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1 Introduction

We consider the piecewise linear multicommodity network flow problem (PMF) studied
in [12]. Given a directed network G = (N,A), with node set N , arc set A, supplies and
demands of multiple commodities at the nodes, and arc capacities, the problem is to find
the minimum cost multicommodity flow when the objective is the sum of |A| piecewise lin-
ear functions. If we denote xa the total flow on each arc a, the cost ga(xa) is a piecewise
linear function such that ga(0) = 0. The pieces, or segments, of the cost function for arc a
are represented by the finite set Sa = {1, 2, ..., |Sa|}. For each arc a, each segment s ∈ Sa
has a slope csa ≥ 0 (the linear cost), an intercept f sa ≥ 0 (the fixed cost), and lower and
upper flow bounds, lsa = bs−1

a and vsa = bsa (the breakpoints, assumed to be integers), which
satisfy 0 = b0

a ≤ bs−1
a < bsa ≤ ua, where ua is the integer arc capacity. The function is

not necessarily continuous, but we assume it is lower semi-continuous (i.e., ga(xa) ≤ lim inf

x′a→xa ga(x
′
a) for any sequence x′a that approaches xa). We also assume it is non-decreasing

(i.e., ga(xa) ≤ ga(x
′
a) whenever xa < x′a); this mild assumption is typically always satisfied

in practice. To complete the problem definition, we let K denote the set of commodities,
and dk the vector of size |N | representing supplies and demands for commodity k: for each
node i and each commodity k, dki > 0 denotes an origin node with integer supply dki , d

k
i < 0

denotes a destination node with integer demand −dki , and dki = 0 denotes a transshipment
node.

Applications of the PMF in transportation, logistics, telecommunications, and produc-
tion planning [3, 9, 17, 29, 30] often require the flows to take integer values. In the piecewise
linear integer multicommodity network flow problem (PMFI) that we study, we assume that
the total flow on each arc, xa, must be an integer. In applications in transportation and
logistics, total flows might represent vehicles or containers filled with different products,
and therefore must assume integer values. Often, this integrality constraint is ignored when
modeling and solving the problem, and the final continuous solution is used as an approx-
imation of the optimal integer solution. In this paper, we adopt a different point of view
and explicitly state the integrality constraint on the total flows. Further, we introduce new
formulations for piecewise linear multicommodity network flow problems that exploit this
integrality constraint.

Following [12], we present a mixed-integer programming (MIP) formulation of the PMFI,
which we call the basic model. In this model, the flow xa on each arc a is decomposed in
two ways, by commodity or by segment, with xka and xsa representing the flow of commodity
k and the flow on segment s, where xsa is the total flow on arc a if that flow lies in segment
s, and is 0 otherwise. We also define binary variables ysa, with ysa = 1 if xsa > 0, and ysa = 0
otherwise. If we denote by t(a) = i and h(a) = j, respectively, the tail and the head of each
arc a = (i, j) and by Fi = {a ∈ A|t(a) = i} and Bi = {a ∈ A|h(a) = i}, respectively, the
sets of forward and backward arcs incident to node i ∈ N , the basic model, denoted BM ,
can be expressed as follows:

v(BM) = min
∑
a∈A

∑
s∈Sa

(csax
s
a + f say

s
a) (1)

∑
a∈Fi

xka −
∑
a∈Bi

xka = dki , i ∈ N, k ∈ K, (2)
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∑
k∈K

xka =
∑
s∈Sa

xsa = xa integer, a ∈ A, (3)

lsay
s
a ≤ xsa ≤ vsay

s
a, a ∈ A, s ∈ Sa, (4)∑

s∈Sa

ysa ≤ 1, a ∈ A, (5)

xka ≥ 0, a ∈ A, k ∈ K, (6)

ysa ∈ {0, 1}, a ∈ A, s ∈ Sa. (7)

Constraints (2) are the flow balance constraints typical in a multicommodity network
flow formulation. Constraints (3) define the flow by commodity and by segment, and also
impose integrality requirements on the total flow on each arc. The basic forcing constraints,
(4), state that if ysa = 0, then xsa = 0, but if ysa = 1, then xsa must lie between the breakpoints
of that segment, i.e., bs−1

a = lsa ≤ xsa ≤ vsa = bsa. The multiple choice constraints, (5), ensure
that we choose at most one segment variable ysa to be equal to 1 on each arc a.

It is well-known that the basic model provides a weak linear programming (LP) relaxation
bound. To improve this bound, one might add valid inequalities that can be violated by the
solutions to the LP relaxation. One approach is to exploit necessary feasibility conditions
for the underlying multicommodity network flow structure, giving rise to the so-called cutset
inequalities, which have been used to strengthen the LP relaxation bounds of a large number
of problems related to the PMFI [1, 4, 5, 6, 7, 16, 23, 28, 31, 32]. Another approach, called
flow disaggregation [12, 14, 15], consists in defining additional flow variables that are linked
to the other variables through simple valid inequalities that can improve the LP relaxation
bound. A third approach, which exploits the integrality of the flows and is the focus of this
paper, is discretization, a technique that has been used to derive MIP models for several
combinatorial optimization problems [20, 21, 22]. Discretization is to be combined with the
two other approaches, addition of cutset inequalities and flow disaggregation, with the goal
of deriving models that improve the LP relaxation bounds.

In this paper, we show that the formulation obtained by discretization can be viewed as
having the same structure as the basic model, except that the segment set on each arc is
replaced by a set of integer points, each point corresponding to one of the possible values of
the total flow on the arc. For this reason, we denote these models as “point-based” in con-
trast to “segment-based” models, such as BM , that use the segment set in the definition of
the variables. Following the developments in [8, 22], we derive valid inequalities from cutset
inequalities for both the segment-based and the point-based models. Then, we combine the
point-based models with flow disaggregation techniques to derive a model similar to the so-
called extended (segment-based) formulation introduced in [12]. Our main results state that:
1) discretization provides stronger cutset inequalities than those obtained from segment-
based models; 2) discretization, when combined with flow disaggregation, does not improve
upon the LP relaxation of the extended segment-based model. We exploit these results by
deriving a reformulation of the problem that combines the strength of both techniques: cut-
set inequalities based on discretization and flow disaggregation with segment-based variables.
An efficient Lagrangian relaxation method is developed to compute lower and upper bounds
for this reformulation, but also for the other models introduced in this paper. Such a method
is essential to compute effective bounds in reasonable time, since the size of the formulations
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derived from discretization and flow disaggregation rapidly increases with problem dimen-
sions. We perform computational results on a large set of randomly generated instances that
allow us to compare the relative efficiency of the different modeling alternatives (flow dis-
aggregation, plus addition of cutset inequalities with or without discretization), when used
within the Lagrangian relaxation approach.

The paper is organized as follows. In Section 2, we present and compare the different
formulations of the PMFI, focusing on the relative strength of their LP relaxations. Then,
we present the Lagrangian relaxation method. Section 3 describes to the Lagrangian dual
optimization procedure that computes lower bounds on the optimal value of the PMFI,
while Section 4 presents the Lagrangian heuristic approach used to derive upper bounds.
Section 5 analyzes the results of our computational experiments. We present conclusions
and directions for further research in Section 6. Throughout the paper, we use the following
notation: v(M) denotes the optimal value of any model M and M denotes the LP relaxation
of any MIP model M ; in addition, conv(T ) designates the convex hull of any set T .

2 Reformulations by Discretization

We exploit the integrality constraint on the flows by first strengthening the basic model,
as explained in Section 2.1, and then, by defining the point-based model (Section 2.2). In
Section 2.3, we derive cutset-based inequalities for both the segment-based and the point-
based models, yielding stronger reformulations of the PMFI. In Section 2.4, we investigate the
combination of flow disaggregation and discretization. Finally, Section 2.5 summarizes our
main results and presents models that combine the strength of point-based cutset inequalities
with segment-based flow disaggregation.

2.1 Strengthening the Basic Model

The integrality constraint on the flows implies that xa is either 0 or can take any integer
value q ∈ Qa = {1, 2, . . . , ua}. Furthermore, since ga(xa) is lower semi-continuous and non-
decreasing, if xa = bs−1

a > 0 then xa = xs−1
a , i.e., xa lies in segment s− 1. This implies that

we can partition Qa into |Sa| subsets Qs
a = {bs−1

a + 1, bs−1
a + 2, . . . , bsa}, s ∈ Sa, such that

xa ∈ Qs
a if xa lies in segment s. As a consequence, we can strengthen the lower flow bounds

in constraints (4) by using lsa = bs−1
a + 1 instead of lsa = bs−1

a . We obtain in this way the basic
segment-based model, which we denote BS. We show next, however, that this improvement
on the lower flow bounds does not improve the LP relaxation bound of the original basic
model.

Proposition 1 v(BM) = v(BS).

Proof: For both models, BM and BS, we note that there always exists an optimal solution
such that xsa = vsay

s
a, for each arc a and segment s; otherwise, if xsa < vsay

s
a for some pair (a, s)

in an optimal solution, we could always decrease ysa down to xsa
vsa

and maintain feasibility, as

well as optimality, since f sa ≥ 0. Therefore, any optimal solution to BM is also optimal for
BS and vice-versa. �
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In spite of this result, we will use BS instead of BM as our basic segment-based formu-
lation. The reason for this is that stronger valid inequalities can be obtained from BS, as
we will see in Section 2.3.

The proof of Proposition 1 also implies that BS can be simplified by projecting out
the xsa variables, which yields the following model that will be subsequently used in our
developments:

v(BS) = min
∑
a∈A

∑
s∈Sa

(vsac
s
a + f sa)ysa (8)

∑
a∈Fi

xka −
∑
a∈Bi

xka = dki , i ∈ N, k ∈ K, (9)

∑
k∈K

xka =
∑
s∈Sa

vsay
s
a, a ∈ A, (10)

∑
s∈Sa

ysa ≤ 1, a ∈ A, (11)

xka ≥ 0, a ∈ A, k ∈ K, (12)

ysa ≥ 0, a ∈ A, s ∈ Sa. (13)

2.2 Point-Based Model

Using the integrality constraint on the flow variables, we now present a reformulation of the
PMFI which, instead of decomposing the flow xa on each arc a by segment, separates the
flow xa by each possible positive integer value q ∈ Qa = {1, 2, . . . , ua}. Namely, we introduce
variables xqa which are equal to q if xa = q, along with binary variables yqa which take value
1 if xa = q, and value 0 otherwise. We then obtain the following point-based model for the
PMFI:

min
∑
a∈A

∑
s∈Sa

∑
q∈Qs

a

(csax
q
a + f say

q
a) (14)

∑
a∈Fi

xka −
∑
a∈Bi

xka = dki , i ∈ N, k ∈ K, (15)

∑
k∈K

xka =
∑
q∈Qa

xqa = xa integer, a ∈ A, (16)

xqa = qyqa, a ∈ A, q ∈ Qa, (17)∑
q∈Qa

yqa ≤ 1, a ∈ A, (18)

xka ≥ 0, a ∈ A, k ∈ K, (19)

yqa ∈ {0, 1}, a ∈ A, q ∈ Qa. (20)

This model has a structure similar to that of BS, except that here each “segment”
corresponds to a “point” q, i.e., any possible positive integer value of the flow xa on each arc

4

Reformulations by Discretization for Piecewise Linear Integer Multicommodity Network Flow Problems

CIRRELT-2014-01



a. To obtain the same structure as BS, one would simply write down constraints (17) with
two inequalities as follows:

qyqa ≤ xqa ≤ qyqa, a ∈ A, q ∈ Qa.

