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Abstract. We consider a stochastic vehicle routing problem where a discrete probability 

distribution characterizes the two-dimensional size (height and width), as well as the 

weight of a subset of items to be delivered to customers. Although some item sizes and 

weights are not known with certainty when the routes are planned, they become known 

when it is time to load the vehicles, just before their departure. If it happens that not all 

items can be loaded in a vehicle, the items of one or more customers are put aside which 

lead to a penalty (or recourse cost). The objective is to minimize the sum of the routing 

and recourse costs. A fleet of K identical vehicles are available from the depot and each of 

them has a two-dimensional loading area and a maximal loading capacity. The routes that 

contains only deterministic customers have to be weight feasible and a feasible setup of 

the items into the loading area must exist. The expected weight and expected occupied 

area of the customers of the remaining routes have to be less or equal than the capacity 

and the loading area of the vehicles. It is also required that at least one scenario has a 

feasible setup of the items. The problem is modeled as a two-stage stochastic program 

and solved with the integer L-shaped method. Some new inequalities and lower bounds 

are proposed. Computational results are reported on test instances specifically generated 

for this problem, as well as classical instances for the deterministic case. 
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1 Introduction

In the last decades, several variants of the classical Vehicle Routing Problem (VRP)
have been introduced. In its simplest form, the VRP is aimed at at building routes,
starting and ending at a central depot, to serve a set of customers with a fleet of
identical vehicles. These routes must then satisfy various side constraints. Typically,
each customer has a known demand (quantity of goods or number of items to be
delivered or picked-up) and the total demand on a route should not exceed vehicle
capacity.

Recently, mixed vehicle routing and loading problems have been studied [25]. In
these problems, the packing of the items inside the loading area of the vehicle must be
taken into account. In this work, a Two-Dimensional Orthogonal Packing Problem
(2OPP) is considered where rectangular items must be delivered to customers. The
items cannot be rotated and must fit in the rectangular loading area of each vehicle
without overlap while satisfying unloading constraints. That is, at each delivery
location, it should be possible to unload the items of the current customer by pulling
them out of the vehicle without moving any item of other customers. Figure 1 shows
an example for a route starting from the depot 0 and visiting the customers 1, 2,
3, 4 and 5, in this order. The figure shows two packings for this route: the first
one satisfies the unloading constraints while the second one does not (note that the
items are taken out from the top, which corresponds to the rear of the vehicle). In
the second case, items of customers 2 and 5 must be moved to allow the items of
customer 1 to be unloaded.
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Figure 1: Packing examples

The 2OPP is often found as a subproblem of the Two-Dimensional Strip Packing
Problem (2SPP) and the Two-Dimensional Bin Packing Problem (2BPP). Recent
exact methods for the 2OPP can be found in [10, 14, 19, 34], while exact methods for
the 2SPP are found in [2, 4, 9, 16, 33]. A recent work on the 2SPP with unloading
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constraints is reported in [37] where a GRASP heuristic, previously proposed in [1],
and two approximation algorithms are used to solve the problem. The authors in
[15] also report an exact method for the 2OPP with unloading constraints based on
a Benders decomposition of the problem, which can solve instances with up to 52
items.

Mixed vehicle routing and loading problems are often addressed by local search
heuristics which improve the current solution by applying different classes of modifi-
cations to the current routes (see, for example, [17, 20, 21, 31, 41]). Any modification
to a vehicle route must lead to a feasible packing. To this end, simple packing heuris-
tics like the Bottom-Left, Bottom-Left Fill and Touching Perimeter heuristics [41]
are typically used. Only a few exact algorithms are reported in the literature for
vehicle routing and loading problems due to the difficulty of the packing. In [26],
a branch-and-cut algorithm is proposed where the classical Bottom-Left heuristic if
first used to solve the packing and, if it fails, an exact branch-and-bound algorithm,
based on the work in [33], is applied. The reader is referred to the surveys in [8, 25]
for the three-dimensional case.

A collaboration with an industrial partner unveiled an important issue that arises
in some practical applications. Quite often, the size of a few items might not be
available when the delivery routes are planned, although the item type provides an
indication about possible sizes and their corresponding probabilities. It means that
a discrete probability distribution can be associated with these items, leading to
a new class of stochastic VRPs, namely the Vehicle Routing with Stochastic Two-
Dimensional Items (S2L-CVRP). When the sizes become known prior to vehicle
loading and departure, it is possible that not all items assigned to a given vehicle
in the planned solution will fit in the vehicle. In this case, the items of one or more
customers are left on the dock (for delivery on some other day), leading to a penalty
or recourse cost based on the number of unserved customers. The solution approach
proposed here relies on the concept of a priori optimization [7]. That is, planned
routes are built in a first-stage solution, without knowing the exact size of some
items. Then, in a second-stage, the sizes become known and the recourse policy is
applied when a failure occurs. The objective is to minimize the sum of the routing
and (expected) recourse costs.

Different types of stochastic VRPs are reported in the literature, depending on
the nature of the stochastic components. Of particular interest is the VRP with
stochastic demands, where the (scalar) demand at some customers is not known
with certainty [40]. These problems are typically solved with the integer L-shaped
method [28], which is an extension of the method reported in [38] for continuous
stochastic programs. The integer L-shaped method is basically a branch-and-cut
algorithm where the expectation component of the objective is linearly bounded
with optimality cuts. The method was later improved in [24, 27, 29] by introducing
a weaker form of optimality cuts called Lower Bounding Functionals (LBFs) which
are valid for a wider range of integer and fractional solutions. For example, VRPs
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with stochastic demands with up to 80 vertices (and 2 vehicles) have been solved
in [27] using LBFs. However, the method becomes less effective when the number
of vehicles increases because LBFs are derived from aggregation of partial routes.
In [12], the authors partially address this problem by proposing a branch-and-price
algorithm, but the latter is tailored for customer demands following a Poisson dis-
tribution and the size of the search space increases very quickly with the magnitude
of the demand values. In our work, we go one step further along the LBF research
avenue by proposing disaggregated LBFs. The idea comes from the disaggregated
optimality cuts proposed in [36] where the recourse cost is distributed over a number
of variables, not just a single variable.

The remainder of the paper is organized as follows. First, a formal definition and
a mathematical model for our problem is presented in Section 2. Then, the integer
L-shaped method is described in Section 3. Section 4 introduces our disaggregated
LBFs, called L-cuts, which are based on several lower bounds on the recourse cost.
These bounds are obtained by considering the set of customers in each route of the
current solution. Another type of set-based inequalities is then presented in Section
5. The optimality cuts are introduced in Section 6. The approach for solving the
packing problems that arise during the execution of our algorithm is described in
Section 7. Computational results are finally reported in Section 8.

2 Model

The Vehicle Routing Problem with Stochastic Two-Dimensional Items or S2L-CVRP
is defined as follows. We are given a complete undirected graph G = (V,E) where
V = {0, 1, 2, ..., n} is the set of vertices of cardinality n+ 1 and E = {(j, k) : j, k ∈
V : j < k} is the set of edges with their associated cost cjk, (j, k) ∈ E. Also, vertex
0 is the depot while C = V \{0} is the set of customers. We assume that K identical
vehicles are available to execute delivery routes that start and end at the depot.
The loading area of each vehicle has height H, width W and a maximum weight
capacity Q. In this work, unloading constraints are also considered: at every service
location, the items of the current customer can be unloaded by pulling them out of
the vehicle without moving any item from other customers.

