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performance level with minimal cost. The problem of total investment cost minimization, 

subject to availability constraints, is a pure redundancy optimization problem which is 

known to be intractable and for which no deterministic algorithm is expected to succeed. 

The difficulties come from the constraints and variable domains which are non-linear and 

of mixed types. To tackle the redundancy optimization problem for a system with different 

capacities, we propose two problem-specific evolutionary algorithms for the cost 

minimization and for the availability maximization. For the first case, the algorithm makes 

use of evolutionary operators that map feasible points into other feasible points. 

Specialized operators for boundary search allow an optimal utilization of available 

resources, since the search is restricted to solutions corresponding to a full utilization of 

these resources. In the second case, boundary search operators cannot be explicitly 

stated. The proposed alternative is a repair algorithm that maps infeasible solutions to 

feasible ones as close as possible to the boundary of feasibility, if not exactly on it. 
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1. Introduction 

The resort to redundancy, active or passive, has largely been exploited in system design in order 

to improve their performance in terms of reliability, maintainability, flexibility and availability. 

For maintenance planning and resources management, redundancy provides more flexibility (Jin 

T. et al. (2013); Chen et al., 2013; Rebaiaia and Ait-Kadi, 2010 (2)) ; Coit and Konak, 2006).  

The optimal allocation problem has been deeply discussed in the literature (Aggarwal et al.,1975; 

Ait-Kadi et al.,1998; Coit et al., 1996 (1); Coit et al., 1996; Coit et al., 1996 (2); Tillman et 

al.,1977. It is proved that it is NP-complete problem. The proposed algorithm provides a good 

result. It has been used by the authors to determine the spare parts requirement which guaranties 

some predetermined availability level. In this aim, the standby (passive) redundancy, rather than 

the parallel (active) was used. Only the availability expressions of the subsystems are affected. 

The proposal algorithm is efficient and simple to implement. The optimal design of parallel/series 

systems where redundancy of parallel components is allowed has been a major concern in 

reliability engineering for at least a half of century, following the work of Aggarwal (Aggarwal et 

al, 1975) and Fyffe (Fyffe, 1996). The original problem consists of finding the optimal number of 

parallel redundant elements on each of the N stages of a serial system, together with the particular 

type of elements to be used on each stage from a finite set of design alternatives. The concept of a 

parallel/series system is illustrated in Figure 1. Most of the early approaches to this problem 

consider only the case of such a purely integer formulation, since the classical programming 

methods can hardly deal with mixed variable types, although a first mixed variables approach 

have been proposed by Tillman (Tillman, 1977). In a mixed-variables formulation, the number of 

components is represented by integers, but the availability or reliability of each component is a 

real value rather than a finite set of values. This paper deals with the mixed-variables formulation 

of the problem.  

 
 

Figure 1: An example of a serial system with redundant components in parallel (           . 
 

A first problem-specific optimization method was proposed by Aggarwal (1975). His procedure is 

initiated by providing a feasible point, and each iteration adds a redundant element to the stage 

where the payoff is greatest. Whenever a constraint is violated, the move is cancelled, and another 
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one is tried out. The algorithm terminates if a constraint is exactly satisfied or no more moves can 

give a feasible solution. Clearly, the Aggarwal's algorithm is a local search method, since the 

information available at each step of the optimization algorithm is limited to the close 

neighbourhood of the current solution. For such a problem, a global search method is likely to 

gives better results, since the payoff function is probably far from a unimodal. 

Genetic algorithm (GA) in evolutionary computation has been used intensively because of its 

potential of being a very effective design optimization technique for solving various NP hard/ill-

structured problems (Holland, 1975; Goldberg, 1989). A GA-based algorithm involves the 

evaluation of a population of solutions that are revised over successive generations. They are 

search and optimization methods based evolution in nature. They were first developed by John 

Holland (Holland, 1975). The power of GA’s is, instead of working with particular point in the 

solution space, they proceed using more than one point and they are not necessary concerned with 

finding the optimal solution, but they produce a satisfactory one. The structure of a genetic 

algorithm is based on natural selection (see. Figure 1). First an initial population of feasible 

solutions is randomly generated. The initial population consists of chromosomes. The selection 

takes place between members of a population, and a child is formed from the combination of the 

parents chromosomes. Whether or not the child becomes a member of the population depends on 

its fitness value. Each new child is compared against the worst member and the better one is kept 

in the population. By producing new generations, the population improves and the best member 

of the final population is the solution returned by the algorithm.  In GA algorithms two particular 

operators are used to introduce new prospective design solutions at each generation. They are 

named crossover and mutation. Crossover involves the selection of parent and their 

recombination to produce new prospective solutions. Parent selection is random, but biased by the 

ordinal objective function ranking within a current population (Taboada and al.,*; Taboada and 

