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Abstract. We propose the concept of partial Benders decomposition, based on the idea of 
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continuous recourse. Such programs are used to model many practical applications such 

as the one considered in this paper, network design. They are also useful for solving 

problems with integer recourse as many solution methods for such problems also solve 

one of its linear relaxations. With an extensive computational study, we have shown the 

significant advantages of using a partial decomposition, greatly reducing the number of 

optimality and feasibility cuts generated when solving a stochastic program with a 
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1 Introduction

Since its introduction in 1962, Benders decomposition [2] has become one of the most
used exact solution approaches for large-scale optimization problems. It has been
shown to be an efficient solution methodology for a variety of applications, such as
network design [8] and location [13, 7], and has been successfully used in specialized
optimization fields, as evidenced by such seminal papers as [17, 37] for non-linear and
stochastic programming, respectively.

The Benders algorithm is now an essential methodology in the context of stochastic
programming, readily applied to problems addressed in the field [3]. Stochastic pro-
gramming deals with optimization problems where a subset of parameters involve a
level of uncertainty (i.e., stochastic parameters). Decisions in a stochastic program are
defined in stages according to when the stochastic parameters become known. There-
fore, one distinguishes the decisions that need to be made before any information is
known (i.e., the first stage decisions) from the decisions that are taken once the infor-
mational flow begins (i.e., the second stage decisions and onward). First stage decisions
are sometimes referred to as the a priori decisions, while those made in subsequent
stages are called recourse decisions [3]. The pursued objective can then be defined as
finding an a priori solution, which minimizes its associated cost plus a probabilistic
measure of the recourse cost that it entails, e.g., the expected cost, a value at risk, or an
expected shortfall cost [30].

When it was originally developed in [37], the Benders strategy applied to stochastic
programs was coined the L-Shaped algorithm. It enables such programs to be decom-
posed according to the realizations of random events that set the values of the stochas-
tic parameters included in the model. A finite set of representative scenarios is usually
used to approximate the possible outcomes for the values of the stochastic parameters.
Using such a set, the stochastic program can be formulated in an extensive form by
duplicating the second stage decisions for each scenario [3]. Given that the large-scale
nature of such models is due, in a large proportion, to the number of scenarios used
to properly represent uncertainty, Benders decomposition greatly simplifies the solu-
tion of these problems. However, this strategy also comes with important drawbacks
that need to be addressed to produce an overall efficient solution procedure. In this
paper, we focus on two stage stochastic integer programs, which define an extremely
challenging family of optimization problems to solve. We show that the L-Shaped al-
gorithm, when applied to solve this type of problem, can be significantly enhanced by
modifying the decomposition strategy that is traditionally applied.

As presented in [15, 16], Benders decomposition relies on the application of the
following three steps: Step 1 Projection - the model is first projected onto the subspace
defined by a set of variables considered to be complicating (i.e., the first stage decisions
when the L-Shaped algorithm is applied in the present context); Step 2 Dualization -
the projected term is then dualized, which produces an equivalent model where the
projected term is expressed as a set of valid inequalities (or cuts) that define, for the
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complicating variables, their feasibility requirements (feasibility cuts) and their pro-
jected costs (optimality cuts); Step 3 Relaxation - the equivalent model is finally solved
by applying a relaxation strategy where a master problem and subproblem (or scenario
subproblems in the case considered) are iteratively solved to respectively guide the
search process and generate violated cuts.

The main drawback when applying the L-Shaped algorithm is that the initial re-
laxation of the equivalent model produces a considerably weaker formulation for the
obtained master problem. The cuts included in the equivalent model provide the for-
mulation of the second stage of the stochastic problem. Once they are relaxed, the
master problem looses all relevant information concerning the recourse decisions, both
in terms of the projected costs and feasibility of the scenario subproblems. When ap-
plying the original L-Shaped method, these cuts are reintroduced iteratively by solving
each time the relaxed master problem. Overall, this leads to various computational
problems such as instability issues with respect to the cuts that are generated (espe-
cially at the beginning of the solution process); an erratic progression of the bounds
generated by the algorithm; and an overall slow convergence of the procedure (the
relaxed master problem is solved each time a cut is generated).

We define a novel decomposition concept to strengthen the master problems solved
by the algorithm and thus overcome these challenges. This decomposition is based
on the idea of retaining a subset of scenario subproblems in the master formulation.
Specifically, we propose to project the original two stage stochastic integer program
onto a larger subspace, one that includes a subset of the second stage scenario vari-
ables. We refer to this approach as partial Benders decomposition. By doing so, the
formulation of the master problem is automatically improved. In effect, a smaller part
of the original problem is relaxed at the beginning of the solution process. However,
this is done at the expense of harder master problems to solve. Ultimately, we show
that this approach can greatly improve the L-Shaped algorithm, the level of these im-
provements depending on how the partial decomposition is applied.

There are two major issues to address when considering the application of partial
decomposition. One must determine whether the decomposition can actually enhance
the Benders algorithm or not. If so, one must specify how to select the scenario sub-
problems to retain. We resolve these issues by proposing a series of strategies im-
plementing partial decomposition that aim to reduce the number of cuts (optimality
and feasibility) added by the L-Shaped algorithm in order to converge. Two general
types of strategies are developed: representation and covering. Representation strate-
gies choose scenario subproblems to retain that serve as representatives of the ones
not retained, while covering strategies retain scenario subproblems that exhibit specific
characteristics with respect to the ones not kept. In all cases, these strategies are based
on the general principle of identifying scenario subproblems to keep in the master that
best fit the desirable criteria that we define to reduce the number of cuts.

Extensive numerical experiments were conducted on a set of stochastic network
design problems to evaluate the strategies proposed. The results obtained show the
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significant advantages of partial decomposition. In particular, partial decomposition
reduces by an order of magnitude the number of cuts generated by the Benders algo-
rithm compared to a standard implementation of the solution approach. Furthermore,
the results illustrate that specific strategies are more effective depending on the charac-
teristics of the problem.

The rest of the paper is divided as follows. In Section 2, we recall how Benders de-
composition is applied to two stage stochastic integer programs and provide a literature
review of the different methods that have been proposed over the years to improve the
algorithm. section 3 is dedicated to the presentation of partial decomposition, starting
with general principles and motivation, and then defining the specific representation
and covering strategies proposed. Section 4 first details the experimental setting, the
problem considered, the instances used, and the different implementations of the L-
Shaped algorithm tested, and then presents the analysis of the numerical results. We
provide concluding remarks in Section 5.

2 A review of Benders decomposition

We start by recalling how Benders decomposition is applied to the problems considered
(Section 2.1) and recall the drawbacks associated to the method. We then review the
different strategies that have been developed to improve the algorithm (Section 2.2),
covering both the strategies that were proposed to accelerate the algorithm in the gen-
eral context (i.e., to solve mixed integer programs) and those that were specifically
designed to enhance the L-Shaped procedure. This enables us to clearly state the nov-
elty of the contributions made in the present paper.

2.1 Benders decomposition for two stage stochastic integer pro-
grams

Let y define a set of first stage decision variables that must take on integer values and
satisfy the constraint set Ay = b. Next, we assume there are S scenarios, with each
scenario s ∈ S having a probability ps of occuring. We associate with each scenario s ∈
S a set of second stage decision variables xs that, together with the first stage decisions
y, must satisfy the constraints Bsy+Dxs = ds. With objective coefficients f associated
with the y variables, and c the objective coefficients associated with the xs variables for
each scenario s, we have the optimization problem P:

minimize f>y+∑
s∈S

psc>xs (1)

subject to
Ay = b, (2)
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Bsy+Dxs = ds, ∀s ∈ S, (3)

y ∈Z ,xs ≥ 0 s ∈ S. (4)

Recourse decisions xs, ∀s ∈ S, could be restricted to take on integer values. In this
paper, we address the case of continuous recourse decisions, as it allows us to apply
standard duality theory when presenting the Benders algorithm in the context of two-
stage integer programs. We do discuss, however, the generalization of the method to
the case where integrality requirements are present in the two decision stages. Also,
it is often the case that Bs = B, ∀s ∈ S. In fact, for the application we study later, this
condition is true. However, for the present discussion, we stick to this more general
form.