Each customer j ∈ C has a demand for mj two-dimensional items. Let I be the
set of all items with cardinality

∑
j∈C mj = m. For each item i ∈ I, there are di

possible sizes in height, width and weight with an associated probability distribution
(di = 1 for a deterministic item). That is,

∑di
r=1 p

r
i = 1 for every item i ∈ I, where

pri is the probability that item i has width wri , height hri and weight qri , w
r
i ≤ W ,

hri ≤ H, qri ≤ Q. Then,

āj =

mj∑
i=1

di∑
r=1

prih
r
iw

r
i
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is the average area covered by the items of customer j and

q̄j =

mj∑
i=1

di∑
r=1

pri q
r
i

is their average weight. In a feasible solution, the items delivered on each route
must fit within the loading area of the vehicle, their total weight should not exceed
capacity Q and the unloading constraints should be satisfied. When stochastic items
are delivered on a given route, the average or expected area covered by these items
plus the actual area covered by the deterministic items must be less than or equal
to the loading area of the vehicle. Similarly, the expected weight of the stochastic
items plus the actual weight of the deterministic items should be less than or equal
to the vehicle capacity.

Although the actual sizes and weights of the stochastic items are unknown when
the delivery routes are planned, they become known just prior to the loading and
departure of the vehicles. If it happens that the items to be transported by a
vehicle do not fit into the loading area, a recourse action must be considered. In our
application, the items of one or more customers are left on the dock. In this case,
these customers will be delivered later, which negatively impacts service quality.
Accordingly, the recourse cost is based on the number of unserved customers.

The S2L-CVRP can be formulated as a stochastic VRP with additional con-
straints. In our case, we use the classical two-index formulation where xjk is equal
to 1 if edge (j, k) ∈ E is used (with j < k), 0 otherwise . We also denote F (x)
the expected cost of the recourse of solution x = (xjk). The formulation of the
S2L-CVRP is then :

min
∑
j<k

cjkxjk + F (x) (1)

∑
j∈C

x0j = 2K (2)

∑
h<j

xhj +
∑
k>j

xjk = 2 j ∈ C (3)

∑
j,k∈S

xjk ≤ |S| −
⌈

max

{∑
j∈S āj

HW
,

∑
j∈S q̄j

Q

}⌉
S ⊂ C, 2 ≤ |S| ≤ n (4)

∑
(j,k)∈R

xjk ≤ |R| − 1 R ∈ Rinf (5)

xjk ∈ {0, 1} 0 ≤ j < k ≤ n (6)

The objective (1) is to minimize the sum of the routing and expected recourse
costs. Constraints (2) force the fleet of K vehicles to be used. Constraints (3) state
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that exactly two edges must be used by a vehicle to visit a customer. Constraints (4)
are the subtour-breaking and rounded-capacity constraints. Then, constraints (5)
prohibit all routes that do not satisfy the loading requirements, including unloading
constraints, which is denoted by the set Rinf . This set contains infeasible routes
with only deterministic customers, as well as routes with stochastic customers for
which all possible realizations or scenarios are infeasible. In these constraints, route
R is defined by the set of edges covered by the corresponding vehicle. Finally, the
binary requirement on the decision variables is found in constraints (6). Note that
by forcing the xjk variables to be 0 or 1, back-and-forth routes to a single customer
are forbidden (as it is typically done, see [26, 29]).

The recourse cost F (x) is

F (x) =
∑
R∈Rx

F (R) (7)

where Rx is the set of routes in solution x and F (R) is the recourse cost of route
R. Note that F (R) = 0 when route R has only deterministic items. Let ΩR be the
set of all possible realizations or scenarios for route R and pωR the probability of
scenario ωR ∈ ΩR. Then F (R) is calculated as follows :

F (R) = cf ·
∑

ωR∈ΩR

pωRF (ωR) (8)

where cf is the cost associated with each unserved customer and F (ωR) is the number
of unserved customers under scenario ωR. Thus, F (R) is the expected recourse cost
of route R over all scenarios.

3 The Integer L-Shaped Method

The integer L-shaped method is used to solve our problem. This method can be
seen as a variant of the classical branch-and-cut algorithm for the deterministic
VRP. First, the rounded-capacity (4) and infeasible path (5) constraints are relaxed
and F (x) in the objective is replaced by a lower bound θ to obtain the following
initial model:
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min
∑
j<k

cjkxjk + θ (9)

∑
j∈C

x0j = 2K (10)

∑
h<j

xhj +
∑
k>j

xjk = 2 j ∈ C (11)

xjk ∈ {0, 1} 0 ≤ j < k ≤ n (12)

This problem is solved with CPLEX, the latter being in charge of computing so-
lutions to the linear relaxations and branching on fractional variables. The inequal-
ities are generated through methods that are called automatically by the CPLEX
solver.

A pseudo-code for our L-Shaped method is shown in Algorithm 1. At each node
of the branching tree, we first check for violated rounded capacity inequalities or
RCIs (4). Then, two alternatives must be considered depending if the solution is
fractional or not. If it is fractional, we look for violated L-cuts (15) and infeasible set
inequalities (37). If there are none, then we branch on fractional variables. For an
integer solution, the general idea is to go from the easiest to the hardest. First, the
focus is on the non-ordered set of customers S associated with each route to generate
L-cuts and infeasible set inequalities (37) which apply to a larger number of solutions
(i.e., all routes where the customers in set S are visited consecutively, whatever the
order of those visits). When no new inequalities of these types can be generated, we
validate every route for infeasible path inequalities (5) and D-optimality cuts (40).
These inequalities have a more restricted scope, as they apply to a single route, and
are generated through more computationally expensive procedures. At the end, the
best feasible integer solution found by the L-Shaped method is returned.

The rounded capacity inequalities (4) are classical inequalities that are generated
using the package CVRPSEP from [32] and they will not be discussed anymore. The
other inequalities and lower bounds mentioned in Algorithm 1 will be described in
the following.

4 Lower Bounding Functionals

The L-cuts described in this section are in the class of Lower Bounding Functionals
(LBFs). Although these cuts are used to bound θ in the objective, they are not
optimality cuts because they come from a lower bound on the recourse (based on
the number of unserved customers). They apply to non-ordered sets of customers
visited consecutively in a route of the solution xν associated with the current node
in the branching tree. Using a lower bound weakens the inequality but, on the other
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Algorithm 1 L-Shaped Method

Require: a problem N
1: Solve the linear relaxation of problem N to obtain solution xν

2: if violated RCIs (4) are found then add them and go to Step 1
3: if xν is fractional then
4: if violated L-cuts (15) and infeasible set inequalities (37) are found then add

them and go to Step 1
5: else branch on fractional variables and call the L-Shaped Method recursively

with each subproblem
6: else
7: for each route R in xν do
8: S ← set of customers in route R
9: if S contains only customers with deterministic items then

10: Calculate a lower bound LB(S) on the number of required vehicles
11: if LB(S) > 1 then add an infeasible set inequality (37)
12: else
13: Calculate a lower bound on the recourse cost of route R based on set S

for each possible scenario
14: if the lower bound on the recourse is positive over all scenarios then

add infeasible set inequality (37) with LB(S) = 2
15: else if the lower bound on the recourse is positive for at least one scenario

then add L-cut (15)
16: end if
17: end for
18: if inequalities were added then go to Step 1
19: for each route R in xν do
20: if route R contains only customers with deterministic items then
21: if the packing problem is infeasible then add an infeasible path inequal-

ity (5)
22: else
23: Calculate the exact recourse cost of route R for each scenario by solving

the corresponding packing problem
24: if the recourse is positive over all scenarios then add an infeasible path

inequality (5)
25: else if the recourse is positive for least one scenario add a D-optimality

cut
26: end if
27: end for
28: if inequalities were added then go to Step 1
29: else a new feasible integer solution has been found
30: end if
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hand, its scope is larger than a single route, as it is valid for any route where the
customers in a given set are visited consecutively, whatever their order.

