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1 Introduction

The purpose of this paper is to introduce, model and solve an inventory-routing problem

with pickups and deliveries (IRPPD) arising in the replenishment of automated teller

machines (ATMs). Our study is motivated by the problem faced by a transporter respon-

sible for such operations in the Netherlands. As in other cash-intensive economies, the

Dutch credit institutions are gradually replacing regular ATMs by recirculation ATMs

(RATMs), which are capable of accepting and dispensing banknotes, as well as check-

ing their quality and authenticity. RATMs therefore provide customers the capability

of both depositing and withdrawing cash. These machines provide tangible benefits to

banks and customers, and are becoming the new standard in many markets. Compared

with the situation that prevailed two years earlier, the number of installations worldwide

has globally increased by 45%, to reach 670,000 in 2011, and this number is expected to

double by 2017 [46]. RATMs allow retailers to make deposits and enable customers to

later withdraw the same cash. In this sense, RATMs are considerably more self-sufficient

than the regular machines which can only dispense cash. RATMs only require a visit to

prevent the inventory level from reaching zero or from attaining the holding capacity of

the machines when the supply and demand are out of sync. When the RATM is empty, a

customer can only use it to deposit cash, and when it is full only withdraws are allowed.

In the problem considered here, the RATMs are replenished or partly emptied by using

a fleet of rented armoured trucks based at a single depot. These trucks deliver cash

from the depot to some machines, collect cash from some others to bring it back to the

depot, or transfer cash between machines. The last operation reduces the routing cost and

sometimes allows smaller or fewer trucks to be used. An important feature of the problem

is the presence of inventory holding costs. Indeed, cash lying in a machine generates an

implicit holding cost partly because it is insured and also because it incurs lost interest

income.

To keep RATMs fully operational, that is when customers can use the RATM to both
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deposit and withdraw cash, one must solve an inventory-routing problem with pickups

and deliveries (IRPPD). The IRPPD combines the features of two well-known classes of

the vehicle routing problem: the inventory-routing problem (IRP) and the pickup and

delivery problem (PDP) which we now briefly review.

The IRP belongs to the broader field of vendor-managed inventory systems in which a

supplier coordinates the inventory management of a number of locations [20]. In IRPs,

the supplier must simultaneously decide when to visit its inventory locations, how much to

deliver to each of them, and how to combine the deliveries into vehicle routes. There exists

numerous variants of this problem [1, 20] and the related literature is quickly expanding.

The first exact algorithm for the single-vehicle IRP was based on branch-and-cut [5].

Archetti et al. [6] later presented a hybrid tabu search matheuristic algorithm capable

of dealing with larger instances, and yielding solutions with very low optimality gaps.

Coelho et al. [19] presented an adaptive large neighbourhood search heuristic for the multi-

vehicle IRP, and Coelho and Laporte [16] were the first to solve the multi-vehicle IRP

exactly. Recently, multi-vehicle and multi-commodity IRPs were also solved to optimality

by Coelho and Laporte [17]. All these algorithms are based on branch-and-cut. For a

recent survey of models and algorithms, see Coelho et al. [20].

A related problem appears in maritime transportation, in which ships have to visit sev-

eral ports to continuously deliver and pickup merchandise and commodities. Applications

include the distribution of cement [14], chemical products [24], liquefied gases [44], among

others. For reviews of maritime transportation, see Christiansen et al. [13] and Chris-

tiansen et al. [15].

The PDP concerns the collection and distribution of one or several commodities from

and to a set of locations. Berbeglia et al. [10] classify PDPs and distinguish between

three different problem structures: many-to-many (M-M), one-to-many-to-one (1-M-1)

and one-to-one (1-1). The M-M structure means that each commodity may have multiple

origins and multiple destinations, and that each location may be the origin or destination

of multiple commodities. In 1-M-1 problems, some commodities are picked up at the
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depot and transported to some locations, while other commodities are picked up at these

locations and transported to the depot. The 1-1 structure refers to a context in which

each commodity has a single origin and a single destination, like in dial-a-ride problems

[22].

Two important classes of PDPs with an M-M structure are the Swapping Problem (SP)

and the 1-commodity Pickup and Delivery Traveling Salesman Problem (1-PDTSP). In

the SP, introduced by Anily and Hassin [3], each vertex of a graph provides a commodity

and requests a commodity, possibly the same one. The problem is to design a least

cost vehicle route in order to satisfy all requests. This problem is NP-hard on general

graphs, but polynomial on some special structures [4]. Erdoğan et al. [28] have developed

heuristics and a branch-and-cut algorithm for the multi-vehicle case. In the 1-PDTSP,

each vertex either provides or requests a given amount of a single commodity, and a single

vehicle route must be designed in order to transfer the right amounts of the commodity

among vertices. The problem was introduced by Hernández-Pérez and Salazar-González

[35] and was solved by branch-and-cut [35, 36, 38] and by heuristics [37, 51]. The 1-PDTSP

arises in the rebalancing operations in shared bicycle systems [9, 12, 21, 30, 29, 45]. This

application is similar to the problem encountered in the replenishment of RATMs in the

sense that in both cases the aim is to shuffle some commodities between locations so

as to bring their inventory level within a given interval (see Erdoğan et al. [29]). Some

algorithms [21, 45] are capable of handling the multi-vehicle case.