Given the structure of the optimization problem P, we note that with fixed values
for the variables y, determining the optimal values for the variables xs can be done by
solving the following subproblem, SP(y)s, for each scenario s:

zs(y) = minimize c>xs

subject to
Dxs = ds−Bsy,

xs ≥ 0.

With this definition of zs(y), we can reformulate P (Step 1 of the Benders decomposi-
tion approach) in the following way:

minimize f>y+∑
s∈S

pszs(y)

subject to
Ay = b,

y ∈Z .

By taking the dual of SP(y)s we have, for each s ∈ S, the problem DSP(y)s

maximize p>(ds−Bsy)

subject to
p>D≤ c.

We note that the feasible region of DSPs,Q = {p : p>D≤ c}, is the same for all scenar-
ios. We assume that Q is feasible and has extreme points qi, i = 1, . . . , I, and extreme
rays w j, j = 1, . . . ,J. Given these extreme points and rays, a valid reformulation of
P (Step 2 of the Benders decomposition approach), which we refer to as BP (i.e., the
master problem), is

minimize f>y+∑
s∈S

pszs (5)

subject to
Ay = b, (6)
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qi>(ds−Bsy)≤ zs ∀i = 1, . . . , I,s ∈ S, (7)

w j>(ds−Bsy)≤ 0 ∀ j = 1, . . . ,J,s ∈ S, (8)

y ∈Z . (9)

Constraints (7) and (8) represent the optimality and feasibility cuts, respectively. In-
stead of solving problem (5)-(9) (Step 3 of the Benders decomposition approach),
which would require enumerating all the extreme points and rays of Q, Benders de-
composition repeatedly solves a relaxation, wherein only a subset of constraints (7)
and (8) are considered (i.e., the master problem). Once a relaxation is solved to pro-
duce a vector y, dual subproblems DSP(y)s are formed and solved to determine whether
any optimality or feasibility cuts are violated. If so, they are added to the relaxation and
the process repeats. Otherwise, the problem P has been solved. We summarize what
is often referred to as the Multi-cut version of the L-shaped method in Algorithm 1, as
developed in [4]. (Another version is the Single-cut version wherein in each iteration
the scenario-based cuts are aggregated into a single cut, as was originally done in [37].)

If the second stage variables are integer, then SP(y)s, ∀s ∈ S, represent integer
programs to solve. In this case, standard duality cannot be applied to perform Step 2 of
the decomposition approach. Instead, as developed in [5], general duality theory can
be called upon to reformulate the subproblems using valid inequalities based on dual
price functions to produce the optimality and feasibility cuts. It was shown in [5] how
such functions can be derived when standard solution techniques are applied to solve
the subproblems (i.e., cutting plane or branch and bound methods).

Algorithm 1 Benders decomposition

Create BP without constraints from sets (7) and (8)
while P not solved do

Solve BP to get vector y
for s ∈ S do

Solve dual subproblem DSP(y)s
if constraints from sets (7) or (8) are violated then

add them to BP
end if

end for
if no violated constraints found then

Stop {Solved P}
end if

end while

In all cases, while Benders decomposition will converge to the optimal solution,
the problem structure associated with the linking constraints (3) is lost. As a result,
many of the valid inequalities that have been developed for the deterministic (single
scenario) version are inapplicable. Furthermore, the relaxation of constraints (7)-(8)
eliminates from BP all guiding information for y with respect to the second stage of
the problem. Therefore, when the solution process begins, the solutions y obtained
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may be arbitrarily poor with respect to their recourse cost. They may also be far from
feasible in the second stage. Given that violated cuts are only introduced after the
current relaxed BP is solved, the overall solution process can be excessively slow. In
the next section, we present the different strategies that have been proposed to improve
the Benders algorithm.

2.2 Improvements proposed for the algorithm

Geoffrion and Graves [18], were the first to develop an approach aimed at improving
the Benders algorithm when applying it a multicommodity distribution problem. The
authors observed that it is not necessary to solve the relaxed master problem to opti-
mality to generate valid cuts. Actually, there is little incentive to do so at the beginning
of the solution process (i.e., the relaxation is weak). Instead, the authors proposed to
solve the problem at a given iteration of the algorithm to obtain a feasible solution
that is within an optimality gap of ε . By fixing ε to appropriate values throughout the
solution process (starting from higher values that are steadily decreased), cuts can be
generated more effeciently. A similar idea can be applied to the scenario subproblems,
as proposed by Zakeri, Philpott and Ryan [38]. The authors showed that suboptimal
extreme points of the dual region of the scenario subproblems can be used to generate
valid cuts. Again, by relaxing the requirement to solve systematically the subproblems
to optimality, especially in the case of multistage stochastic programs, can considerably
speedup the process by which cuts are generated by the L-Shaped algorithm.

Another strategy aimed at strengthening quickly the relaxed master formulation
was proposed by McDaniel and Devine [25]. The authors showed that valid feasibility
and optimality cuts can be obtained by solving the linear relaxation of the original
problem. In effect, the Benders algorithm can be applied in a two phase approach to
solve a mixed integer program. In the first phase, the linear relaxation of the original
problem can be solved via the Benders algorithm. In doing so, a set of valid cuts are
added to the relaxed master problem thus strengthening the model. In the second phase,
the integrality constraints are reintroduced in the master’s formulation and the solution
process is applied anew. By proceeding in this way, fewer iterations in the second phase
are usually necessary to converge to an optimal solution to the original problem.

In order to generate cuts faster, the master problem can also be solved heuristically.
This idea was originally proposed by Côté and Laughton [9]. The authors suggested to
apply Lagrangean relaxation to the optimality and feasibility cuts whenever the remain-
ing constraint set in the master problem presents a special structure that is amenable to
specialized algorithms. The problem can then be solved using any adapted heuristic and
the solutions obtained can produce valid cuts. Although the original master problem
still needs to be solved to optimality in order to ensure convergence of the algorithm,
fewer of these solutions are usually needed. Related to this general idea, Rei et al. [29]
and Poojari and Beasly [28] both proposed a Benders algorithm where multiple cuts
are produced at each iteration by solving the master problem using respectively local
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branching and a genetic procedure. Significant numerical improvements were reported
in both cases when the algorithms were used to solve both deterministic [29, 28] and
stochastic [29] integer programs.

Alternate formulations have also been proposed in replacement of the master prob-
lem. Cross decomposition, which was developed by Van Roy [31], falls into this cat-
egory. This strategy is based on the simultaneous use of primal (or Benders) and dual
(or Lagrangean) decompositions to solve mixed integer programs. Specifically, the au-
thor showed that solutions to the Lagrangean subproblem are feasible with respect to
the Benders master problem and vice versa. Therefore, a sequence of solutions to the
Benders master problem can be obtained by alternately solving the subproblems (i.e.,
Benders and Lagrangean). Using these solutions, valid cuts can be produced and added
to strengthen the master’s formulation. Again, convergence to optimality can only be
maintained by solving on occasion the Benders master problem. However, by doing
so less often, the solution process can be accelerated. Finally, Holmberg [19] studied
the quality of the results obtained using different approximations for the Benders mas-
ter problem. The author conducted a thorough analysis of the lower bounds attained
by applying Lagrangean relaxation in the present context. The principal result of this
study was to show that the bound defined by applying Lagrangean relaxation to the
formulation of the Benders master is systematically worse than the one obtained by
applying the same relaxation strategy to the original problem. This is the case even
when all optimality and feasibility cuts are present in the master.

The general process by which cuts are added to the master problem has been im-
proved as well. The studies conducted on this subject have either been based on defin-
ing strategies to select or strengthen the traditional cuts, or, on generating new valid
cuts. Magnanti and Wong [23] were the first to propose an efficient strategy to se-
lect optimality cuts. The strategy developed finds non-dominated optimality cuts (i.e.,
Pareto-optimal cuts) whenever, for a given feasible solution to the master problem,
there are multiple optimal solutions (i.e., extreme points) associated to the dual sub-
problem (or scenario subproblems in the stochastic case). In this context, among the
dual optimal extreme points, the authors showed that a Pareto-optimal cut is one that
produces a maximum value when evaluated at a core point of the feasible region of
the master problem. As suggested in [23], in addition to the classical dual subprob-
lem, a second one is solved to identify a non-dominated cut at a given iteration of the
Benders algorithm. The objective function of this second subproblem is simply instan-
tiated using a core point of the master and its feasible region is restricted to include
only those extreme points which are optimal at the current iteration. The addition of
non-dominated cuts can greatly improve the value of the lower bound obtained by the
algorithm. However, to implement this approach, a master core point is needed and a
second subproblem must be solved at each iteration.