Indeed, when lsa = bs−1
a + 1 = bsa = vsa for each a ∈ A and each s ∈ Sa, BS reduces to the

point-based model.
Because constraints (17) are expressed as equalities, we can project out the flow variables

xqa and remove the integrality constraints on the total flows, which are redundant, obtaining
the following equivalent formulation, called the basic point-based model and denoted BP :

v(BP ) = min
∑
a∈A

∑
s∈Sa

∑
q∈Qs

a

(qcsa + f sa)yqa (21)

∑
a∈Fi

xka −
∑
a∈Bi

xka = dki , i ∈ N, k ∈ K, (22)

∑
k∈K

xka =
∑
q∈Qa

qyqa, a ∈ A, (23)

∑
q∈Qa

yqa ≤ 1, a ∈ A, (24)

xka ≥ 0, a ∈ A, k ∈ K, (25)

yqa ∈ {0, 1}, a ∈ A, q ∈ Qa. (26)

Note that BP , the LP relaxation of (21)-(26), and BS, the model defined by (8)-(13),
have similar structures: in BP , points q are used in place of segments s with their upper flow
bounds vsa in BS. Given the similarity of the two LP relaxations, the following proposition
is not surprising (a similar result is proven in [13]):

Proposition 2 v(BP ) = v(BS).

Proof: 1) First, we show that v(BP ) ≥ v(BS). Consider an optimal solution to BP ; for
any a such that yqa > 0 for some q in this optimal solution, we let ysa = (q/vsa)y

q
a whenever

q ∈ Qs
a for some s (all other variables remain at the same values). This defines a feasible

solution to BS with objective value v(BP ).
2) Second, we show that v(BP ) ≤ v(BS). Consider an optimal solution to BS; for any a
such that ysa > 0 for some s in this optimal solution, we define yqa = ysa for q = vsa (all other
variables remain at the same values). This defines a feasible solution to BP with objective
value v(BS). �

When |K| = 1, we obtain the single-commodity case and all the flow variables in BP
can be projected out using equations (23). Model BP then reduces to:

min
∑
a∈A

∑
s∈Sa

∑
q∈Qs

a

(qcsa + f sa)yqa (27)
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∑
a∈Fi

∑
q∈Qa

qyqa −
∑
a∈Bi

∑
q∈Qa

qyqa = di, i ∈ N, (28)

∑
q∈Qa

yqa ≤ 1, a ∈ A, (29)

yqa ∈ {0, 1}, a ∈ A, q ∈ Qa. (30)

This model, containing only the binary variables yqa, is similar to the reformulations by
discretization described in the literature [8, 20, 21, 22].

2.3 Cutset Inequalities

We denote by U the collection of non-empty proper subsets of N . For any cut U ∈ U , we
define its corresponding cutsets FU = {a ∈ A|t(a) ∈ U, h(a) /∈ U} and BU = {a ∈ A|t(a) /∈
U, h(a) ∈ U}. By summing the flow conservation equations (2) for all i ∈ U and all k ∈ K,
we obtain the following flow cutset equations, after canceling equal terms:∑

a∈FU

xa −
∑
a∈BU

xa = DU , U ∈ U , (31)

where DU =
∑

i∈U
∑

k∈K d
k
i is the net supply across cut U ∈ U . When U = {i}, i ∈ N , we

obtain a single-node cut and we use the notation Di ≡ D{i}.
By combining the cutset equations with constraints (3) and (4), we obtain the following

segment-based cutset inequalities for models BM and BS:∑
a∈FU

∑
s∈Sa

vsay
s
a −

∑
a∈BU

∑
s∈Sa

lsay
s
a ≥ DU , U ∈ U , (32)

∑
a∈FU

∑
s∈Sa

lsay
s
a −

∑
a∈BU

∑
s∈Sa

vsay
s
a ≤ DU , U ∈ U . (33)

These inequalities are redundant for the LP relaxations, BM and BS, since they are obtained
by linear combinations of constraints of the original model. However, inequalities derived
from them by exploiting the integrality of the y variables might be violated by LP optimal
solutions. In particular, every facet-defining inequality for conv(CUT ) and conv(CUTS)
can be used to strengthen BM and BS, respectively, where CUT and CUTS are the sets
of 0-1 solutions to the multiple choice constraints (5) and the cutset inequalities (32)-(33)
with lsa = bs−1

a for CUT and lsa = bs−1
a + 1 for CUTS. By adding all the facet-defining

inequalities for conv(CUT ) and conv(CUTS) toBM andBS, respectively, we obtain stronger
LP relaxations, which we denote BM+ and BS+.

It is obvious that conv(CUTS) ⊆ conv(CUT ), which implies the following result:

Proposition 3 v(BS+) ≥ v(BM+).

This observation justifies our selection of BS as a better segment-based model than BM , in
spite of the equality v(BM) = v(BS) (Proposition 1).
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For modelBP , a similar derivation yields the following point-based cutset equations, which
can also be obtained directly from (32)-(33) for the case where lsa = bs−1

a + 1 = bsa = vsa:∑
a∈FU

∑
q∈Qa

qyqa −
∑
a∈BU

∑
q∈Qa

qyqa = DU , U ∈ U . (34)

Let us define CUTP as the set of 0-1 solutions that satisfy these cutset equations, along
with the multiple choice constraints (18), and BP+ as the LP relaxation of BP obtained by
adding all the facet-defining inequalities for conv(CUTP ) to formulation BP . We then have
the following result:

Proposition 4 v(BP+) ≥ v(BS+).

Proof: Let y(i), i ∈ I, be the extreme points of conv(CUTP ); any y(i), i ∈ I, can be mapped
to a solution of conv(CUTS) by the same construction used in the proof of Proposition 2:
for any a such that yqa(i) > 0 for some q, we let ysa(i) = (q/vsa)y

q
a(i) whenever q ∈ Qs

a for some
s. Consider an optimal solution to BP+; when projected over the space of yqa variables, this
solution can be expressed as a convex combination of the extreme points of conv(CUTP ):
yqa =

∑
i∈I λ(i)yqa(i), a ∈ A, q ∈ Qa, with

∑
i∈I λ(i) = 1 and λ(i) ≥ 0, i ∈ I. Again, we

construct a feasible solution to BS+ as in the proof of Proposition 2: for any a such that
yqa > 0 for some q in this optimal solution, we let ysa = (q/vsa)y

q
a whenever q ∈ Qs

a for some
s (all other variables remain at the same values). This solution satisfies all the constraints
of model BS; in addition, its projection over the space of ysa variables can be expressed as a
convex combination of the solutions of conv(CUTS) obtained by mapping the extreme points
of conv(CUTP ): ysa = (q/vsa)y

q
a = (q/vsa)

∑
i∈I λ(i)yqa(i) =

∑
i∈I λ(i)ysa(i), i.e., this projected

solution belongs to conv(CUTS), which implies that v(BP+) ≥ v(BS+). �

Note that the aggregation of two point-based cutset equations of the form (34) associated
to U ∈ U and W ∈ U , U ∩W = ∅, is equivalent to the cutset equation associated to U ∪W .
Indeed, using the notation {U,W} = {a ∈ A|t(a) ∈ U, h(a) ∈ W} ∪ {a ∈ A|t(a) ∈ W,h(a) ∈
U}, we obtain after summing the cutset equations (34) for U and W :∑

a∈FU∪W

∑
q∈Qa

qyqa −
∑

a∈BU∪W

∑
q∈Qa

qyqa +
∑

a∈{U,W}

∑
q∈Qa

(q − q)yqa = DU∪W ,

which is the same as the cutset equation associated to U ∪W . This observation allows us
to considerably reduce the number of equations needed to characterize CUTP :

Proposition 5 CUTP is equal to the set of 0-1 solutions that satisfy the multiple choice
constraints (18) and the point-based single-node cutset equations:∑

a∈Fi

∑
q∈Qa

qyqa −
∑
a∈Bi

∑
q∈Qa

qyqa = Di, i ∈ N. (35)

Proof: Using the same argument as above, all cutset equations of the form (34) can be
derived by aggregation of single-node cutset equations of the form (35). �

This proposition illustrates another important difference between the segment-based cut-
set inequalities (32)-(33) and the point-based cutset equations (34): the single-node cutset
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equations (35) are enough to characterize all point-based cutset equations, while the same
is not true for the segment-based cutset inequalities, i.e., by restricting these inequalities to
single-node cuts, we only obtain a subset of CUTS. To see why, observe that the aggrega-
tion of two cutset inequalities of the form (32) or (33) associated to U ∈ U and W ∈ U ,
U ∩W = ∅, is not equivalent to the cutset inequality of the same form associated to U ∪W .
For example, by summing the cutset inequalities (32) for U and W , one obtains:∑

a∈FU∪W

∑
s∈Sa

vsay
s
a −

∑
a∈BU∪W

∑
s∈Sa

lsay
s
a +

∑
a∈{U,W}

∑
s∈Sa

(vsa − lsa)ysa ≥ DU∪W ,

which is dominated by the cutset inequality of the form (32) associated to U ∪W :∑
a∈FU∪W

∑
s∈Sa

vsay
s
a −

∑
a∈BU∪W

∑
s∈Sa

lsay
s
a ≥ DU∪W .

Obviously, generating all facet-defining inequalities for conv(CUTS) and conv(CUTP ) is
a hard task. In particular, even for a set defined by a single cutset inequality associated
to a given cut U , generating all facet-defining inequalities is not trivial. In the context of
reformulations by discretization, Chvàtal-Gomory rank 1 inequalities have been derived from
a single inequality and proven to be rather exceptionally effective [8, 21, 22]. The technique
is simple: each possible value in the discrete set is tried as a divisor of every coefficient in
the inequality; then, the resulting coefficients are rounded up or down to obtain inequalities
that are valid for the MIP model, but not necessarily for its LP relaxation. The technique
is easy to illustrate on the point-based cutset equations (34), yielding the following valid
inequalities, where P = maxa∈A{ua}:∑

a∈FU

∑
q∈Qa

⌈
q

p

⌉
yqa −

∑
a∈BU

∑
q∈Qa

⌊
q

p

⌋
yqa ≥

⌈
DU

p

⌉
, U ∈ U , p = 1, 2, . . . , P, (36)

∑
a∈FU

∑
q∈Qa

⌊
q

p

⌋
yqa −

∑
a∈BU

∑
q∈Qa

⌈
q

p

⌉
yqa ≤

⌊
DU

p

⌋
, U ∈ U , p = 1, 2, . . . , P. (37)

When p = 1, these inequalities reduce to the point-based cutset equations (34). Note that
a large number of these inequalities can be removed, since they can be easily shown to be
dominated by others. So, even though there is a large number of valid inequalities, P , for
each cut U , only a small subset of them will be generated. We also observe that, contrary to
the point-based cutset equations (34), (36)-(37) cannot be reduced to inequalities associated
only to single-node cuts.

