaller degrees. That condition is ensured, for instance, by taking

pi = 1
|δ(i)| , i ∈ V .

3.2 Combinatorial Benders decomposition algorithm

Formulation (5) may be used to design a so-called combinatorial Benders decomposition algorithm [3, 8]. In

that case, split cuts (1) and cycle cuts (2) would play the role of feasibility cuts. Such an algorithm would

explore the fact that the separation problem associated with these inequalities is solvable in polynomial time,

for a given ŷ ∈ Bn. One may then attempt to solve DPSTP by solving integer programming relaxations of

9

Formulations and Exact Solution Approaches for the Degree Preserving Spanning Tree Problem

CIRRELT-2013-70



(5) that include only a tiny portion of feasibility cuts (1) and (2). Remaining inequalities (1) and (2) would

be treated as cutting planes, in a Benders-like fashion.

The algorithm we ended up implementing does explore the ideas above. However, it operates under an a

iterative probing framework, that relies on the fact that full degree spanning trees of G interpolate [10], as

mentioned in the Introduction. An obvious consequence of that property is the result that follows.

Corollary 4 Assume, for a given W ⊂ V , that (Γ(W ), δ(W ) ∪ E(W )) ∈ F holds and, consequently, that

|W | is a valid lower bound on w. Then, if no spanning tree of G exists with |W |+ 1 full degree vertices, no

such trees exist with a larger number of full degree vertices.

Therefore, given a set W such that (Γ(W ), δ(W ) ∪E(W )) ∈ F holds, the idea of CBEN is to iteratively

solve a feasibility problem that includes a tiny portion of cuts (1) and (2), together with constraint

y(V ) = |W |+ 1. (16)

By Corollary 4, if the feasibility problem is infeasible, |W | must be the maximum number of full degree

vertices in a spanning tree of G. However, if ŷ ∈ Bn is a solution for that problem, let us define Ŝ =

{i ∈ V : ŷi = 1}. If (Γ(Ŝ), δ(Ŝ) ∪ E(Ŝ)) ∈ F holds, the algorithm updates W ← Ŝ, increases by one

unity the right-hand-side (rhs) of (16) and then solves the resulting feasibility problem. Otherwise, if

(Γ(W ), δ(W ) ∪ E(W )) 6∈ F applies, the algorithm separates cuts (1) and (2). Violated cuts are added to

a new reinforced feasibility problem, where the rhs of constraint (16) is kept fixed. This iterative probing

procedure is repeated until the feasibility problem being investigated turns out to be infeasible.

3.2.1 Solving the Benders Subproblem

In order to describe how Benders subproblems are solved, assume that an initial feasible solution for DPSTP

is available and let W be the set of full degree vertices in it. Assume as well that the feasibility problem

formulated for W , possibly involving only (16), and no feasibility cuts (1) and (2), is solved. Denote by ŷ

the corresponding solution and define Ŝ = {i ∈ V : ŷi = 1}.

The Benders subproblem consists of checking whether or not (Γ(Ŝ), δ(Ŝ) ∪ E(Ŝ)) ∈ F . For a positive

answer, there must exist a tree, (V,ET ), for which (δ(Ŝ) ∪ E(Ŝ)) ⊆ ET holds. Consequently, the rhs of

constraint (16) should be increased by one unit. Otherwise, as it will be shown next, there must exist a

split-cut (1) or a cycle cut (2), violated by ŷ.

The separation algorithm, in a Kruskal-like style, attempts to insert into a forest F = (V,EF ) of G,

initialized as EF = ∅, as many edges of δ(Ŝ) ∪ E(Ŝ) as possible. In order to do that, it scans every edge

e ∈ δ(Ŝ) ∪ E(Ŝ), accepting those that do not form a cycle with previously selected edges. The algorithm is

based on the result that follows.
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Proposition 5 For a given ŷ ∈ Bn, Ŝ = {i ∈ V : ŷi = 1} and EF ⊂ δ(Ŝ)∪E(Ŝ). Then, if (V,EF ∪{e}) 6∈ F ,

for e ∈ δ(Ŝ)∪E(Ŝ), at least one feasibility cut (1)-(2) is violated by ŷ. Identification of such a cut is carried

out in polynomial time.

Proof: Assume that C denotes the set of vertices in the single cycle of (V,EF ∪ {e}). Two possibilities are

there to consider:

• If C ⊆ Ŝ, ŷ(C) = |C| and a cycle cut (2) is violated by ŷ.