As observed by Papadakos [27], the Magnanti and Wong method can be inefficient
in cases where either the subproblem is hard to solve to optimality or core points to the
master problem are difficult to obtain. Therefore, the author proposed two enhance-
ments to the method. It was first shown that an independent subproblem (i.e., one that
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is not restricted to the optimal extreme points) can be used to produce Pareto-optimal
cuts. This result alleviates the necessity to solve two subproblems at each iteration of
the Benders algorithm. The second enhancement was to propose alternative points that
can be used as a proxy for the core ones. An efficient approach to produce these points
was proposed for a special class of problems. An alternative cut selection strategy
was developed by Fischetti, Salvagnin and Zanette [14]. Following this strategy, the
subproblem is reformulated as a feasibility problem where cuts, both optimality and
feasibility, are obtained by searching for minimal infeasible subsystems. Finally, all
these strategies were further enhanced by Sherali and Lunday [36] who extended them
to generate maximal non-dominated cuts. The authors showed that this can be achieved
by simply perturbing the right-hand side values of the constraints of the subproblem.

As for strategies that have focused on strengthening the traditional cuts that are
added by the Benders procedure, they apply the principle of iteratively generating mul-
tiple cuts (optimality or feasibility) that are tailored to include specific desirable char-
acteristics. Saharidis and Ierapetritou [32] considered cases where optimality cuts are
hard to obtain when applying the classical Benders approach. In such cases, the al-
gorithm generates numerous feasibility cuts before obtaining a feasible solution to the
problem that produces an optimality cut. To improve the Benders approach, the au-
thors proposed to apply a maximum feasible subsystem (MFS) cut generation strategy.
Following this strategy, each time a feasibility cut is added, an additional cut, referred
to as the MFS cut, is also generated. This cut is obtained by solving an additional sub-
problem, which tries to determine the minimum number of constraints to relax in the
original subproblem to obtain a feasible solution. Therefore, the MFS cut acts as an
optimality one. A similar strategy was proposed by Saharidis, Minoux and Ierapetri-
tou [33] who considered cases where the Benders algorithm tends to generate weaker
low-density cuts (i.e., cuts that involve a small set of master problem variables). To
solve this problem, a covering cut bundle (CCB) generation procedure was developed,
to generate, at each iteration of the algorithm, a set of cuts (optimality or feasibility)
covering all variables of the master problem. In a way, the CCB ensures a level of
diversification in the cuts that are added to the master problem at each iteration.

New procedures to generate valid cuts have been proposed by Codato and Fischetti
[6]who considered the special case where the Benders approach is applied to a binary
program where the subproblem only involves testing for feasibility. In such a case,
the traditional algorithm exclusively generates feasibility cuts. The authors showed
that stronger valid cuts can be efficiently separated by searching for minimal infeasible
subsystems in the solutions of the relaxed master problem. These combinatorial Ben-
ders cuts were shown to greatly improve the performance of the Benders algorithm on
two classes of mixed-integer programs.

The majority of the techniques described so far have been developed in the context
of applying Benders decomposition to solve deterministic integer programs. However,
one also finds methods specifically tailored for two-stage stochastic integer programs.
In cases where the second stage involves integer variables, Sen and Higle [34] proposed
to apply disjunctive programming as a means to produce a convex characterization for
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the subproblems. Specifically, the authors showed that valid inequalities, generated for
a given solution to the master problem solution and a particular scenario subproblem,
can be used to obtain valid inequalities for any other solution or subproblem. This
result can then be applied to define the procedure by which cuts are generated in an
overall Benders decomposition approach. This approach was further enhanced by Sen
and Sherali [35] who illustrated how branch an cut algorithms can be efficiently used
on the scenario subproblems.

As clearly illustrated in this section, methods aimed at improving the Benders al-
gorithm have not been oriented towards modifying the decomposition strategy itself to
render it more efficient. When the L-Shaped algorithm is applied to two stage stochas-
tic programs, the projection involves always exclusively the first stage decisions. In
doing so, the problem is decomposed for all scenarios used in the formulation. This
has been the traditional approach applied given the general imperative of exploiting
the special structure of the constraint set associated to these programs, while trying to
keep a manageable master problem. However, by retaining some of the scenario sub-
problems in the master, one can directly alleviate the drawbacks associated with the
L-Shaped algorithm. Furthermore, considering the steady advancements observed in
the efficiency of off-the-shelf solvers, having a larger scaled master problem involved
in the Benders solution process may remain computationally effective. This is the gen-
eral idea behind our proposed partial decomposition strategy, which is the subject of
the next section.

3 Partial decomposition

When trying to implement partial Benders decomposition for a two-stage stochastic
integer program, there is an important methodological question to address: how should
the scenario subproblems to retain be chosen? This section is dedicated to the partial
decomposition strategies that we propose to provide answers to this general question.
The section is divided into three subsections. In Section 3.1, we formalize the general
concept of partial decomposition. The last two subsections are dedicated to the specific
strategies that are developed. Section 3.2 describes the representation strategies, while
Section 3.3 is devoted to the covering strategies. It should be noted that for the rest of
this paper we assume that Bs = B, ∀s ∈ S, as is the case in the application we consider
in our computational study. Thus, the defining characteristic of scenario s is the vector
ds.

3.1 General principles of partial decomposition

The general characteristic of our partial decomposition approach is that it is scenario-
based. Specifically, assume we have identified a subset of scenarios S̄ ⊆ S to be re-
tained. When applying partial decomposition to the original problem (1)-(4), the vec-
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tors xs ∈ S̄ are included in the set of complicating variables and the projection (i.e., Step
1 of the approach) is adapted accordingly. Therefore, once the dualization has occurred
(i.e., Step 2 of the approach), we obtain problem BPS̄:

minimize f>y+∑
s∈S̄

psc>xs + ∑
s∈S\S̄

pszs (10)

subject to
Ay = b, (11)

By+Dxs = ds, ∀s ∈ S̄ (12)

qi>ds ≤ qi>By+ zs ∀i = 1, . . . , I,s ∈ S\ S̄, (13)

w j>ds ≤ w j>By ∀ j = 1, . . . ,J,s ∈ S\ S̄, (14)

y ∈Z ,xs ≥ 0 ∀s ∈ S̄. (15)

We illustrate the concept of partial decomposition in Figure 1a and contrast it with
a traditional, full decomposition (Figure 1b) and not decomposing a problem at all
(Figure 1c).

minimize f
0
y +p1c

0
x1 +p2c

0
x2 + · · · +p|S|c

0
x|S|

subject to Ay = b
B1y +Dx1 = d1

Dx2 = d2

...
. . .

...
B|S|y +Dx|S| = d|S|

y 2Z, x1 � 0, x2 � 0, · · · x|S| � 0

1

projected

(a) Partial decomposition

minimize f
0
y +p1c

0
x1 +p2c

0
x2 + · · · +p|S|c

0
x|S|

subject to Ay = b
B1y +Dx1 = d1

Dx2 = d2

...
. . .

...
B|S|y +Dx|S| = d|S|

y 2Z, x1 � 0, x2 � 0, · · · x|S| � 0

1

projected

(b) Full decomposition

minimize f
0
y +p1c

0
x1 +p2c

0
x2 + · · · +p|S|c

0
x|S|

subject to Ay = b
B1y +Dx1 = d1

Dx2 = d2

...
. . .