The PDP with a 1-M-1 structure deals with two types of commodities. Delivery com-

modities are transported from a single depot to multiple nodes, and pickup commodities

are transported from multiple nodes back to the depot. A typical application is the recy-

cling of products such as beer bottles, pallets and containers [10]. A distinction is made

between combined and single demands. Combined demands occur when locations may

require both a pickup and a delivery, whereas single demand refers to problems where

each location has either a pickup or delivery demand. The single demand problem was

introduced by Mosheiov [42]. Heuristics were proposed by Gendreau et al. [32] and by
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Subramanian and Battarra [47], whereas Baldacci et al. [7] and Hernández-Pérez and

Salazar-González [38] solved the problem exactly by branch-and-cut. The combined de-

mand case was introduced by Min [41]. It was solved heuristically by e.g., Bianchessi and

Righini [11], Subramanian et al. [48], Zachariadis et al. [50], Vidal et al. [49], and exactly

by branch-and-price algorithms by Angelelli and Mansini [2], Dell’Amico et al. [25], Subra-

manian and Battarra [47]. We are not aware of any contributions on the multi-commodity

1-M-1 PDP.

Our aim is to model and solve the IRPPD arising in the replenishment of RATMs by

means of an exact branch-and-cut algorithm. The paper makes four main contributions.

First, it introduces pickups and deliveries within an IRP context. Second, it combines

two PDP structures: the 1-M-1 structure which accounts for commodity movements from

the depot to RATMs to the depot, and the M-M structure which refers to commodity

transfers among RATMs. Hence, our PDP could appropriately be designated as a 1-

M-M-1 problem. Note that we tackle a rather general case for realistic sized problems,

in that there are several vehicles and side constraints in addition to the standard IRP

and PDP features. Third, to cope with realistic sized problems, we propose a clustering

heuristic which can be applied prior to executing the algorithm. Our fourth contribution

is to apply our algorithm to a real-world case arising in the Netherlands.

The remainder of this paper is organized as follows. We formally describe the problem

in mathematical terms in Section 2, where we provide a mixed-integer formulation. The

branch-and-cut algorithm is described in Section 3. The clustering heuristic is detailed in

Section 4, followed by the results of extensive computational results in Section 5, and by

conclusions in Section 6.

2 Mathematical Programming Formulation

The IRPPD is defined on a directed graph G = (V ,A), where V = {0, ..., n} is the vertex

set and A = {(i, j) : i, j ∈ V , i 6= j} is the arc set. Vertex 0 represents the depot
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and the vertices of V ′ = V \{0} represent RATM locations. Each RATM incurs unit

inventory holding costs αi per period (i ∈ V ′), and has an inventory holding capacity Ci.

A handling cost β is incurred at the depot, and is proportional to the quantity picked

up and delivered at the depot. The length of the planning horizon is p, with discrete

time periods t ∈ T = {1, . . . , p}. A set of rented armoured vehicles k ∈ K = {1, . . . , K}

is available, each with capacity Qk and average speed sk. A renting cost γk per period

is incurred if vehicle k is used. Each vehicle is able to perform one route per period,

from the depot to a subset of RATMs, each requiring r units of time to be served, and

back to the depot. The shift of each vehicle is limited to S time units, after which δ

monetary units per unit of overtime are incurred. A routing cost cij is associated with

arc (i, j) ∈ A. We assume the depot has sufficient inventory and capacity to perform all

pickups and deliveries during the planning horizon. The inventories are not allowed to

exceed the holding capacity nor are they allowed to become negative. At the beginning

of the planning horizon the decision maker knows the current inventory level I0i of the

RATMs, and receives information on the net demand dti of each RATM i for each period t.

Negative demands mean that the RATM provides a commodity, while positive demands

mean that the RATM receives some quantity of the commodity. We assume that the

quantities qti received by RATM i in period t can be used to satisfy its net demand in

that period. The quantities picked up at the depot and at the RATMs may be delivered

to any RATM to satisfy their demands. The objective of the problem is to minimize the

total cost while satisfying the net demand for each RATM in each period.

The variables used in the formulation are as follows. Four families of binary variables are

used: directed routing variables xktij are equal to 1 if and only if arc (i, j) is used on the

route of vehicle k in period t; visiting variables ykti are equal to 1 if and only if RATM

i is visited by vehicle k in period t; delivery variables wkt
i are equal to 1 if and only if a

delivery is made to RATM i by vehicle k in period t; and pickup variables zkti are 1 if and

only if a pickup is performed at RATM i by vehicle k in period t. Integer variables I ti

represent the inventory level at RATM i ∈ V ′ at the end of period t ∈ T . Variables qkti are
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integers representing the product quantity delivered to RATM i using vehicle k in period

t, and variables pkti are integers representing the product quantity picked up from RATM

i using vehicle k in period t. Two sets of variables represent the amount of inventory

carried by vehicle k in period t out of and into the depot: J t
k and H t

k, respectively. The

load of vehicle k after serving RATM i in period t is represented by variables ukti , and Et
k

represents the overtime in number of extra minutes worked by vehicle k in period t over

the maximum shift duration S.