The technique can be generalized to the segment-based cutset inequalities (32)-(33),
giving rise to the following valid inequalities:∑

a∈FU

∑
s∈Sa

⌈
vsa
p

⌉
ysa −

∑
a∈BU

∑
s∈Sa

⌊
lsa
p

⌋
ysa ≥

⌈
DU

p

⌉
, U ∈ U , p = 1, 2, . . . , P, (38)

∑
a∈FU

∑
s∈Sa

⌊
lsa
p

⌋
ysa −

∑
a∈BU

∑
s∈Sa

⌈
vsa
p

⌉
ysa ≤

⌊
DU

p

⌋
, U ∈ U , p = 1, 2, . . . , P. (39)
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Let us define B̂S+ and B̂P+ the models obtained by adding, respectively, inequalities
(38)-(39) to BS and inequalities (36)-(37) to BP . Since the Chvàtal-Gomory rank 1 in-
equalities approximate the convex hull associated to each single cutset inequality, we have

the obvious bound relationships v(BS+) ≥ v(B̂S+) and v(BP+) ≥ v(B̂P+). In addition,
we have the following result:

Proposition 6 v(B̂P+) ≥ v(B̂S+).

Proof: We apply the same construction as in part 1) of the proof of Proposition 2. The
result follows from the inequalities

bs−1
a + 1 = lsa ≤ q ≤ vsa = bsa, a ∈ A, s ∈ Sa, q ∈ Qs

a.

�

2.4 Flow Disaggregation

Another approach to improve the basic segment-based model is to define additional variables
xksa as the flow of commodity k on arc a if the total flow xa on the arc lies in segment s, and
equal zero otherwise. These variables are related to the previous ones via the definitional
equations: xsa =

∑
k∈K x

ks
a and xka =

∑
s∈Sa

xksa . Using these variables, we can define the
following extended forcing constraints [12]:

xksa ≤Mk
a y

s
a, a ∈ A, k ∈ K, s ∈ Sa, (40)

where Mk
a is an integer upper bound on the flow of commodity k circulating through arc a;

for instance, one can simply use Mk
a = min{ua, 1

2

∑
i∈N |dki |}. We refer to the model obtained

by adding the nonnegative variables xksa , the definitional equations and the valid inequalities
(40) to BS as the extended segment-based model, which we denote ES. Obviously, we have
v(ES) ≥ v(BS).

We now define another reformulation of the PMFI by applying a similar variable dis-
aggregation technique to the basic point-based model, BP . Additional variables xkqa are
defined, representing the flow of commodity k on arc a if the total flow

∑
k∈K x

k
a on the arc

is q, and equal zero otherwise. Using them, we can define the following valid inequalities:

xkqa ≤Mk
a y

q
a, a ∈ A, k ∈ K, q ∈ Qa. (41)

We refer to the model obtained by adding the nonnegative variables xkqa , the definitional
equations qyqa =

∑
k∈K x

kq
a and xka =

∑
q∈Qa

xkqa , and the valid inequalities (41) to BP as the
extended point-based model, which we denote EP .

We now show that, similarly to what happens for the basic models, the LP relaxations of
the extended point-based and segment-based models are equivalent. Note that the proof of
Proposition 2 does not apply to the extended models, hence we have to use more elaborate
arguments. Our proof of the equivalence of these two models makes use of the Lagrangian
relaxation with respect to the flow conservation equations (2) for both models, ES and EP .
After projecting out all flow variables, except variables xksa , we obtain for model ES the
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following Lagrangian subproblem, denoted by ES(π), where π = (πki )k∈Ki∈N are the Lagrange
multipliers:

v(ES(π)) = min
∑
a∈A

∑
s∈Sa

∑
k∈K

(csa − πkt(a) + πkh(a))x
ks
a +

∑
a∈A

∑
s∈Sa

f say
s
a (42)

lsay
s
a ≤

∑
k∈K

xksa ≤ vsay
s
a, a ∈ A, s ∈ Sa, (43)

0 ≤ xksa ≤Mk
a y

s
a, a ∈ A, k ∈ K, s ∈ Sa, (44)∑

s∈Sa

ysa ≤ 1, a ∈ A, (45)

ysa ∈ {0, 1}, a ∈ A, s ∈ Sa. (46)

Note that we could remove the integrality constraint on the variables xa =
∑

k∈K
∑

s∈Sa
xksa ,

since it is implicitly satisfied in the Lagrangian subproblem. Indeed, for any value of ysa ∈
{0, 1}, a ∈ A, s ∈ Sa, all xksa variables must assume integer values, because Mk

a , lsa and vsa
are integers.

This Lagrangian subproblem has the integrality property, i.e., we can solve it by relaxing
the integrality requirements (46). To see why, first note that we can solve it independently for
each arc a ∈ A. Let us denote LAGa and LAGa the sets of feasible solutions to, respectively,
the Lagrangian subproblem and its LP relaxation associated to arc a ∈ A, i.e., the constraints
defining LAGa have the following form:

lsay
s
a ≤

∑
k∈K

xksa ≤ vsay
s
a, s ∈ Sa, (47)

0 ≤ xksa ≤Mk
a y

s
a, k ∈ K, s ∈ Sa, (48)∑

s∈Sa

ysa ≤ 1, (49)

ysa ∈ {0, 1}, s ∈ Sa. (50)

We then have the following polyhedral result, which is extracted from the proof of Theorem
5 in [12] (we reproduce the argument, since it is also used in the proof of Proposition 10
below):

Proposition 7 conv(LAGa) = LAGa.

Proof: The inclusion ⊆ is trivial. To show the inclusion ⊇, it suffices to prove that every
extreme point of LAGa is integral. If not, then let (x̂, ŷ) be an extreme point of LAGa with at
least one fractional component. Assume that 0 < ŷra < 1, for r ∈ R 6= ∅. Define the following
|R|+1 points in LAGa: (x(0), y(0)) = (0, 0) and (x(r), y(r)), for r ∈ R, with xkra (r) = x̂kra /ŷ

r
a,

xksa (r) = 0, s 6= r, yra(r) = 1 and ysa(r) = 0, s 6= r. Then, (x̂, ŷ) = (1−
∑

r∈R ŷ
r
a)(x(0), y(0))+∑

r∈R ŷ
r
a(x(r), y(r)) is a representation of (x̂, ŷ) as a convex combination of |R| + 1 ≥ 2

distinct points in LAGa, contradicting the hypothesis that it is an extreme point of LAGa.
�
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By Lagrangian duality theory [19], this result implies that v(ES) = maxπ{
∑

i∈N
∑

k∈K π
k
i d

k
i +

v(ES(π))}.
In the same way, we define for model EP the Lagrangian subproblem, EP (π), resulting

from the Lagrangian relaxation with respect to the flow conservation equations; EP (π) has
the following form, where π = (πki )k∈Ki∈N are the Lagrange multipliers:

v(EP (π)) = min
∑
a∈A

∑
s∈Sa

∑
q∈Qs

a

∑
k∈K

(csa − πkt(a) + πkh(a))x
kq
a +

∑
a∈A

∑
s∈Sa

∑
q∈Qs

a

f say
q
a (51)

∑
k∈K

xkqa = qyqa, a ∈ A, q ∈ Qa, (52)

0 ≤ xkqa ≤Mk
a y

q
a, a ∈ A, k ∈ K, q ∈ Qa, (53)∑

q∈Qa

yqa ≤ 1, a ∈ A, (54)

yqa ∈ {0, 1}, a ∈ A, a ∈ Qa. (55)

Similarly as for ES(π), we can show that this Lagrangian subproblem has the integrality
property. By Lagrangian duality theory [19], it follows that v(EP ) = maxπ{

∑
i∈N
∑

k∈K π
k
i d

k
i +

v(EP (π))}.

Proposition 8 v(EP ) = v(ES).

Proof: We have just seen that v(ES) = maxπ{
∑

i∈N
∑

k∈K π
k
i d

k
i +v(ES(π))} and v(EP ) =

maxπ{
∑

i∈N
∑

k∈K π
k
i d

k
i + v(EP (π))}. Therefore, the result follows if we can prove that the

two Lagrangian subproblems, ES(π) and EP (π), are equivalent.
1) First, we show that v(EP (π)) ≥ v(ES(π)). Consider an optimal solution to EP (π); for
any a such that yqa = 1 for some q in this optimal solution, we let ysa = 1 and xksa = xkqa
whenever q ∈ Qs

a for some s. This defines a feasible solution to ES(π) with objective value
v(EP (π)).
2) Second, we show that v(EP (π)) ≤ v(ES(π)). Consider an optimal solution to ES(π); for
any a such that ysa = 1 for some s in this optimal solution, the values of xksa can be obtained
by solving a continuous knapsack problem, with both lower and upper integer capacities, lsa
and vsa, and integer bounds Mk

a on each variable. We conclude that there always exists an
optimal solution to ES(π) such that the total segment flow xsa (if it is positive) is an integer
q ∈ Qs

a. As a consequence, we can derive a feasible solution to EP (π) with value v(ES(π))
as follows: xkqa = xksa , k ∈ K, and yqa = 1 whenever xsa = q (otherwise, all the variables
assume value 0). �

2.5 Combining Cutset Inequalities and Flow Disaggregation

Our results from the last two sections highlight that the best LP relaxation bounds can be
obtained by combining cutset inequalities with flow disaggregation. To combine them into a
single model, we have to consider the following facts: 1) flow disaggregation with point-based
variables does not bring any bound improvement upon flow disaggregation with segment-
based variables; 2) cutset inequalities that use either segment-based or point-based variables
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can improve the lower bound when added to the extended models (the results shown for the
basic models easily generalize to the extended models); 3) point-based cutset inequalities
can improve upon segment-based cutset inequalities.

These observations motivate the definition of new models obtained from the extended-
segment based model by adding the point-based binary variables yqa through the linking
equations: ∑

k∈K

xksa =
∑
q∈Qs

a

qyqa, a ∈ A, s ∈ Sa, (56)

ysa =
∑
q∈Qs

a

yqa, a ∈ A, s ∈ Sa. (57)

The two following relaxations are then obtained by adding point-based cutset inequalities:

• EP+, the model derived from ES by adding the linking equations (56)-(57), plus all
the facet-defining inequalities for conv(CUTP );

• ÊP+, the LP relaxation obtained from ES by adding the point-based Chvàtal-Gomory
rank 1 valid inequalities (36)-(37), plus the linking equations (56)-(57).

The next two relaxations are “pure” segment-based models that are included in order to
assess what can be gained by adding the point-based cutset inequalities:

• ES+, the formulation obtained by adding to ES all the facet-defining inequalities for
conv(CUTS);

• ÊS+, the LP relaxation obtained by adding the segment-based Chvàtal-Gomory rank
1 valid inequalities (38)-(39) to ES.

The following proposition relates the optimal values of these four relaxations of the PMFI:

Proposition 9 The following bound relationships hold:

a) v(EP+) ≥ v(ES+) ≥ v(ÊS+).

b) v(EP+) ≥ v(ÊP+) ≥ v(ÊS+).

Thus, from a theoretical perspective, the strongest lower bound is obtained from model

EP+, while relaxation ÊS+ shows the worst lower bound and the other two models cor-
respond to “intermediate” bounds. To compute tight approximations to these bounds, we
propose an efficient Lagrangian relaxation method, which we present in the next section.