...
B|S|y +Dx|S| = d|S|

y 2Z, x1 � 0, x2 � 0, · · · x|S| � 0

1

(c) No decomposition

Figure 1: Decomposition approaches

An instance of BPS̄ can then be solved (i.e., Step 3 of the approach) via a slightly
modified Benders solution procedure, which is represented by Algorithm 2. The only
difference between the algorithms are in the initialization where, in Algorithm 2, the
subset S̄ and problem BPS̄ are created (i.e. the first two lines of Algorithm 2). Notice
that the selection of scenarios included in S̄ and the cardinality of the set influence the
number of cuts generated.
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There are several advantages in using BPS̄ when applying the Benders algorithm.
First, the relaxation of the optimality and feasibility cuts is only applied to the con-
straints (13) and (14). Therefore, the inclusion of Constraints (12) in the master prob-
lem ensures that all its solutions are necessarily feasible with respect to the scenario
subproblems associated to s ∈ S̄. This can easily be verified by considering the result
provided by Corollary 3.1, which is directly derived from duality theory. Partial de-
composition therefore eliminates the need for the algorithm to generate feasibility cuts
for the scenario subproblems s ∈ S̄. Furthermore, by retaining the linking constraints
(12) in the formulation of the master, some of the structure of the original problem
is left intact. As a result, valid inequalities for the polyhedron Ps = {(xs,y) : Ay =
b,By+Dxs = d,y ∈ Z ,xs ≥ 0} can be added to the master for each s ∈ S̄ to further
strengthen the model.

Corollary 3.1. If (ȳ, x̄s,∀s ∈ S̄, z̄s,∀s ∈ S \ S̄) is a feasible solution to model (10)-(12)
and (15), then (ds−Bȳ)>w j ≤ 0,∀ j = 1, . . . ,J,s ∈ S̄.

Proof. The existence of the variable values x̄s, ∀s ∈ S̄, implies that SPs(ȳ) is feasible
and thus, by weak duality, DSPs(ȳ) can not be unbounded, ∀s ∈ S̄.

Partial decomposition can also help to improve the quality of the feasible solutions
to the original problem (1)-(4) that are obtained throughout the Benders solution pro-
cess. Given that S̄ ⊆ S, the law of total expectation entails that the expected recourse
cost of a first stage solution y can be expressed as E(zs(y) | s ∈ S̄)×P(S̄)+E(zs(y) |
s ∈ S \ S̄)×P(S \ S̄), where P(S̄) and P(S \ S̄) represent the probabilities of observing
in the second stage a scenario in S̄ and S\ S̄, respectively. When partial decomposition
is applied, the term E(zs(y) | s ∈ S̄)×P(S̄) remains unchanged in the formulation of
the master problem. Only the term E(zs(y) | s ∈ S \ S̄)×P(S \ S̄) is dualized and then
relaxed. Therefore, the approximation of the expected recourse cost provided by the
objective function of the master problem is in this case more accurate than the one de-
fined in the original decomposition approach. In turn, one can expect that Algorithm 2
will reach better solutions faster when compared to Algorithm 1. In addition, greater
stability with respect to the solutions (and optimality cuts) obtained is also anticipated.

To instantiate partial decomposition, we now turn to the second issue identified pre-
viously, namely the construction of set S̄. Randomly drawing scenarios to include in
S̄ is a straightforward approach that can be applied. However, in the next two subsec-
tions, we present systematic strategies that yield more effective partial decompositions.
These strategies are categorized as either Representation or Covering. In each case, we
present the general motivations behind the strategy and we describe how they are im-
plemented. It should be noted that all strategies take as input the number of scenarios,
K, to include in S̄ and that they are based on the vectors ds, each of which we assume
has n elements.
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Algorithm 2 Partial Benders decomposition

Create set S̄⊆ S
Create BPS̄ without constraints from sets (13) and (14)
while have not solved P do

Solve BPS̄ to get vector ȳ
for s ∈ S\ S̄ do

Solve dual subproblem DSP(ȳ)s
if constraints from sets (13) or (14) are violated then

add them to BPS̄
end if

end for
if no violated constraints found then

Stop {Solved P}
end if

end while

3.2 Representation strategies

The motivation behind the proposed representation strategies is to choose a set S̄ that
best approximates a given characteristic of problem (1)-(4). What characteristic and
approximation are considered gives rise to different approaches to construct set S̄. In
this subsection, we present two specific representation strategies. The first, which we
refer to as the Clustering-mean strategy, considers the approximation provided by the
scenarios in S̄ of the probability distribution of the original set S. It is natural to expect
that the closer one gets to approximating the original distribution by S̄, the better the
solutions obtained to the master problem will be throughout the solution process. The
second strategy chooses instead a set of scenarios S̄ such that the convex hull of vectors
ds,s ∈ S̄, best approximates the convex hull of vectors ds,s ∈ S \ S̄. Proposition 3.2
clearly motivates this Convex Hull strategy.

Clustering-mean. This strategy begins by partitioning set S into K subsets of similar
scenarios. Similarity between scenarios s ∈ S and s′ ∈ S is measured as the Euclidean
distance between their associated vectors ds and d′. Then, to achieve a good approxi-
mation of the distribution of S by S̄, the method chooses from each subset the scenario
that is closest to its conditional mean as its representative to add to S̄. We present this
approach in Algorithm 3.

To obtain the partition of the scenario set S, a k-means clustering problem [24] is
solved using the k-means++ [1] heuristic, which offers approximation guarantees. In
all generality, the purpose of k-means clustering is to partition a set of data points into
a given number of clusters such that each data point is included in the cluster whose
mean is closest. To apply the k-means++ heuristic in the present context, each scenario
s ∈ S is represented by its associated vector ds. The heuristic then partitions the |S|
scenarios into the subsets S1, . . . ,SK (Line 2 of Algorithm 3). Finally, set S̄ is defined
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Algorithm 3 Choose S̄ based on grouping similar scenarios

Require: Number of groups, K, to create
1: Set S̄ = /0
2: Partition S into subsets S1, . . . ,SK of similar scenarios with k-means++
3: for all sets Si do
4: Calculate the mean, dSi of vectors ds,s ∈ Si
5: Add to S̄ the scenario s in Si such that ds is closest to dSi

6: end for

as (Lines 3 to 6 of Algorithm 3):

S̄ =
K⋃

i=1

argmin
s∈Si
‖ds−dSi‖,

where function ‖ · ‖ is the Eucledean distance defined on the n dimensions of vectors
ds, ∀s ∈ S. For a more detailed presentation of this approach, we refer the reader to
Crainic, Hewitt and Rei [10], who applied this method to a progressive hedging-based
meta-heuristic.

Convex Hull. An alternate way of viewing representation is through the pursuit of
convex hulls in integer programming, as having a representation of the convex hull of
the feasible region reduces the complexity of solving the resulting integer program.
Following this approach, the scenarios added to S̄ are the ones that include in their
associated convex hull the scenarios in S \ S̄. The following proposition shows the
value of this idea in the present context:

Proposition 3.2. Consider S̄⊆ S and s′ ∈ S\ S̄, such that ∃ αs′
s ≥ 0,s∈ S: ∑s∈S̄ αs′

s = 1
and ∑s∈S̄ dsαs′

s = ds′ . If (ȳ, x̄s,∀s ∈ S̄, z̄s,∀s ∈ S \ S̄) is a feasible solution to model
(10)-(12) and (15), then w j>ds′ ≤ w j>Bȳ,∀ j = 1, . . . ,J.

Proof. We have by Corrolary 3.1 that the constraints w j>(ds−Bȳ) ≤ 0 are satisfied
∀ j = 1, . . . ,J,s ∈ S̄. Given s ∈ S̄ and s′ ∈ S\ S̄, we have that

w j>ds′ = w j>(∑
s∈S̄

ds
α

s′
s )

= ∑
s∈S̄

α
s′
s (w

j>ds)

≤ ∑
s∈S̄

α
s′
s (w

j>Bȳ)

= w j>Bȳ.

We can thus conclude that w j>ds′ ≤ w j>Bȳ, ∀ j = 1, . . . ,J.

Partial Decomposition Strategies for Two-Stage Stochastic Integer Programs
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Thus, if there exists a convex combination defined on the vectors ds, for s ∈ S̄,
that can express the vector ds′ , for a given s′ ∈ S \ S̄, then a feasible solution to the
partially decomposed master problem (i.e., ȳ) necessarily induces a feasible scenario
subproblem for scenario s′ (i.e., DSP(ȳ)s′ is bounded). In this case, there will be no
feasibility cuts (14) generated for SP(y)s′ when executing Algorithm 2. Therefore, the
more scenarios in S\ S̄ can be expressed as convex combinations of the scenarios in S̄,
the less feasibility cuts need to be generated for the algorithm to converge. Although
it may be difficult to obtain perfectly defined combinations, Proposition 3.2 provides
criteria to efficiently choose the scenarios to include in S̄.