4.1 L-cuts

Formally, let us consider the set of customers S in a route of solution xν with at
least one stochastic item. For this set, we also assume that

∑
j∈S āj ≤ HW (i.e., an

inequality of type (4) has been generated). Let us also denote L(ωS) a lower bound
on the number of unserved customers for a given realization or scenario ωS ∈ ΩS

with L(S) = cf
∑

ωS∈ΩS
pωSL(ωS) (see Section 4.2 for a description of this lower

bound).

Then, by arbitrarily selecting the customer jS of minimum index among cus-
tomers with stochastic items in set S, we have:

θjS ≥ L(S) ·

∑
j∈S

x0j + x(S)− |S|

 (13)

where x(S) =
∑

j,k∈S xjk sums the visited edges among all pairs of customers in set
S. Given that S corresponds to the set of customers in a route of solution xν , two
customers in set S are directly connected to the depot while x(S) is equal to |S|−1.
Accordingly, the right hand side of (13) reduces to L(S) and defines a bound on θjS .

This inequality can be extended by considering that the customers in set S can
be visited (consecutively) before or after any other node, not only the depot. To this
end, we propose the following approach. First, M variables θl, l = 1, ...,M , where
M is some predefined number, are created. Our goal is to assign a set of variables
θl, denoted ΘS , with each subset of customers S for which L(S) > 0. Each time
such a subset is found using the procedure described in Section 4.3, it is processed
by Algorithm 2 and then added to an (initially empty) set S̄. As described in the
pseudo-code, the subsets S′ already in S̄ are processed one by one and each time
(S ∪ S′) is feasible for at least one scenario, Θ(S) is updated by setting it to the
union of Θ(S) and Θ(S′). If Θ(S) remains empty at the end of this loop, Θ(S) is
assigned to some unused θl variable. If all variables are used, Θ(S) is assigned to
Θ(S∗), where S∗ = argmaxS′∈S̄{|S ∩ S′|}.

We then have :

θ ≥
M∑
l=1

θl (14)
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Algorithm 2 Assignment of θl variables

Require: S : subset of customers with L(S) > 0
Require: S̄ : set of previously generated subsets of customers with L(S) > 0
Require: Θ̄ : set of unused θl variables
1: for S′ ∈ S̄ do
2: if S ∪ S′ is feasible then
3: Θ(S)← Θ(S) ∪Θ(S′)
4: end if
5: end for
6: if Θ(S) = ∅ then
7: if Θ̄ 6= ∅ then
8: Let θl′ be an unused variable in Θ̄
9: Θ(S)← {θl′}

10: Θ̄← Θ̄\{θl′}
11: else
12: S∗ = argmaxS′∈S̄{|S ∩ S′|}
13: Θ(S)← Θ(S∗)
14: end if
15: end if

∑
θl∈Θ(S)

θl ≥ L(S) · (x(S)− |S|+ 2) S ∈ S̄ (15)

Proposition. The inequalities (14) and (15) provide a lower bound θ on the re-
course cost.

Proof. We first need to define the recourse cost for any fractional or integer solution.
Let xν be a solution of the linear relaxation of model (9) - (12) with possibly some
additional, previously generated, inequalities. We define Sν = {S ⊆ C | xν(S) >
|S| − 2, L(S) > 0 and feasible} the set of all subsets of customers S with L(S) > 0
such that a path defined over S is feasible for at least one scenario.

Let also X be a subset of Sν such that :

(a) For each S, S′ ∈ X , S 6= S′, S ∪ S′ is not feasible under any scenario.

It means that the subsets in X are maximal when considered pairwise. Now, let
Pν be the set of all subsets X of Sν for which condition (a) is satisfied. Then, the
recourse cost L(xν) can be defined as :

L(xν) = max
X∈Pν

{∑
S∈X

L(S) · (xν(S)− |S|+ 2)

}
(16)
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Figure 2: A fractional solution

Consider the example in Figure 2 where it is assumed that {3, 4, 5}, {4, 5, 6} and
{3, 4, 5, 6} are feasible and L({3, 4, 5}), L({4, 5, 6}), L({3, 4, 5, 6}) are all positive
(i.e., they all cover at least one customer with stochastic items). Then, it is not
possible for {3, 4, 5} and {4, 5, 6} to be together in some set X because these two sets
can be combined to form the larger feasible set {3, 4, 5, 6}. Accordingly, L({3, 4, 5})
and L({4, 5, 6}) will not be summed up in (16), which is fine. Otherwise, L({4, 5})
would be added twice.

For an integer solution, every set of customers S in X corresponds to a full route
in xν and L(xν) sums up the L(S) values of the set of customers associated with
each route. In the case of a fractional solution, L(xν) might not be equal to the
exact recourse cost. Consider the sets S1 = {3, 4, 5, 6}, S2 = {1, 3, 4, 5, 6}, S3 =
{2, 3, 4, 5, 6}, S4 = {3, 4, 5, 6, 7} and S5 = {3, 4, 5, 6, 8} in Figure 2 with L(Sq) > 0,
q = 1, ..., 5. All those sets are such that xν(S) > |S| − 2. Then, the set of subsets
X maximizing (16) is X = {S2, S3, S4, S5} for which L(xν) = 1

2 [L(S2) + L(S3) +
L(S4)+L(S5)] ≥ 1

2 [L(S1)+L(S1)+L(S1)+L(S1)] = 2L(S1), because S1 is included
in S2, S3, S4 and S5. Thus, the contribution of S1 is counted twice.

Now, let us consider S̄ the set of previously generated subsets of customers S
with L(S) > 0 in Algorithm 2. Let X̄ be a subset of S̄ such that :

(b) For each S′ 6= S′′ ∈ X̄ , θ(S′) ∩ θ(S′′) = ∅.