The problem is then formulated as follows:

minimize
∑
i∈V ′

∑
t∈T

αiI
t
i +
∑
k∈K

∑
t∈T

β
(
J t
k +H t

k

)
+
∑
k∈K

∑
t∈T

γky
kt
0 +

∑
k∈K

∑
t∈T

δEt
k, (1)

subject to the following constraints:

I ti = I t−1i +
∑
k∈K

qkti −
∑
k∈K

pkti + dti i ∈ V ′ t ∈ T (2)

0 ≤ I ti ≤ Ci i ∈ V ′ t ∈ T (3)∑
j∈V,i<j

xktij +
∑

j∈V,j<i

xktji = 2ykti i ∈ V k ∈ K t ∈ T (4)

∑
i∈S

∑
j∈S

xktij ≤
∑
i∈S

ykti − yktm S ⊆ V k ∈ K t ∈ T m ∈ S (5)

wkt
i ≤ ykti i ∈ V ′ k ∈ K t ∈ T (6)

zkti ≤ ykti i ∈ V ′ k ∈ K t ∈ T (7)

qkti ≤ wkt
i

(
Ci − I ti

)
i ∈ V ′ k ∈ K t ∈ T (8)

pkti ≤ zkti I
t
i i ∈ V ′ k ∈ K t ∈ T (9)

wkt
i + zkti ≤ 1 i ∈ V ′ k ∈ K t ∈ T (10)

sk
∑

(i,j)∈A

cijx
kt
ij + r

∑
i∈V ′

ykti ≤ S + Et
k k ∈ K t ∈ T (11)

uktj ≥
(
ukti + pktj − qktj

)
xktij i ∈ V j ∈ V k ∈ K t ∈ T (12)
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0 ≤ ukti ≤ Qk i ∈ V k ∈ K t ∈ T (13)

J t
k = ukt0 y

kt
0 k ∈ K t ∈ T (14)

H t
k =

∑
i∈V ′

xkti0u
kt
i k ∈ K t ∈ T (15)

qkti , p
kt
i , J

t
k, H

t
k ≥ 0 i ∈ V ′ k ∈ K t ∈ T (16)

xktij ∈ {0, 1} (i, j) ∈ A k ∈ K t ∈ T (17)

ykti ∈ {0, 1} i ∈ V k ∈ K t ∈ T (18)

wkt
i , z

kt
i ∈ {0, 1} i ∈ V ′ k ∈ K t ∈ T . (19)

The objective function (1) minimizes the total cost of inventory holding, inventory han-

dling at the depot, and vehicle renting. Constraints (2) state the inventory conservation

condition over successive periods: they define the inventory in period t as the inventory

held in period t − 1, plus the quantity delivered, minus the quantity picked up, plus the

net demand of the location. Constraints (3) define the bounds on the inventory held by

each RATM throughout all periods. Constraints (4) and (5) guarantee that proper vehi-

cle routes are created: they are degree and subtour elimination constraints, respectively.

Constraints (6) link delivery binary variables wkt
i to visiting binary variables ykti . They

allow a delivery decision to be made only if a visit is performed to the RATM. Constraints

(7) are similar to (6) and apply to the pickup decisions. Constraints (8) and (9) allow

a quantity to be delivered or picked up at an RATM only if the corresponding binary

decision is set to one. Constraints (10) ensure that a visit to an RATM is used to either

a pickup or a delivery operation. Constraints (11) guarantee that the shift duration is

respected and that overtime is properly accounted. Constraints (12) ensure that the load

within the vehicle is consistent along its route. Constraints (13) set bounds on the load

inside the vehicle after serving RATM i. Constraints (14) set the load of the vehicle

when leaving the depot, while constraints (15) set its load when returning to the depot

at the end of the route. Finally, constraints (16)−(19) define non-negativity and binary

conditions on the variables.
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Three comments are relevant with respect to this formulation. The first regards con-

straints (12), which resemble the Miller-Tucker-Zemlin subtour elimination constraints

[40]. These constraints do not eliminate subtours in this context, because the load within

the vehicle is not monotonically increasing or decreasing. We therefore impose Dantzig-

Fulkerson-Johnson subtour elimination constraints (5) whose number is exponential in n

[23]. Second, the load consistency constraints (12) are used in other pickup and delivery

problems, see, e.g., Desaulniers et al. [26], Gribkovskaia et al. [34], Hoff et al. [39]. When

it is known in advance whether an RATM requires a pickup or a delivery, they can been

lifted [34]. However, this is not the case here. The third comment refers to the fact that

the formulation is non-linear due to constraints (8), (9), (12), (14) and (15). However,

these can be linearized as follows. Constraints (8) and (9) can be rewritten in a slightly

weaker form as

qkti ≤ wkt
i Ci i ∈ V ′ k ∈ K t ∈ T (20)

pkti ≤ zkti Ci i ∈ V ′ k ∈ K t ∈ T . (21)

On their own, these constraints would allow quantities to be picked up or delivered to

violate the inventory bounds, but together with constraints (3), they are feasible linear

representations of constraints (8) and (9). Constraints (12) can be linearized as

uktj ≥ ukti + pktj − qktj −
(
1− xktij

)
Qk i ∈ V j ∈ V k ∈ K t ∈ T . (22)

Finally, constraints (14) and (15) can be rewritten in a linear form as

J t
k = ukt0 k ∈ K t ∈ T (23)

H t
k ≥ ukti −

(
1− xkti0

)
Qk i ∈ V ′ k ∈ K t ∈ T (24)

H t
k ≤ Qk k ∈ K t ∈ T . (25)

This formulation can be strengthened by imposing the following valid inequalities:
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xktij ≤ ykti i, j ∈ V ′ k ∈ K t ∈ T (26)

ykti ≤ ykt0 i ∈ V ′ k ∈ K t ∈ T . (27)

Constraints (26) are referred to as logical inequalities. They tighten the relation between

routing and visiting variables. Constraints (27) include the supplier in the route of vehicle

k if any RATM is visited by that vehicle in that period.