To construct set S̄, we propose to solve a mixed integer program. This program
includes the following decision variables: qs, ∀s ∈ S, are binary variables that indicate
whether scenario s is included in S̄; αs′

s , ∀s,s′ ∈ S, are continuous variables that model
how the vector ds′ can be approximated with a convex combination of the scenarios
s ∈ S such that qs = 1; rs

l , ∀s ∈ S, l = 1, . . . ,n, are continuous variables that represent
how element l of vector ds is represented by a convex combination of the scenarios s∈ S
such that qs = 1; and es

l , ∀s ∈ S, l = 1, . . . ,n, are continuous variables that measure the
error in that representation. Specifically, we solve the mixed integer program

minimize ∑
s∈S

n

∑
l=1

es
l

subject to
rs′

l = ∑
s∈S

α
s′
s ds

l , ∀s′ ∈ S, l = 1, . . . ,n, (16)

α
s′
s ≤ qs, ∀s ∈ S,s′ ∈ S, (17)

∑
s∈S

α
s′
s = 1, ∀s′ ∈ S, (18)

∑
s∈S

qs ≤ K, (19)

es
l ≥ rs

l −ds
l , ∀s ∈ S, l = 1, . . . ,n, (20)

es
l ≥ ds

l − rs
l , ∀s ∈ S, l = 1, . . . ,n, (21)

qs ∈ {0,1}, ∀s ∈ S, α
s′
s ≥ 0, ∀s ∈ S,s′ ∈ S. (22)

The objective is to minimize the total error associated with the representation rs and
the vector ds associated with each scenario. The dimensional representation values rs′

l
are formulated in (16), while Constraints (17) enforce that the weights αs′

s only take on
positive values when scenario s is chosen to be included in S̄. Constraints (18), coupled
with the second variable definition in constraints (22), ensure that for each s′ ∈ S the
weights αs′

s constitute a convex combination. Constraint (19) limits the number of
scenarios that are included in S̄ to be at most K. Constraints (20) and (21), coupled
with the objective, define that es

i = |rs
i − ds

i |. Constraints (22) impose the necessary
non-negativity and integrality requirements on the decision variables.
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3.3 Covering strategies

The principle behind the covering strategies proposed is to retain scenario subproblems
that ensure feasibility for projected ones; as we will see later on, this can be ensured
for scenarios s,s′ when ds ≥ ds′ . Let us first define the following concepts:

Definition 3.3. Given two scenarios s ∈ S and s′ ∈ S \ S, if an element l that is such
that ds

l ≥ ds′
l , we state that s covers s′ with respect to l. If s covers s′ with respect to all

elements l = 1, . . . ,n, then we declare that scenario s covers s′.

The motivating result behind the proposed covering strategies is then contained in
the following proposition:

Proposition 3.4. Consider s ∈ S̄ and s′ ∈ S \ S̄ such that s covers s′. If (ȳ, x̄s,∀s ∈
S̄, z̄s,∀s ∈ S \ S̄) is a feasible solution to model (10)-(12) and (15), then w j>ds′ ≤
w j>Bȳ,∀ j = 1, . . . ,J such that w j ≥ 0.

Proof. Given s ∈ S̄, s′ ∈ S \ S̄ and w j ≥ 0, we have that w j>ds′ ≤ w j>ds, considering
that ds

l ≥ ds′
l ,l = 1, . . . ,n by the assumption that s covers s′ (i.e., Definition 3.3). By

Corrolary 3.1, which etails that the constraints w j>(ds−Bȳ) ≤ 0 are satisfied ∀ j =
1, . . . ,J,s ∈ S̄, we thus obtain that w j>ds′

l ≤ w j>ds
l ≤ w j>Bȳ, ∀ j = 1, . . . ,J such that

w j ≥ 0.

Proposition 3.4 is again based on the principle of enabling feasibility in specific
non-retained scenario subproblems. If a scenario s′ ∈ S \ S is covered by a scenario
s ∈ S̄, then a first stage solution to the partially decomposed master problem (i.e., ȳ)
is such that a subset of feasbility cuts associated with SP(ȳ)s′ are necessarily enforced
(i.e., w j>ds′ ≤ w j>Bȳ,∀ j = 1, . . . ,J such that w j ≥ 0). Therefore, the more scenarios
in S \ S̄ are covered by scenarios in S̄, the less feasibility cuts need to be generated by
Algorithm 2 to converge. We next describe two strategies for choosing the scenarios
to include in S̄ that are based on this idea of covering. We refer to these strategies as
Clustering-greatest and Row Covering.

Clustering-greatest. As in the case of the Clustering-mean approach, the present strat-
egy first partitions the set S into subsets of similar scenarios using the k-means++
heuristic (i.e., Step 2 of Algorithm 3). We again represent by Si, i= 1, . . . ,K the clusters
of scenarios that define the partition of S. As in the previous approach, representative
scenarios for the subsets obtained are then chosen to be included in set S̄. However,
in this case, the scenario that is chosen as the representative is the one that covers the
maximum number of elements throughout the cluster. Therefore, considering a sce-
nario s ∈ S, an element l = 1, . . . ,n, and a cluster Si ⊆ S, let us define the following
function:

δ
s
l (Si) =

{
1 If ds

l ≥ ds′
l ,∀s′ ∈ Si,s 6= s′

0 Otherwise.
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Function δ s
l (Si) takes value 1 if scenario s covers all scenarios contained in cluster Si

with respect to element l. We can now define the total number of elements covered by
s in Si in the following way:

Gs(Si) =
n

∑
l=1

δ
s
l (Si).

Using the partition of S that is provided by the clusters Si, i = 1, . . . ,K, we construct
subset S̄ as

S̄ =
⋃

i=1,...,K

argmax
s∈Si

Gs(Si).

Row Covering. The previous strategy, when choosing S̄, ignores whether a single ele-
ment ds′

l , for s′ ∈ S \ S̄, is covered by multiple scenarios in S̄. Thus, the Row Covering
strategy focuses instead on the total number of distinct elements ds

l that are covered. To
do so, we again propose to solve an integer program to construct S̄. Let us first define
the values δ ss′

l , ∀s,s′ ∈ S such that s 6= s′, and l = 1, . . . ,n, as follows:

δ
ss′
l =

{
1 If ds

l ≥ ds′
l

0 Otherwise.

Therefore, value δ ss′
l is 1 if scenario s covers scenario s′ with respect to element l. To

formulate the integer program proposed, we now define the binary variables qs, ∀s ∈ S,
and bs′

l , ∀s′ ∈ S and l = 1, . . . ,n. Variable qs expresses whether the scenario s is added
to S̄ or not, while variable bs′

l indicates whether or not the element ds′
l is covered by one

of the scenarios in S̄. The following mixed integer program is then solved to obtain S̄:

maximize ∑
s′∈S

n

∑
l=1

bs′
l

subject to
bs′

l ≤∑
s∈S

δ
ss′
l qs, ∀s′ ∈ S, l = 1, . . . ,n, (23)

∑
s∈S

qs ≤ K, (24)

qs ∈ {0,1},∀s ∈ S,bs′
l ∈ {0,1},∀s′ ∈ S, l = 1, . . . ,n. (25)

The objective of this optimization problem is to maximize the number of elements ds
l

that are covered. Constraints (23) and the objective ensure that the variables bs′
l take on

the value 1 if a scenario s is included in S̄ such that ds
l ≥ ds′

l . The constraint (24) limits
the number of scenarios that are included in S̄ to be at most K. Finally, constraints (25)
impose the integrality requirements on the decision variables.
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4 Numerical results

To resolve the issues of whether a partial decomposition should be performed and, if
so, how it should be performed, we complement the analysis presented in the previous
section with results from an extensive computational study. We begin in Section 4.1
with a detailed discussion of the setting for our experiments. Then, in Section 4.2,
we resolve in the affirmative the issue of whether a partial decomposition should be
performed. We study next, Section 4.3, which of the strategies presented in Sections 3.2
and 3.3 yields the most effective partial decomposition. Finally, we analyze in Section
4.4 how partial decomposition impacts various metrics related to the performance of
Benders method.

4.1 Experimental setting

In this section, we describe the specific problem used to perform our numerical analy-
sis, the characteristics of the test instances, and how the algorithms tested were imple-
mented.