Let P̄ be the set of all X̄ which satisfy condition (b). Then, from inequality (15)
and condition (b), we have :

∑
θl∈

⋃
S∈X̄ Θ(S)

θl ≥
∑
S∈X̄

L(S) · (x(S)− |S|+ 2) X̄ ∈ P̄ (17)

where
⋃
S∈X̄ θ(S) is the union of the sets of variables Θ(S) over all S in X̄ . We also

have a fortiori:

M∑
l=1

θl ≥
∑
S∈X̄

L(S) · (x(S)− |S|+ 2) X̄ ∈ P̄ (18)
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and :

M∑
l=1

θl ≥ max
X̄∈P̄

∑
S∈X̄

L(S) · (x(S)− |S|+ 2)

 (19)

Variable θ, as defined in (14) and (15), is a lower bound on the recourse cost if
the following inequality is satisfied for any solution xν :

L(xν) ≥
M∑
l=1

θl (20)

Sets S ∈ S̄ with xν(S) ≤ |S| − 2 can be ignored when considering P̄ because
L(S) · (xν(S) − |S| + 2) is negative for these sets. Let P̄ν = {X̄ ∈ P̄| xν(S) >
|S| − 2 ∀S ∈ X̄ ). Then, we have :

M∑
l=1

θl ≥ max
X̄∈P̄ν

∑
S∈X̄

L(S) · (xν(S)− |S|+ 2)

 (21)

Using inequalities (20) and (21) as well as the definition of L(xν) in (16), we
obtain :

max
X∈Pν

{∑
S∈X

L(S) · (xν(S)− |S|+ 2)

}
≥ max
X̄∈P̄ν

∑
S∈X̄

L(S) · (xν(S)− |S|+ 2)


(22)

For inequality (22) to be true for any solution xν , we must show that P̄ν ⊆
Pν . That is, if X̄ ∈ P̄ν then X̄ ∈ Pν . But we know from Algorithm 2 that
Θ(S′)∩Θ(S′′) = ∅ for S′, S′′ ∈ X̄ , S′ 6= S′′ implies that S′∪S′′ is not feasible. Thus,
the sets in X̄ satisfy condition (a). Given that these sets also satisfy xν(S) > |S|−2,
X̄ ∈ Pν .

The benefits of this extension come from the fact that the subsets of customers
S do not need to be connected to the depot and the recourse cost can be bounded
as long as there is a path going through S. On the other hand, two sets S′ and
S′′ with only a few customers (or even none) in common might be associated with
the same θl variables, which induces a weaker bound on the recourse, see line 12
in Algorithm 2. But, initial experiments on difficult instances have shown that the
subsets of customers S are often associated with a single variable. We will refer to
inequalities (15) as L-cuts in the following.
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4.2 Lower bounds

To obtain a lower bound on the recourse L(S) for a set of customers S in a route of
solution xν , we need to calculate a lower bound L(ωS) for each scenario ωS ∈ ΩS .
A tight lower bound can be obtained by solving a special knapsack problem with
two-dimensional items where the knapsack stands for the loading area of the vehicle
and where one unit of gain is achieved when all items of a given customer are in the
loading area (note that the exact position of each item in the loading area does not
need to be considered because S is not ordered). Given that solving this knapsack
problem is computationally expensive, we rather consider three different relaxations
and one feasibility test, leading to four lower bounds. These lower bounds are
calculated in the order L1(ωS), L2(ωS), L3(ωS) and L4(ωS). As soon as one of these
bounds is found to be strictly positive, the calculations stop and L(ωS) is assigned
to this positive value.

Bound L1

Let hi and wi be the height and width of item i of customer j under scenario
ωS ∈ ΩS with aj =

∑
i=1,...,mj

hiwi. Also, let zj be a binary variable which is equal
to 1 when all items of customer j under scenario ωS are in the loading area. Then
L1(ωS) can be formulated as follow :

L1(ωS) = |S| −max

∑
j∈S

zj :
∑
j∈S

ajzj ≤ HW, zj ∈ {0, 1}, j ∈ S

 (23)

This bound can be easily obtained. We just need to sort the set of customers in
non decreasing order of aj and add them iteratively until the loading area HW is
exceeded.

Bound L2

The next lower bound is based on the solution of dual feasible functions [13].
More precisely, we consider LBMdff in [9] which returns a lower bound on the required
height of the loading area to accommodate the items of all customers in set S. If
this value is larger than the height H of the loading area, then at least one customer
cannot be served.

L2(ωS) =

{
1 if LBMdff (ωS) > H

0 otherwise
(24)

Bound L3

The lower bound L3(ωS) is obtained by considering the Gilmore-Gomory formu-
lation of the Cutting Stock Problem (CSP). Here, a pattern is defined through a
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subset of items I ′ taken from the set of items delivered to the customers in set S.
A pattern is said to be H-feasible if

∑
i∈I′ hi ≤ H and W -feasible if

∑
i∈I′ wi ≤W .

Let PH and PW be the sets of all such H-feasible and W -feasible patterns. We
also have two different types of variables: zj which is equal to 1 when all items of
customer j are in the solution, 0 otherwise, and yp which is the number of times
pattern p is selected. Finally, we have aip = 1 if item i is in pattern p, 0 otherwise.
Then, L3(ωS) is defined as follow:

L3(ωS) = |S| −max
∑
j∈S

zj (25)

∑
p∈PW

aipyp = hizj j ∈ S, i = 1 to mj (26)

∑
p∈PH

aipyp = wizj j ∈ S, i = 1 to mj (27)

∑
p∈PW

yp ≤ H (28)

∑
p∈PH

yp ≤W (29)

∑
j∈S

qjzj ≤ Q (30)

yp ≥ 0 and integer p ∈ PH ∪ PW (31)

zj ∈ {0, 1} j ∈ S (32)

Constraints (26) and (27) guarantee that hi W -feasible and wi H-feasible pat-
terns are selected if item i is in the solution. Constraints (28), (29) and (30) relate
to the size of the loading area and the maximum weight.

Solving the mathematical programming model (25) - (32) to obtain L3 is com-
putationally expensive and we rather solve, using column generation, a continuous
relaxation where the yp variables are continuous and 0 ≤ zj ≤ 1 .

Bound L4

The last lower bound L4(ωS) is based on the exact solution of the One-Dimensional
Contiguous Bin Packing Problem (1CBP), a tight relaxation of the 2OPP, using the
branch-and-bound algorithm in [16]. If the problem is feasible then all customers
fit within the loading area, otherwise at least one customer must be removed.

L4(ωS) =

{
1 if 1CBP under scenario ωS is infeasible

0 otherwise
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4.3 Separation procedure

This section describes the separation procedure aimed at identifying violated L-
cuts when the current solution xν is fractional (see line 4 in Algorithm 1). The
pseudo-code of this procedure is found in Algorithm 3 where:

amax
j =

mj∑
i=1

max
r=1,...,di

hriw
r
i

x′(S′, S′′) =
∑
j∈S′

∑
k∈S′′

xνjk

.

Algorithm 3 Generation of L-cuts

Require: Cs : set of customers with stochastic items
1: for j ∈ Cs do
2: S ← {j}
3: repeat
4: if

∑
k∈S a

max
k > HW then

5: for ωS ∈ ΩS do
6: Calculate L(ωS)
7: end for
8: if at least one feasible scenario ωS then
9: Generate L-cut and go to Step 1.

10: end if
11: end if
12: j∗ ← argmink∈C\S{x′(S ∪ {k}, V \(S ∪ {k}))}
13: S ← S ∪ {j∗}
14: until

∑
k∈S āk > HW or x′(S, V \S) ≥ 4

15: end for

As indicated in this pseudo-code, each customer with stochastic items is consid-
ered in turn to initialize set S. At each step of the following iterative procedure,
the customer j∗ minimizing x′(S ∪ {k}, V \(S ∪ {k})) over k ∈ C\S is selected and
added to S. Then, if (1) the mean area covered by the items of all customers in S
is smaller than HW , (2) the maximum possible area covered by those same items
is greater than HW and (3) the summation over the variables xνjk with j ∈ S and
k ∈ V \S is less than 4, there is an opportunity to generate a new inequality. For
quick filtering purposes, the packing problem associated with each scenario is first
solved using the Bottom-Left heuristic. If it happens that all packing problems are
feasible, no L-cut can be generated. Otherwise, the lower bound L(S) is calculated
by summing L(ωS) over every scenario ωS ∈ ΩS . If L(S) > 0, a new L-cut (15) is
added to the model. Note that when x′(S, V \S) ≥ 4, then x(S) ≤ |S| − 2 and set S
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covers at least two different routes in solution xν . So, there is no hope of generating
a new L-cut. Note also that when there is no feasible scenario in line 8, then an
infeasible set inequality (37) can be generated with LB(S) = 2.