• If C 6⊆ Ŝ, as it will be demonstrated, at least one split cut (1), defined for a subset of the vertices of

C, is violated. To that aim, assume that C = {v1, . . . , v|C|}. Assume as well that the unique cycle

in (V,EF ∪{e}) is given by the following set of edges: {{v1, v2}, {v2, v3}, . . . , {v|C|−1, v|C|}, {v1, v|C|}}.

One has two cases to analyse:

– |C| is even.

Partition C into V1 and V2 such that V1 = {v1, v3, . . . , v|C|−1} and V2 = {v2, v4, . . . , v|C|}. Since

all edges in the cycle {{v1, v2}, {v2, v3}, . . . , {v|C|−1, v|C|}, {v1, v|C|}} have at least one endpoint i

such that ŷi = 1, either y(V1) ≤ |V1| − 1 or y(V2) ≤ |V2| − 1 are violated by ŷ.

– |C| is odd.

Since |C| is odd and every edge in the cycle either belongs to δ(Ŝ) or to E(Ŝ), there must exist

two consecutive cycle vertices, say v1 and v2, such that ŷv1 = ŷv2 = 1 holds. This remark applies

since, otherwise, an edge {v1, v2} would exist in the cycle such that neither v1 or v2 belongs to

Γ(Ŝ). Now take V ′ = {v1, v2, v4, . . . , v|C|−1} ⊂ C and notice that ŷ({v4, . . . , v|C|−1}) = b |C|−22 c,

since, otherwise, there would exist a cycle edge that neither belongs to δ(Ŝ) or to E(Ŝ). Thus

ŷ(V ′) = 2 + b |C|−22 c = b |C|2 c + 1 > |V ′| − 1 = d |C|2 e − 1 holds and the split cut defined for V ′ is

violated. 2

Strategies used for adding and lifting split and cycle cuts are the following. Whenever C ⊆ Ŝ holds, we

investigate if the rhs of (2) could be easily lifted from |C|−2, and add the resulting cut into a new, stronger,

feasibility problem. For the lifting, we check if (C,E(C)) defines a clique of G. For a negative answer, we

simply verify if |E(C)| ≥ |C|+ 1. For a positive one, the rhs of (2) is set to |C| − 3.

The following algorithm summarizes the Benders decomposition algorithm:

• (Initialization) Run heuristics MWTREE(c) and STAR(p). Let T ∗ = (V,ET∗) denote the best solution

obtained by these two algorithms and let W be the set of full degree vertices in T ∗. Take constraint

(16), written in terms of W , and proceed as follows. Append to the first feasibility problem, cycle cuts

(2), defined by the set of vertices in the unique cycle in (V,ET∗ ∪ {e}), implied by every e ∈ E \ ET∗ .
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• Repeat until a convergence criterion is met.

1. Solve the feasibility problem at hand.

(a) If it is infeasible, stop. The best known solution T ∗ solves DPSTP.

(b) Otherwise, let ŷ ∈ Bn be the solution obtained for that problem and set Ŝ := {i ∈ V : ŷi = 1}:

i. If subgraph (Γ(Ŝ), δ(Ŝ) ∪ E(Ŝ)) is not cycle free, there exists at least one feasibility cut

violated by ŷ. Add that cut to a new feasibility problem.

After solving the Benders subproblem, run heuristic STAR(p), with vector p now given

by pi = 1
(1.1−ŷi)|δ(i)| , i ∈ V . If the solution thus obtained improves upon the best feasible

solution so far obtained, update T ∗ and the rhs of (16), accordingly.

ii. Otherwise, i.e., if (Γ(Ŝ), δ(Ŝ) ∪ E(Ŝ)) is cycle free, update T ∗ as any spanning tree of G

such that every vertex in Ŝ has full degree in T ∗. Update as well the rhs of (16).

Notice that the distance between the initial lower bound and the optimal number of full degree vertices is

finite. Notice as well that the number of feasibility cuts (1) and (2) is equally finite. Therefore, the iterative

probing Benders decomposition algorithm terminates.

In the case (Γ(Ŝ), δ(Ŝ) ∪E(Ŝ)) 6∈ F , it suffices to add only one cut y(Ŝ) ≤ |Ŝ| − 1, or a stronger version

of it, say y(Ŝ) ≤ α(Ŝ), to the new Benders feasibility problem. However, the strategy we outlined above led

to better computational results. Fewer Benders iterations resulting when several cuts were simultaneously

used, as indicated in the proof of Proposition 5.

