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Abstract. We consider the Dynamic Facility Location Problem with Generalized Modular 
Capacities, a multi-period facility location problem in which the costs for capacity changes 
are defined for all pairs of capacity levels. The problem embeds a complex cost structure 
and generalizes several existing facility location problems, such as those that allow 
temporary facility closing or capacity expansion and reduction. As the model may grow 
very large, general-purpose mixed-integer programming (MIP) solvers are limited to 
solving instances of small to medium size. In this paper, we extend the generalized model 
to the case of multiple commodities. We propose Lagrangian heuristics, based on 
subgradient and bundle methods, to find good quality solutions for large-scale instances 
with up to 250 facility locations and 1000 customers. To improve the final solution quality, 
a restricted MIP model is solved based on the information collected through the solution of 
the Lagrangian dual. Computational results show that the Lagrangian based heuristics 
provide highly reliable results for all problem variants considered. They produce good 
quality solutions in short computing times even for instances where state-of-the-art MIP 
solvers do not find feasible solutions. The strength of the formulation also allows the 
method to provide tight bounds on the optimal value. 
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1 Introduction

Dynamic facility location problems aim at providing capacity planning over a multiple-period planning hori-
zon. Given that customer demands may vary significantly over time, facilities often adjust their capacities.
These problems find applications in both the public and private sectors, for the location of production fa-
cilities (Fleischmann et al., 2006), schools (Peeters and Antunes, 2001), health care facilities (Correia and
Captivo, 2003; Kim and Kim, 2013) and many more, as documented in several recent literature surveys
(Thomas and Griffin, 1996; Brotcorne et al., 2003; Revelle et al., 2008; Melo et al., 2009; Smith et al., 2009).
To represent the adjustment of capacities in such problems, common actions include capacity expansion
and reduction (Luss, 1982; Jacobsen, 1990; Peeters and Antunes, 2001; Troncoso and Garrido, 2005; Dias
et al., 2007), temporary closing of facilities (Chardaire and Sutter, 1996; Canel et al., 2001; Dias et al.,
2006) and the relocation of facilities (Melo et al., 2006). Although mathematical models often take into
account complex environments such as complete supply chains, the cost structure to adjust capacities along
time is commonly modeled in less detail. Economies of scale are often represented on the level of the total
capacity involved in each operation, but do not take into consideration the capacity level before the change.
A more detailed representation of the cost structure is necessary in a number of applications, especially in
the domains of transportation, logistics and telecommunications, where additional capacity gets cheaper (or
more expensive) when approaching the maximum capacity limit. For instance, in the problem introduced
by Jena et al. (2012), logging camps are located to host workers in the forest industry. In this problem,
the total capacity of a camp is represented by its number of different hosting units, while additional units
provide supporting infrastructure. As the relation between the number of different units cannot be captured
by a simple function, the costs for capacity changes need to be described in a transition matrix.

Jena et al. (2013) recently introduced the Dynamic Facility Location Problem with Generalized Modular
Capacities (DFLPG), in which the costs for capacity changes are based on a cost matrix. The mixed-integer
programming (MIP) model presented by the authors therefore allows taking into account not only the total
capacity involved in the capacity change, but also the current capacity level. This model generalizes several
multi-period facility location problems: the problem with facility closing and reopening, the problem with
capacity expansion and reduction, and the combination of the two. In addition, the DLFPG provides a
strong linear programming (LP) relaxation bound. Compared to alternative MIP formulations, the DFLPG
based models can often be solved twice as fast using a general-purpose MIP solver. Although it is possible
to solve the models for small and medium size instances, they usually grow too large when considering more
complex problem variants or larger instances. In this case, heuristics are an interesting alternative. They also
provide an advantage when performing “what-if” analysis, which requires repeatedly solving the problem
with different scenarios. Heuristics are usually capable of using solutions for a certain scenario to quickly
find solutions for a different one.

Metaheuristics such as tabu search, simulated annealing and genetic algorithms have been frequently
applied to several families of location problems, from classical facility location problems (Arostegui et al.,
2006) to logistics network design that model entire supply chains (Lee and Dong, 2008; Melo et al., 2011).
Lagrangian relaxation based heuristics have been developed for several variants of single-period facility lo-
cation problems (Barcelo et al., 1990; Sridharan, 1991; Beasley, 1993; Sridharan, 1995; Holmberg and Ling,
1997; Agar and Salhi, 1998; Holmberg and Yuan, 2000; Correia and Captivo, 2003; Wu et al., 2006), some
of which combined Langrangian relaxation and local search (Correia and Captivo, 2006; Li et al., 2009).
Lagrangian bounds have also been used within exact methods (Görtz and Klose, 2012). For multi-period
facility location, approaches based on Lagrangian relaxation have been proposed for problems without ca-
pacities (Chardaire and Sutter, 1996), with fixed capacities (Shulman, 1991), and for multi-echelon problems
in the context of supply chain design (Diabat et al., 2011). Furthermore, Lagrangian based methods have
been successfully applied to other location problems such as dynamic hub location (Elhedhli and Wu, 2010;
Contreras et al., 2011).