3 Lagrangian Dual Optimization

In this section, we outline a Lagrangian relaxation method that provides lower bounds on the
optimal value of the PMFI. The algorithm computes a tight approximation to v(EP+), the
strongest lower bound that we derived for the PMFI. This approximate lower bound is ob-

tained by making use of the weaker bounds v(BS), v(ES), v(ÊS+), v(ES+) and v(ÊP+),
computing tight approximations to them. In Section 3.1, we describe the Lagrangian sub-
problem for computing the approximation to the lower bound v(EP+); by slightly modifying
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this Lagrangian subproblem, we also show how to compute approximations to v(ES) and
v(ES+). In Section 3.2, we outline our algorithm to obtain approximate lower bounds. In
Section 3.3, we present the subgradient algorithm used to find effective Lagrange multipliers.

3.1 Lagrangian Subproblems

Based on our observations in Section 2.5, we exploit the following reformulation of the PMFI,
which uses the segment-based and point-based variables in a single model:

min
∑
a∈A

∑
s∈Sa

∑
k∈K

csax
ks
a +

∑
a∈A

∑
s∈Sa

f say
s
a (58)

∑
a∈Fi

∑
s∈Sa

xksa −
∑
a∈Bi

∑
s∈Sa

xksa = dki , i ∈ N, k ∈ K, (59)

lsay
s
a ≤

∑
k∈K

xksa ≤ vsay
s
a, a ∈ A, s ∈ Sa, (60)

0 ≤ xksa ≤Mk
a y

s
a, a ∈ A, k ∈ K, s ∈ Sa, (61)∑

s∈Sa

ysa ≤ 1, a ∈ A, (62)

∑
k∈K

xksa =
∑
q∈Qs

a

qyqa, a ∈ A, s ∈ Sa, (63)

ysa =
∑
q∈Qs

a

yqa, a ∈ A, s ∈ Sa, (64)

∑
a∈Fi

∑
q∈Qa

qyqa −
∑
a∈Bi

∑
q∈Qa

qyqa = Di, i ∈ N, (65)

yqa ∈ {0, 1}, a ∈ A, q ∈ Qa, (66)

ysa ∈ {0, 1}, a ∈ A, s ∈ Sa. (67)

The objective (58), along with constraints (59)-(62) and (67), correspond to the extended
segment-based model ES, where all flow variables, except the xksa variables, are projected
out. Note that the integrality constraints on the total flow variables xa are not included
in the model, since they are implied by (63) and (66). Constraints (63)-(64) provide the
link between the segment-based variables and the point-based variables yqa. The point-based
single-node cutset equations (65) complete the formulation; these equations are redundant,
both in this model and in its LP relaxation, but they will be used to improve the lower
bound derived by Lagrangian relaxation.

To compute v(EP+), we consider the Lagrangian relaxation of the flow conservation
equations (59) and of the linking equations (63), where π = (πki )k∈Ki∈N and β = (βsa)

s∈Sa
a∈A are the

respective Lagrange multipliers. This relaxation gives the following Lagrangian subproblem,
noted LAGP (π, β):

v(LAGP (π, β)) = min
∑
a∈A

∑
s∈Sa

∑
k∈K

(csa−βsa−πkt(a)+π
k
h(a))x

ks
a +

∑
a∈A

∑
s∈Sa

(f say
s
a+
∑
q∈Qs

a

qβsay
q
a) (68)
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subject to constraints (60)-(62) and (64)-(67).
It is obvious that there exists an optimal solution to the Lagrangian subproblem such

that, for each arc a ∈ A and segment s ∈ Sa,
∑

k∈K x
ks
a > 0 if and only ysa = 1. Hence, we

can solve the Lagrangian subproblem as follows: for each arc a ∈ A and segment s ∈ Sa, we
first solve the following continuous knapsack problem:

v(P s
a (π, β)) = min

∑
k∈K

(csa − βsa − πkt(a) + πkh(a))x
ks
a (69)

lsa ≤
∑
k∈K

xksa ≤ vsa, (70)

0 ≤ xksa ≤Mk
a , k ∈ K. (71)

Then, we reformulate the Lagrangian subproblem as follows:

v(LAGP (π, β)) = min
∑
a∈A

∑
s∈Sa

(v(P s
a (π, β)) + f sa)ysa +

∑
q∈Qs

a

qβsay
q
a

 (72)

subject to constraints (62) and (64)-(67). The resulting Lagrangian subproblem is a pure IP
model expressed only in terms of the segment-based and the point-based variables ysa and
yqa.

Solving the corresponding Lagrangian dual allows us to compute v(EP+), as stated next:

Proposition 10 v(EP+) = maxπ,β{
∑

i∈N
∑

k∈K π
k
i d

k
i + v(LAGP (π, β))}.

Proof: By Lagrangian duality theory [19], the Lagrangian dual is equivalent to optimizing
the objective function (58) over the feasible domain described by the intersection of the set
defined by (59) and (63) with the convex hull of the set defined by (60)-(62) and (64)-(67),
which we denote by {(59),(63)} ∩ conv({(60)-(62),(64)-(67)}). If we can show that this feasi-
ble domain is equal to {(59)-(64)} ∩ conv({(65)-(66)})≡ {(59)-(64)} ∩ conv(CUTP ), i.e., the
set defined by (59)-(64) to which we add all the facet-defining inequalities for conv(CUTP ),
the result would immediately follow by definition of EP+. To show that {(59),(63)} ∩
conv({(60)-(62),(64)-(67)}) = {(59)-(64)} ∩ conv(CUTP ), we first remark that the inclusion
⊆ is trivial. To show the inclusion ⊇, it suffices to show that every extreme point of {(60)-
(62),(64)} ∩ conv(CUTP ) is integral. The same argument as in the proof of Proposition 7
can be used to show this result. �

Slight variations of this Lagrangian relaxation approach yield the following lower bounds,
provided the optimal Lagrange multipliers are computed:

• v(ES): It suffices to drop constraints (63) to (66) and to apply the same Lagrangian
relaxation. In a similar way as above, there exists an optimal solution to the resulting
Lagrangian subproblem such that, for each arc a ∈ A and segment s ∈ Sa,

∑
k∈K x

ks
a >

0 if and only if ysa = 1. As a result, we can reformulate the Lagrangian subproblem as
follows:

min
∑
a∈A

∑
s∈Sa

(v(P s
a (π)) + f sa)ysa (73)
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subject to (62) and (67), where v(P s
a (π)) is the optimal value of the following continuous

knapsack problem:

v(P s
a (π)) = min

∑
k∈K

(csa − πkt(a) + πkh(a))x
ks
a (74)

lsa ≤
∑
k∈K

xksa ≤ vsa, (75)

0 ≤ xksa ≤Mk
a , k ∈ K. (76)

The Lagrangian subproblem is thus solvable by finding the smallest Lagrangian cost
v(P s

a (π)) + f sa for each arc a, i.e., if mins∈Sa{v(P s
a (π)) + f sa} ≤ 0 then for one s ∈ Sa

that achieves this minimum, we set ysa = 1; otherwise, we set ysa = 0, s ∈ Sa. A similar
approach has been used to solve other problems related to the PMFI [2, 10, 25].

• v(ES+): We simply replace constraints (63) to (66) by the segment-based cutset
inequalities (32)-(33) and apply the same approach as for v(ES) when evaluating the
Lagrangian subproblem. Here, however, we obtain a pure IP model, in a similar way
as when computing v(EP+), but expressed only in terms of the ysa variables. Note
that this IP model contains an exponential number of cutset inequalities.

3.2 Computing Approximate Lower Bounds

As we have just seen, each of the Lagrangian subproblems solved when computing v(ES+)
contains an exponential number of cutset inequalities. Although we could add them itera-
tively using a cutting-plane approach, these inequalities are difficult to separate for general
multicommodity network flow problems. An alternative to a cutting-plane approach is to
generate a priori a small subset of these inequalities. In our implementation, we adopted
this approach, since our objective is not to obtain the exact lower bounds, but rather to
compute efficiently tight approximations of them. Hence, we generate only the inequalities
based on single-node cuts, a choice that is justified by computational experiments on simi-
lar problems [1, 7], which show that single-node cutset inequalities are responsible for most
of the lower bound improvement obtained by adding cutset inequalities in the context of
multicommodity network flow problems.

The reformulation of the Lagrangian subproblem as a pure IP model, i.e., (72) subject
to constraints (62) and (64)-(67), is difficult to solve because of the large number of binary
variables involved and also because the model exhibits a lot of symmetry, i.e., many solu-
tions have very close objective values. To circumvent these issues, we solve instead a MIP
relaxation of this reformulation obtained by dropping the integrality of the yqa variables and
by adding the segment-based and the point-based Chvàtal-Gomory rank 1 valid inequalities,
i.e., (38)-(39) and (36)-(37), respectively, restricted to single-node cuts. The segment-based
Chvàtal-Gomory rank 1 valid inequalities are redundant in the resulting MIP model, since
the segment-based variables ysa are binary. They are also redundant in the LP relaxation
of this MIP model, since they are implied by the point-based Chvàtal-Gomory rank 1 valid
inequalities. We have observed, however, that their addition helps in solving the model
more efficiently. In contrast, the point-based Chvàtal-Gomory rank 1 valid inequalities are
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no more redundant, since the yqa variables are now continuous; in particular, their addition
allows to derive a tighter LP relaxation.

To compute tight approximations to v(EP+), we propose two incremental strategies
that are called one after the other and combined to produce the best approximate lower
bound. The first strategy, called the Lagrangian strategy (or LAG), initializes the Lagrange
multipliers π to the values obtained when solving BS, the model defined by (8)-(13), with
a state-of-the-art LP solver. The strategy then updates the Lagrange multipliers π by a
subgradient method (to be detailed in Section 3.3) that derives tight approximations to
v(ES) and v(ES+). As a final step, strategy LAG solves the Lagrangian subproblem defined
in Section 3.1 by using the best values for the Lagrange multipliers π found so far and by
setting to zero the Lagrange multipliers β associated to the linking equations (63). The
second strategy, called the LP-based strategy (or LPS), initializes the Lagrange multipliers π

to the values obtained when solving an LP-based approximation to v(ÊS+). The strategy
then computes values for the Lagrange multipliers β by solving an LP-based approximation

to v(ÊP+). The final step of strategy LPS solves the Lagrangian subproblem of Section
3.1 by using the best Lagrange multipliers π and β found so far. By combining these two
incremental strategies, we obtain a unified procedure that makes use of tight approximations

to all the bounds defined in Section 2.5, i.e., v(ES+), v(ÊS+), v(ÊP+) and v(EP+).
The Lagrangian dual optimization procedure is outlined as follows:

1. Lagrangian strategy (LAG):

(a) Compute v(BS); let π0 the optimal Lagrange multipliers obtained from the opti-
mal LP dual solution.

(b) Given initial Lagrange multipliers π0, apply a subgradient method to find an
approximation to v(ES); let π1 be the best Lagrange multipliers found by the
subgradient method.

(c) Given initial Lagrange multipliers π1, apply a subgradient method to find an
approximation to v(ES+); let π2 be the best Lagrange multipliers found by the
subgradient method.