5 Other set-based inequalities

When a route contains only deterministic items, a lower bound LB(S) on the number
of vehicles required to serve the set of customers S in the route can be calculated
(lines 9-11 in Algorithm 1). If the lower bound indicates that more than one vehicle
is needed, then an infeasible set inequality can be generated. The bound LB(S) is
derived from the bounds LB1, LB2, LB3 and LB4, which are described below. As
soon as one of these bounds is greater than 1 (i.e., more than one vehicle is required
to serve set S), the calculations stop and LB(S) is set to this value. It should be
noted that LB2 and LB3 come from a previous work on the Strip Packing Problem
(SPP) where bounds are proposed on the required height of the loading area to
accommodate all customers in set S [2, 16]. Dividing these values by the height H
of the loading area provides a lower bound on the number of vehicles.

Bound LB1

The first lower bound LB1 is the classical continuous bound on the required
area, where aj =

∑mj
i=1 hiwi.

LB1(S) =

⌈∑
j∈S aj

HW

⌉
(33)

Bound LB2

The lower bound LB2 is obtained by taking the maximum value between LBMdff
in [9] and L3 in [2].

LB2(S) =

⌈
max{LBMdff (S), L3(S)}

H

⌉
(34)

Bound LB3

The lower bound LB4 comes from the work in [16].

LB3(S) =

⌈
L4(S)

H

⌉
(35)

Bound LB4

The lower bound LB4 is obtained by solving the One-Dimensional Contiguous
Bin Packing Problem (1CBP), a tight relaxation of the 2OPP, using the branch-
and-bound algorithm in [16]. If the problem is infeasible, at least two vehicles are
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required to serve the set of customers S.

LB4(S) =

{
2 if 1CBP is infeasible for set S

1 otherwise
(36)

Then, if LB(S) > 1, we can generate the following infeasible set inequality :

x(S) ≤ |S| − LB(S) (37)

6 Optimality cuts

The optimality cuts are considered at the end of Algorithm 1 (lines 23-25). At this
point, the current solution xν is integer and no new inequalities have been generated
in the previous steps. Assuming that xν is feasible, the following optimality cut can
be generated to bound θ in the objective:

θ ≥
∑

R∈Rxν
F (R) ·

 ∑
R∈Rxν

∑
(j,k)∈R

xjk − (n+K − 1)

 (38)

Given that the xjk variables involved in the double summation are all equal to 1
in solution xν , this double summation equals n+K for xν and the right hand side
of equation (38) reduces to its recourse cost. For any other solution, the inequality
is trivially satisfied.

It should be noted that this optimality cut is aggregated over all routes and
applies only to solution xν , which is definitely a weakness. We thus propose dis-
aggregated optimality cuts or D-optimality cuts which apply to individual routes.
These cuts have been proposed in [36], but have never been implemented in practice.
To generate them, the initial relaxed model (9) - (12) is extended by first defining a
θj variable for each customer j with stochastic items and by adding inequality (39),
where Cs stands for the set of customers with stochastic items.

During the execution of the L-shaped method, the customer with stochastic
items of minimum index jR is arbitrarily selected among each route with stochastic
items in solution xν and a cut of type (40) is generated for every one of those routes.

θ ≥
∑
j∈Cs

θj (39)

θjR ≥ F (R) ·

 ∑
(j,k)∈R

xjk − |R|+ 1

 (40)
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Like the aggregated cut (38), the right-hand side of (40) for route R reduces to
its recourse cost. For every other route R′ 6= R, the inequality is trivially satisfied.

To calculate the exact recourse F (R) of route R, we need to account for the
number of unserved customers under every possible scenario. To this end, we start
with the lower bound on the number of unserved customers L(ωS) in Section 4.2,
where S is the set of customers in route R and ωS ∈ ΩS is a possible realization or
scenario for set S (or, equivalently, ωR ∈ ΩR is a possible realization or scenario for
route R). For any ωS , |S| − L(ωS) is an upper bound on the number of customers
contained in the loading area. We thus enumerate all subsets of customers in route
R with at most |S| − L(ωS) customers and sort them from largest to smallest.
Ties are broken by giving priority to subsets which cover a larger area. Then, we
consider these subsets one by one and solve the corresponding packing problem
(see Section 7) until a feasible solution is found with the corresponding number of
unserved customers and recourse cost. The exact recourse cost F (R) of route R
is obtained at the end by summing these recourse costs over all possible scenarios,
weighted by the corresponding scenario probability, see equation (8). Although this
approach might appear computationally expensive, our tests have shown that only
a few packing problems need to be solved.

7 Packing problems

This section discusses the methodology for solving the packing problems that are
generated during the execution of Algorithm 1. For routes with only deterministic
items, solving the packing problem is aimed at determining if the route is feasible
or if a new infeasible path inequality (5) can be generated (lines 20-21). For routes
with stochastic items, a packing problem is solved for every possible scenario to
calculate the exact recourse cost of the route and generate a D-optimality cut (40)
if the route is feasible or a new infeasible path inequality (5) otherwise (lines 23-25).
The latter case occurs when the recourse cost is positive under every scenario (i.e.,
there is always at least one unserved customer).

Different approaches are used to quickly detect if a route is feasible or infeasible.
As described in the following, the 2OPP and then the full 2OPP with unloading
constraints (UL) are considered in this order. The 2OPP is considered first because
it is a simpler problem than the 2OPPUL and it is easily obtained by relaxing the
unloading constraints.

The various approaches listed below are called one by one until the infeasibility
of the 2OPP (and thus, the 2OPPUL as well) is proven:

1. A simple lower bound is obtained by summing the areas of all items in the
route. The latter is infeasible if this sum is larger than the loading area.

2. The more sophisticated lower bound LBMdff on the required height of the loading
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area is then used [9]. If this bound is larger than the height H of the loading
area, then the route is infeasible. It should be noted that only the first three
dual feasible functions are used here. The fourth one, which proved to be time
consuming and not really effective during preliminary tests, was disregarded.

3. Another lower bound on the required height of the loading area is obtained by
invoking the alternating constructive procedure reported in [2].

4. Two additional lower bounds on the height and width of the loading area
are based on the Gilmore-Gomory formulation of the Cutting Stock Problem.
They correspond to LH3 and LW3 in [15]. If these bounds are larger than H
and W , respectively, the route is infeasible.

5. The One-Dimensional Contiguous Bin Packing Problem (1CBP), a tight re-
laxation of the 2OPP, is finally solved with the branch-and-bound algorithm
in [16]. If there is no feasible solution to the 1CBP, then the route is infeasible.