3 Branch-and-Cut Algorithm

We have implemented a branch-and-cut algorithm capable of solving the formulation we

have introduced. All variables of the formulation are explicitly handled by the algorithm,

but we cannot generate all subtour elimination constraints (5) a priori. These will be

dynamically generated as cuts as they are found to be violated. The formulation is then

solved by branch-and-cut as follows. At a generic node of the search tree, a linear program

with relaxed integrality constraints is solved, a search for violated constraints is performed,

and violated valid inequalities are added to the current program which is then reoptimized.

This process is reiterated until a feasible or dominated solution has been reached, or until

no more cuts can be added. At this point, branching on a fractional variable occurs.

We provide in Algorithm 1 a sketch of the branch-and-cut scheme. Details regarding the

implementation and improvements to this algorithm are provided in Section 5.2.

4 Clustering Heuristic

In order to solve realistic sized problems we design a clustering heuristic which is used

prior to executing the branch-and-cut algorithm. This heuristic decides for each RATM

i ∈ V ′ and each period t ∈ T whether it must be visited, must not be visited, or must

perhaps be visited. Specifically, for each period t we distinguish five subsets, a must
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Algorithm 1 Branch-and-cut algorithm

1: At the root node of the search tree, generate and insert all valid inequalities into the

program.

2: z∗ ←∞.

3: Termination check:

4: if there are no more nodes to evaluate then

5: Stop with the incumbent and optimal solution of cost z∗.

6: else

7: Select one node from the branch-and-bound tree.

8: end if

9: Subproblem solution: solve the LP relaxation of the node and let z be its cost.

10: if the current solution is feasible then

11: if z ≥ z∗ then

12: Go to termination check.

13: else

14: z∗ ← z.

15: Update the incumbent solution.

16: Prune the nodes with a lower bound larger than or equal to z∗.

17: Go to termination check.

18: end if

19: end if

20: Cut generation:

21: if the solution of the current LP relaxation violates any cuts then

22: Identify connected components as in Padberg and Rinaldi [43].

23: Determine whether the component containing the supplier is weakly connected as

in Gendreau et al. [31].

24: Add violated subtour elimination constraints (5).

25: Go to subproblem solution.

26: end if

27: Branching: branch on one of the fractional variables.

28: Go to the termination check.
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pickup set U t, a must deliver set W t, a perhaps pickup set X t, a perhaps deliver set Y t,

and a not visit set Z t. These five sets define a partition of V ′.

The aim of the clustering heuristic is to (greatly) reduce the branch-and-cut algorithm’s

calculation time by fixing several binary variables prior to its execution. When RATMs

are added to one of the subsets U t, W t, or Z t, the size of the formulation is greatly

reduced and the branch-and-cut algorithm benefits from this reduction, because some of

the decisions related to pickups, deliveries, and visits for some RATMs are already made.

When RATMs are added to one of the other two subsets X t or Y t, the algorithm still

decides for each period t whether a visit is required, but the benefit of the clustering

heuristic is that it limits the choice to either a pickup or a delivery. These steps are

implemented as follows:

∑
k∈K

zkti = 1 i ∈ U t t ∈ T (28)

∑
k∈K

wkt
i = 1 i ∈ W t t ∈ T (29)

∑
k∈K

wkt
i = 0 i ∈ X t t ∈ T (30)

∑
k∈K

zkti = 0 i ∈ Y t t ∈ T (31)

∑
k∈K

ykti = 0 i ∈ Z t t ∈ T . (32)

Also, it follows directly that several other constraints fixing binary variables can be derived

from (28)–(32). These are used to further reduce the size of the problem by effectively

eliminating several variables from the problem:

∑
k∈K

ykti = 1 i ∈ U t t ∈ T (33)

wkt
i = 0 i ∈ U t k ∈ K t ∈ T (34)∑
k∈K

ykti = 1 i ∈ W t t ∈ T (35)
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zkti = 0 i ∈ W t k ∈ K t ∈ T (36)

wkt
i = 0 i ∈ X t k ∈ K t ∈ T (37)

zkti = 0 i ∈ Y t k ∈ K t ∈ T (38)

wkt
i = 0 i ∈ Z t k ∈ K t ∈ T (39)

zkti = 0 i ∈ Z t k ∈ K t ∈ T . (40)

The pseudo-code for our clustering heuristic is presented in Algorithm 2. Four parameters

are defined below, which allow us to test various clustering settings. The first parameter

relates to due-periods and tipping-periods. A due-period is a period in which a visit is

required to prevent the inventory from exceeding the holding capacity or from a stock-out.

A tipping-period is a period in which a pickup is required to remain cost efficient, that is

when the holding cost is disproportionately high related to the cost of visiting the RATM.

• m: number of periods preceding a due-period or a tipping-period

• f : number of RATMs which are closest to RATM i

• g: minimum inventory level of RATM i, in a percentage of its holding capacity Ci

• b: expected number of RATM visits per vehicle k in a period t

In what follows, let Ī ti = I0i +
t′∑

t=1

dti be the cumulative inventory of RATM i in period

t′. This is useful to identify up to which period t′ the RATM will respect its inventory

constraints without intervention from the depot.