3.3 BB algorithm based on the undirected formulation

BBU is defined in terms of a list L of nodes/subproblems where, for each subproblem, a LP similar to (9)

must be solved. In doing that, upper bounds are generated for DPSTP. For the root node, all vertices are

free to be either of incomplete or full degree. The algorithm then computes a maximum weight spanning tree

of G, as implied by (9), through, for instance, Kruskal’s algorithm. If the number of full degree vertices in

the best spanning tree so far obtained is at least bw(Pu)c, the algorithm stops since that tree solves DPSTP.

Such a tree might even be the one corresponding to (9). Otherwise, if the condition is not met, the algorithm

branches and adds new subproblems to L.

Every subproblem tackled by BBU is defined in terms of two subsets of vertices of V , namely S0 and S1,

S0 corresponding to vertices that are set to be of incomplete degree; S1 corresponding to those set to be of

full degree. At the root node of the enumeration tree, S0 = S1 = ∅. Additionally, M is taken as any valid

upper bound on w, say M = n, for example.
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The LP to be solved at each subproblem is then given by

w(S0, S1) = −M |S1|+ max

(M + 1)
∑
i∈S1

yi +
∑

i∈V \(S0∪S1)

yi : (z, y) ∈ Pu

 , (17)

where S0 and S1 are the subsets of vertices defining the subproblem and

yi =
1

|δ(i)|
z(δ(i)), i ∈ V \ S0. (18)

Notice that constraints (8) are not forced to be tight for the vertices in S0. Therefore, at least one

edge incident to these vertices must not be in the solution to (17). Then, for the sake of reformulating the

objective function of (17) in terms of a weighted function of the edges of E, degree enforcing constraints

are only imposed to be tight for vertices in V \ S0. Notice as well that the contribution of {yi : i ∈ S1} to

w(S0, S1) is precisely |S1|, as long as the solution to (17) is such that all vertices in S0 (resp. S1) are of

incomplete (resp. full) degree. Now, substituting the rhs of (18) for their corresponding y entries in (17),

w(S0, S1) = −M |S1|+ max

 ∑
{i,j}∈E

lijzij : z ∈ PSTP

 (19)

is obtained, where the weights lij depend on the subsets, S0 or S1, i and j belong to. These weights are

then given by:

lij = 0, if i, j ∈ S0, (20a)

lij =
M

|δ(i)|
, if i ∈ S1 and j ∈ S0, (20b)

lij =
1

|δ(i)|
, if i ∈ V \ (S0 ∪ S1) and j ∈ S0, (20c)

lij =
1

|δ(i)|
+

M

|δ(j)|
, if i ∈ V \ (S0 ∪ S1) and j ∈ S1, (20d)

lij =
1

|δ(i)|
+

1

|δ(j)|
, if i, j ∈ V \ (S0 ∪ S1), (20e)

lij =
M

|δ(i)|
+

M

|δ(j)|
, if i ∈ S1 and j ∈ S1. (20f)

To solve (19), one would first check if (Γ(S1), δ(S1) ∪ E(S1) ∈ F applies. If the subgraph is not cycle

free, the corresponding Branch-and-bound node would be pruned by infeasibility. However, the procedure

that is actually used to solve (19) relies on Kruskal’s algorithm, to find a maximum weight spanning tree

of G, under the weights {lij : {i, j} ∈ E} defined above. Let T = (V,ET ) be the tree thus obtained. If

|δT (i)| < |δ(i)|, for any i ∈ S1, the subproblem is infeasible. On the other hand, if |δT (i)| = |δ(i)|, for any

i ∈ S0, the subproblem is pruned by optimality. Validity of such observations results from the fact that M

is a valid upper bound on w. If |δT (i)| < |δ(i)| and |δT (j)| = |δ(j)| respectively hold, for any i ∈ S0 and

for every j ∈ S1, the LP relaxation for that node is then given by w(S0, S1) =
∑
{i,j}∈ET

lij −M |S1|. The
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algorithm then counts the number of full degree vertices in T , to eventually update the best lower bound

w∗ at hand. If bw(S0, S1)c ≤ w∗ holds, the node is pruned by optimality. Otherwise, branching on vertex

variables y is carried out as follows. Define j = arg max{|δ(i)| : i ∈ V \(S0∪S1)} (ties are broken arbitrarily).

Two new subproblems, (S0, S1 ∪ {j}) and (S0 ∪ {j}, S1), are then added to the list.