If the 2OPP has not been proven to be infeasible, we then consider the real
problem, namely the 2OPPUL, and apply the following procedures in this order to
determine its feasibility or infeasibility:

1. The problem is first solved with an approximate method, namely a variant of
the heuristic reported in [30], originally developed for the Two-Dimensional
Strip Packing Problem (2SPP). This is a two-phase heuristic, where a solu-
tion is first constructed and then improved with simulated annealing. Here,
the original construction heuristic is replaced by the Bottom-Left and Max-
Touching Parameter heuristics [41] to address the unloading constraints. If a
feasible packing if found with this heuristic, the route is feasible.

2. The lower bound L2 for the 2OPPUL, reported in [15], is then used to estimate
the required area. If the value of L2 is larger than the loading area HW , then
the route is infeasible.

3. The branch-and-bound algorithm reported in [9], originally developed for the
2SPP, has been adapted to the 2OPPUL. It is applied with the following addi-
tional fathoming criterion : if an item does not fit at any position among a set
of precalculated positions, then the current partial solution cannot lead to any
feasible solution and the node can be fathomed. In practice, this algorithm
can often find feasible solutions very quickly. We allow the generation of a
maximum of 1,000,000 nodes in the branching tree before stopping the algo-
rithm. If the algorithm returns a feasible packing, then the route is feasible.
If the algorithm ends without finding any feasible packing, then the route is
infeasible. Otherwise, we have to move to the next step.

4. The exact algorithm reported in [15] for solving the 2OPPUL is finally applied.
It is based on a mathematical formulation of the 1CBP to which constraints
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are added to satisfy the unloading requirements. In practice, this algorithm
proved to be very good at detecting infeasibility in short computation times.

At the end, we know if the packing problem is feasible or infeasible and, if
feasible, we have the corresponding solution.

8 Computational Results

In this section, we first compare our method over a set of existing instances proposed
in [26] for the deterministic 2L-CVRP. Next, we explain how we generated new
instances for the S2L-CVRP, before analyzing the contribution of the previously
proposed inequalities on those instances. The final results are reported at the end.

Our L-Shaped Method was coded in C++ and called the CPLEX 12.5 solver.
The tests were performed on a 3.07 Ghz Intel Xeon X5675 running under the Linux
system. Note that the number of variables M used for generating L-cuts was set
to the number of customers with stochastic items. Preliminary tests showed that
larger values do not provide any benefit.

8.1 Comparison on the 2L-CVRP

By setting the number of possible values for the size and weight of each item to 1,
deterministic instances are obtained. In this case, our L-Shaped Method reduces to
a branch-and-cut algorithm which can be compared to the one reported by Iori et al.
[26]. The algorithm of Iori et al. was coded in C and was run on a 3GHz Pentium
IV with the CPLEX 9.0 solver. The packing problems were solved with a branch-
and-bound algorithm based on the work in [33] for the Strip Packing Problem. This
algorithm was run for 86,400 seconds on each instance, as compared to 7,200 seconds
for ours.

To test their algorithm, the authors in [26] created five different types of instances
from an original set of 36 instances, for a total of 180 instances. In all cases, the
loading area of each vehicle has height H = 40 and width W = 20. In the first type
of instances, every customer has a single item of width and height equal to 1. Since
the packing is not constraining, these instances reduce to a classical vehicle routing
problem with one-dimensional or scalar demand (weight). With regard to the other
instances, each customer has 1 or 2 items in type 2, 1 to 3 items in type 3, 1 to 4
items in type 4 and 1 to 5 items in type 5. Furthermore, each item can have one
of three different shapes, namely Vertical, Horizontal or Homogeneous. The exact
number of items per customer and the shape of each item were randomly generated
in the intervals shown in Table 1. The largest instances have up to 255 customers,
786 items and a fleet of 51 vehicles.
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# Items Vertical Horizontal Homogeneous
Type per cust. Height Width Height Width Height Width

1 1 1 1 1 1 1 1
2 [1,2] [.4H, .9H] [.1W, .2W] [.1H, .2H] [.4W, .9W] [.2H, .5H] [.2W, .5W]
3 [1,3] [.3H, .8H] [.1W, .2W] [.1H, .2H] [.3W, .8W] [.2H, .4H] [.2W, .4W]
4 [1,4] [.2H, .7H] [.1W, .2W] [.1H, .2H] [.2W, .7W] [.1H, .4H] [.1W, .4W]
5 [1,5] [.1H, .6H] [.1W, .2W] [.1H, .2H] [.1W, .6W] [.1H, .3H] [.1W, .3W]

Table 1: Types of instances

Iori et al. Our B&C
Type Solved Time Solved Time New Solved Time

1 12 4731.9 12 2.1 7 49.8
2 11 1123.6 11 9.8 2 2314.4
3 12 1332.0 12 6.4 3 385.2
4 10 1030.9 10 11.7 5 171.2
5 10 488.8 10 1.8 9 633.6

Avg. 1741.4 6.4 710.8
Sum 55 55 26

Table 2: Comparison of two algorithms for the 2L-CVRP

The results are shown in Table 2 under the headings “Iori et al.” and “Our
B&C”. In each case, we indicate the number of instances of each type solved by both
algorithms, as well as the average CPU time in seconds. The number of additional
instances that were solved by our algorithm when compared to the algorithm of Iori
et al., as well as the average CPU time in seconds for solving these instances, is also
indicated. A total of 26 additional instances were solved by our algorithm

Overall, our algorithm was able to solve instances with up to 71 customers and
226 items while the algorithm of Iori et al. was limited to a maximum of 35 customers
and 114 items. For the 55 instances solved by both algorithms, ours took only a
few seconds as compared to hundreds or even thousands of seconds for the other
algorithm. This is a very substantial improvement, even if we take into account the
different specifications of the two machines used to run the algorithms. Note that
this improvement is mostly explained by the use of sophisticated packing algorithms.

8.2 Stochastic instances

The same 2L-CVRP instances described in the previous section were used to gen-
erate our stochastic instances. However, given that the packing problems do not
have any impact when solving the instances of type 1, they are not considered any-
more in the following. We took all instances of types 2, 3, 4 and 5 with at most 71
customers (the largest number of customers that our algorithm can address), for a
total of 20 instances of each type. From each one of these 4 · 20 = 80 instances, we
generated six different stochastic instances, for a total of 480 instances, by varying
the percentage of customers with stochastic items and the maximum size of the
discrete domain for the height, width and weight of each stochastic item, as shown
in Table 3. Note that when the domain can take up to x different values, each
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% Stoch. cust. Domain size
10 2
50 2
100 2
100 3
50 5
10 9

Table 3: S2L-CVRP instances

stochastic item has between 2 and x different height, width and weight values, with
a given probability distribution defined over these values. The width and height
values for each item were selected in the intervals [max{1, h/2},min{h + h/2, H}]
and [max{1, w/2},min{w+w/2,W}], where h and w are the height and width of the
item in the original deterministic instance. All real values were rounded to get only
integers. The cf parameter which is used to compute the recourse cost in equations
(7) and (8) was set to 10.

We observed that our algorithm is very sensitive to the number of items per
route, due to the difficulty of the packing problem. To get an increasing number
of items per route from the instances of type 2 to the instances of type 5, without
exceeding the computational limits of our algorithm, an average of 4 customers
per route was allowed through the definition of appropriate weights (leading to an
increasing average number of items per route from type 2 to type 5) . Basically, a
weight was generated for each customer based on a normal law of mean Q/4, where
Q is the vehicle capacity in the original 2L-CVRP instances. The weight obtained
was then split randomly among the items of the corresponding customer. Some final
adjustments were performed to guarantee that at least two customers could fit in a
route.