In this paper, we present an extension of the DFLPG in which customers have demands for different
commodities. We propose Lagrangian based heuristics that find good quality solutions in reasonable com-
puting times. Two methods are introduced to solve the Lagrangian dual: a subgradient method and a bundle
method. After this process, a second optimization step is used to improve the solution quality. This step
consists of solving a restricted MIP model, taking into consideration only decisions that have been part of a
significant number of the previous Lagrangian solutions. To the best of our knowledge, this work is the first
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to present a Lagrangian relaxation approach to solve large-scale instances of a multi-period facility location
problem of this nature, i.e., including modular capacity levels and multiple commodities. Given the strength
of the formulation used to model the DFLPG, the Lagrangian heuristics are capable of providing relatively
tight bounds on the optimal value. The results are stable even for large instances, where general-purpose
MIP solvers either consume too much memory or do not solve the problem in reasonable time. Given the
generality of the DFLPG, the proposed heuristic can handle an entire class of problems, consisting of all
those that can be modeled by the DFLPG.

The remainder of the paper is organized as follows. Section 2 reviews and extends the MIP formulation
for the DFLPG and shows how it can be used to model three different special cases. Section 3 explains how
the problem is decomposed via Lagrangian relaxation and outlines the resulting heuristics. Section 4 then
discusses how the final solution quality can be improved in a second optimization phase, using information
from the solution of the Lagrangian dual to generate a restricted MIP model. The Lagrangian heuristics are
then compared by means of computational experiments in Section 5. First, general results are presented for
each of the different problem variants. Then, the advantages of the Lagrangian heuristics are illustrated with
more detailed results comparing their performance to a state-of-the-art MIP solver. Finally, conclusions are
drawn and future research directions are discussed in Section 6.

2 Mixed Integer Programming Formulation

This section first introduces a general formulation for the DFLPG and then explains how it can be used to
model three special cases.

2.1 General Model

We consider the mixed-integer programming formulation introduced by Jena et al. (2013) and extend it to in-
clude multiple commodities. We denote by J the set of candidate facility locations and by L = {0, 1, 2, . . . , q}
the set of possible capacity levels for each facility. We also denote by I the set of customer demand points
and by T = {1, 2, . . . , |T |} the set of time periods in the planning horizon. We assume throughout that the
beginning of period t+ 1 corresponds to the end of period t. Additionally, we denote by P = {1, 2, . . . , |P |}
the set of different commodities. The demand of customer i for commodity p in period t is denoted by dipt,
while the cost to serve one unit of commodity p from facility j operating at capacity level ` to customer i
during period t is denoted by gij`pt. The capacity of a facility of size ` at location j is given by uj` (with
uj0 = 0). The cost matrix fj`1`2t describes the combined cost to change the capacity level of a facility at
location j from `1 to `2 at the beginning of period t and to operate the facility at capacity level `2 throughout
time period t. Furthermore, we let `j be the initial capacity level of an existing facility at location j.

To formulate the problem, we use binary variables yj`1`2t equal to 1 if and only if the facility at location
j changes its capacity level from `1 to `2 at the beginning of period t. The allocation variables xij`pt denote
the fraction of the demand of customer i for commodity p in period t that is served from a facility of size `
located at j. Using this notation, we define the following MIP model, referred to as the Generalized Modular
Capacities (GMC) formulation:
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(GMC) min
∑
j∈J

∑
`1∈L

∑
`2∈L

∑
t∈T

fj`1`2tyj`1`2t +
∑
i∈I

∑
j∈J

∑
`∈L

∑
p∈P

∑
t∈T

gij`tdiptxij`pt (1)

s.t.
∑
j∈J

∑
`∈L

xij`pt = 1 ∀i ∈ I, ∀p ∈ P, ∀t ∈ T (2)

∑
i∈I

∑
p∈P

diptxij`pt ≤
∑
`1∈L

uj`yj`1`t ∀j ∈ J, ∀` ∈ L, ∀t ∈ T (3)

∑
`1∈L

yj`1`(t−1) =
∑
`2∈L

yj``2t ∀j ∈ J, ∀` ∈ L, ∀t ∈ T\ {1} (4)

∑
`2∈L

yj`j`21 = 1 ∀j ∈ J (5)

xij`pt ≥ 0 ∀i ∈ I, ∀j ∈ J, ∀` ∈ L, ∀p ∈ P, ∀t ∈ T (6)

yj`1`2t ∈ {0, 1} ∀j ∈ J, ∀`1 ∈ L, ∀`2 ∈ L, ∀t ∈ T. (7)

The objective function (1) minimizes the total cost for changing the capacity levels and allocating the
demand. Constraints (2) are the demand constraints for the customers. Constraints (3) are the capacity
constraints at the facilities. Constraints (4) link the capacity change variables in consecutive time periods.
Finally, constraints (5) specify that exactly one capacity level must be chosen at the beginning of the planning
horizon. Note that the flow constraints (4) and (5) further guarantee that, in each time period, exactly one
capacity change variable is selected.