The Problem. We selected the stochastic fixed charge multi-commodity network de-
sign problem to study the effectiveness of the partial decomposition strategies proposed
for the Benders algorithm. Two reasons for this choice: these problems naturally ap-
pear in many applications (e.g., [22, 21]), and they are notoriously hard to solve (e.g.,
[12, 11]). Consider a directed network with node set N, arc set A, commodity set K,
and scenario set S. The formulation of the stochastic fixed charge multi-commodity
network design problem, CMND(S), is

minimize ∑
(i, j)∈A

fi jyi j +∑
s∈S

ps(∑
k∈K

∑
(i, j)∈A

ck
i jx

ks
i j ) (26)

subject to
∑

j∈N+(i)
xks

i j − ∑
j∈N−(i)

xks
ji = dks

i ∀i ∈ N,∀k ∈ K,∀s ∈ S, (27)

∑
k∈K

xks
i j ≤ ui jyi j ∀(i, j) ∈ A,∀s ∈ S, (28)

yi j ∈ {0,1} ∀(i, j) ∈ A, (29)

xks
i j ≥ 0 ∀(i, j) ∈ A,∀k ∈ K,∀s ∈ S, (30)

where, yi j indicates whether arc (i, j) ∈ A is selected (i.e., installed in the network)
in the first stage of the problem, and fi j is the cost (often called the fixed charge) of
including arc (i, j) in the network. In the second stage of the problem, the obtained
network is used to flow the commodities to meet the observed demands. Variable xks

i j
is the amount of the demand of commodity k ∈ K that flows on arc (i, j), considering
that scenario s∈ S is observed in the second stage of the problem, ck

i j being the cost per
unit of demand k flowed on arc (i, j). Constraints (27) are flow-conservation equations
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ensuring that each commodity’s demand may be routed from its origin node to its
destination node in each scenario s. Therefore, assuming that vks is the volume of
commodity k in scenario s, the parameter dks

i is either set to vks if node i is the origin of
the commodity k, −vks if node i is the destination of the commodity k, or 0 otherwise.
Constraints (28) guarantee that the same design is used in each scenario, and that the arc
capacity (ui j) is never violated. Finally, Constraints (29) and (30) impose the necessary
integrality and non-negativity requirements on the decision variables of the model.

While Proposition 3.4 does not apply to the CMND(S) (the constraints associ-
ated with the vector ds are equality constraints and hence, the dual variables are not
restricted to be non-negative), the conclusion still holds. Namely, when s ∈ S̄ and
s′ ∈ S\ S̄ are such that s covers s′ and (ȳ, x̄s,∀s ∈ S̄, z̄s,∀s ∈ S\ S̄) is a feasible solution
to CMND(S̄) then w j>ds′ ≤ w j>Bȳ. Or, if y induces a design that enables the routing
of commodity demands for scenario s then it will also enable the routing of commodity
demands for scenario s′.

The Instances. We use 7 instance classes (4-10), for our computational study, taken
from the set of R instances seen in [12]. Attributes of each class are given in Table 1.
Each of these classes contains five networks, labeled 1,3,5,7, 9, yielding a total of 35
networks. The labels 1,3,5,7, and 9 reflect an increasing ratio of fixed to variable costs
and total demand to capacity. A detailed description of the instances can be found in
[11].

Class |N| |A| |K|
4 10 60 10
5 10 60 25
6 10 60 50
7 10 82 10
8 10 83 25
9 10 83 50

10 20 120 40

Table 1: Instance Class Character-
istics

Characteristic Values
|S| 16,32,64

% of ds
i that are positively correlated 0, 20, 40, 60, 80

Table 2: Scenario Characteristics

Then, we generate several instances with varying number of scenarios for each
network in each instance class. We detail data regarding the scenarios in Table 2. The
first line indicates that, for each of the 35 networks, there are five instances with 16
scenarios, five with 32 scenarios, and five with 64 scenarios. The five instances for each
network vary with respect to correlation. Specifically, as shown on the second line, for
each network and number of scenarios, each instance of the five is characterized by
a different fraction of the elements ds

i , i = 1, . . . ,n that are positively correlated. In
summary, we have 525 instances of varying network structure, number of scenarios,
and correlation.

The Implementations. In all experiments, we executed our implementations of Ben-
ders decomposition for at most two hours on a cluster of machines with 8 Intel Xeon
CPUs running at 2.66 GHz with 32 GB RAM. All linear and mixed integer programs
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were solved with CPLEX 12. We solved CMND(S)instances with either CPLEX or a
Benders-based algorithm, which uses either a partial or a full decomposition. All algo-
rithms were executed with an optimality gap tolerance of 1%. All computation times
reported are in seconds.

We have implemented a Benders algorithm that includes many of the enhancements
developed for the original solution procedure. We implemented the Multi-cut version
of the L-Shaped method [4], as previously presented in Algorithm 1 in Section 2.1.
Preliminary tests showed that this version of the method outperformed the original
Single-cut version [37] on the instances used. It has often been observed that the lack
of structure in the master problem hampers the ability of a Benders implementation
to solve instances in reasonable run-times. Therefore, we also opted for the two phase
Benders solution approach developed in [25]. As such, the first phase involves the solu-
tion of the linear relaxation of problem (26)-(30) via Algorithm 1 or Algorithm 2 when
partial decomposition is used. The cuts collected while solving the linear relaxation are
used to strengthen the formulation of the master problem solved in the second phase,
wherein the integrality constraints (29) are reintroduced and the Benders algorithm is
again applied to produce an optimal solution to the CMND(S).

Regarding the second phase, the master problem is solved via CPLEX, with op-
timality and feasibility cuts added at nodes of the branch-and-bound tree whenever
integer feasible solutions are found. This approach is inspired by the strategy proposed
in [18] where suboptimal solutions are used to generate cuts. It is also similar to the
hybrid method proposed by Hooker and Ottosson [20], which combines Benders de-
composition and constraint programming to solve a larger class of problems. Finally,
as local branching was shown to speed up the execution of Benders decomposition
[29], we turn on CPLEX’s implementation of local branching when solving a master
problem in the second phase of the algorithm,

Regarding the generation of optimality and feasibility cuts, we have implemented
the approach originally proposed in [23], guaranteeing that only non-dominated cuts
are added to the master problem. Also, problem-specific inequalities for the CMND(S)
are added to further strengthen the formulation of the master problem. Specifically,
we add inequalities of the form ∑ j∈N+(i) yi j ≥ 1, where node i is the origin for some
commodity k. Similar inequalities can be added for destination nodes for commodities.
Both types of inequalities are included in the master’s formulation at the beginning
of the first phase of the algorithm. Furthermore, it is well known that, when dks <
ui j, adding constraints of the form xks

i j ≤ dksyi j to (26)-(30) greatly strengthens the
formulation. At the same time, even in a deterministic setting (where |S| = 1), there
are often too many of these inequalities to add them beforehand. Consequently, it is
necessary to add them dynamically in a cutting plane algorithm fashion [26]. When
partial decomposition is applied, by retaining some of the variables xks

i j , we therefore
dynamically add these inequalities when solving the linear relaxation of the CMND(S).
The collected inequalities xks

i j ≤ dksyi j are then kept in the master’s formulation when
the second phase of the algorithm is performed.
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4.2 Benchmarking the use of partial decomposition

We first study whether a partial decomposition should be used. To do so, we compare
the performances of a partial decomposition with the scenarios in S̄ drawn randomly
from S (labeled Random in the following tables), of a full decomposition (labeled Tra-
ditional), and of not performing a decomposition at all (labeled CPLEX) wherein we
simply solve the instance of CMND(S) as a MIP. The results for the Random strategy
are based on executing the algorithm five times (each with a different seed for the ran-
dom number generator) for each instance. We consider two sizes for the set S̄, 4, and
8.

We report in Tables 3a and 3b, by method, the average of the total time the algo-
rithm executed (Total Time) and the final gap it produced (Gap), measured as 100*(Primal-
Dual)/Primal, where Primal represents the value of the primal solution found by the al-
gorithm and Dual is the value of the dual bound produced. We also report the percent-
age of instances the method was able to solve to within 1% (Solved). We report results
for all instances with 64 scenarios in Table 3a and for instances with 64 scenarios that
CPLEX could not solve in Table 3b. We see that, with respect to the optimality gap
produced, a decomposition-based approach is superior to CPLEX for these instances
and that performing a partial decomposition is better than performing a full decomposi-
tion. We will return to the question of why fewer instances are solved when performing
a partial decomposition in Section 4.4. As can be seen in Table 3b, CPLEX performs
poorly on the instances it could not solve, and performing a partial decomposition leads
to the smallest optimality gap on those same instances.