The algorithm implements a depth-first search enumeration where subproblem (S0, S1 ∪ {j}) is always

investigated before (S0 ∪{j}, S1). Whenever L = ∅, the algorithm stops. The spanning tree with the largest

number of full degree vertices identified by it, solves DPSTP.

3.4 BC algorithm based on the strengthened cutset formulation

BCD firstly solves relaxation max{y(V ) : (xr, y) ∈ P}, where P is implied by (11a),(11b), (11d)-(11f) and

(12). If the solution thus obtained, (xr, y), is integer and corresponds to an arborescence of D, it implies an

optimal solution to DPSTP. Otherwise, we look for violated inequalities (11c), (1), (2) and (13) to reinforce

P .

Cutset inequalities (11c) are separated in O(n4) time, as follows. Assume that D = (V,A), for A =

{(i, j) ∈ A : xrij > 0}, is the support graph associated with (xr, y), i.e., the LP relaxation solution at hand.

For each i ∈ V \ {r}, compute a minimum cut A(V \ S, S), where r ∈ V \ S and i ∈ S, separating r and i

in the network defined by D and arc capacities {xrij : (i, j) ∈ A}. If xr(A(V \ S, S)) < 1, a cutset (11c) is

violated and is appended to the relaxation.

For the separation of (1), (2) and (13), we firstly define edge weights cij = xrij + xrji, {i, j} ∈ E and

run heuristic MWTREE(c) for them. Assume that a spanning tree T1 = (V,ET1) is thus obtained. T1 not

only provides a valid lower bound on w. It is also used in an attempt to identify candidate sets of vertices

implying violated inequalities (1), (2) and (13).

More precisely, for every edge e ∈ E\ET1
, we identify the set of vertices CT1,e, that define the unique cycle

of subgraph (V,ET1 ∪{e}). After checking if the right hand side of (2) could be easily lifted (as described in

Section 2.1), we append the cut to a new, strengthened, LP relaxation of DPTSP, in case of violation. For

every set CT1,e, we also attempt to reinforce the relaxation by identifying violated inequalities (13). That is

conducted by checking, for all possible vertices i ∈ CT1,e, if the cut (13) being implied is violated.

Given CT1,e, violated split cuts (1) are attempted to be identified, as follows. Let CT1,e = {v1, . . . , v|CT1,e|}.

If |CT1
, e| is even, one sets V1 = {v1, v3, . . . , v|CT1,e|−1} and V2 = {v2, v4, . . . , v|CT1,e|} and checks if inequality

(1), written for V1 or V2, is violated. If |CT1
, e| is odd, one defines V ′ as in the proof of Proposition 5, i.e.,

adds to V ′ any two consecutive vertices in CT1,e, say, v1 and v2, and complements V ′ with other alternate

vertices in CT1,e, i.e., v4, . . . , v|CT1,e|−1. One then checks violation of inequalities (1), for every possible pair

of consecutive cycle vertices, v1 and v2.

Given (xr, y), we also run heuristic STAR(p), after taking pi = 1
(1.1−yi)|δ(i)|

, i ∈ V as the input priorities.
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Assuming that a spanning tree T2 = (V,ET2
) is returned by the procedure, one then proceeds, as previously

suggested for T1. Namely, one attempts to identify additional inequalities (1),(2) and (13) that are violated.

As before, that is carried out by investigating the cycles of G resulting from adding to T2 one edge of E \ET2

a time.

For every LP relaxation solution (xr, y), found at any enumeration tree node, we separate (11c), find T1

and T2 and proceed with the separation of (1),(2) and (13), as described above. The separation of valid

inequalities is carried out until no more violated cuts are found. Then, if the LP relaxation solution is not

integral valued, BCD branches on variables.

We experimented with a branching strategy where higher priority was given to variables corresponding

to vertices of G with higher edge degrees. As was the case for BBU, our expectation was to quickly improve

best upper bounds. The reasoning being that a large number of subproblems would be quickly declared

infeasible. However, for the BCD case, better computational results were obtained by sticking to XPRESS’s

default branching policies.

BCD implements a best-first search. Apart from the heuristics, cut generation and pre-processing proce-

dures that were turned off, all other default XPRESS settings were used.

4 Computational Results

For each size n ∈ {30, 50, 75, 100, 125, 150}, we generated four DPSTP instances without cutnodes nor bridges

as follows. We first include in E edges in an Hamiltonian cycle of G: {{1, 2}, {2, 3}, . . . , {n− 1, n}, {1, n}}.