Coit, 2012). Rebaiaia et al. (2002, 2006) proposed a toolset of algorithms based on genetic 

algorithms for recognizing fingerprint minutiae. It has been demonstrated that the implemented 

software program can retrieve all the forms that characterize a digital fingerprint with an accuracy 

approaching 99%. The algorithm has been performed using real fingerprints. Again, Rebaiaia et 

al. (2002) used another genetic algorithm as a technique to verify reactive systems.  Recently, 

Chen et al. (2013) used a variant of standard GA algorithm for three types of preventive 

maintenance activities of a reusable rocket engine. The objective was to obtain an optimal 

scheduling plan for conducting these preventive maintenance actions by minimizing the total cost 

under the system reliability constraint. Aghaie et al. (2013) proposed an Advanced Progressive 

Real Coded Genetic Algorithm (APRCGA) to optimize the availability of standby systems with 
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preventive maintenance scheduling. APRCGA code was used in two nuclear power plant 

emergency systems. The objective of this work was to apply preventive maintenance scheduling 

that keeps unavailability of systems within safe and reliable conditions. Volkanovski et al (2008) 

introduce a new method for optimisation of the maintenance scheduling of generating units in a 

power system. The proposed method uses genetic algorithm to obtain the best solution resulting 

in a minimal value of the annual loss of load expectation. Yang and Yang (2012) proposed a 

genetic algorithm for optimizing the cost of a scheduling maintenance plan of aircraft. The 

feasibility of the model and algorithm is verified by an example of an airline. All solutions 

proposed in such articles are similar.  

In GA’s, mutation operator for example, involves the addition or removal of components in 

accordance with a pre-selected mutation rate. This prevents premature convergence to local 

optima. The culling operator involves the selection of the solutions with the highest objective 

function from among the prior population and the newly formed solutions. 

The algorithm continues for a pre-determined maximum number of generations (G) (see figure 2). 

More efficient genetic algorithms have been proposed by Coit and Smith, using a specific carling 

tailored to the structure of the problem and an adaptive penalty method for handling the 

constraints (Coit, 1996(1); Smith, 1996 and Coit, 1996(2)). 

As discussed previously, a genetic algorithm should proceed using the following steps: 

 

 Starts: Creation of a random initial population (n chromosomes). 

  Creation of a sequence of new populations by evaluating the fitness of each individual 

member in the current generation to create the next population by performing the following 

actions: 

 

- Scores each member of the current population by computing its fitness value. 

- Scales the raw fitness scores to convert them into a more usable range of values. 

- Selects members, called parents, based on their fitness (selection operation). 

- Some of the individuals in the current population that have lower fitness are passed to 

the next population. 

- Produces children from the parents using the mutation operation or by combining the 

vector entries of a pair of parents (crossover operation). 

- With a mutation probability mutate new offspring at each position in the chromosome. 

- Replaces the current population with the children to form the next generation.  
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 If the end condition is satisfied, the algorithm stops iterating and return the best solution in 

current population. 

 

Note that because the genetic algorithm uses random number generators, the algorithm returns 

slightly different results each time you run it. 

 

 
Figure 2 : Flowchart of a simple genetic algorithm 

 

In this paper, the proposed approach is the use of a problem-specific evolutionary algorithm that 

integrates as much information as possible on the problem. The basic evolutionary operators are 

redefined with respect to the solution carling and to the constraints on the feasibility of solutions. 