Strategy |S̄| Total Gap Solved
Time

CPLEX 64 3,067.47 11.48% 60.00%
Traditional 0 3,129.62 8.31% 52.57%

Random 4 3,915.27 6.57% 45.71%
8 3,993.82 6.13% 45.14%

(a) All 175 instances

Strategy |S̄| Total Gap Solved
Time

CPLEX 64 7,200.00 35.17% 0.00%
Traditional 0 4,317.73 16.88% 23.64%

Random 4 6,030.59 13.04% 13.09%
8 6,118.93 12.08% 13.45%

(b) 70 instances CPLEX could not solve

Table 3: Instances with |S|= 64

4.3 Benchmarking partial decomposition strategies

Having established that a partial decomposition is worth performing, we next bench-
mark the strategies for producing a partial decomposition discussed in Sections 3.2 and
3.3. These strategies require a parameter, K, which in turn dictates the size of the set S̄,
or, the number of scenarios we retain. We consider three sizes for the set S̄, 1, 4, and 8.
For Clustering-mean, choosing one scenario to retain (i.e., |S̄|= 1) results in choosing
the scenario that is closest to the mean of all scenarios in S. Because retaining only one
scenario for the Convex Hull strategy is not meaningful, we do not do it.
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We report in Table 4 results for instances with 16, 32, and 64 scenarios. We see that,
given a size for S̄, every strategy for constructing a set S̄ of that size results in a smaller
gap (and almost always less time) than the full decomposition scheme employed by
the Traditional implementation. While the Random strategy is effective, nearly all the
other strategies yield a lower gap and often terminate in less time.

Recalling our categorization of strategies, we note that the Covering strategies per-
form better than the Representation ones, yielding lower gaps and total times, and a
higher percentage of solved instances. We conclude that Convex Hull is the best Rep-
resentation strategy and that the two Covering strategies are nearly equivalent. We note
that, when |S̄| = 1, the Row Covering strategy lowers the gap by more than 2% from
the Traditional one for all values of |S|. Given the relative performance of the various
strategies, we next restrict our analysis to the strategies Traditional, Random, Convex
Hull, and Row Covering.

|S|= 16 |S|= 32 |S|= 64

Strategy |S̄| Total Gap Solved Total Gap Solved Total Gap Solved
Time Time Time

Traditional 0 2,941.84 6.90% 54.29% 2,972.78 7.68% 53.71% 3,129.62 8.31% 52.57%

Random
1 3,331.64 5.50% 57.71% 3,766.17 5.29% 51.60% 3,950.03 6.30% 45.71%
4 3,519.08 4.53% 56.11% 3,779.44 5.22% 50.74% 3,915.27 6.57% 45.71%
8 3,700.15 4.24% 52.00% 3,787.80 5.21% 50.97% 3,993.82 6.13% 45.14%

Clustering-mean
1 3,504.08 4.00% 57.14% 3,785.85 5.07% 50.86% 4,008.87 6.14% 45.14%
4 3,146.16 3.36% 65.71% 4,257.03 4.85% 49.71% 4,501.13 6.53% 42.29%
8 2,351.89 2.11% 73.14% 3,861.60 4.86% 52.57% 4,587.91 6.60% 40.57%

Convex Hull 4 2,983.58 2.92% 66.29% 3,713.28 4.37% 52.57% 4,058.00 5.84% 41.14%
8 2,117.62 1.94% 78.29% 3,508.38 3.70% 56.00% 4,090.12 5.59% 42.29%

Clustering-greatest
1 3,590.98 3.98% 60.57% 3,997.52 4.94% 50.86% 4,350.67 6.22% 44.00%
4 2,857.73 2.59% 67.43% 3,806.83 3.66% 58.29% 4,435.51 4.88% 43.43%
8 1,898.25 1.68% 80.57% 3,589.48 2.93% 62.29% 4,465.22 4.75% 43.43%

Row Covering
1 3,551.08 4.02% 61.43% 3,956.86 4.90% 51.43% 4,347.79 6.21% 44.29%
4 2,759.10 2.60% 69.71% 3,695.79 3.54% 57.14% 4,233.17 4.89% 41.71%
8 1,848.51 1.67% 81.14% 3,357.26 3.03% 62.86% 4,175.83 4.61% 45.14%

Table 4: Performance by strategy and |S̄|.

While Table 4 reports averages across all correlation levels, we next present in
Figure 2 the average optimality gap reported by strategy for each correlation level. For
the partial decomposition strategies, we average over results when |S̄|= 4. We see that
for all correlation levels, performing a partial decomposition leads to a much smaller
optimality gap than not doing so, and that performing a partial decomposition based
on the Row Covering strategy always yields the smallest optimality gap. We also note
that the optimality gap produced is much less sensitive to the correlation level when
performing a partial decomposition compared to when one is not performed.

The Row Covering strategy involves first solving an optimization problem with an
objective function that serves as a proxy for the performance of an algorithm such as
Algorithm 2. We study the effectiveness of this proxy in Table 5, the values reported
being averages across results for all instances (i.e., all values of |S| and all correlation
levels). Specifically, we report in row % Elements covered an average of the quantity
|{(i,s) i = 1, . . . ,n;s ∈ S : vs̄s

i for some s̄ ∈ S̄}|/(|S| ∗n), or the percentage of (element,
scenario) pairs that are covered by a scenario that was retained in set S̄. We report in row
% of instances the percentage of instances for which the preceding statistic equals the
corresponding value in the % Elements covered row. Next, we report in rows Gap and
Feasibility cuts averages of these statistics for experiments with the same percentage
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Figure 2: Optimality gap by correlation level

covered. We see that, more often than not, the better the set S̄ does at covering the
remaining scenarios, the better the performance of the partial decomposition, with a
sharp breakpoint occurring at 95%. We also note that we are often able to cover 95%
or more elements.

% Elements 89 90 91 92 93 94 95 96 97 98
covered

% of instances 2.86% 6.67% 11.43% 16.19% 17.14% 9.52% 4.76% 15.24% 11.43% 4.76%
Gap 5.38% 7.27% 5.90% 5.51% 3.75% 3.66% 1.02% 1.82% 0.84% 0.84%

Feasibility cuts 54.13 44.54 40.90 41.52 52.83 30.32 18.44 20.19 18.82 15.44

Table 5: Performance of Row Covering by % covered.

Finally, in Tables 6a and 6b, we repeat Tables 3a and 3b adding entries for the Row
Covering strategy. We see that this strategy leads to a significantly smaller gap than
the other methods. We will discuss the fact that performing a full decomposition leads
to a greater number of solved instances next as we study various performance statistics
related to performing partial decomposition.

Strategy |S̄| Total Gap Solved
Time

CPLEX 64 3,067.47 11.48% 60.00%
Traditional 0 3,129.62 8.31% 52.57%

Random 4 3,915.27 6.57% 45.71%
8 3,993.82 6.13% 45.14%

Row 4 4,233.17 4.89% 41.71%
Covering 8 4,175.83 4.61% 45.14%

(a) All 175 instances

Strategy |S̄| Total Gap Solved
Time

CPLEX 64 7,200.00 35.17% 0.00%
Traditional 0 4,317.73 16.88% 23.64%

Random 4 6,030.59 13.04% 13.09%
8 6,118.93 12.08% 13.45%

Row 4 6,563.13 9.78% 5.45%
Covering 8 6,509.80 9.93% 3.64%

(b) 70 instances CPLEX could not solve

Table 6: Instances with |S|= 64

4.4 Analyzing the impact of partial decomposition

We next seek a fuller picture of the performance seen when performing partial decom-
position. All the results presented in this subsection are based on averaging across
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results for all instances (i.e., all values of |S| and all correlation levels). For partial
decomposition strategies, results achieved with |S̄|= 4 are reported.

Recall that, in our Benders implementation, we first solve the linear programming
relaxation of P with Algorithm 1. After doing so, we solve P, augmented with the cuts
found while solving its linear relaxation, with a branch-and-bound-based algorithm
wherein cuts are generated throughout the tree search. Notice that we define an iteration
of Algorithm 1 as one execution of the while loop, wherein a relaxation of the problem
is solved and violated cuts are generated.