For the other pairs i, j ∈ V , we include the corresponding edge {i, j} into E, according to a probability,

defined by a desired graph density. In total, 24 instances were tested, with graph densities in the range from

6% up to 30%.

All algorithms were implemented in C,C++ and compiled with g++. All computational results reported

here were obtained with an Intel XEON E5645Core TMi7-980 hexa-core machine, running at 2.4GHz, with

24 GB of shared RAM memory. All algorithms were executed with only one core; no multi-threading was

allowed. XPRESS MIP package release 23.01.06 was used to implement the CBEN, BCD and BBI.

4.1 LP upper bounds

In Table 1, we present LP upper bounds for each formulation considered here. The first two columns of

the table provide the instance name, followed by its density, defined as 100 2m
n(n−1) . The next two columns

respectively indicate bounds w(Pu) and w(Pd). The next column stands for w(P+
d ), the bound implied

by Pd when strengthened by inequalities (1),(2) and (13). For the computation of that upper bound, the

same separation heuristics for inequalities (1),(2) and (13) used by BCD were considered. The next two LP
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bounds are w(P rD) and its strengthened version w(P r+D ). Similarly, w(P r+D ) stands for the bound w(P rD)

after the addition of those inequalities (1),(2) and (13) found violated by our separation heuristics. The

last upper bound in the table is the one provided by the reformulation by intersection. Finally, the last two

columns provide the optimal objective function value (OPT) and the lower bound provided by STAR(p), the

approximation algorithm in [1]. Whenever the optimal solution is unknown, the best known lower bound

is indicated also in columns under headings OPT. In such cases, the lower bound is presented with an

accompanying symbol “?”. Whenever an upper bound could not be evaluated within a time limit of 3600

CPU seconds, an indication “-” is provided in the corresponding column. For P rD and P r+D , we have chosen

r = 1 as the root arborescence.

As one could expect, the evaluation of w(PI) is very time consuming. For many cases, such bounds could

not be computed within the imposed time limit. For the remaining instances, PI provided the strongest

upper bounds among all formulations tested here. Despite the fact that many violated constraints (1),(2)

and (13) have been found violated in the course of the cutting plane algorithm, the bounds given by P r+D

and P rD do not change except for instance 30 4. Nevertheless, the BCD algorithm that separates these

constraints outperforms its counterpart that does not. Degree enforcing constraints significantly improved

on bounds w(Pd). Among all models considered here, Pu is the weakest. Considering only those instances

whose optimal solutions are known, STAR(p) provided lower bounds that are not more than 3 units away

from optimal solution values.

4.2 Comparison of exact algorithms

Detailed computational results for BBI, CBEN, BBU and BCD are given in Table 2. For BBI, BBU and BCD, we

indicate, for each instance, the best lower (BLB) and upper (BUB) bounds and the CPU time (t(s), in seconds) to

obtain them. For CBEN, we provide the best lower bound, the CPU time, the total number of feasibility problems

(iter) that were solved and the total number of feasibility cuts (cuts) added along the search. For BBU and BCD,

we provide the number of nodes investigated in the BB tree.

As it could be appreciated from results in the table, BBI is capable of solving only instances with n ≤ 50. For

larger instances, it never managed to find a feasible solution for the problem. Although BBI is grounded in the

strongest DPTSP formulation, poor computational results were obtained mainly because of the large number of

constraints and variables (O(nm)) explicitly handled by the algorithm.

BBU provided the highest success rate among all algorithms, being able to solve 19 out of 24 instances, within

the imposed time limit. Except for instances 30 1, 30 2, 50 2, 50 3 and 100 4, BBU also outperformed the other

algorithms in terms of CPU times, despite the fact that it is based on the weakest DPSTP upper bounds considered

here. The main reasons for that seem to be the availability of good initial DPSTP lower bounds, a very fast lower

bounding procedure, combined with effective branching and search policies. The fact that BBU branches first on

vertices with high degrees and investigates first the yi = 1 branch was of crucial importance to reduce the depth of

the search tree, since infeasibility could be early detected for many branches in the tree. We tested another BBU
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Linear Programming upper bounds

Instance d (%) w(Pu) w(Pd) w(P+
d ) w(P rD) w(P r+D ) w(PI) OPT STAR(p)