The number of vehicles and an upper bound on the objective value were obtained
with the adaptive large neighborhood search heuristic in [35]. The maximum number
of iterations was set to 25,000 and a time limit of 1,000 seconds was imposed.

8.3 Impact of the various inequalities

We first report some results aimed at evaluating the effectiveness of the proposed
inequalities. We created 5 different algorithmic variants for this purpose. The
first setting “All cuts” correspond to the L-Shaped method described in Section 3,
includingD-optimality cuts for integer solutions and L-cuts for integer and fractional
solutions. The application of L-cuts on fractional solutions was removed in the four
other variants. So, “No Frac. L-cuts” is the original L-Shaped method minus L-
cuts on fractional solutions, “No L-Cuts” removes all L-cuts on both fractional and
integer solutions, “No D-cuts” uses L-cuts on integer solutions and replaces the
D-optimality cuts by the global optimality cuts (38) and “No L-D-cuts” removes
all L-cuts and replaces the D-optimality cuts by the global optimality cuts. In all
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cases, the resulting algorithm was run for a maximum of 1,200 seconds.

The results are summarized in Table 4 on the 6 ·20 = 120 stochastic instances of
each type. The table shows the number of solved instances and the following aver-
ages: CPU time in seconds, CPU time in seconds for solving the packing problems,
gap in percentage between the final solution and the heuristic solution, number of
L-cuts, number of infeasible set constraints, number of infeasible path constraints,
number of D-optimality cuts and number of VRP (integer) solutions. To allow a
fair comparison, the averages for the various inequalities were calculated only over
the instances solved by all variants. Similarly, the average gap was taken only over
the instances that were not solved by any variant. The number of solved-by-all and
not-solved-by-any instances is indicated in Table 4 for each type.

The first observation is about the L-cuts on fractional solutions, which do not
appear to be useful when “All cuts” is compared with “No Frac. L-cuts”. In
particular, the number of solved instances slightly increases and the computation
time decreases when they are removed. So, it appears that many of these cuts do
not provide useful bounds on the objective.

The most useful inequalities are the L-cuts on integer solutions. When these cuts
are present, the D-optimality cuts seem almost useless by comparing the results of
“No Frac. L-cuts” and “No D-cuts”. However, when the L-cuts are not present,
the D-optimality cuts play a useful role, as indicated by the poor performance of
“No L-D-cuts”. Overall, “No Frac. L-cuts” is the best approach with regard to the
number of solved instances and CPU time. Accordingly, this variant was used for
the results reported in the next section.

8.4 Final results

The final results are reported in Tables 5 and 6 after running our algorithm for a
maximum of 7,200 seconds (2 hours) on each instance. Table 5 summarizes the aver-
age results obtained over each set of 80 instances associated with a given percentage
of customers with stochastic items and domain size. Otherwise, the format of this
table is similar to Table 4. Table 5 shows in particular that a higher percentage of
customers with stochastic items increases the complexity of the problem, as indi-
cated by the number of solved instances and CPU time, in particular when going
from 10% to 50%. Also, the total CPU time sharply increases when the domain of
the probability distribution increases. For example, when the number of customers
with stochastic items is low (10%), increasing the number of values in the domain
of the probability distribution from 2 to 9 increases the total CPU time from 90.5
seconds to 337.4 seconds and the time for solving the packing problems from 22.4
seconds to 109.1 seconds. We also observed that the total CPU time on some of
these instances was almost totally spent on the packing problems.

Table 6 shows another, more detailed, view of the results. Each identifier in this
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Type 2 Solved Total Packing Gap L-cuts Inf. Inf. D-cuts VRP
Variant CPU CPU (%) Set Path

All Cuts 67 65.2 7.2 7.10% 269.3 300.8 12.4 21.0 27.9
No Frac L-cuts 70 43.7 8.2 7.22% 21.3 14.7 12.5 11.3 36.2
No L-Cuts 67 64.6 13.8 7.54% 0.0 10.4 29.1 24.6 37.4
No D-Cuts 69 61.4 7.2 7.24% 23.5 18.6 5.9 21.0 50.7
No L-D-Cuts 54 189.3 61.2 7.67% 0.0 12.4 36.4 631.7 651.8

Solved-by-all 54
Not-solved-by-any 50

Type 3
All Cuts 76 69.8 15.8 7.95% 164.7 162.7 7.1 19.4 18.5

No Frac L-cuts 78 38.9 14.0 7.97% 17.0 2.9 7.8 10.0 25.4
No L-Cuts 75 66.0 30.3 8.35% 0.0 2.0 13.8 20.8 24.2
No D-Cuts 78 43.3 15.8 8.01% 17.9 3.1 4.1 19.4 36.1
No L-D-Cuts 65 139.9 79.4 8.50% 0.0 2.4 19.4 396.3 404.2

Solved-by-all 65
Not-solved-by-any 41

Type 4
All Cuts 73 84.3 23.8 9.53% 118.8 55.4 4.0 12.6 13.2
No Frac L-cuts 77 46.6 21.0 9.46% 11.5 2.2 3.5 7.2 16.2
No L-Cuts 72 83.9 53.4 9.83% 0.0 1.8 6.0 15.3 15.9
No D-Cuts 75 46.6 23.8 9.48% 12.5 2.4 1.3 12.6 24.6
No L-D-Cuts 62 182.4 127.6 10.02% 0.0 2.4 6.9 291.9 298.0

Solved-by-all 62
Not-solved-by-any 43

Type 5
All Cuts 80 25.2 18.4 5.50% 30.7 1.3 0.1 2.8 4.7
No Frac L-cuts 81 23.5 18.4 5.71% 6.3 0.1 0.2 2.5 6.7
No L-Cuts 65 73.6 68.8 6.17% 0.0 0.1 0.4 9.6 8.8
No D-Cuts 82 22.9 18.4 5.71% 6.4 0.1 0.0 2.8 7.9
No L-D-Cuts 54 156.8 146.8 6.54% 0.0 0.1 0.0 145.2 147.5

Solved-by-all 50
Not-solved-by-any 36
Overall

All Cuts 296 63.0 16.5 7.58% 147.8 131.2 6.0 14.4 16.3
No Frac L-cuts 306 38.8 15.5 7.65% 14.2 4.9 6.1 7.9 21.4
No L-Cuts 279 72.1 41.0 8.02% 0.0 3.5 12.4 17.8 21.7
No D-Cuts 304 44.0 16.5 7.67% 15.3 5.9 2.9 14.4 30.3
No L-D-Cuts 235 166.5 102.6 8.23% 0.0 4.2 15.8 369.0 378.0

Solved-by-all 231
Not-solved-by-any 170

Table 4: Comparison of different variants
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Domain % Stoch. Solved Total Packing Gap L-cuts Inf. Inf. D-cuts VRP
size cust. CPU CPU (%) Set Path
2 10 59 90.5 22.4 6.4 6.9 9.8 9.8 3.5 22.6
2 50 53 254.1 32.6 7.8 32.4 4.6 7.7 14.6 34.8
2 100 55 564.1 340.8 7.1 41.4 0.3 1.6 18.7 30.9
3 100 50 491.2 311.2 6.8 41.2 0.0 0.7 17.6 27.7
5 50 53 385.7 90.2 8.6 39.5 4.6 6.4 18.5 37.8
9 10 62 337.4 109.1 7.6 17.0 10.9 12.4 8.4 33.0