(d) Given Lagrange multipliers π2, find an approximation to v(EP+) by solving the
MIP relaxation of the Lagrangian subproblem LAGP (π2, 0), as outlined above.

2. LP-based strategy (LPS):

(a) Compute an approximation to v(ÊS+) by solving the LP relaxation obtained by
restricting the segment-based Chvàtal-Gomory rank 1 valid inequalities (38)-(39)
to single-node cuts; let π3 be the optimal Lagrange multipliers obtained from the
optimal LP dual solution.

(b) Given Lagrange multipliers π3, find an approximation to v(ÊP+) by solving the
LP relaxation of the Lagrangian subproblem obtained from model (58)-(67) by
relaxing the flow conservation equations (59) (with Lagrange multipliers π = π3)
and by replacing the point-based single-node cutset equations (65) with the point-
based Chvàtal-Gomory rank 1 valid inequalities (36)-(37) restricted to single-node
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cuts; let π4 and β4 be the optimal Lagrange multipliers obtained from the optimal
LP dual solution.

(c) Given Lagrange multipliers π4 and β4, find an approximation to v(EP+) by solv-
ing the MIP relaxation of the Lagrangian subproblem LAGP (π4, β4), as outlined
above.

3. Return as the approximation to v(EP+) the best of the two approximations found in
Steps 1d and 2c.

A few remarks are in order to fully understand the procedure:

• As shown in our computational experiments reported in Section 5, the computations of
v(BS) (Step 1a) and v(ES) (Step 1b) are extremely fast. Our experiments also confirm
that the subgradient method used in Steps 1b and 1c generally performs better when
it is provided with “good” initial Lagrange multipliers. These observations explain the
incremental approach used in the Lagrangian strategy.

• Our experiments, reported in Section 5, show that the MIP relaxation used in Steps
1d and 2c is solved efficiently, but requires a much more significant time than the La-
grangian subproblem used to compute the approximation to v(ES+). In particular,
while the subgradient optimization algorithm is both efficient and effective for comput-
ing this lower bound, it is not practical for computing an approximation to v(EP+).
On the one hand, the computing times become prohibitive, because of the increased
number of Lagrange multipliers and because of the difficulty in solving the Lagrangian
subproblems. On the other hand, the lower bound obtained by the combination of the
two incremental strategies is already very effective, to the point that the subgradient
optimization algorithm provides only minor bound improvement, as shown in Section
5. These observations explain why we solve only one Lagrangian subproblem in Steps
1d and 2c, instead of using the subgradient method.

• In Step 2a, we solve the corresponding LP relaxation by using a state-of-the-art LP
solver. Another approach would be to solve the same LP relaxation by using the sub-
gradient optimization algorithm in conjunction with the Lagrangian relaxation of the
flow conservation equations. At first, this approach appears very similar to the one used
to compute the approximation to v(ES+). There is a major difference, however: the
resulting Lagrangian subproblem is defined in terms of continuous variables only. As a
consequence, the property that, for each arc a ∈ A and segment s ∈ Sa,

∑
k∈K x

ks
a > 0

if and only if ysa = 1 is not true anymore; instead, we have that, for each arc a ∈ A
and segment s ∈ Sa,

∑
k∈K x

ks
a > 0 if and only if ysa > 0. This apparently minor

modification makes a huge difference when solving the Lagrangian subproblem, since
it is no more possible to solve it through decomposition into a collection of continuous
knapsack problems followed by the solution of a model expressed only in terms of the ysa
variables. Instead, the Lagrangian subproblem would be solved as a non-decomposable
LP model involving both the flow variables xksa and the segment-based variables ysa.
As a result, the direct solution of the LP relaxation in Step 2a is computationally
preferable to the Lagrangian relaxation approach for approximating the same bound.
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• Instead of performing Steps 2a and 2b, we could have solved the approximation to

v(ÊP+) defined by model ÊP+ restricted to single-node point-based Chvàtal-Gomory
rank 1 valid inequalities (36)-(37). As shown in our computational experiments re-
ported in Section 5, the computing times for solving this LP relaxation are prohibitive.
In contrast, the LP-based incremental strategy computes effective lower bounds, while
ensuring low computational requirements. These observations explain the incremental
approach used in the LP-based strategy.

• When solving the LP relaxation of the Lagrangian relaxation in Step 2b, we also add
the segment-based Chvàtal-Gomory rank 1 valid inequalities (38)-(39) restricted to
single-node cuts. Although these inequalities are redundant, we observed that their
addition generally improves the computing times.

• The combination of the two incremental strategies has the nice characteristic that
it preserves most of the bound relationships of Proposition 9, where each theoretical
bound is replaced by its approximation given by the procedure. Indeed, the inequalities

v(EP+) ≥ v(ES+) and v(EP+) ≥ v(ÊP+) are guaranteed by Steps 1d and 2c,

respectively. The inequality v(ÊP+) ≥ v(ÊS+) follows from Step 2b. Only the

inequality v(ES+) ≥ v(ÊS+) might be violated, although in practice it is generally
satisfied.

3.3 Subgradient Method

The subgradient method is a simple implementation of the classical Held-Wolfe-Crowder
approach [24]. At every iteration t > 0, the new Lagrange multipliers π(t) are computed
by taking a step α(t) in the direction of a subgradient γ(t): π(t) = π(t − 1) + α(t)γ(t).
The subgradient γ(t) is equal to the difference between the right and left-hand sides of
the flow conservation equations evaluated at the optimal solution of the current Lagrangian
subproblem. The step is computed as α(t) = λ(t)(v∗−v(π(t−1)))/||γ(t)||2, where v(π(t−1))
is the Lagrangian lower bound associated to Lagrange multipliers π(t − 1), v∗ is an upper
bound on the optimal value of the Lagrangian dual (we use the best upper bound obtained
by the Lagrangian heuristic method described in Section 4), λ(t) is a parameter that takes
its initial value λ(0) in the interval (0, 2] and is typically decreased (divided by ω1 > 1) every
time v(π(t)) has not improved for some number ω2 of consecutive iterations. The algorithm
stops when the lower bound has not improved for some number ω3 of consecutive iterations
or when a maximum number ω4 of iterations has been attained. In our experiments, we use
the following values for these parameters: λ(0) = 1, ω1 = 2, ω2 = 15, ω3 = 30 and ω4 = 400.

4 Lagrangian Heuristic

In this section, we present the Lagrangian heuristic method used to compute feasible so-
lutions to the PMFI, yielding upper bounds on the optimal value of the problem. As in
any Lagrangian heuristic method, we make use of the values ȳsa obtained from solving any
Lagrangian subproblem to derive feasible solutions to the PMFI. To derive effective feasi-
ble solutions from the Lagrangian subproblem solutions, we use a slope scaling procedure,
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which has been used successfully in the context of single-commodity [26, 27] and multicom-
modity [11] network flow problems. The novelty here is to embed it within a traditional
Lagrangian heuristic method that uses the Lagrangian subproblem primal solutions to guide
the search for feasible solutions. Section 4.1 gives the details of the slope scaling procedure,
which solves a sequence of linear continuous multicommodity network flow problems. In
Section 4.2, we explain how to use the solutions obtained by the slope scaling procedure
to drive the search for effective integer multicommodity flow solutions. Section 4.3 presents
how the slope scaling procedure is combined with the Lagrangian dual optimization approach
described in Section 3.2 to produce a complete Lagrangian relaxation method that generates
lower and upper bounds on the optimal value of the PMFI.

4.1 Slope Scaling Procedure

The guiding principle of a slope scaling approach is extremely simple: given a feasible solution
to a non-linear network flow problem, the objective function is linearized in such a way that,
if the resulting linear network flow problem provides as optimal solution the same feasible
solution, the optimal value of the linear problem corresponds to the non-linear objective
function value.

At every step of the slope scaling approach, we consider the following linear multicom-
modity network flow problem, denoted MF , where the linear arc costs c̄a are to be adjusted
using the slope scaling guiding principle:

v(MF ) = min
∑
a∈A

∑
k∈K

c̄ax
k
a (77)

∑
a∈Fi

xka −
∑
a∈Bi

xka = dki , i ∈ N, k ∈ K, (78)

∑
k∈K

xka ≤ ua, a ∈ A, (79)

xka ≥ 0, a ∈ A, k ∈ K. (80)

This problem can be solved with any existing efficient method for linear multicommodity
network flow problems; in our implementation, we use a state-of-the-art LP solver. Note that
the costs and the capacities do not depend on the commodities. As a consequence, when
some commodities share the same origin (or the same destination), they can be aggregated
into a single commodity, thus reducing the size of the problem.

Suppose we solve MF and obtain a feasible solution with flows x̄ka; for each arc a, we
then let x̄a =

∑
k∈K x̄

k
a and s̄a the segment of the piecewise linear objective function of PMFI

such that xs̄aa = x̄a. The linear cost c̄a at the next slope scaling iteration is then adjusted
using the formula:

c̄a =

{
cs̄aa + (f s̄aa /x̄a), if x̄a > 0,

c̄a, if x̄a = 0.

Thus, when there is flow on arc a and the same flow appears again in the solution obtained
after computing MF , the associated linear cost reflects the piecewise linear cost: (cs̄aa +
(f s̄aa /x̄a))x̄a = cs̄aa x

s̄a
a + f s̄aa . When there is no flow on arc a, the slope scaling update must
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intuitively assign a sufficiently large linear cost to arc a, but not too large in order to avoid
“freezing” the solution too early. The cost used at the previous iteration was precisely large
enough for the flow not to transit through arc a and is thus used for that purpose.

The slope scaling approach iterates between the solution of MF and the linear cost
update until the same solution is repeated or a maximum number of iterations is achieved
(we use 50 in our implementation). To start this iterative process, we need initial linear
costs; this is where we use the Lagrangian optimal solutions ȳsa in the spirit of a classical
Lagrangian heuristic method. More precisely, we initialize the linear cost c̄a on each arc with
the formula:

c̄a = (ca + fa/ua)(1 +M(1−
∑
s∈Sa

ȳsa)),

where ca = c
|Sa|
a , fa = f

|Sa|
a and M is a sufficiently large number (we use 10 in our imple-

mentation). When arc a is used in the Lagrangian solution, i.e.,
∑

s∈Sa
ȳsa = 1, the rationale

behind this formula is then to use the linear lower approximation ca+fa/ua that corresponds
to the line connecting the origin to the objective function value at full usage of the arc, i.e.,
its capacity ua = b

|Sa|
a . When arc a is not used in the Lagrangian solution, i.e.,

∑
s∈Sa

ȳsa = 0,
the linear cost should be sufficiently large to reflect the fact that arc a is not “interesting”
according to the Lagrangian solution.