The clustering heuristic starts by adding all RATMs i in all periods t to the not visit subset

Z t (see lines 2 – 4 in Algorithm 2). When period t = 1 or when parameter m = 0, lines 5

– 10 ensure that RATMs are added to the must visit subsets U t andW t when the holding

capacity Ci is exceeded or when the inventory Ī t
′

i becomes negative. If either condition

is satisfied, the algorithm does not have the flexibility to choose between preceding or

succeeding periods to visit the RATM in. Therefore, the RATM must be visited.
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Algorithm 2 Clustering heuristic

1: V̄ ′ ← V ′.

2: for all i do

3: for all t do

4: Add i to Z t.

5: if t = 1 or m = 0 then

6: if Ī t
′

i > Ci then

7: Add i to U t; remove i from Z t; remove i from V̄ ′.

8: else if Ī t
′

i < 0 then

9: Add i to W t; remove i from Z t; remove i from V̄ ′.

10: end if

11: else

12: for t′ = t−m to t′ = t; t′ > 1 do

13: if (
∑
t∈T

dti)/t > 0 and (Ī t
′

i × αi) > (γk/b/(Ī t
′

i < 0/((
∑
t∈T

dti)/t))) then

14: Add i to X t; remove i from Z t; remove i from V̄ ′.

15: else if Ī t
′

i > Ci then

16: Add i to X t; remove i from Z t; remove i from V̄ ′.

17: else if Ī t
′

i < 0 then

18: Add i to Y t; remove i from Z t; remove i from V̄ ′.

19: end if

20: end for

21: end if

22: for all f number of RATMs j which have the smallest cij to i do

23: if i ∈ {U t,X t} and (Ī t
′

j /Cj) < (1− g) then

24: Add j to Y t; remove i from Z t; remove i from V̄ ′.

25: else if i ∈ {W t,Y t} and (Ī t
′

j /Cj) > g then

26: Add j to X t; remove i from Z t; remove i from V̄ ′.

27: end if

28: end for

29: end for

30: end for

31: Return U t,W t,X t,Y t,Z t.
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If the condition in line 5 is not met, we check three more conditions in lines 13 – 18 in

order to add RATMs i to the perhaps visit subsets X t and Y t in period t as well as to the

subsets in m number of preceding periods t. Line 12 ensures that RATMs i are also added

to the subsets in m number of preceding periods t. We introduce lines 13 and 14 to ensure

RATM i is visited for a pickup when a tipping-period occurs, i.e., when the holding cost

exceeds the cost of visiting the RATM. More precisely, the following condition is verified:

the inventory Ī t
′

i of RATM i in period t multiplied with the unit inventory holding cost

αi exceeds the vehicle rental cost γk divided by the expected number of visits per route

b and divided by the expected number of days elapsed since the last visit. To this end,

we calculate the expected number of days elapsed since the last visit by dividing the

inventory level Ī ti by the average demand
∑
t∈T

dti/t. If the latter condition is met, then the

RATM i is added to the perhaps pickup set X t. RATMs i are also added to the X t subset

in periods t when the inventory exceeds capacity Ī t
′

i > Ci (see lines 15 – 16). In the case

of stockouts, the RATMs are added to the perhaps deliver subset Y t, which is indicated

in lines 17 and 18.

Most likely, some RATMs i will have been taken out of set Z t and added to the other

subsets U t,W t,X t and Y t when arriving at line 18. The final part of the clustering

heuristic in lines 22 – 28 ensures that even more RATMs j which are located closest to

RATMs i belonging to U t,W t,X t or Y t, are added to the perhaps visit subsets. The

number of RATMs j added per RATM i is determined by parameter f . It should be

noted that RATMs j are only added when they meet an inventory level Ī tj which is at

least as high as a given percentage g of the holding capacity Ci for a pickup, or lower than

a given percentage 1 − g for a delivery. The rationale of this final part of the clustering

heuristic is to stimulate the exchange of inventories between RATMs i and j to eventually

reduce the amount to be picked up from there, and delivered to the depot.
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5 Computational Experiments

In this section we present the instances generator in Section 5.1, some implementation

details in Section 5.2, and the results of our extensive computational experiments in

Section 5.3. The instance set as well as detailed computational results are available at

http://www.leandro-coelho.com/instances.

The problem at hand involves RATMs located all over the Netherlands, with over 6,000

vertices and 32 cash centers, each operating with one vehicle. For comparison purposes,

the largest instance that can be solved exactly for the IRP, with a single vehicle and a

single depot, contains 200 customers [18]. We note that the IRP does not contain many

of the features presented in this paper. Likewise, the largest M-M PDP instance solved to

optimality contains 200 vertices and a single vehicle [38]. The IRPPD combines features

of these two problems and is significantly more complicated than either of these. For these

reasons, it is unrealistic to solve this problem exactly for the large sizes we are considering.

However, through suitable simplifications, we are able to solve real-world instances and

obtain good solutions for this practical case, as we will now show.

5.1 Instances generation

The data used in our experiments stem from a real-world case in the Netherlands. A total

of 6,377 cash dispensing self-service devices, both regular and recirculation ATMs, were

installed in the Netherlands in 2013 [8]. From a handful of regional distribution centres,

cash is transported to and from cross-dock centres, from which the last-mile distribution

takes place. Cross-dock centres usually serve the cash supply and demand for a small

subregion of the Netherlands. We depict this case in Figure 1.

For our experiments we assume that all self-service devices in the Netherlands are RATMs.