Avg. 353.8 151.1 7.4 29.7 5.0 6.4 13.6 31.1
Sum 332 178.4 30.2 38.6 81.3 186.8

Table 5: Summary of final results

table is a 4-digit number: the first two digits identify the instance number from the
36 original instances in [26], while the last two digits identify the instance type. For
example, identifiers 0202 to 0205 correspond to the deterministic instances of types 2
to 5 derived from the second original instance. As previously mentioned, six different
stochastic instances were generated from the deterministic instance associated with
the 4-digit identifier. In Table 6, heading “Ins” is the 4-digit identifier, n is the
number of customers, “Solved” is the number of instances solved to optimality,
“Total CPU” is the average computation time in seconds spent over the instances
solved to optimality and “Packing CPU” is the average computation time spent on
the packing problems over the instances solved to optimality. The two last headings
are “Gap”, which contains the average gap in percentage between the final solution
and the heuristic solution over all instances that were not solved to optimality, and
“Cuts” which is the average number of L-cuts, infeasible set inequalities, infeasible
path inequalities and D-cuts that were added to the model over all instances solved
to optimality.

These detailed results show in particular the limitations of our algorithm with
regard to the problem size. Most instances from 15 to 32 customers can be solved
within the time limit, but difficulties arise beyond 32 customers. In particular, the
number of possible sets of customers S, when calculating L(S), increases sharply.
Overall, our method was able to solve 332 instances out of 480 using an average of
353.8 seconds of computation time.

9 Conclusion

This paper has introduced a stochastic variant of the 2L-CVRP where some item
sizes are not known with certainty when the vehicle routes are planned. From a
methodological standpoint, a new type of Lower Bounding Functionals, called L-
cuts, has been introduced. The latter proved to be very effective when integrated
within the reported L-Shaped Method. On the deterministic 2L-CVRP, the branch-
and-cut algorithm derived from our L-Shaped Method also outperformed another
state-of-the-art exact algorithm on a set of benchmark instances. Future work will
consider different variants where, for example, it is possible to rotate items to better
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Ins n Solved Total Packing Gap Cuts Ins n Solved Total Packing Gap Cuts
CPU CPU (%) CPU CPU (%)

0102 15 6 0.5 0.5 - 2.5 1102 29 6 996.3 28.8 - 195.5
0103 15 6 2.6 2.6 - 10.8 1103 29 4 888.1 112.3 6.3 150.8
0104 15 6 3.0 2.9 - 9.5 1104 29 5 362.6 164.6 4.5 166.2
0105 15 6 11.1 11.1 - 2.3 1105 29 5 242.3 160.1 1.9 33.8
0202 15 6 1.4 1.3 - 19.3 1202 30 4 881.5 41.5 9.7 270.0
0203 15 6 4.0 4.0 - 27.2 1203 30 6 110.7 27.8 - 83.0
0204 15 6 3.2 3.2 - 3.0 1204 30 5 1262.7 341.8 9.3 92.0
0205 15 6 6.6 6.6 - 3.2 1205 30 6 1846.6 1821.6 - 46.0
0302 20 5 22.6 9.6 2.8 92.4 1302 32 4 429.2 9.1 1.6 70.8
0303 20 6 22.6 22.1 - 47.2 1303 32 6 62.0 15.3 - 72.7
0304 20 6 27.0 23.6 - 27.0 1304 32 6 138.3 39.5 - 41.0
0305 20 6 8.6 7.6 - 11.3 1305 32 6 861.0 855.4 - 19.8
0402 20 6 75.0 13.1 - 80.7 1402 32 1 4864.8 4.6 1.9 240.0
0403 20 6 10.8 8.0 - 22.2 1403 32 4 845.2 7.6 1.0 67.3
0404 20 6 35.7 35.6 - 23.3 1404 32 5 2112.3 50.5 0.5 98.2
0405 20 5 1156.1 1154.3 3.2 11.6 1405 32 4 398.4 35.2 1.0 58.8
0502 21 6 17.1 8.0 - 30.3 1502 32 1 277.8 1.4 1.7 49.0
0503 21 6 9.2 4.6 - 18.7 1503 32 0 - - 2.9 -
0504 21 6 17.8 13.8 - 28.8 1504 32 0 - - 3.8 -
0505 21 6 21.0 20.5 - 15.0 1505 32 1 6350.3 5222.1 5.1 27.0
0602 21 6 93.6 15.8 - 76.2 1602 35 1 1683.0 39.4 5.3 258.0
0603 21 6 78.0 28.5 - 43.7 1603 35 1 4380.6 79.2 6.9 210.0
0604 21 6 119.0 117.6 - 32.2 1604 35 2 656.1 36.9 9.0 124.0
0605 21 6 14.7 13.9 - 15.7 1605 35 6 266.4 28.6 - 40.2
0702 22 6 202.5 34.1 - 85.5 1702 40 0 - - 7.9 -
0703 22 6 47.3 43.0 - 38.3 1703 40 2 736.4 1.7 6.7 27.5
0704 22 6 32.6 32.2 - 11.5 1704 40 0 - - 7.9 -
0705 22 6 31.5 31.0 - 12.5 1705 40 3 649.4 77.3 4.8 25.3
0802 22 6 4.6 4.3 - 22.0 1802 44 0 - - 4.1 -
0803 22 6 31.4 30.4 - 34.3 1803 44 0 - - 4.8 -
0804 22 6 21.4 21.2 - 12.7 1804 44 0 - - 8.4 -
0805 22 6 46.3 45.6 - 13.3 1805 44 2 43.2 21.0 2.1 23.0
0902 25 5 106.6 20.9 11.7 187.2 1902 50 0 - - 11.2 -
0903 25 6 352.7 307.8 - 69.5 1903 50 0 - - 11.9 -
0904 25 6 189.1 151.8 - 63.7 1904 50 0 - - 14.6 -
0905 25 5 1041.6 1041.0 5.0 10.2 1905 50 0 - - 5.2 -
1002 29 6 127.8 32.3 - 190.0 2002 71 0 - - 14.2 -
1003 29 6 100.4 11.0 - 65.0 2003 71 0 - - 15.0 -
1004 29 6 1434.3 178.1 - 101.2 2004 71 0 - - 15.3 -
1005 29 6 526.4 508.3 - 38.8 2005 71 0 - - 10.4 -

Table 6: A more detailed view of final results
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fill the loading area. Also, we want to address an extension with both pickups and
deliveries along the routes. In practice, this type of problem occurs when an item
must be exchanged for another at a customer location (due to some defect).
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[22] Gendreau M., Laporte G., Séguin R., An exact algorithm for the vehicle routing
problem with stochastic demands and customers. Transportation Science 29,
143-155, 1995.

[23] Herz J.C., Recursive computational procedure for the two dimensional stock
cutting. IBM J. Res. Development 16, 462-469, 1972.

[24] Hjorring C., Holt J., New optimality cuts for a single-vehicle stochastic routing
problem. Annals of Operations Research 86, 569-584, 1999.

[25] Iori M., Martello S., Routing problems with loading constraints. TOP 18, 4-27,
2010.

27

The Vehicle Routing Problem with Stochastic Two-Dimensional Items

CIRRELT-2013-84
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