30 1 10.6 21.600 19.477 19.477 17.423 17.423 17.423 17 15

30 2 10.3 21.926 19.405 19.162 17.000 17.000 17.000 17 16

30 3 8.5 25.333 23.337 23.128 22.000 22.000 22.000 22 21

30 4 27.8 8.746 7.195 7.195 5.309 5.285 5.285 4 4

50 1 29.6 8.547 6.776 6.772 4.789 4.789 4.745 3 3

50 2 10.1 24.617 20.074 20.074 16.646 16.646 16.646 15 14

50 3 10.4 23.601 19.451 19.432 16.162 16.162 16.161 16 13

50 4 32.6 7.517 6.140 6.140 4.026 4.026 3.996 2 2

75 1 10.9 22.468 18.597 18.597 13.814 13.814 13.734 11 11

75 2 10.5 24.413 19.592 19.592 15.566 15.566 15.563 13 13

75 3 19.4 12.972 10.335 10.335 7.142 7.142 7.126 4 3

75 4 29.4 8.382 6.793 6.793 4.510 4.510 - 2 2

100 1 10.1 26.071 20.395 20.395 15.679 15.679 15.663 12 11

100 2 9.5 25.828 21.019 21.019 14.919 14.919 14.919 11 9

100 3 10.6 24.484 19.195 19.195 14.345 14.345 14.326 11 9

100 4 6.0 41.479 33.915 33.915 27.529 27.529 27.502 25 22

125 1 6.9 37.316 29.887 29.887 22.503 22.503 - (?) 18 17

125 2 7.6 32.987 26.479 29.479 19.381 19.381 - (?) 15 13

125 3 10.5 24.474 19.195 19.195 13.897 13.897 - 10 8

125 4 19.5 12.562 10.258 10.258 6.786 6.786 - 4 4

150 1 7.2 35.903 28.291 28.291 21.170 21.170 - (?) 16 15

150 2 7.6 34.241 27.049 27.049 20.460 20.460 - (?) 16 15

150 3 10.1 24.458 19.622 19.622 13.715 13.715 - 9 7

150 4 19.3 12.310 10.338 10.228 6.500 6.500 - 3 2

Table 1: Linear Programming upper bounds and lower bounds for DPSTP. Any LP upper bound entry

“-” indicates that the bound could not be evaluated within 1 CPU hour. Whenever the optimal objective

function is unknown, the corresponding OPT entry is given together with a (?) indication.

implementation, for which higher branching priorities were given to vertices with the smallest degrees in G. Such an

implementation solved only 13 out of the 19 instances originally solved by BBU. Among the BBU unsolved instances,

no additional instance was solved by the second implementation. On the other hand, considering only those 13

instances that were solved by both, a 86% CPU time increase was observed when the branching policy was changed.
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For the instances that were not solved by both, the algorithm that branches first on low degree vertices improves on

the initial lower bounds for more cases. That implementation provided the lower bounds of 24, 16 and 16, respectively

for instances 100 4, 150 1 and 150 2 while BBU did not improve the initial upper bounds of 22, 14 and 13, for the

same instances.

Measured by the number of instances solved to proven optimality, CBEN was the second best algorithm in our

study. It solved 18 out of 24 instances, being unable to solve 100 2 that could be solved by BBU. For instances that

both algorithms could solve within the imposed time limit, CBEN CPU times were always larger than BBU counter-

parts. Sometimes, CBEN took two orders of magnitude more running time than BBU. Nevertheless, computational

results lean in favor of CBEN for those instances that are left unsolved by both. At the end of the time limit, CBEN

improved on the initial heuristic lower bounds for instances 100 4, 150 1 and 150 2, while the same did not happen

for BBU.

BCD solved only half of the instances to optimality, the second lowest success rate in this study. Nevertheless,

compared to CBEN, BBU and BBI, it was the only algorithm capable of solving instance 100 4. Although, BCD

CPU times were larger than BBU counterparts for most of the instances, in five cases (30 1, 30 2, 50 2, 50 3 and

100 4), BCD was the fastest algorithm. Compared to CBEN, there is also no dominance. For some instances it is

faster, while for others, much slower. For two instances that were not solved by any algorithm in this study, 125 1

and 125 2, the best known upper bounds were provided by BCD.

As a general rule, dense instances seem to be harder to BCD, since the CPU times needed to evaluate the LP

relaxations of the directed model tend to be larger. For CBEN and BBU, it seems that the opposite holds. To validate

such a claim, observe that for a given n, sparse instances usually demand several times more BBU nodes than denser

instances to be solved, which can be explained by the fact that, under the branching rule we implemented, BBU

detects infeasibility very early in the search tree. Although the picture is less clear in the iterative probing Benders

case, it also seems that CBEN works better for dense instances. That seems to apply because the difference between

optimal solution values and the initial lower bounds provided by STAR(p) is usually smaller for these instances. Being

so, the number of updates in the rhs of the feasibility constraint (16) is smaller.