This is not unrealistic given the recent strong increase in the share of RATMs in the

Netherlands [27]. Also, in several other countries, such as Japan, RATMs already domi-
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Figure 1: Map of the Netherlands depicting 32 subregions

(c) OpenStreetMap and contributors,
Creative Commons-Share Alike License
(CC-BY-SA)

^

nate the cash self-service device market [46]. To mimic reality we have divided all RATM

locations into 32 subregions, each served by a single cross-dock centre, i.e., a depot, each

with a maximum of 200 RATMs in order to obtain instances of similar sizes. Although

the Netherlands is rather densely populated, not all parts of it are equally well served by

RATMs. Their coverage varies considerably over the country. Our solution methodology

is rather robust and can easily deal with this diversity. Figure 2 depicts the position of

the RATMs and the cash center for the Amsterdam area.

Several experiments were performed with various clustering settings. The parameter

settings were gathered from cash supply chain parties in the Netherlands, and estimated

when these could not be made publicly available for security reasons. The parameters for

the clustering heuristic are set as follows:

• m ∈ {0, 1, 2}

• f ∈ {0, 1, 2}
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Figure 2: Map of the Amsterdam subregion

• g ∈ {0.3, 0.5, 0.7}

• b = {15}.

The parameters for the instance generation are the following:

• αi = e 0.08 per e 1,000 inventory per period t (based on a 3% annual interest rate);

• Ci = e 260,000 per RATM i. This is an estimation based on an RATM with four

cassettes, each with a capacity of 2,000 notes;

• β = e 0.30 per e 1,000 picked up or delivered at the depot;

• p = six periods. Periods coincide with days, which together define a workweek from

Monday to Saturday. In practice, order lead-times are not more than one or two

days and so a planning horizon of six days is sufficient;

• K = one vehicle;
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• Qk = e 7,800,000 per vehicle k. This is an estimation based on 30 full replenishments

of e 260,000 in a single period;

• γk = e 2,000 per vehicle k per period used;

• r = 18 minutes.

• S = eight hours. This is the regular daily work time in the Netherlands. We assume

the vehicle is loaded prior to performing the route, so the driver has at most eight

hours to perform all pickups and deliveries;

• δ = e 8.00 per minute, which is approximately twice as expensive as the regular

vehicle renting cost;

• I0i ∈ {0, . . . , Ci}. Each RATM i is assigned a random initial inventory in euros;

• dti = {± − 45, 000, . . . ,±45, 000} per period. Random values are drawn from a Pois-

son distribution for both withdrawals and deposits, which are thereafter combined

into a net demand. To simulate real demands at different locations, we have en-

sured that RATMs either have a net-positive, a net-negative or a balanced demand

without losing stochasticity. We have then generated different demands at different

periods: in periods t ∈ {1, 2} the demand tends to be net-positive, because in the

Netherlands more cash is deposited on Mondays and Tuesdays. The demand in

periods t ∈ {5, 6} tends to be net-negative, since more cash is withdrawn on Fridays

and Saturdays;

• cij = the arc set is constructed using real travel distances between the RATMs and

the depot. A routable network dataset for the Netherlands was constructed using

OpenStreetMap data [33] and average driving speeds were used on the various road

types to approximate true speeds.
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5.2 Implementation features

The algorithm just described was coded in C++ using the IBM Concert Technology and

solved with the CPLEX 12.5.1 solver running on a single thread. All computations were

executed on a grid of Intel Xeon™ processors running at 2.66 GHz with up to 48 GB of

RAM installed per node, with the Scientific Linux 6.1 operating system. A time limit of

six hours was imposed on the execution of each instance.

Algorithm 1 can be used to optimally solve small to medium instances of the problem. If

the instance size is small, even subtour elimination constraints (5) can be fully enumerated.

However, for the instances that we consider in this paper, which contain up to 200 nodes,

this approach is infeasible. Moreover, some constraints are extremely numerous, e.g., (22)

and (26). These two sets of constraints account for almost half a million rows in the

LP and their inclusion in the root node of the branch-and-cut solver cause the simplex

algorithm to perform poorly when optimizing the linear program relaxation.

In order to cope with this situation, we have decided to add two new layers to the branch-

and-cut algorithm. In the first one, we verify at every node having a fractional solution

whether inequalities (26) are violated and we then add them to the LP. This helps improve

the lower bound of the problem. The second new layer is added to handle constraints (22)

since we have observed that these constraints are not tight with respect to the vehicle

capacity and are generally satisfied. For this reason, we have devised an algorithm to

verify whether they are violated only when at an integer solution. If the integer solution

is found to violate constraints (22), these are added and the node is then reoptimized.

Otherwise, the solution is feasible for the IRPPD. The procedure created to check whether

an integer solution respects constraints (22) is outlined in Algorithm 3. These two changes

have significantly decreased the time required to solve the subproblems.

Moreover, we have also observed that the separation algorithm of constraints (5) can be

improved by adding a new set of variables representing the route of the vehicle in an

undirected graph. By doing this, the separation algorithm runs on a graph half the size
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Algorithm 3 Separation algorithm for constraints (22)

1: Let V x, V u, V p, and V q be the values of the variables x, u, p, and q, respectively, in

an integer solution.

2: for all k ∈ K do

3: for all t ∈ T do

4: next← 0.

5: for all j ∈ V ′ do

6: next+ = jV xkt0j.

7: end for

8: if V uktnext − V ukt0 − V pktnext + V qktnext < 0 then

9: Add the violated constraint to the problem:

10: uktnext − ukt0 − pktnext + qktnext + (1− xkt0,next)Qk ≥ 0.

11: end if

12: previous = next.

13: while next 6= 0 do

14: next← 0.