A constrained optimization problem might be greatly simplified if one has the insight that the best 

feasible solution necessarily lies at the edge of the feasible domain. In this case, a specialized 

algorithm working exclusively around this particular region shall certainly salves the problem 

more efficiently than a general-purpose algorithm exploring the whole domain, as long as such a 

specialized algorithm can be designed with reasonable efforts. The basic idea of using specialized 

evolutionary operators to explore the edge of the feasible domain has been recently proposed by 

Michalewicz and Schoenauer (1996) for numerical optimization problems. Several forms of 

general design frameworks for specialized operators have been proposed for numerical 

optimization problems (Michalewicz, 1996; Schoenauer, 1997 (1) and Schoenauer, 1997 (2)), 
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using mappings to general formulations of constraint equations. On the other hand, numerous 

researches have been conducted on the use of evolutionary algorithms to solve combinatorial 

problems. These problems require in most cases the use of specialized evolutionary operators 

since they cannot be easily stated in a form suitable for standard operators. A well-known case is 

the Traveling Salesman Problem, for which a feasible solution is a permutation of N variables 

(Fox, 1991 and Davis, 1985). These various works show the interest in problem-specific 

evolutionary operators.  

This paper is structured as follows: 

Section 2 introduces the formal problem statement. In section 3, we present Problem 1 and which 

evolutionary operators proper to genetic algorithms are discussed. Similar to Section 3, Section 4 

presents the Problem 2. GA implementation for the availability optimization, results and 

comparison with Aggarwal’s algorithm are showed in Section 5, and Section 6 concludes this 

work. 

 

2. Formal problem statement 

 

Many different forms of the redundancy/availability allocation problem are found in the literature. 

This paper considers two cases. The first one, is called labelled Problem 1, and consists of 

minimizing the total cost of a system under a constraint of minimal availability (Zhou et a., 2012; 

Wang et Zhang, 2011; Rebaiaia and Ait-Kadi, 2010). The problem is stated as follow:  

Minimize   
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and,  iAi   ,10  

 

 

 

 

 

 

 

 

 

 

 

(1) 

 

where Ai(t) is the availability of a component on the i
th
 stage, or more specifically, the probability 

that the component remains available during an operating time of duration t (Rebaiaia M-L, Ait-

Kadi D., 2010; Arturo et al., 2009). The redundancy mi is the number of components in parallel 

on stage i, and the value A* is the minimal acceptable availability (Rebaiaia, 2010). The Ai's are 

coded by real variables bounded between 0 and 1, while the redundancies take integer values 

only. The minimal number of components on any stage is 1, and there might or might not be an 

upper bound. The cost Ci of each stage is given by the following equation (Aït-Kadi and Chelbi 
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(1998), Amari and Pham, 2007, Moghaddam, 2010; Mettas and Zhao, 2005; Chou and Le, 2011, 

Dedopoulos and Smeers, 1998; Bartholomew et al, 2009):  
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(2) 

 

The constants i and i are problem-dependent values given by the statistical distribution of 

component failures (Tillman, 1977). The second case, labelled Problem 2, consists of maximizing 

the system's availability under various constraints, representing upper limits on the cost, weight 

and volume allowed for the global system. The problem is expressed as follow, for an N-stages 

parallel/series system:  

 

Maximize    
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The constraints under the generic formulation    

N

i jjij mtAg
1

,  may represent any limit imposed 

on the resources allocated to the system. In the present study, three constraints are considered. 

The first one is an upper bound on the cost:  

 





N

i

i CC
1

max  
 

 
 

 

(4) 

 

The cost Ci of each stage is the same as given by Eq. 2. The two other constraints impose upper 

limits on the total weight Wmax and volume Vmax of the system:  
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N

i
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(6) 

 

The Wi's and Vi’s are constant values defining the weight and volume of each component. The 

term given by exp(mj/4) is usually associated with the cost of the hardware required for the 

Availability Optimization for Series/Parallel Systems using Evolutionary Algorithm

6 CIRRELT-2013-78



 

 

 

connections between the various components of the redundant system. The number of necessary 

connections grows exponentially with the number of components to be connected (Tillman, 

1977).  

 

3. Evolutionary Operators for Problem 1  

The Problem 1 implies the minimization of the total cost of a system under a minimal availability 

constraint. It is clear from Eq. 2 that the payoff function is monotonically growing with respect to 

the Ai's. Consequently, the minimal cost value satisfying the constraint should correspond to a 

point of minimal availability A
*
. This means that the search can be restricted to the region defined 

by the expression of the objective function of the system (3) without loss on the quality of the 

final solution. An evolutionary optimization algorithm that performs this task is developed in the 

following way. Let the global availabilities Ai of the i
th
 stage be defined as:  

  im

ii AA  11  (7) 

 

The proposed optimization algorithms works on the redundancies and the global availabilities Ai 

instead of the component availabilities Ai. The minimal availability constraint is transformed into:  





N

i

i AA
1

*
 

 

(8) 

 

The problem is now to devise a search algorithm restricted to the subspace defined by 

 


N

i i AA
1

*
 

 

 

Using these variables, fitness is evaluated by the inverse transform, that is, 

  im

ii AA
1

11    

 

There are no constraints on the numbers of components mi's other than lower and possibly upper 

bounds.  