4.2 Deriving Integer Solutions

Any solution x̄a derived from solving MF is feasible for the PMFI if x̄a is integer. The
upper bound corresponding to this feasible solution is v(x̄) =

∑
a∈A(cs̄aa x̄a + f s̄aa ). During

any call to the slope scaling procedure, we thus keep track of the best integer solution x̄
with its corresponding value v(x̄). To prevent against the possibility that no integer solution
x̄ is found during an entire call to the slope scaling procedure, we also keep track of the
best non-integer solution, the one with the best piecewise linear objective function value
v(x̄) =

∑
a∈A(cs̄aa x̄a + f s̄aa ). If the best integer and non-integer solutions are “close” enough

(in our implementation, if they differ by less than 1%), the slope scaling procedure is stopped;
otherwise (if no integer solution is found or only a “poor” integer solution is found), we then
solve again the MF that gave the best non-integer solution, but this time with the addition
of the integrality constraint on the total flows. If the resulting integer solution is better than
the currently best integer solution, it replaces it. By proceeding in this way, we also ensure
that we obtain an integer solution x̄ of value v(x̄) at the end of the slope scaling procedure.

Note that v(x̄) is the piecewise linear objective function value of the integer solution x̄
derived from solving MF . Thus, x̄ is optimal when using the linear costs adjusted with the
slope scaling formula, but it is not necessarily the best solution for the restriction of the
PMFI that uses the same arcs as x̄ at the same lower and upper limits. To determine this
solution, we solve the following integer multicommodity flow problem, IMF (x̄), using the
best integer solution x̄ found by the slope scaling procedure:

v(IMF (x̄)) =
∑
a∈A

f s̄aa + min
∑
a∈A

cs̄aa xa (81)

∑
a∈Fi

xka −
∑
a∈Bi

xka = dki , i ∈ N, k ∈ K, (82)
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∑
k∈K

xka = xa integer, a ∈ A, (83)

ls̄aa ≤ xa ≤ vs̄aa , a ∈ A, (84)

xka ≥ 0, a ∈ A, k ∈ K. (85)

Note that this problem always has a feasible solution, namely x̄. By optimizing over the
“true” piecewise linear objective function, we can thus only improve upon the value v(x̄).
Thus, as an intensification step after every call to the slope scaling procedure, we solve
IMF (x̄) and use its optimal value v(IMF (x̄)) to possibly update the best upper bound v∗.

4.3 Combining Slope Scaling and Lagrangian Dual Optimization

The slope scaling procedure is called just after computing v(BS) in the Lagrangian strategy
(i.e., Step 1a of the Lagrangian dual optimization procedure presented in Section 3.2), this
time using the optimal solution ȳsa to BS; this provides an initial upper bound v∗ given to
the subgradient method used in Step 1b of the procedure. Subsequently, we call the slope
scaling procedure in two modes: 1) in conjunction with the subgradient method used in
Steps 1b and 1c; 2) as part of solving of the MIP Lagrangian subproblem in Steps 1d and
2c. Within each of these two modes, the slope scaling procedure is called several times, thus
producing a pool of “good” feasible solutions, out of which we apply a post-optimization
procedure that produces an improved feasible solution.

We use the following rules to decide when to call the slope scaling procedure in conjunc-
tion with the subgradient method in Steps 1b and 1c:

• Call the slope scaling procedure using the solution ȳsa that corresponds to the best
Lagrangian subproblem obtained at the end of the step.

• Call the slope scaling procedure using solution ȳsa if the lower bound has improved
“significantly” since the last time the upper bound was computed; the “significant”
improvement is measured by the test (v(last)− v(current))/v(last) > δ, where δ is a
parameter (set to 1%) and v(last) and v(current) are, respectively, the lower bound
computed at the current iteration and the lower bound obtained the last time the slope
scaling procedure was called.

• Call the slope scaling procedure every nth (n = 10) iteration of the subgradient method
(to avoid too early “freezing” of upper bound computations in case δ is too large).

The slope scaling procedure is thus called several times in conjunction with the subgradient
method, both in Steps 1b and 1c. The pool of feasible solutions thus obtained is used in the
post-optimization procedure outlined below.

When solving the MIP Lagrangian subproblem in Steps 1d and 2c, we use a state-of-
the-art MIP solver that implements a branch-and-bound (B&B) algorithm. For each integer
solution found during the exploration of the B&B tree, which provides binary values ȳsa for
the segment-based variables, we invoke the slope scaling procedure. Thus, at the end of each
of Steps 1d and 2c, we give as input to the post-optimization procedure the pool of feasible
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solutions obtained from calling the slope scaling procedure heuristic multiple times, one for
each integer solution.

At the end of Steps 1b, 1c, 1d and 2c of the Lagrangian dual optimization procedure, the
following post-optimization procedure is applied. We assume we have kept in memory a pool
of the feasible solutions found during the corresponding step by the slope scaling procedure.
Out of the solutions in this pool, we extract only the best solutions x̄, i.e., those with a
value v(IMF (x̄)) sufficiently close to the best upper bound v∗ (in our tests, we consider x̄
if the relative gap between v(IMF (x̄)) and v∗ is less than 1%). We denote by P the pool
consisting of these best solutions. We then define Ā = {a ∈ A |x̄a = 0, ∀x̄ ∈ P}, the subset
of the arcs for which every solution in P displays no flow circulating on these arcs. We solve
the MIP formulation BS(Ā), which is the basic segment-based model of the PMFI restricted
to the arcs in A \ Ā. This model is defined by (1)-(7) (where lsa = bs−1

a + 1, a ∈ A, s ∈ Sa)
with the addition of the constraints:∑

s∈Sa

ysa = 0, a ∈ Ā. (86)

It is obvious that each solution x̄ ∈ P defines a feasible solution to BS(Ā). As mentioned
above, IMF (x̄) is optimizing over the “true” piecewise linear objective function, but it does
so by fixing the segment of the cost function for each arc. In contrast, BS(Ā) fixes only the
arcs that are not used in every solution x̄ ∈ P , while optimizing over all segments of the
cost function for the other arcs. Hence, the best value v(IMF (x̄)) for any x̄ ∈ P , which is
given as the best incumbent value when starting to solve BS(Ā), can only be improved as a
result of solving BS(Ā). The output of this post-optimization procedure is the best feasible
solution found this way, which is used to improve upon the value v∗ obtained at the end of
the Lagrangian heuristic method.

5 Computational Experiments

We present computational results on a large set of randomly generated instances with dif-
ferent cost structures. Our objective is twofold:

• To assess the performance of the Lagrangian relaxation method. To this purpose, we
compare its results to those obtained by a state-of-the-art LP/MIP solver. This way,
we are able to compare the Lagrangian-based lower bounds with their corresponding
equivalent LP relaxation bounds for these models. We also compare the upper bounds
from the Lagrangian heuristic method with those from the MIP solver with a limited
CPU time.

• To assess the quality of the different formulations with respect to various network
configurations and cost structures. In particular, we are interested in evaluating the
improvements in the bounds obtained by discretization combined with the addition of
cutset inequalities and flow disaggregation.

The Lagrangian relaxation method was implemented in C++, using CPLEX version 12.5.1.0
as the MIP/LP solver. The code was compiled with g++ 4.4.7 and run on an Intel Xeon
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X5675, operating at 3,07 GHz, in single-threaded mode. Before analyzing the results in
Section 5.3, we first describe the set of instances used in our experiments in Section 5.1.

5.1 Set of Instances

We obtained the problem instances from a network generator similar to the one described
in [10] for multicommodity capacitated fixed-charge problems. When provided with target
values for |N | and |A|, this generator creates arcs by connecting two randomly selected nodes
(no parallel arcs are allowed). The commodities are generated as follows: given target values
|O| < |N | and |D| ≤ |N |−|O|, the number of origins and destinations, respectively, it selects
the origins at random. Then, for each origin, it selects |D| destinations at random among the
nodes in N \O, where O is the set of origins. The number of commodities is therefore equal
to |K| = |O| × |D|. The generator also creates the variable costs, capacities, and demands
as uniformly distributed over user-provided intervals. The capacities can then be scaled by
adjusting the capacity ratio, C = |A|T/

∑
a∈A ua, to user-provided values (in this formula,

T = 1
2

∑
k∈K

∑
i∈N |dki |, the total demand flowing through the network). When C equals 1,

the average arc capacity
∑

a∈A ua/|A| equals the total demand, and the network is lightly
capacitated. It becomes more tightly capacitated as C increases.

For each network, we generated two cost structures, as in [12]: concave and nonconcave.
For both types of instances, we provided the maximum number of segments, S, of the cost
function as a parameter. For concave instances, we randomly generated a set of decreasing
variable costs within the specified interval for each arc. We also set bsa = s2D

S2 , for each arc
a, so that the segment length increases as s increases, as is typical of transportation costs
[2]. We then adjusted the number of segments on each arc a so that b

|Sa|
a = min{T, ua}.

Given variable costs, breakpoints, and f 1
a , the initial fixed cost, we can then compute the

appropriate fixed costs for the remaining segments so that the resulting function is concave.
We obtained nonconcave instances by imposing bsa =

⌈
T
S

⌉
, for each arc a, so that each segment

is of equal size, except the last one. We then adjusted the number of segments to account for
the capacities on the arcs by eliminating segments beyond any arc’s capacity. The network
generator provided the variable costs, which are not necessarily decreasing, as in the concave
case. Given an initial fixed cost f 1

a for each arc, we compute the remaining fixed costs as
f sa = sf 1

a . Thus, when f 1
a > 0, we obtain a staircase cost function (with variable costs). In

our experiments, we consider four different cost structures: concave and nonconcave, with
f 1
a = 100 and 1000.

We classify the instances according to the number of commodities, which is one of the
main characteristics in assessing the difficulty of solving the models. We consider three
classes of instances:

• Small instances (|K| = 25): The following network dimensions are used for instances
in this class: (|N |, |A|) = (20, 75), (20, 100), (25, 100), (25, 150). For each of these four
combinations, we select five origins and, for each of them, five destinations, i.e., |O| = 5
and |D| = 5, so the number of commodities is |K| = 25.

• Medium instances (|K| = 50): We use the same four network dimensions as for Small
instances. We then select |O| = 5 origins at random and, for each of them, we select
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|D| = 10 destinations at random among the |N | − |O| remaining nodes. The number
of commodities is therefore |K| = 50.

• Large instances (|K| = 100): We use the same four network dimensions as for Small
and Medium instances. These instances have |K| = 100 commodities obtained by
selecting |O| = 10 origins and, for each of them, |D| = 10 destinations among the
|N | − |O| remaining nodes.

Thus, in each category of instances, there are four combinations of network dimensions
(|N |, |A|. For each of these combinations, we generate 24 instances by varying the different
parameters in a similar way as in [12]: in addition to the four different cost structures, we
vary the number of segments (4, 6, 8) and the capacity ratio C (2, 4). Our generation
procedure thus results into 96 instances in each category, for a total of 288 instances.

5.2 Design of the Experiments

Our experiments consider four MIP formulations of the PMFI:

• BS: The basic segment-based model defined by (1)-(7), with the strengthened segment
lower bounds lsa = bs−1

a + 1, a ∈ A, s ∈ Sa.

• ES: The extended segment-based model defined by (58)-(62) and (67).

• ES+: This is model ES with the addition of the segment-based Chvàtal-Gomory rank
1 valid inequalities (38)-(39) restricted to single-node cuts.

• EP+: This is model ES with the addition the constraints defining the point-based
variables, (63), (64) and (66), along with the point-based Chvàtal-Gomory rank 1 valid
inequalities (36)-(37) restricted to single-node cuts.