We may also adapt two types of valid inequalities to be used in the GMC formulation:

xij`pt ≤
∑
`1∈L

yj`1`t ∀i ∈ I, ∀j ∈ J, ∀` ∈ L, ∀p ∈ P, ∀t ∈ T. (8)

∑
j∈J

∑
`1∈L

∑
`2∈L

uj`2yj`1`2t ≥
∑
i∈I

∑
p∈P

dipt ∀t ∈ T. (9)

The Strong Inequalities (SI) (8), typically used in facility location and network design problems (see, for
instance, Gendron and Crainic, 1994), are known to provide a tight upper bound for the demand assignment
variables. The SIs may be added to the model either a priori or in a branch-and-cut manner only when
they are violated in the solution of the LP relaxation. The set of valid inequalities (9) is referred to as the
Aggregated Demand Constraints (ADC). Although they are redundant for the LP relaxation, adding them
to the model enables MIP solvers to generate cover cuts that further strengthen the formulation.

2.2 Special Cases

We now illustrate how special cases can be modeled by using the GMC formulation. As will be explained in
Section 4, our solution approach can be tailored to take advantage of the special structure of each problem
variant. Jena et al. (2013) explicitly show how to model two problem variants, using the GMC formulation:
facility location with closing and reopening of facilities and facility location with capacity expansion and
reduction. In the first problem, the size of the facility is chosen from a discrete set of capacity levels.
Existing facilities may then be closed and reopened multiple times. In the second problem considered,
capacities can be adjusted by the use of a single facility at each location. At each facility, the capacity can
be expanded or reduced from one capacity level to another. It is assumed that an expansion of ` capacity
levels has always the same cost, regardless of the previous capacity level. These two problems are denoted
as the Dynamic Modular Capacitated Facility Location Problem with Closing and Reopening (DMCFLP CR)
and the Dynamic Modular Capacitated Facility Location Problem with Capacity Expansion and Reduction
(DMCFLP ER), respectively.

A subset of capacity change variables yj`1`2t is chosen to model these special cases. The cost coefficients
fj`1`2t for these variables are based on the following fixed costs, defined to characterize the special cases:

• ccj` and coj` are the costs to temporarily close and reopen a facility of size ` at location j, respectively;
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• f cj` and foj` are the costs to reduce and to expand the capacity of a facility at location j by ` capacity
levels, respectively;

• F oj` is the cost to maintain an open facility of size ` at location j throughout one time period.

For the problem variant involving facility closing and reopening, we create an artificial capacity level ` for
each capacity level ` ∈ L\{0}. Capacity level ` represents the state in which a facility of size ` is temporarily
closed. At each time period t ∈ T and location j ∈ J , we may find capacity transition decisions yj`1`2t that
represent different types of operations (note that the costs for these decisions are usually composed by the
cost to perform the capacity transition, as well as the maintenance cost for the new capacity level):

1. Facility construction and capacity expansion. The expansion of the capacity is represented by a capacity
transition from capacity level `1 to any other capacity level `2 > `1. If the decision represents a facility
construction, then `1 is 0. The capacity is thus expanded by `2 − `1 capacity levels. The cost for this
decision is set to fj`1`2t = foj(`2−`1) + F oj`2 .

2. Capacity reduction. The reduction of the capacity is represented by a transition from capacity level `1
to any other capacity level `2 < `1. The capacity is thus reduced by `1 − `2 capacity levels. The cost
for this decision is set to fj`1`2t = f cj(`1−`2) + F oj`2 .

3. Maintaining the current capacity level. A facility may neither expand nor reduce the current capacity
level. The cost of this transition is thus only composed of the maintenance cost, i.e., fj`1`1t = F oj`1 if
the capacity level represents an open facility, fj`1`1t = 0 if the capacity level represents a temporarily
closed facility and fj00t = 0 if no facility exists.

4. Temporary closing. An open facility of size `1 can be temporarily closed, i.e., it changes to capacity
level `1. The total cost is fj`1`1t = ccj`1 .

5. Reopening a closed facility. A temporarily closed facility of size `1 can be reopened, i.e., it changes its
capacity level from `1 to `1. The total cost for this decision is fj`1`1t = coj`1 + F oj`1 .

The DMCFLP CR is represented by transition decisions of type 1 (for construction only), 3, 4 and 5.
We denote the resulting model as the CR-GMC formulation. The DMCFLP ER is represented by transition
decisions of type 1, 2 and 3. The resulting model is denoted as the ER-GMC formulation.