3.1 Initialization Operator  

An initialization operator for the redundancy /availability allocation problem has to generate a 

string of N integers and N real values, arranged in some predetermined way. The string should 

represent a solution lying on the edge of the feasible domain. The proposed operator makes use of 

the following relation:  

  ir

i AA *  and 



N

i

i AA
1

*  



N

i

ir
1

1 
 

(9) 
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The operation consists of generating a set of N uniformly distributed random numbers ri, with 

their sum being equal to 1. Moreover, since no global availability is allowed to be greater than 1, 

all of the ri's should be positive, and consequently an upper limit of 1 is to be imposed on each 

random ri. The numbers ri are calculated as follow:  

 Draw N independent random numbers uniformly distributed between 0 and 1.  

 Classify these numbers in increasing order and label them ki, with i = 1... N.  

 Take r1 = k1,  

 ri = ki – ki-1 for 1  i  N 

 and rN = 1– kN-1.  

For the redundancies, random values between 1 and the upper bound can be drawn independently 

for each of the stages.  

3.2 Crossover Operator  

In the same way as for the initialization operator, the crossover should be handled differently for 

the redundancies and the global availabilities. The formers can be crossed-over using a simple 

uniform Boolean operator: starting from two parents having on their i
th
 stage the redundancies 

0

im and 
1

im , the value mi inherited by the offspring is:  

                                        1,0  ,...1 1 10   Nimmm iii  (10) 

 

The Boolean random variable X is drawn independently for each i. For the global availabilities, 

the constraint is clearly respected using the following crossover operator:  

      10   ,...1   
110 





NiAAA iii  
(11) 

The uniform random variable  is drawn only once for each offspring. Crossover under the form 

given by Eq. 11 has been first proposed by Michalewicz and Schoenauer (1996) for a different 

problem, subject to a constraint of the same shape.  

 

3.3 Mutation Operator  

 

The mutation operator designed for the problem at hand is intended to be applied stochastically to 

a fraction of the offsprings. Whenever a mutation is applied to one particular individual, it is 

applied either to redundancies or to availabilities with a probability of 50% in each case. Mutation 

of a redundancy is clone by giving a discrete random value to an arbitrarily chosen mi. For the 

availabilities, the following approach is proposed: select randomly two variables, Ak and Al, give a 
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random value to the first one and modify the second one in order to balance the constraint. The 

value of the second variable is given by:  

k

lk
l

A

AA
A


  

 

(12) 

 

4. Evolutionary Operators for Problem 2  

Boundary operators are highly desirable whenever the best solution to an optimization problem is 

expected to lie on the edge of the feasible domain. These operators can not however be easily 

developed for any problem, at least with reasonable efforts. In these cases, another potentially 

interesting approach is the use of a repair operator which maps any non-feasible solution into a 

feasible one. The proposed approach for the problem 2 is a compromise between boundary search 

algorithms and repair-based algorithms: a repair operator is utilized for mapping a non-feasible 

solution to one that lies as close as possible to the interior boundary of the feasible do- main. For 

this problem, although a feasible solution can not be easily built from scratch, any non-feasible 

one can be mapped to the boundary of feasibility with little computational efforts. In the same 

fashion, mutation and crossover operators restricted to the edge of feasibility cannot be easily 

devised. The proposed alternative consists of using constraint-independent operators together a 

problem-specific repair operator. Information on the constraints is included only into the repair 

operator while the other operators act as blind search operators with respect to the constraints. 

These operators are still problem-specific in some way, since the information structure of the 

genetic code is inspired from the physics of the problem.  

4.1 Initialization Operator  

In the same way as for the problem 1, the initialization operator has to generate a string of N 

integers and N real values. The values should only respect upper and lower bounds on 

redundancies (between 1 and some maximal value) and availabilities (between 0 and 1), since the 

other constraints are dealt with using a repair algorithm.  