The following methods are used to compute lower and upper bounds based on these four
formulations:

• LD, the Lagrangian dual optimization procedure presented in Section 3.2. The follow-
ing bounds, approximated by this method, are reported: v(ES) (Step 1b), v(ES+)
(Step 1c), v(EP+) (Steps 1d, 2c and 3). When solving the Lagrangian subproblems
used to compute v(ES+) and v(EP+), the B&B method of CPLEX (with default
options) is used. In addition, the Chvàtal-Gomory rank 1 valid inequalities (36)-(39)
for p > 1 are declared as lazy constraints, which ensures that CPLEX is adding only a
small number of them, in a cutting-plane fashion.

• LP, the LP solver of CPLEX (with default options). The following bounds are com-
puted by this method: v(BS), using the model defined by (8)-(13); v(ES), using the

LP relaxation of MIP model ES; v(ÊS+), using the LP relaxation of MIP model ES+;

and v(ÊP+), using the LP relaxation of MIP model EP+.
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• BB0, the root node computations of the B&B method of CPLEX (with default options).
Lower bounds for the four MIP formulations are computed with this method. Because
of CPLEX preprocessing and cutting-plane procedures, these lower bounds dominate
those computed by method LP. Again, the Chvàtal-Gomory rank 1 valid inequalities
(36)-(39) for p > 1 are declared as lazy constraints.

• BB, the B&B method of CPLEX (with default options) performed for a limit of 1 hour
. This method generates both lower and upper bounds based on the four MIP formu-
lations, except for the instances for which CPLEX cannot find any feasible solution
within the limit of 1 hour, in which case only a lower bound is obtained.

• LH, the Lagrangian heuristic method described in Section 4. Upper bounds are com-
puted based on formulations ES (in Step 1b of method LD), ES+ (in Step 1c of
method LD) and EP+ (in Steps 1d, 2c and 3 of method LD).

For each instance I, these five methods are performed for the four models, producing
several lower and upper bounds on the optimal value of the PMFI for instance I. The best
of these upper bounds, denoted v∗(I), is used as a reference for computing lower and upper
bound gaps. More precisely, for any bound (lower or upper) v(I), we compute the ratio with
respect to the best known upper bound v∗(I) for each instance, i.e., GAP (I) = v(I)/v∗(I) ,
which implies that values closer to 1 are better.

5.3 Analysis of the Computational Results

We first analyze the results obtained with different strategies to approximate v(EP+). We
compare the following approaches:

• LAG, the Lagrangian strategy performed in Steps 1a to 1d of the Lagrangian dual
optimization procedure presented in Section 3.2.

• LPS, the LP-based strategy performed in Steps 2a to 2c of the Lagrangian dual opti-
mization procedure.

• LAG+LPS, the whole Lagrangian dual optimization procedure, combining the two
previous strategies.

• LAG+SUB, the same as strategy LAG, except that the solution to the single La-
grangian subproblem in Step 1d is replaced by a call to an adaptation of the subgradient
method described in Section 3.3, where both π and β multipliers are adjusted.

Table 1 summarizes the computational results obtained for all instances. Lower and upper
bound GAPs and CPU times in seconds are reported on average for the four network dimen-
sions (|N |, |A|) = (20, 75), (20, 100), (25, 100), (25, 150) (each class contains 24 instances), as
well as for the 96 instances in each class, Small (|K| = 25), Medium (|K| = 50) and Large
(|K| = 100).

These results show that all the strategies generate similar lower bounds, with a slight
edge for the combined approach LAG+LPS. We observed that, for some instances, LAG
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(|N |, |A|) LAG LPS LAG+LPS LAG+SUB

(20,75) 0.93, 1.03, 16 0.93, 1.03, 14 0.94, 1.02, 30 0.93, 1.03, 13829
(20,100) 0.94, 1.02, 22 0.93, 1.04, 40 0.94, 1.02, 62 0.94, 1.02, 24391
(25,100) 0.92, 1.01, 17 0.93, 1.04, 26 0.93, 1.01, 44 0.92, 1.01, 31380
(25,150) 0.92, 1.05, 36 0.92, 1.07, 33 0.92, 1.04, 69 0.92, 1.05, 75612
Small 0.93, 1.03, 23 0.93, 1.05, 28 0.93, 1.02, 51 0.93, 1.03, 36303

(20,75) 0.93, 1.01, 33 0.94, 1.03, 37 0.94, 1.01, 70 0.93, 1.01, 17769
(20,100) 0.94, 1.01, 13 0.94, 1.03, 32 0.94, 1.01, 45 0.94, 1.01, 31774
(25,100) 0.93, 1.02, 34 0.93, 1.04, 28 0.93, 1.02, 62 0.93, 1.02, 34363
(25,150) 0.91, 1.02, 27 0.91, 1.05, 65 0.91, 1.02, 92 0.91, 1.02, 80222
Medium 0.93, 1.02, 27 0.93, 1.04, 41 0.93, 1.02, 68 0.93, 1.01, 41302

(20,75) 0.95, 1.01, 19 0.96, 1.01, 50 0.96, 1.00, 69 0.95, 1.01, 5374
(20,100) 0.95, 1.00, 19 0.95, 1.01, 66 0.95, 1.00, 85 0.95, 1.00, 14613
(25,100) 0.94, 1.01, 40 0.95, 1.01, 127 0.95, 1.00, 166 0.94, 1.01, 25644
(25,150) 0.94, 1.01, 188 0.95, 1.03, 165 0.95, 1.00, 353 0.94, 1.01, 43103
Large 0.95, 1.01, 67 0.95, 1.02, 102 0.95, 1.00, 168 0.95, 1.01, 22184

Table 1: Strategies to approximate v(EP+): lower bound GAP, upper bound GAP, CPU

produces better lower bounds than LPS, while for other instances, the opposite is true.
Thus, by combining the two strategies, we obtain better overall lower bounds. Although
strategy LAG generates better upper bounds than LPS on average, the same observation
holds for the upper bounds: no dominance exists across all instances, which implies that
the combination of the two strategies produces better overall upper bounds. This can be
seen on the average values for some of the instance classes, for example Small instances with
size (20, 75) for both the lower bound and the upper bound GAPs and Small instances with
size (25, 150) for the upper bound GAP. As shown in column LAG+SUB, the subgradient
method does not help improving the bounds and its computing times are prohibitive. These
results justify solving a single Lagrangian subproblem instead of a call to the subgradient
method in Step 1d of the Lagrangian dual optimization procedure.

Table 2 displays the lower bound GAPs and the CPU times in seconds to compute the
different lower bounds (excluding the times for upper bound computations), averaged for
each problem class as in Table 1, for each combination of model and lower bounding method
described in Section 5.2 (with the exception of BB whose results are shown below in Table
4).

From these results, we draw the following conclusions:

• As expected, formulation BS is weak, producing lower bound gaps around 25% on
average. The B&B method of CPLEX at the root node reduces these gaps by 5-10%,
thanks to its preprocessing and cutting-plane procedures. The extended models, on the
other hand, improve these gaps by 15-20%, which shows the strength of the extended
forcing constraints (40).

• The Lagrangian dual optimization procedure provides effective lower bound approx-
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(|N |, |A|) Algo BS ES ES+ EP+

LD 0.75, 0 0.92, 0 0.93, 7 0.94, 28
(20,75) LP 0.75, 0 0.93, 1 0.93, 1 0.93, 65

BB0 0.83, 0 0.94, 2 0.95, 2 0.95, 13

LD 0.74, 0 0.91, 0 0.94, 9 0.94, 49
(20,100) LP 0.74, 0 0.92, 1 0.92, 1 0.92, 56

BB0 0.84, 0 0.94, 2 0.95, 3 0.95, 18

LD 0.74, 0 0.92, 0 0.92, 4 0.93, 40
(25,100) LP 0.74, 0 0.92, 1 0.92, 2 0.92, 273

BB0 0.84, 1 0.94, 3 0.95, 3 0.95, 25

LD 0.70, 0 0.91, 1 0.92, 10 0.92, 68
(25,150) LP 0.70, 0 0.91, 3 0.92, 4 0.92, 204

BB0 0.79, 1 0.92, 5 0.94, 8 0.94, 43

LD 0.73, 0 0.92, 0 0.93, 8 0.93, 46
Small LP 0.73, 0 0.92, 2 0.92, 2 0.92, 150

BB0 0.83, 1 0.94, 3 0.95, 4 0.95, 25

LD 0.76, 0 0.92, 1 0.93, 9 0.94, 68
(20,75) LP 0.76, 0 0.93, 3 0.93, 4 0.93, 124

BB0 0.83, 1 0.94, 5 0.95, 7 0.95, 28

LD 0.73, 0 0.93, 0 0.94, 4 0.94, 42
(20,100) LP 0.73, 0 0.94, 6 0.94, 7 0.94, 228

BB0 0.83, 1 0.94, 9 0.95, 11 0.96, 39

LD 0.70, 1 0.92, 1 0.93, 9 0.93, 60
(25,100) LP 0.70, 1 0.93, 7 0.93, 8 0.93, 433

BB0 0.79, 2 0.93, 12 0.95, 16 0.95, 54

LD 0.66, 1 0.90, 2 0.91, 4 0.91, 90
(25,150) LP 0.66, 1 0.91, 25 0.92, 35 0.92, 1294

BB0 0.76, 3 0.91, 28 0.92, 49 0.93, 140

LD 0.71, 1 0.92, 1 0.93, 7 0.93, 65
Medium LP 0.71, 1 0.93, 10 0.93, 14 0.93, 520

BB0 0.80, 2 0.93, 14 0.94, 21 0.95, 65

LD 0.80, 1 0.95, 2 0.95, 3 0.96, 64
(20,75) LP 0.80, 1 0.96, 12 0.96, 18 0.96, 310

BB0 0.87, 1 0.96, 18 0.96, 17 0.96, 54

LD 0.78, 1 0.95, 1 0.95, 2 0.95, 72
(20,100) LP 0.78, 1 0.95, 24 0.95, 35 0.95, 1169

BB0 0.82, 3 0.96, 34 0.96, 40 0.96, 89

LD 0.74, 1 0.94, 1 0.94, 2 0.95, 123
(25,100) LP 0.74, 1 0.95, 39 0.95, 63 0.95, 1095

BB0 0.80, 3 0.95, 54 0.95, 59 0.95, 130

LD 0.76, 1 0.94, 3 0.94, 3 0.95, 189
(25,150) LP 0.76, 1 0.95, 67 0.95, 106 0.95, 1103

BB0 0.81, 7 0.95, 81 0.95, 107 0.95, 227

LD 0.77, 1 0.95, 2 0.95, 3 0.95, 112
Large LP 0.77, 1 0.95, 36 0.95, 56 0.95, 919

BB0 0.83, 4 0.96, 47 0.96, 56 0.96, 125

Table 2: Lower bounds: lower bound GAP, CPU
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imations, independently of the formulation. As can be seen from column ES, the
subgradient method provides a tight approximation (within 1% on average) of the the-
oretical bound v(ES) computed by the LP solver of CPLEX. It is also noteworthy
that CPLEX provides only slight improvements (on the order of 1-2%) by adding its
sophisticated preprocessing and cutting-plane features at the root node (method BB0).