4.2.1 Hybrid algorithms

Motivated by the good computational results obtained by BBU, we implemented two variants of CBEN and BCD, that

make calls to BBU in order to obtain the optimal cuts (3). These hybrid algorithms are denoted HCBEN and HBCD,

respectively for the Benders and the BCD variants. Whenever a given set V ′ is such that (Γ(V ′), δ(V ′)∪E(V ′)) 6∈ F ,

we call BBU to define α(V ′), for the feasibility cut implied by V ′. In the Benders case, these sets are found when

solving the Benders subproblem. For the BCD, these sets are the fundamental cycles of the spanning trees T1 and

T2 devised by the separation heuristics outlined in Section 3.4. Before checking for violation, the optimal rhs is

computed and only then the cut is appended to the model.

Computational results obtained by HCBEN and HBCD are given in Table 3, under the same time limit of 3600

seconds. Apart from tl(s), all other entries in the table have the same meaning as in Table 2. In Table 3, tl(s) stands

for the total amount of time, in seconds, taken to compute the optimal rhs in the feasibility cuts, by calling BBU
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within each algorithm, HCBEN and HBCD.

HBCD managed to solve 75 3 that was not solved by BCD. In general, HBCD outperforms BCD for denser

instances in our test bed. Take instance 75 4 as an example. While BCD needed 951 nodes and about 808 seconds

to solve that instance, HBCD needed only 137 nodes and 78 seconds to do the same. However, for sparse instances,

the opposite seems to hold. BCD and HBCD needed the same number of nodes to solve 100 4, but HBCD took

additional 60 seconds to solve that instance, precisely the additional time used to lift the cuts. In a certain way, that

goes along with what one would expect. For dense instances, values of α should be significantly smaller than those

values in the rhs of (1) and (2) and those values obtained by simple liftings we described before. In addition, dense

instances are the hardest for BCD and the easiest for BBU. Putting all together, the impact of the time taken to lift

the cuts in the overall HBCD time tend to be small and, thus, the computation of the optimal lifting had a positive

impact in the overall CPU time.

HCBEN and CBEN solved the same set of instances to optimality. While for HBCD, the total time involved

in lifting the feasibility cuts could be significant, this time is reduced for HCBEN. That happens because HBCD

calls BBU more frequently and because the sizes of the sets/subgraphs of G for which the liftings are computed are

typically small under the Benders framework. On the other hand, for HBCD, the subgraphs can be almost as large

as G, depending on the size of the fundamental cycles of T1 and T2 that are characterized during our separation

heuristics.

The fact that stronger feasibility cuts are being used within HCBEN as opposed to CBEN translates into fewer

feasibility problems to be solved, in order to testify optimality. On the other hand, the average time involved in

solving each Benders feasibility problem increased substantially for HCBEN. That is true since, compared to CBEN,

the overall CPU times for HCBEN sometimes increased substantially, despite the fact that HCBEN usually needed

fewer feasibility problems and cuts to solve the problem. Note that the times involved in computing the liftings were

small, usually much smaller than the increase in CPU time observed from CBEN to HCBEN. As an example, consider

instance 150 4. HCBEN needs about one half of the iterations implemented by CBEN. Nevertheless, HCBEN takes

70% more time to solve that instance. The calls of BBU within HCBEN, though, are responsible for only 33 of these

730 additional CPU seconds.

5 Conclusions and Future Research

In this paper, we provided integer programming formulations and exact solution approaches for the degree preserving

spanning tree problem. Classes of valid inequalities were also proposed and used within these algorithms.

In total, four algorithms were proposed. A BB based on an undirected spanning tree representation model, a BC

algorithm based on a spanning arborescence formulation, an iterative probing combinatorial Benders decomposition

and, finally, a BB based on the application of the reformulation by intersection technique to the directed model.