Then, to measure the impact of partial decomposition on convergence, we report
in Table 7 a comparison of the number of iterations required (on average) to solve
the linear programming relaxation of P for each strategy. While it is to be expected
that performing a partial decomposition speeds up convergence (cuts never need to be
generated for scenarios that are retained), the magnitude of the speed-up, even over
performing a Random partial decomposition, is surprising.

Traditional Random Convex Hull Row Covering
Iterations to converge 186.93 56.90 18.19 16.22

Table 7: Convergence rate by strategy

One statistic related to convergence is the number of Benders cuts generated. We
next report in Table 8, by correlation level, the impact of the different strategies on
the number of Optimality (Opt. cuts) and Feasibility (Feas. cuts) cuts generated. We
report the average number of cuts generated for each strategy, considering both the cuts
generated when solving the linear programming relaxation of P with Algorithm 1 and
when solving P via a branch-and-bound-based Benders implementation.

Correlation Traditional Random Convex Hull Row Covering
Opt. cuts Feas. cuts Opt. cuts Feas. cuts Opt. cuts Feas. cuts Opt. cuts Feas. cuts

0 9,099.02 4,990.44 5,831.07 798.82 3,531.32 141.02 3,324.13 41.26
0.2 9,518.81 4,543.37 6,509.87 833.62 3,745.46 186.91 3,332.35 39.92
0.4 9,473.58 4,550.91 6,463.41 1,012.70 3,734.56 197.26 3,273.38 30.10
0.6 9,732.41 4,128.62 6,517.09 857.83 3,724.43 129.02 3,265.50 30.30
0.8 9,567.20 3,951.27 6,397.28 878.79 3,608.57 142.42 3,200.87 31.90

Average 9,478.20 4,432.92 6,343.74 876.35 3,668.87 159.33 3,279.25 34.70

Table 8: Optimality and feasibility cuts by strategy and correlation

We remark that performing a partial decomposition yields a significant decrease
in the number of feasibility and optimality cuts generated, and that the Convex Hull
and Row Covering strategies perform much better than choosing scenarios to retain
randomly. The Row Covering strategy outperforms the Convex Hull strategy, reducing
the number of optimality cuts by over 10% and the number of feasibility cuts to less
than fifty for each correlation level. The low number of feasibility cuts generated when
performing the Row Covering strategy echoes Proposition 3.4. And, not surprisingly,
the number of feasibility cuts found when performing the Row Covering strategy trends
down as the correlation level increases.
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One computational issue that is often encountered when employing Benders is in-
stability; namely that the values of the first stage variables y fluctuate wildly from one
iteration to the next. We next study whether performing a partial decomposition mit-
igates this issue by measuring the Hamming distance between successive vectors of
first stage variable values (∆ next), which represent a network design in our applica-
tion. We report averages of these distances in Table 9 along with the Hamming distance
from each design to the final design produced (∆ final). We see that the Row Covering
strategy outperforms both Traditional and Random with respect to stability, as the de-
signs change the least in the course of solving P and are the closest to the final design
produced.

Traditional Random Convex Hull Row Covering
∆ next 23.43 21.30 16.97 16.21
∆ final 16.76 14.16 12.71 11.85

Table 9: Stability (measured by Hamming distance) by strategy

We next study the performance of each strategy with respect to the quality of the
primal solution and dual bound produced while solving the LP relaxation of P and
at termination. By attempting to solve each instance with CPLEX (executed with a
time limit of two hours), we have a fixed dual bound that we call CPLEX LB against
which we measure. With Primal representing the value of the best primal solution pro-
duced by a strategy for an instance, we calculate the Primal gap for that solution as
100*(Primal-CPLEX LB)/Primal. Similarly, while solving the linear programming re-
laxation of P with a decomposition-based approach, a feasible solution LP Primal can
be produced through a rounding procedure. We calculate the gap for that solution (LP
Primal gap) as 100*(LP Primal - CPLEX LB)/LP Primal. We report averages of these
gaps in Table 10. Similarly, we compare for each strategy the dual bound produced
when solving the LP relaxation and at termination against CPLEX LB. Thus, with LP
Dual representing the bound produced when the LP relaxation of P is solved, we cal-
culate LP dual gap as 100*(CPLEX LB-LP Dual)/CPLEX) LB. Finally, with Dual rep-
resenting the bound produced at termination, we calculate Dual gap as 100*(CPLEX
LB-Dual)/CPLEX LB.

LP primal gap LP dual gap Primal gap Dual gap
Traditional 46.91% 19.29% 4.47% 3.73%

Random 46.25% 13.74% 3.16% 2.45%
Convex Hull 46.78% 10.25% 2.77% 1.70%

Row Covering 47.00% 9.27% 2.45% 1.28%

Table 10: Primal and dual performance by strategy

We see that performing a partial decomposition yields both a higher-quality primal
solution and a stronger dual bound. We also note that, how the partial decomposition is
performed has an impact, with the Row Covering strategy yielding the highest quality
primal solutions and strongest dual bounds. We attribute the stronger dual bounds
produced at the end of the LP phase when using partial decomposition strategies to the
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fact that while solving the LP, we dynamically add disaggregate inequalities xks
i j ≤ yi j,

for the scenarios we retain in a cutting plane-type procedure.

Finally, we study in Table 11 the tradeoffs in two statistics related to branch and
bound performance with performing a partial decomposition as opposed to a full de-
composition. Specifically, we study the strength of the root node bound (Root node
gap) and the average amount of time spent processing a node in the branch-and-bound
tree (Time per node). To evaluate the strength of the root node bound (Root bound),
we calculate the gap between that bound and the lower bound provided by CPLEX
after solving the instance for two hours, CPLEX LB, with the formula 100*(CPLEX
LB-Root bound)/CPLEX LB.

|S|= 16 |S|= 32 |S|= 64

Strategy
Root node Time per Root node Time per Root node Time per

gap node gap node gap node
Traditional 12.73% 0.09 12.48% 0.18 10.78% 0.45

Random 10.12% 0.20 9.85% 0.36 9.87% 0.64
Convex Hull 6.99% 0.81 8.35% 1.07 8.13% 1.49

Row Covering 7.75% 0.91 9.67% 1.23 8.75% 1.68

Table 11: Branch and bound statistics by strategy

One motivation for performing a partial decomposition was that, with the additional
structure in the master problem, CPLEX would be able to generate valid inequalities
to strengthen the root node bound. The results indicate that this does happen as the
Root node gap is much smaller when performing partial decomposition. We also see
that how the partial decomposition is performed impacts the root node gap as well, as
it is often much smaller when using the Row Covering or Convex Hull strategies than
when randomly choosing the scenarios to retain. However, Table 11 also indicates the
drawback associated with performing a partial decomposition; that it takes longer to
process each node. We attribute our inability to solve more instances when perform-
ing a partial decomposition, as seen in Tables 3a, 3b,6a, and 6b, to this phenomenon.
While the increase in time per node may appear as a drawback of performing partial
decomposition, we believe it is strongly compensated for by advances in computing
and solver power.

5 Conclusions and Future Work

We have proposed the concept of partial decomposition and developed a theory to
support it that illustrates how it may be applied to any stochastic integer program with
continuous recourse. Such programs are used to model many practical applications
such as the one considered in this paper, network design. They are also useful for
solving problems with integer recourse as many solution methods for such problems
also solve one of its linear relaxations. With an extensive computational study, we have
demonstrated the advantages of using a partial decomposition.
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Our computational results show that using partial decomposition can greatly re-
duce the number of optimality and feasibility cuts generated when solving a stochastic
program with a Benders-based algorithm and that how the partial decomposition is
performed has a significant impact. The theory suggesting how to perform partial de-
composition is oriented, however, towards reducing the need for feasibility cuts for the
scenario subproblems that are not retained. Hence, one avenue for future work is to
develop a theory to apply the strategy that is oriented towards reducing the need for op-
timality cuts to express the expected recourse cost. Finally, we have focused on static
partial decomposition; i.e., the scenario subproblems to retain are chosen in an initial-
ization step of a Benders-based algorithm, which then proceeds to solve the resulting
formulation. Hence, another avenue for future work is to consider changing the partial
decomposition during the execution of a Benders-based algorithm.
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