Jena et al. (2013) also refer to a third problem variant, which combines both features of the two special
cases. It is denoted as the Dynamic Modular Capacitated Facility Location Problem with Closing/Reopening
and Capacity Expansion/Reduction (DMCFLP CR ER). The problem variant is modeled by using the tran-
sition decisions of type 1 – 5 presented above. However, these decisions allow only one single operation,
for example either capacity reduction or facility closing, at each time period. In practice, it is very likely
that one may want to reduce or expand the capacity before closing or after reopening a facility at the same
time period. We may therefore consider four additional decision types that represent combinations of such
operations:

(a) A facility is reopened at level `1 and its capacity is expanded to level `2 > `1 at the same time period.

(b) A facility is reopened at level `1 and its capacity is reduced to level `2 < `1 at the same time period.

(c) The capacity of a facility at level `1 is expanded to level `2 > `1 and the facility is closed right after.

(d) The capacity of a facility at level `1 is reduced to level `2 < `1 and the facility is closed right after.

By making the realistic assumption that the costs for closing and reopening a facility are non-decreasing as
the size of the facility increases, we may discard two of the four possibilities.

Proposition 1: Let coj` ≤ coj(`+1) and ccj` ≤ ccj(`+1) for ` = 0, 1, 2, . . . , (q − 1), then there is at least one

optimal solution that does neither use decisions of type (b) nor of type (c).
Proof. Note that case (c) may only occur in two situations: either the facility stays closed until the

end of the planning horizon or the facility is reopened at a later moment. If the facility stays closed, then
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closing it at level `1 is at most as expensive as combined capacity expansion and closing as suggested in
case (c): ccj`1 ≤ foj(`2−`1) + ccj`2 . If the facility is closed at the beginning of time period t1, but it will

be reopened at the beginning of period t2 > t1, then the corresponding costs using case (c) are given by:
Cc = ccj`1 + foj(`2−`1) + coj`2 + F oj`2 . However, the same solution may be reproduced by closing the facility at

level `1 and expanding its capacity only after it has been reopened using case (a), which corresponds to the
following costs: Ca = ccj`1 + coj`1 + foj(`2−`1) + F oj`2 . Now, because coj`1 ≤ c

o
j`2

, we have: Ca ≤ Cc. Therefore,

a solution using case (a) is at most as expensive as a solution using case (c).
The same can be shown for the relation between cases (d) and (b), where reducing the capacity before

temporary closing is as most as costly as reducing the capacity after temporary closing.

We thus add only the transition decisions given by the cases (a) and (d) to the model:

6. Reopening and capacity expansion. A closed facility of capacity level `1 is reopened and its capacity
is expanded to level `2 (with `1 < `2). The cost for this decision, including the maintenance costs at
capacity level `2 is thus set to fj`1`2t = ccj`1 + foj(`2−`1) + F o`2 .

7. Capacity reduction and facility closing. An open facility reduces its capacity from level `1 to level
`2 (with `1 > `2) and is temporarily closed afterwards. The cost for this decision, including the
maintenance costs at capacity level `2 is thus set to fj`1`2t = f cj(`1−`2) + ccj`2 .

3 Lagrangian Relaxation

When applying Lagrangian relaxation to capacitated facility location problems, it is common to relax either
the capacity constraints or the demand constraints. Since relaxing the capacity constraints results in a
subproblem that is NP-hard (Van Roy and Erlenkotter, 1982; Barcelo et al., 1990), a more promising and
popular choice in the literature (e.g., Shulman, 1991; Beasley, 1993; Wu et al., 2006) is to relax the demand
constraints (2), which yields a Lagrangian subproblem that can be solved efficiently. Let α be the vector of
Lagrange multipliers. After relaxing the demand constraints (2) and rearranging the terms in the objective
function, we obtain the following Lagrangian subproblem:

L(α) = min
∑
j∈J

∑
`1∈L

∑
`2∈L

∑
t∈T

fj`1`2tyj`1`2t

+
∑
i∈I

∑
j∈J

∑
`∈L

∑
p∈P

∑
t∈T

(gij`ptdipt − αipt)xij`pt +
∑
i∈I

∑
p∈P

∑
t∈T

αipt

s.t. (3)− (8).

Note that the Strong Inequalities (8) are included in the Lagrangian subproblem, since they are easy to
handle, as shown next.

3.1 Solution of the Lagrangian Subproblem

Let c̃ij`pt = gij`ptdipt − αipt denote the modified costs for the xij`pt variables. We separate the Lagrangian
subproblem into |J | independent subproblems, one for each candidate facility location for a fixed set of La-
grangian multipliers α. The Lagrangian subproblem is solved as L(α) =

∑
j∈J Lj(α)+

∑
i∈I
∑
p∈P

∑
t∈T αipt,

where Lj(α) is defined as follows:
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Lj(α) = min
∑
`1∈L

∑
`2∈L

∑
t∈T

fj`1`2tyj`1`2t +
∑
i∈I

∑
`∈L

∑
p∈P

∑
t∈T

c̃ij`ptxij`pt

s.t.
∑
i∈I

∑
p∈P

diptxij`pt ≤
∑
`1∈L

uj`yj`1`t ∀` ∈ L, ∀t ∈ T∑
`1∈L

yj`1`(t−1) =
∑
`2∈L

yj``2t ∀` ∈ L, ∀t ∈ T\ {1}∑
`2∈L

yj`j`21 = 1

xij`pt ≤
∑
`1∈L

yj`1`t ∀i ∈ I, ∀` ∈ L, ∀p ∈ P, ∀t ∈ T

xij`pt ≥ 0 ∀i ∈ I, ∀` ∈ L, ∀p ∈ P, ∀t ∈ T
yj`1`2t ∈ {0, 1} ∀`1 ∈ L, ∀`2 ∈ L, ∀t ∈ T.