Despite being grounded on the weakest formulation, the BB algorithm based on the undirected spanning tree

representation provided the best computational results. That applies due to conveniently chosen branching and search

policies, combined to the fact that its upper bounding procedure runs very fastly. The second best was the Benders,
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Instance HCBEN HBCD

PI w(P r+
D )

name den(%) BLB proven ? t(s) tl(s) iter cuts BLB BUB t(s) tl(s) nodes

30 1 10.6 17 yes 0.11 0.01 19 82 17 17 0.02 0.00 1

30 2 10.3 17 yes 0.18 0.12 7 32 17 17 0.02 0.00 1

30 3 8.5 22 yes 0.07 0.01 13 42 22 22 0.02 0.00 2

30 4 27.8 4 yes 0.62 0.05 30 307 4 4 0.38 0.05 3

50 1 29.6 3 yes 3.98 0.69 69 1090 3 3 8.66 0.90 28

50 2 10.1 15 yes 45.02 0.29 126 1139 15 15 0.50 0.22 2

50 3 10.4 16 yes 12.42 0.50 101 928 16 16 0.09 0.01 1

50 4 32.6 2 yes 6.78 0.99 127 1308 2 2 19.07 2.04 82

75 1 10.9 11 yes 198.99 1.11 226 3409 11 11 133.88 23.88 1037

75 2 10.5 13 yes 147.54 0.97 157 2726 13 13 43.61 10.54 137

75 3 19.4 4 yes 37.84 2.19 280 3793 4 4 561.06 69.33 851

75 4 29.4 2 yes 29.55 3.17 220 3202 2 2 78.67 9.9 137

100 1 10.1 12 yes 1664.81 2.41 461 7292 12 13 - 387.56 2448

100 2 9.5 11 no - 2.81 930 10144 11 12 - 234.65 7086

100 3 10.6 11 yes 593.76 2.98 340 6177 11 12 - 278.66 3313

100 4 6.0 25 no - 9.11 980 12580 25 25 102.91 60.11 475

125 1 6.9 17 no - 5.02 1240 17156 18 20 - 487.77 1767

125 2 7.6 15 no - 10.58 1057 16586 14 17 - 135.20 6019

125 3 10.5 10 yes 1433.62 8.18 484 10260 10 12 - 361.61 1316

125 4 19.5 4 yes 335.32 12.85 316 9689 4 5 - 90.58 417

150 1 7.2 16 no - 10.31 1084 19690 16 19 - 261.67 1083

150 2 7.6 16 no - 15.92 712 16832 16 18 - 200.40 1609

150 3 10.1 9 yes 2072.85 15.00 852 16628 8 12 - 70.31 386

150 4 19.3 3 yes 1680.83 32.77 809 16805 2 5 - 117.18 93

Table 3: Computational results for hybrid algorithms, HCBEN and HBCD.
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followed by the BC algorithm.

Motivated by the good results obtained by the BB method, we proposed two additional algorithms, a hybrid

Benders and a hybrid BC. These two algorithms make calls to the BB method, in order to lift a particular type of

valid inequalities that were proposed here. These inequalities, denoted feasibility cuts, impose that the maximum

number of full degree vertices in a cycle-free subgraph of G must not exceed the number of full degree vertices in

an optimal solution for a DPSTP instance, conveniently defined for that subgraph. As such, the computation of the

optimal feasibility cuts involves solving a DPSTP for a subgraph of G. The BB method was thus used to compute

the optimal cuts within the Benders and the BC frameworks. Our computational results indicated that, for dense

instances, the hybrid BC method outperformed its original version that uses suboptimal feasibility cuts. The hybrid

Benders had its total number of Benders iterations reduced as a consequence of the optimal cuts. However, the

overall CPU times were not reduced accordingly, since each of these Benders problems became much harder to solve.

One interesting possible future research consists of investigating, from a theoretical point of view, optimal liftings

of the feasibility cuts for certain classes of graphs. That would allow us to use these cuts, with optimal coefficients,

without the need of calling an optimization procedure to compute them, as we did here for general graphs.

We believe that the hybrid algorithms we introduced here are promising and deserve further investigation. For

the hybrid Benders method, one interesting future research is to devise specific algorithms to solve each Benders

feasibility problem, instead of using the black-box MIP tool we used here. For example, a constraint programming

approach may be suitable for dealing with each Benders feasibility problem. The hybrid BC algorithm could also

benefit from other lifting strategies that operate under more selective and/or restrictive policies for calling the BB

algorithm used to lift the cuts.

Finally, once the reformulation by intersection provided the strongest upper bounds in our study, other algorithms

based on that model might be worth investigating. Among them, we could list decomposition approaches like classic

Benders decomposition and Lagrangian relaxation, to handle the large number of constraints and variables in that

formulation.
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