15: for all j ∈ V do

16: next+ = jV xktprevious,j.

17: end for

18: if V uktnext − V uktprevious − V pktnext + V qktnext < 0 then

19: Add the violated constraint to the problem:

20: uktnext − uktprevious − pktnext + qktnext + (1− xktprevious,next)Qk ≥ 0

21: end if

22: previous = next.

23: end while

24: end for

25: end for
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of the original one, looking for connected components and deriving maximum cuts over

a much smaller network. Moreover, each subtour elimination cut derived for this new

variable is equivalent of two cuts expressed in the original variables, one in each direction.

These two procedures employed to generate new cuts dynamically typically yield around

20 thousand cuts only at the root node of the tree. This number, although sizeable, is

only a small fraction of the total number of cuts that could potentially be generated. By

optimizing a problem with fewer constraints, we gain in speed since far fewer simplex

iterations are needed. We note that a typical instance has around half a million binary

variables and 150 thousand constraints after the two procedures just described have been

applied.

We have also observed that at the beginning of the optimization process, the problem

is degenerate, i.e., several pivoting operations do not improve the value of the objective

function. We have therefore taken advantage of the fact that during the optimization

process, one can change the routing decisions while remaining feasible. Since routing

variables x do not appear in the objective function, this different solution does not change

the value of the objective function. Note that as long as the total route length is less than

the shift duration, the solution remains feasible. We have tested adding a small coefficient

to the objective function to further minimize route length, and thus avoid degeneracy, but

this option did not yield any significant result.

Finally, in order to obtain a clear view of the performance of our algorithms, and also to

speed up the solution of each node, we have turned off the CPLEX cut generation.

5.3 Results of computational experiments

We start our analysis by presenting the results obtained by the algorithm described in

Sections 3 and 5.2 on the set of 32 instances described in Section 5.1. These experiments

have shown that our algorithm is rather stable, especially when considering the large scale

of the instances involving up to 200 vertices. However, the optimality gap is rather large,

An Inventory-Routing Problem with Pickups and Deliveries Arising in the Replenishment of Automated Teller Machines

CIRRELT-2013-71 21



with an average of 51%, a maximum of 62% and a minimum of 45%. To benchmark the

quality of these solutions, we can compare to the instances of the IRP without pickup

and delivery which has recently been solved to optimality in Coelho and Laporte [18] for

comparable instance sizes. The problem at hand is much more complicated and clearly

requires an additional effort in order to obtain good solutions.

We have then limited the flexibility of the algorithm by disallowing visits to RATMs that

do not require a pickup or a delivery to remain operational. This is achieved by setting

to zero both parameters m and f of the clustering procedure. Obviously, all solutions

obtained for this constrained version of the problem remain valid for the general case, but

the lower bounds can no longer be directly compared. In this situation, we have observed

an average improvement of 24% in the upper bounds. Under this scenario, seven instances

were solved to optimality, and most of them yielded gaps below 0.1%. This is remarkable

given the difficulty of the problem which combines characteristics of the IRP and of the

M-M PDP. These results are displayed in Table 1, where we present in columns “Upper

Bound (general)” and “Upper Bound (clustering)” the obtained upper bounds before

and after applying the clustering phase. Again, note that the latter solutions are valid

for the general problem. The size of the vertex set V ′ is also listed: all instances but

two contain 200 RATMs. These two exceptions resulted from the indivisible number of

RATMs (i.e., 6,377) over 32 instances. In column “Lower Bound (clustering)” we present

the lower bound obtained when solving the problem with the clustering aggregation, i.e.,

the constrained problem. We observe that these lower bounds are not valid for the general

problem. The column “Gap (%)” refers to the optimality gap between the upper and lower

bounds computed for the clustering strategy. By increasing the number of periods m in

which the algorithm can decide when to serve the RATMs, we obtain a problem that

turns out to be very similar to the original one, and the same solutions are obtained when

m = 1 and m = 2.

We have also tested different cases by allowing the algorithm to visit RATMs that do not

necessarily need a visit, but that could help reallocate cash throughout the system, thus
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Table 1: Full results of the branch-and-cut algorithm with the clustering procedure set with

m = 0 and f = 0

Instance |V ′|
Upper Bound Upper Bound Lower Bound Gap

(general) (clustering) (clustering) (%)

Inst-01 200 37289 25698 25642 0.22

Inst-02 191 34076 23890 23849 0.17

Inst-03 200 35898 25594 25576 0.06

Inst-04 200 33962 24988 24949 0.15

Inst-05 200 30505 24754 24754 0.00

Inst-06 200 34214 25420 25394 0.10

Inst-07 200 33984 24978 24963 0.06

Inst-08 200 31837 25067 25053 0.05

Inst-09 200 43820 25190 25181 0.03

Inst-10 200 31955 25070 25070 0.00

Inst-11 200 39339 24647 24640 0.02

Inst-12 200 29865 24313 24301 0.04

Inst-13 200 32564 23663 23644 0.08

Inst-14 200 28123 26498 26498 0.00

Inst-15 200 30684 25705 25705 0.00

Inst-16 178 31620 24255 24165 0.37

Inst-17 200 33619 24831 24816 0.06

Inst-18 200 37025 24502 24457 0.18

Inst-19 200 28200 24708 24685 0.09

Inst-20 200 31525 24751 24737 0.05

Inst-21 200 33028 25343 25313 0.12

Inst-22 200 31669 24732 24685 0.19

Inst-23 200 29385 24751 24737 0.05

Inst-24 200 36754 25012 24960 0.20

Inst-25 200 31767 24156 24134 0.09

Inst-26 200 31970 24743 24743 0.00

Inst-27 200 28714 23771 23763 0.03

Inst-28 200 33452 25343 25343 0.00

Inst-29 200 35921 25852 25852 0.00

Inst-30 200 30078 24529 24525 0.01

Inst-31 200 32503 24081 24030 0.21

Inst-32 200 33661 25339 25313 0.10

Average 199 33094 25114 24859 0.09
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avoiding the need to return cash to the depot, which incurs a cost. Whenever we set the