Each of these subproblems (one for each location j ∈ J) is concerned with finding the optimal capacity
planning over time, i.e., an optimal schedule to open facilities of a certain size such that the total cost
composed by demand allocation costs (considering the modified costs c̃ij`pt) and the costs to change capacity
levels is minimal. We can solve this problem using dynamic programming by adapting the approach presented
by Shulman (1991). Let Lαj (`, t) denote the cost for an optimal demand allocation at period t assuming that
a facility of size ` is available. For a given set of multipliers α, let Oαj (`, t) denote the optimal cost to serve
all demands by facility j throughout the time periods 0, . . . , t, with a facility of size ` at the end of period t.
For ` > 0, t > 0, the optimal value of Oαj (`, t) is composed of the costs for demand allocation in period t, the
capacity transition to level `, the facility maintenance at level `, and the optimal cost to serve all demands
in previous time periods at the capacity level that minimizes the total cost. They can be computed by the
following recurrence formula:

Oαj (`, t) = Lαj (`, t) + min
0≤`1≤q

{fj`1`t +Oαj (`1, t− 1)}.

Note that Lαj (0, t) = 0 since demand cannot be allocated to a facility with capacity level 0. Furthermore,

for t = 0 the size of the facility that exists at the beginning of the planning horizon is `j . We therefore have:
Oαj (`, 0) = fi`j`t + Lαj (`, 0).

The subproblem is then solved by selecting the facility size at the last time period that has the lowest
total cost:

Lj(α) = min
0≤`≤q

{
Oαj (`, |T |)

}
.

Note that, without the use of the SIs, the Lagrangian subproblem does not possess the integrality
property (Geoffrion, 1974), since facility capacities will only be opened as much as forced by the capac-
ity constraints, i.e.,

∑
`1∈L yj`1`t =

∑
i∈I
∑
p∈P (diptxij`pt)/uj`, which may be fractional. Adding the SIs

to the problem strengthens the dependence between the opening decisions and the demand allocation:∑
`1∈L yj`1`t = maxi∈I,p∈P {xij`pt}. The variables xij`pt (and therefore also one of the corresponding yj`1`2t

variables) will take value 1 if their modified costs c̃ij`pt compensate the costs for the open facility. As a
consequence, using the SIs, the Lagrangian subproblem also has the integrality property. The lower bound
provided by the Lagrangian dual will therefore never be better than the bound provided by the LP relaxation
of the original problem using the SIs.

Computation of the Optimal Demand Allocation. The optimal demand allocation Lαj (`, t) at location
j assumes that a facility of size ` is available and can be computed by solving a fractional knapsack problem
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(subject to the capacity constraints and the SIs):

Lαj (`, t) = min
∑
i∈I

∑
p∈P

c̃ij`ptxij`pt

s.t.
∑
i∈I

∑
p∈P

diptxij`pt ≤ uj`

0 ≤ xij`pt ≤ 1 ∀i ∈ I, ∀p ∈ P.

This problem can be solved by sorting all x variables in increasing order of their ratio c̃ij`pt/dipt, selecting
those with the most negative ratio until the capacity is completely filled or all variables with negative ratios
have been selected. To be precise, we repeatedly select the variables with the most negative ratio for < i, p >
and increase the variable value to the maximum value possible, updating the remaining knapsack capacity
u′j` after each variable selection:

< i∗, p∗ >= argmin
i∈I,p∈P

{
c̃ij`pt
dipt

}
, xij∗`p∗t = min

{
1,
u′j`
dipt

}
.

Clearly, all other x variables are set to 0.

3.2 Solution of the Lagrangian Dual

The solution of the Lagrangian subproblem, for any choice of the Lagrange multipliers α, provides a lower
bound to the DFLPG. To obtain the best possible lower bound, one must solve the Lagrangian dual:

z∗ = max
α

L(α).

The Lagrangian function L(α) is non-differentiable. However, a subgradient direction can be easily com-
puted. We consider two different methods to solve the Lagrangian dual: a subgradient method and a bundle
method.

Subgradient Method. The subgradient direction γipt at the k−th iteration is computed as the violation
of the relaxed constraints when x is fixed to the values found by solving the Lagrangian subproblem:

γkipt = 1−
∑
j∈J

∑
`∈L

xij`pt ∀i ∈ I, ∀p ∈ P, ∀t ∈ T.