 

4.2 Crossover Operator  

The crossover operator also remains simple as long as there are no constraints to be implicitly 

handled. Uniform crossover of discrete variables is simply clone by giving to the offspring the 

value from one of its two parents, with a probability of one half for each one. The availability Ai 

of the offspring is obtained from the availabilities 
0

iA  and 
1

iA  from the two parents by the 

following relation:  

Availability Optimization for Series/Parallel Systems using Evolutionary Algorithm

CIRRELT-2013-78 9
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                                           with 10  i  

 

(13) 

where i is a uniformly distributed random variable between 0 and 1 that is drawn independently 

for each of the N stages.  

 

4.3 Mutation Operator  

The mutation operator for this problem is also applied stochastically to a fraction of the 

individuals. When- ever it is applied, the mutation takes place either on the availabilities or on the 

redundancies, with equal probabilities. Mutation of a redundancy is clone by giving a discrete 

random value to one of the mi's. Mutation of the availabilities is performed by the addition of a 

random noise vector to the N availabilities of a solution. A truncated normal distribution is 

employed for that purpose. An implicit satisfaction of the upper and lower bounds on the 

availabilities cannot be ensured with a normally distributed mutation, since the normal 

distribution is theoretically unbounded. For this reason, a slight modification is clone by 

truncating the distribution to a point where the density of probability is almost zero. A fraction of 

99.73% of the probability density of a normal distribution N(0, 2
) is comprised between -3 and 

3. The distribution can therefore be truncated between these values with no significant bias. The 

proposed mutation model is the following:  

 

 








*,

    1,

AAtA

AtA
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ii

i  
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  - else 

 

(14) 

With 

 
   




















                                                               

                  31,0 if  11,0
3,

max

y

N
t

t
N

y

yt

b

 
 

(15) 

The time t represents the index of the current generation while tmax is the maximum number of 

generations, b is a control parameter, and N(0, 1) is a normally distributed random variable of 

zero mean and unit variance.  

4.4 Repair operator  

So far, problem-specific operators have been devised but no cares have been taken about the 

feasibility of the solutions, this aspect being handled by the repair operator. It is observed from 

Eq. 2 and 4 that the cost constraint makes use of the availabilities and the redundancies, while the 
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weight and volume constraints depend only on the redundancies. It is by the way possible to deal 

first with the weight and volume constraints only, working with the redundancies, and then to fine 

tune the availabilities in such a manner that the solution lies precisely on the edge of the cost 

constraint. A simple way to correct infeasibilities with respect to the integer-valued constraints 

(weight and volume) is to choose randomly a stage i, decrease its redundancy by one, and repeat 

until the solution becomes feasible with respect to weight and volume. Care should be taken of 

not decreasing the number of components on a given stage when there is nothing but one 

component.  

Once the mi's have been corrected in such a way that the weight and volume are feasible, the total 

cost C is corrected if it still lies above the maximal value of Cmax. This correction is clone by a 

manipulation on the Ai's alone. Since the total cost is the sum of the costs associated with each 

stage, a solution to this problem is to reduce each cost Ci by a factor Cmax/C. The new 

availabilities iA are calculated from the old (illegal) ones Ai using the following relation: 

                                                     
  















iCC

ii AA
/1

max

1

 

(16) 

    

5. Some preliminary results  

The specialized evolutionary algorithms proposed in this paper have been tested on two 

redundancy/availability allocation problems. The first one is a simple 5 stages problem proposed 

by Aït-Kadi and Chelbi (1998). The parameters defining this problem are given on Table I. The 

optimization was performed assuming an operating duration of 1000 units of time, a minimal 

availability of 0.9, and maximal cost, weight, and volume of 350, 400 and 220 units respectively.  

 

Table I : Definition of the 5-stages test problem 

i i i Wi Vi 

1 2.33.10
–5

 1.5 7 0.14 

2 1.45.10
–5

 1.5 8 0.25 

3 5.41.10
–5

 1.5 8 0.38 

4 8.05.10
–5

 1.5 6 0.67 

5 1.95.10
–5

 1.5 9 0.22 

 

The second problem to be carried out is a 25-stages system that consists of a serial combination of 

5 of the systems defined by the first problem. The same parameters given on Table I are used. To 

keep all things equals, the minimal availability is corrected to 0.95, and the other constraints are 
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scaled up in a similar way. Solutions for the two test problems have been found using a basic 

evolutionary optimization algorithm with the parameters given on Table II.  