number f of close-by RATMs allowed to be visited to 1 or 2, but did not allow them to

be visited in different periods, i.e., m = 0, the same solutions from the general case were

obtained once again. This remained true irrespective of the value of the parameter b, i.e.,

the minimum inventory level of the extra RATMs.

Fixing the number f of extra RATMs and the number m extra of periods, and testing the

effect of selecting RATMs based on their minimum average inventory level, i.e., b = 30,

50, and 70%, we have observed a clear trend: when the RATMs with higher inventory

levels are allowed to be visited, better solutions are obtained. One possible explanation

for this is that cash could be moved from these high inventory RATMs to the ones with

shortages, hence decreasing both inventory costs and depot handling costs. Table 2 shows

a summary of these results.

Table 2: Summary of the results when changing the parameter b, controlling the inventory

levels of extra RATMs

Clustering case
Upper Bound Upper Bound Improvement over

(general) (clustering) the general case (%)

f = 1, m = 1

b = 30 33094 31937 3.51

b = 50 33094 30802 6.94

b = 70 33094 27829 15.79

f = 1, m = 2

b = 30 33094 31949 3.47

b = 50 33094 31944 3.49

b = 70 33094 30840 6.80

f = 2, m = 1

b = 30 33094 31958 3.45

b = 50 33094 31934 3.51

b = 70 33094 31562 4.63

f = 2, m = 2

b = 30 33094 31952 3.46

b = 50 33094 31941 3.49

b = 70 33094 31926 3.54

Finally, since all upper bounds obtained by different clustering procedures remain feasible
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for the general case, we are able to compile the best known upper bounds for the problem,

obtained from any of the cases presented. These best known upper bounds are presented

in Table 3, along with the improvement with respect to the upper bounds obtained for the

general case. We observe that solving the problem with our clustering procedure yields

better upper bounds for all instances, with average improvements of 29.94% and attaining

47.17% in one case.

6 Conclusions

We have introduced, modelled and solved an inventory-routing problem with pickups and

deliveries. We have been succesful in solving a difficult application of the problem arising

in the optimization of distribution and inventory management of cash in recirculation

ATMs in the Netherlands. The problem was first modelled as a non-linear mixed-integer

programming formulation. After linearizing some of the constraints, we have developed an

exact branch-and-cut algorithm which was then further strengthened by the inclusion of

valid inequalities and some implementation schemes. This algorithm yields initial bounds

for the problem, but these are not necessarily tight. A clustering heuristic was developed

in order to reduce the problem size, which was then solved again by the branch-and-cut

algorithm. Different settings of the clustering procedure were tested, and we have shown

which ones are able to provide a good trade-off in terms of simplification of the problem

and upper bound values. We were able to solve exactly or to near optimality 32 instances

involving up to 200 vertices. This size is similar to that of the largest IRP or M-M PDP

instances that have been solved in the past. Our problem is obviously more difficult,

because it combines these two features. Since recirculation ATMs are expected to become

a market standard in the near future, our paper anticipates on this development by

providing cash supply chain parties the means to immediately improve the replenishment

operations and yield significant cost savings.
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Table 3: Best results of the branch-and-cut algorithm with the clustering procedure

Instance |V ′|
Upper Bound Upper Bound Improvement over

(general) (clustering) the general case (%)

Inst-01 200 37289 22538 39.56

Inst-02 191 34076 23890 29.89

Inst-03 200 35898 25594 28.70

Inst-04 200 33962 24988 26.42

Inst-05 200 30505 24754 18.85

Inst-06 200 34214 25420 25.70

Inst-07 200 33984 24978 26.50

Inst-08 200 31837 25067 21.26

Inst-09 200 43820 25190 42.51

Inst-10 200 31955 25070 21.55

Inst-11 200 39339 24647 37.35

Inst-12 200 29865 24313 18.59

Inst-13 200 32564 23663 27.33

Inst-14 200 28123 26498 5.77

Inst-15 200 30684 25705 16.22

Inst-16 178 31620 18607 41.15

Inst-17 200 33619 21677 35.52

Inst-18 200 37025 22235 39.95

Inst-19 200 28200 24708 12.38

Inst-20 200 31525 19204 39.08

Inst-21 200 33028 18861 42.89

Inst-22 200 31669 24732 21.90

Inst-23 200 29385 19238 34.53

Inst-24 200 36754 19417 47.17

Inst-25 200 31767 19271 39.34

Inst-26 200 31970 19721 38.31

Inst-27 200 28714 23771 17.21

Inst-28 200 33452 20028 40.13

Inst-29 200 35921 21381 40.48

Inst-30 200 30078 24529 18.45

Inst-31 200 32503 24081 25.91

Inst-32 200 33661 21010 37.58

Average 199 33094 23196 29.94
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[35] H. Hernández-Pérez and J.-J. Salazar-González. The one-commodity pickup-and-delivery traveling
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