We choose the step size λk at iteration k as suggested by Held et al. (1974) and often used in other works
(Shulman, 1991; Sridharan, 1991; Correia and Captivo, 2003):

λk = δk
Ẑ − Lk(α)∑

i∈I
∑
p∈P

∑
t∈T (γkipt)

2
,

where δk is a scalar, Lk(α) equals the value of L(α) at iteration k and Ẑ is the cost of the best feasible
solution found so far. The Lagrange multipliers for the (k + 1)− th iteration are then updated by:

α
(k+1)
ipt = αkipt + λkγkipt ∀i ∈ I, ∀p ∈ P, ∀t ∈ T.

Bundle Method. The second method used to solve the Langrangian dual is an implementation of the
bundle method (Frangioni, 2005). The method uses a subset of the tuples < L(αs), γs > with s ∈ B and B
is referred to as the bundle of subgradients γs. From the primal view point, the following quadratic problem
has to be solved at each iteration (Frangioni and Gallo, 1999):

min
θs

{
1
2 ‖

∑
s∈B

γsθs ‖2 + 1
REBθ; s.t.

∑
s∈B

θs = 1, θ ≥ 0

}
,
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where R is the so called trust region, and Es = L(α) + γ(α̂ − α) − L(α̂) is the linearization error from the
current point α̂. The solution values for θs, given for each bundle member, hold valuable information and
can be used to construct feasible integer solutions (see Section 4.2). The tentative ascent direction is then
computed by the convex combination of the subgradients, using the convex multipliers θ. Alternatively, the
dual problem can be solved to compute the ascent direction, or directly the new point. Frangioni and Gallo
(1999) elaborate on this relationship in detail.

Bundle methods usually possess stronger convergence properties than the subgradient method. However,
they also tend to require more time to compute the Lagrange multipliers. They are therefore beneficial when
a small number of iterations is performed to reach the desired accuracy.

3.3 Upper Bound Generation

At each iteration, a feasible solution is generated based on the Lagrangian solution obtained by solving
the Lagrangian subproblem. This solution provides an upper bound for the optimal integer solution of the
problem that directly impacts the convergence of the subgradient and bundle methods. Even though high
quality upper bounds are desirable, it is important that they are generated in an efficient manner, as the
solution of the Lagrangian dual typically involves hundreds of iterations.

The solution of the Lagrangian subproblem provides a facility opening schedule for the entire planning
horizon. This schedule is defined by capacity levels `′jt indicating the facility size at locaton j at time period t.
In addition to the schedule, the Lagrangian solution provides a demand allocation. As the demand constraints
(2) have been relaxed, the customer demands dipt are either exactly met, under-served or over-served.

The set of all customer demands can therefore be separated into three subsets, where Σ1, Σ2 and Σ3

denote the demands defined by triplets < i, p, t >, which are exactly met, over-served and under served,
respectively:

Σ1 =

< i, p, t >:
∑
j∈J

xij(`′jt)pt = 1

 ,Σ2 =

< i, p, t >:
∑
j∈J

xij(`′jt)pt > 1


and Σ3 =

< i, p, t >:
∑
j∈J

xij(`′jt)pt < 1

 .

To obtain an integer feasible solution, we heuristically reduce redundant demand allocation for the pairs
in Σ2 and increase missing demand allocation for the pairs in Σ3. Note that the heuristic to increase available
capacity is very simple. The difficulty here is to find general rules that perform well on the different problem
variants that may be modeled by the use of the GMC formulation. The heuristic procedure used to obtain
a feasible solution is composed of the following steps:

1. Reduce demand allocation: For each < i, p, t >∈ Σ2, all facility/size pairs (j, (`′jt)) are sorted
in decreasing order of their allocation costs diptgij`pt. The allocated flow is removed until the total
allocated demand for < i, p, t > equals 1.

2. Increase capacities: If the total remaining capacity is smaller than the total remaining demand,
we increase the capacity sequentially for each time period according to the following steps until the
total demand can be met. Facilities are considered without a specific order. We consider two simple
possibilities to increase capacity: if a facility is already open at any moment in the planning horizon,
we increase the capacity for the current time period to its maximum capacity level throughout the
planning; if no facility exists, we increase the capacity level until the missing capacity is covered or the
maximum capacity level for this facility is reached.

3. Increase the demand allocation: For each < i, p, t >∈ Σ3, all facility/size pairs (j, (`′jt)) with
remaining capacity are sorted in increasing order of their allocation costs diptgij`pt. Demand is allocated
to these pairs until the total allocated demand for < i, p, t > equals 1.

4. Reduce unused capacities of open facilities: For each facility, we use a dynamic programming
algorithm, similar to the one used to solve Lagrangian subproblem, to compute the optimal opening
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schedule (i.e., the one with the lowest costs) that guarantees sufficient capacity to satisfy the demand
allocated to that facility.