Table II: Optimization parameters for the basic evolutionary algorithm. 

 

Parameter Value 

 5-stages 25-stages 

Population size 40 100 

Number of generations 100 1000 

Selection (tournament size) 3 4 

Survivors per generation 4 10 

 

5.1 Mutation or Crossover actions 

The relative contributions of the mutation and crossover operators can be isolated by comparing 

the solutions obtained with various mutation rates, all other things being kept equals. Experiments 

have been clone with one mutation every two individuals, one every ten and no mutation at all. 

Results are presented on Figure 3 for the 5 stages version of the problem 1, and on Figure 4 for 

the 25 stages version. The fitness value for these two cases is the total cost Z given by Eq. 1. In 

both cases, no significant difference is observed either on the convergence rate or on the quality 

of the final solution. This suggests that all the improvements in solutions quality are due solely to 

the crossover operator together with natural selection. Similar results have been obtained for the 

problem 2 on Figure 5 for the 5-stages problem and on Figure 6 for the 25 stages problem. This 

time, the fitness is equal to the availability given by Eq. 3.  

 

Figure 3: Minimization of the total cost for the 5-stages problem. 
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Figure 4: Minimization of the total cost for the 25-stages problem. 

 

 
Figure 5: Maximization of the availability for the 5-stages problem. 

 

 
Figure 6: Maximization of the availability for the 25-stages problem. 

 

 

5.2  Comparison with Aggarwal's Algorithm  

 

The results obtained with one of the problem-specific evolutionary algorithm have been 

compared with those found by Aït-Kadi and Chelbi (1998) using the Aggarwal's algorithm 
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(Aggarwal, 1975)), for the maximal availability problem. Table III presents the best solution ever 

found in bath cases, that is, the maximal value of the total availability As for the 5-stages problem. 

Both solutions are feasible with respect to cost, weight, and volume constraints.  

 

Table III: Comparison of the best solutions found using the problem-specific evolutionary 

algorithm and the Aggarwal's algorithm, for the 5-stages problem.  

 

 

 Evolutionary Algorithm Aggarwal’s Algorithm 

i Ai mi Ai mi 

1 0.7974 4 0.77455 3 

2 0.8808 3 0.83419 3 

3 0.7712 4 87300 2 

4 0.7627 4 0.72007 3 

5 0.8134 4 0.84830 2 

As 0.98954 0.92291 

Cost 350 287 

Weight 377 189 

Volume 190 83 

 

The best solution found by the evolutionary algorithm has an availability of 0.98954, while the 

Aggarwal's algorithm has in the best case terminated with availability 0.92291. This large 

discrepancy is easily understood when the costs of the two solutions are compared. The 

evolutionary algorithm gave a solution that make use of the whole budget of 350 money units, 

while the Aggarwal's algorithm terminated with a cost of only 287 units. The repair operator 

employed by the evolutionary algorithm explicitly maps the infeasible solutions to the limit of the 

cost constraint, while the Aggarwal's algorithm terminate as soon as a constraint is satisfied, with 

no regard to the value of the other constraints. This point shows that the definition of optimality 

one gives for a problem is often questionable, since the amount of cost, weight and volume 

resources dedicated to the problem might better be utilized to their maximum extent.  

 

6. Conclusion  

This paper presented a problem-dependent approach for the evolutionary optimization of 

redundancy j availability allocation in parallel/series systems. Evolutionary algorithms can be 

considered as an assembly of building- blocks where some blocks are general and some others are 

problem-specific. The design of appropriate problem-specific blocks allows the search to be 

restricted to the boundary of the feasible domain. This approach has two important advantages 

over the use of general purpose algorithms. First, the computational cost of the optimization 
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problem can be significantly reduced since the search is a priori biased toward potentially 

interesting regions by some physical knowledge over the problem. Secondly, the quality of the 

final solutions obtained is guaranteed to be equivalent or better to those found with other 

methods, since only the boundary of feasible domain is searched. In the redundancy/availability 

allocation problem, as well as in many other constrained problems, it is easily observed that the 

best solutions necessarily lies at the edge of the feasible domain. This ensures an optimal 

utilization of the available resources for a given problem.  
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