• For the same model, the Lagrangian dual optimization procedure is in general signif-
icantly faster than the LP solver of CPLEX and the difference in computing times
increases with the number of commodities. In particular, method LD solves the ex-
tended models for Medium and Large instances much faster than LP. For the same
instances, the computing times for LD are also generally better than those for BB0,
except for model EP+ where the CPU times are similar.

• Formulation ES produces gaps around 5-10% on average, with better results on Large
instances. Small improvements (on the order of 1-2%) are obtained by adding segment-
based cutset inequalities through formulation ES+. When adding to this last model
the point-based cutset inequalities, a similar behavior is observed.

We now compare the upper bounds obtained by the Lagrangian heuristic method of
Section 4, LH, with those computed by the B&B method of CPLEX, BB, with a limit of
1 hour. Table 3 displays three measures for each class of instances: Nfeas, the number
of instances in the corresponding class for which each method-model combination found a
feasible solution; Nopti, the number of instances in the corresponding class for which each
method-model combination provided a certificate of optimality; CPU, the computing time in
seconds for each method-model combination. We note that, independently of the model used,
method LH always generates a feasible solution. Moreover, the best solution it generates
has never been shown optimal for any of the instances. Hence, the values of Nfeas and
Nopti are easy to interpret for method LH: for 100% of the instances, LH found feasible, but
non-optimal solutions.

These results show that, in spite of being the weakest model in terms of the quality
of its LP relaxation bound, BS gives the best performance for computing upper bounds
with the B&B method of CPLEX. In particular, it is the only model for which BB finds
feasible solutions to all instances. In contrast, the strongest model EP+ identifies a feasible
solution within 1 hour for only 117 of the 288 instances. Formulations ES and ES+ show
intermediate results, with 252 and 277 instances, respectively, for which they could find
feasible solutions. The performance in terms of CPU times and number of optimal solutions
found are similar: BS is generally faster than the other models and is able to prove optimality
for a larger number of instances. The only exception is for Small instances for which model
ES+ is slightly better than both BS and ES, which indicates that the addition of cutset
inequalities can help in solving the problem, at least for instances with few commodities.
Overall, these results show that, although the extended models generate much stronger lower
bounds than the basic model, their size is an issue for a stand-alone MIP solver like CPLEX
and that decomposition methods must be used to exploit their strength. Table 3 also shows
that the Lagrangian heuristic is fast, its CPU times being one to two orders of magnitude
smaller than those of the B&B method of CPLEX, .
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(|N |, |A|) Algo BS ES ES+ EP+

(20,75) BB 24, 20, 1066 24, 20, 1260 24, 21, 935 24, 8, 3175
LH 24, 0, 0 24, 0, 1 24, 0, 8 24, 0, 30

(20,100) BB 24, 18, 1311 24, 18, 1489 24, 19, 1307 24, 8, 3222
LH 24, 0, 0 24, 0, 0 24, 0, 9 24, 0, 62

(25,100) BB 24, 16, 1924 24, 13, 2361 24, 15, 2151 22, 0, 3613
LH 24, 0, 0 24, 0, 3 24, 0, 7 24, 0, 44

(25,150) BB 24, 5, 3103 24, 9, 2774 24, 8, 2828 12, 0, 3632
LH 24, 0, 0 24, 0, 1 24, 0, 10 24, 0, 69

Small BB 96, 59, 1851 96, 60, 1971 96, 63, 1805 82, 16, 3411
LH 96, 0, 0 96, 0, 1 96, 0, 9 96, 0, 51

(20,75) BB 24, 12, 2099 24, 10, 2545 24, 12, 2295 17, 2, 3584
LH 24, 0, 0 24, 0, 2 24, 0, 10 24, 0, 70

(20,100) BB 24, 9, 2492 24, 10, 2554 24, 9, 2509 17, 2, 3578
LH 24, 0, 0 24, 0, 1 24, 0, 5 24, 0, 45

(25,100) BB 24, 8, 2914 23, 6, 2937 24, 8, 3008 1, 0, 3644
LH 24, 0, 1 24, 0, 3 24, 0, 11 24, 0, 62

(25,150) BB 24, 3, 3274 18, 2, 3419 20, 3, 3364 0, 0, 3730
LH 24, 0, 1 24, 0, 3 24, 0, 5 24, 0, 92

Medium BB 96, 32, 2695 89, 28, 2864 92, 32, 2794 35, 4, 3634
LH 96, 0, 1 96, 0, 2 96, 0, 8 96, 0, 67

(20,75) BB 24, 20, 968 21, 12, 2685 24, 15, 2193 0, 0, 3642
LH 24, 0, 1 24, 0, 3 24, 0, 5 24, 0, 69

(20,100) BB 24, 11, 2337 21,5, 3382 24, 6, 3152 0, 0, 3680
LH 24, 0, 1 24, 0, 7 24, 0, 8 24, 0, 85

(25,100) BB 24, 8, 2742 14, 0, 3642 22, 1, 3597 0, 0, 3721
LH 24, 0, 1 24, 0, 18 24, 0, 19 24, 0, 166

(25,150) BB 24, 3, 3385 11, 0, 3648 19, 1, 3662 0, 0, 3818
LH 24, 0, 1 24, 0, 155 24, 0, 161 24, 0, 353

Large BB 96, 42, 2358 67, 17, 3339 89, 22, 3151 0, 0, 3715
LH 96, 0, 1 96, 0, 46 96, 0, 48 96, 0, 168

Table 3: Upper bounds: Nfeas, Nopti, CPU
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As a further comparison between BB and LH, Table 4 shows the results obtained with
the best method-model combination for each of the two methods. For BB, as just seen in
Table 3, the best model is BS, while for LH, we selected EP+ as the best model. Indeed, the
incremental strategy used when the Lagrangian heuristic is combined with the Lagrangian
dual optimization procedure (see Section 4.3) guarantees that the upper bound obtained
after solving EP+ (Steps 1d, 2c and 3) dominates any other upper bound found during the
course of the Lagrangian heuristic. In practice, we observed that the upper bound found
when solving ES is already very good, as it is about 1% away from the best feasible solution
found by the Lagrangian heuristic when solving EP+. Nonetheless, EP+ is to be preferred,
as it produces the best lower and upper bounds, with a modest additional computational
effort, as shown in Table 3. Table 4 summarizes the results obtained with the two method-
model combinations, BB-BS and LH-EP+. Three performance measures are provided: the
lower bound GAP, the upper bound GAP and the CPU times in seconds.

These results show that, on Small and Medium instances, the upper bounds obtained by
LH are on average within 2% of the best known solutions. On Large instances, the Lagrangian
heuristic generally computes the best known upper bounds, with BB being 1% away from
them on average, and even 3% away on average on the largest instances with (25, 150). The
computational effort to obtain such effective upper bounds is reasonable, as the CPU time
is typically on the order of 1 minute on all instances. On Large instances with size (25, 150),
the computing time is around 5 minutes on average. The lower bounds computed by the
B&B of CPLEX are, as expected, better than the Lagrangian lower bounds, but only slightly
so. In particular, for Small, Medium and Large instances with size (25, 150), the two lower
bounds are close, and gets closer as the number of commodities increases. Indeed, the final
gaps produced by the Lagrangian heuristic are on average better for Large instances with
size (25, 150).

6 Conclusions

We have considered the piecewise linear integer multicommodity network flow problem
(PMFI). We have introduced formulations that exploit the integrality of the flows by us-
ing discretization. We have shown that the basic model obtained by discretization can be
viewed as a particular case of the basic segment-based formulation introduced in [12]. We
have strengthened the discretized models either by adding valid inequalities derived from
cutset inequalities or by using flow disaggregation techniques, obtaining a model similar to
the so-called extended (segment-based) formulation introduced in [12].

When comparing the relative strength of the different formulations, our main results state
that:

• Discretization provides stronger cutset inequalities than those obtained from segment-
based models.

• Discretization, when combined with flow disaggregation, does not improve upon the
LP relaxation of the extended segment-based model.

We have exploited these results by deriving a reformulation of the problem that combines
the strength of both techniques: cutset inequalities based on discretization and flow disag-
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(|N |, |A|) Algo-Model

(20,75) BB-BS 1.00, 1.00, 1066
LH-EP+ 0.94, 1.02, 30

(20,100) BB-BS 0.99, 1.00, 1311
LH-EP+ 0.94, 1.02, 62

(25,100) BB-BS 1.00, 1.00, 1924
LH-EP+ 0.93, 1.01, 44

(25,150) BB-BS 0.97, 1.00, 3103
LH-EP+ 0.92, 1.04, 69

Small BB-BS 0.99, 1.00, 1851
LH-EP+ 0.93, 1.02, 51

(20,75) BB-BS 0.99, 1.00, 2099
LH-EP+ 0.94, 1.01, 70

(20,100) BB-BS 0.98, 1.00, 2492
LH-EP+ 0.94, 1.01, 45

(25,100) BB-BS 0.97, 1.00, 2914
LH-EP+ 0.93, 1.02, 62

(25,150) BB-BS 0.92, 1.02, 3274
LH-EP+ 0.91, 1.02, 92

Medium BB-BS 0.97, 1.01, 2695
LH-EP+ 0.93, 1.02, 68

(20,75) BB-BS 1.00, 1.00, 968
LH-EP+ 0.96, 1.00, 69

(20,100) BB-BS 0.98, 1.00, 2337
LH-EP+ 0.95, 1.00, 85

(25,100) BB-BS 0.97, 1.01, 2742
LH-EP+ 0.95, 1.00, 166

(25,150) BB-BS 0.95, 1.03, 3385
LH-EP+ 0.95, 1.00, 353

Large BB-BS 0.98, 1.01, 2358
LH-EP+ 0.95, 1.00, 168

Table 4: Upper bounds: lower bound GAP, upper bound GAP, CPU
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gregation with segment-based variables. In order to overcome the large size of the resulting
model, we developed an efficient and effective Lagrangian relaxation method to compute
lower and upper bounds.

Computational experiments on a large set of randomly generated instances allowed us
to compare the relative efficiency of the different modeling alternatives (flow disaggregation
plus addition of cutset inequalities with or without discretization), when used within the
Lagrangian relaxation approach. The results derived from these experiments show the La-
grangian relaxation method is both efficient and effective. For all instances, it produces lower
and upper bounds in relatively small computing times and with gaps on the order of 5-10%.
On all instances, Lagrangian lower bounds are computed in less time than that required by
CPLEX to solve the LP relaxation, with similar gaps; moreover, high-quality upper bounds
are obtained in reasonable time, while the B&B method of CPLEX on any of the tested
models often does not converge to optimality within the one-hour time limit.

This work opens the way for many research avenues. The models that we study are
generic and include as special cases a large number of problems with applications in trans-
portation and logistics, but also in other areas such as telecommunications and production
planning. To the best of our knowledge, apart from the references already cited, no other
work on reformulations by discretization has been performed on such problems. It would be
interesting to investigate the impact of discretization on such problems, as well as on other
problems with a similar structure. The formulations we have introduced involve a large
number of variables and constraints. We handled the large size of the models by developing
Lagrangian relaxation methods. It would be interesting to investigate other approaches, such
as column-and-cut generation (recent examples of such methods on problems similar to the
PMFI include [14, 15, 18]).
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