Even though the resulting solution is integer feasible, its demand allocation may still be improved.
Therefore, a final step consists in computing the optimal demand allocation for the current opening schedule
using the CPLEX network algorithm.

4 Upper Bound Improvement: Restricted MIP Model

The previous section outlined the heuristic procedure to generate integer feasible solutions. This heuristic
focuses on efficiency rather than on the quality of the upper bound. However, the objective of the Lagrangian
heuristic is to provide high quality solutions. It is therefore beneficial to add an optimization phase that aims
at finding solutions of higher quality than those already found during the solution of the Lagrangian dual.
Either one tries to improve promising solutions that have been found during the Lagrangian dual method,
or one constructs new solutions based on information gathered during the process.

Local improvement heuristics, based on already available solutions, have been successfully applied in
a second optimization phase after performing a Lagrangian relaxation method (e.g., Correia and Captivo,
2006; Li et al., 2009). However, they require a detailed knowledge of the problem structure. As seen in
Section 2.2, the GMC is a fairly general model, capable of representing different facility location problems.
In some cases, certain capacity levels represent open facilities, whereas other capacity levels represent closed
facilities. Given the flexibility regarding the usage of capacity levels, it is beneficial to use a more general
mechanism to find high quality solutions.

4.1 MIP Model Based on Lagrangian Solutions

The Lagrangian heuristic proposed in this work involves a second optimization phase using information
collected during the solution of the Lagrangian dual. We solve a restricted MIP, taking into consideration
the decisions made by the Lagrangian solutions. One would expect that the larger the decision space is, the
better the quality of the final solution will be. However, this is only true without memory and computing
time limitations. Given those limitations, a large MIP may result in a low overall performance, as the model
is too large to be solved with the available time and memory resources. We therefore filter the decisions
considered in the restricted MIP to sufficiently reduce the size of the model.

Let nIter denote the number of iterations performed by the subgradient or by the bundle method. Let
nCj`t be the number of Lagrangian solutions where capacity level ` has been selected for location j at time

period t (note that we have
∑
`∈L n

C
j`t = nIter for each j and t). Furthermore, let LRjt be the set of capacity

levels for location j and period t available in the restricted MIP. The restricted MIP is then defined as
follows:

• Decision fixing. For each j and t, a decision is fixed to capacity level ` if it appears in at least
100× pF ix (with pF ix ∈]0.5, 1]) percent of all iterations, i.e, LRjt = {`}, if nCj`t/n

Iter ≥ pF ix.

• Selection of available capacity levels. If the capacity level for location j and time period t is not
fixed, LRjt is composed by the nS capacity levels that appear the most often in the Lagrangian solutions

(i.e., have the highest nCj`t) and appear in at least one Lagrangian solution (i.e., nCj`t ≥ 1).

• Defining the set of capacity transitions. Decisions yj`1`2t are defined for all combinations between
`1 and `2, with `1 ∈ LRjt and `2 ∈ LRj(t+1), if available in the original GMC formulation.

Using appropriate values for the parameters pF ix and nS , the original GMC model can be reduced to a
restricted version with reasonable memory and computing time requirements, taking into consideration only
decisions that have been found to be significant by the Lagrangian solutions.
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4.2 MIP Model Based on Convexified Bundle Solutions

When using the bundle method to solve the Lagrangian dual, we may take advantage of the information
the method holds concerning the set of solutions that are linked to the subgradients in the bundle, as
demonstrated by Borghetti et al. (2003).

As explained in Section 3.2, the bundle method provides a multiplier θs for each Lagrangian solution s
such that

∑
s θ

s = 1. The value θs can be seen as a probability that solution s provides a good opening
schedule. We may therefore derive probabilities for each of the opening decisions ỹj`t =

∑
s θ

sysj`t, where
ysj`t is 1 if solution s selects capacity level ` for location j at period t.

We may now construct a restricted MIP, as previously shown based on the Lagrangian solutions. Instead
of using the number of occurrences nCj`t in Lagrangian solutions, we use the value of ỹj`t ∈ [0, 1], defining its
importance according to the multipliers θs provided by the bundle method. In this case, a capacity level `
is fixed at location j and period t if ỹj`t ≥ pF ix, where pF ix ∈]0.5, 1]. Otherwise, LRjt is composed by the

nS capacity levels with the highest ỹj`t values, with ỹj`t ≥ 0.001. Note that the Lagrangian solutions linked
to the subgradients that are stored in the bundle are only a subset of those generated in all iterations. The
set of decisions considered in the restricted MIP based on the convexified bundle solution is therefore very
likely to be much smaller than the restricted MIP based on all Lagrangian solutions.

5 Computational Results

In this section, the performance of different configurations for the Lagrangian heuristics and that of the MIP
solver CPLEX will be evaluated and compared by means of computational experiments. First, we discuss
how test instances were generated. Then, we elaborate on the integrality gap of the different problems.
Finally, computational results are presented to explore the impact of parameter choices for the Lagrangian
heuristics and to compare different configurations with each other and with CPLEX.

Test instances have been generated by following a scheme similar to that described in Jena et al. (2013).
However, the instances used in this previous work included only one commodity, up to 100 candidate facility
locations and up to 1000 customer locations. In this work, we use instances that are significantly larger with
respect to the number of candidate facility locations and the number of commodities. Instances have been
generated with different numbers of candidate facility locations |J | and customers |I|, combining all pairs
of |J | ∈ {50, 100, 150, 200, 250} and |I| ∈ {|J |, 4 · |J |}. The highest capacity level at any facility, denoted by
q, has been selected such that q ∈ {3, 5, 10}. Three different networks have been randomly generated on
squares of the following sizes: 300km, 380km and 450km. We consider two different demand scenarios. In
both scenarios, the demand for each of the customers is randomly generated and randomly distributed over
time. The two scenarios differ in their total demand summed over all customers in each time period. In
the first scenario (regular), the total demand is similar in each time period. The second scenario (irregular)
assumes that the total demand follows strong variations along time and therefore varies at each time period.
The number of commodities |P | has been selected such that |P | ∈ {1, 3, 5}. The demands for the second to
fifth commodities are computed based on the demand for the first commodity. To be precise, the demand
djpt for p ≥ 2 is computed as djpt = dj1t · rand(1.0, 0.2) · avgDemp/avgDem1, where avgDem1 = 10,
avgDem2 = 6, avgDem3 = 9, avgDem4 = 5, avgDem5 = 8, and rand(1.0, 0.2) is a random variable with
normal distribution, mean value of 1.0 and standard deviation of 0.2. Construction and operational costs
follow concave cost functions, i.e., they involve economies of scale. Jena et al. (2013) also tested a second
cost scenario in which the transportation costs are five times higher. The authors found that these instances
are significantly easier to solve. In this work, we only consider the instances that are more difficult to solve,
i.e., the ones with their original level of transportation costs. The combination of the different properties
listed above results in a total of (5×2×3×3×2×3 =) 540 instances. All instances contain ten time periods,
which is found to be sufficient to demonstrate capacity changes along time and small enough to not increase
the size of the models too much. Note that we assume that the problem instances do not contain initially
existing facilities. We refer to Appendix A for a detailed description of the parameters used to generate the
instances.

All mathematical models and the Lagrangian based heuristics have been implemented in C/C++ using
the IBM CPLEX 12.6.0 Callable Library. The code has been compiled and executed on openSUSE 11.3.
Each problem instance has been run on a single Intel Xeon X5650 processor (2.67GHz), limited to 24GB of
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RAM.

5.1 Integrality Gaps of the Test Instances

The integrality gap is defined as the difference between the optimal LP relaxation solution value and the
cost of an optimal integer solution, divided by the latter. For many instances, the GMC models are very
large and exceed the available memory of 24GB. It was therefore not possible to find all of these optimal
values. The integrality gap has been exactly determined only for a subset of the 540 instances. Considering
the best lower and upper bounds obtained throughout all computational experiments, optimality has been
proved for 302, 388, 384 and 382 instances for the DFLPG, the DMCLFP CR, the DMCFLP ER and the
DMCFLP CR ER, respectively.

As observed in Jena et al. (2013), the integrality gap for the GMC based formulations tend to be very
small. This turns out to be useful for two reasons. First, when using Lagrangian relaxation, the provided
bounds are more meaningful. Low integrality gaps may help to prove optimality within a certain tolerance.
Second, the input data for multi-period facility location problems usually comes from forecasts, and it is
very likely that the real data will slightly deviate from the forecast, especially for the last time periods. An
optimal solution may therefore not be more relevant in practice than a solution that guarantees optimality
within a certain tolerance. Melo et al. (2011) therefore aim at a finding solutions within 1% from the optimal
solution. On the instances used in this work, the integrality gap has been found to be smaller than or equal
to 1% for a fairly large part of the instances. To be precise, the integrality gap is smaller than or equal to
1% for at least 413, 397, 410 and 397 instances for each the four problems, respectively. The Lagrangian
relaxation may therefore prove optimality within a deviation of 1% for a large part of the instances if its lower
bounds are close to the LP relaxation bounds and its generated upper bounds (i.e., the feasible solutions
generated throughout the Lagrangian relaxation) are close to optimal.

5.2 Comparison of Different Configurations for the Lagrangian Heuristics

We now compare the performance of different configurations for the Lagrangian relaxation based heuristics.
Section 3 discussed two different methods to solve the Lagrangian dual, the subgradient method and the
bundle method. These methods can be used to generate feasible solutions at each iteration. Furthermore,
it has been shown in Section 4 how information from the Lagrangian solutions and the convexified bundle
solutions can be collected throughout the solution of the Lagrangian dual, and then be used to generate a
restricted MIP to find solutions of even better quality.

Parameter Settings. The subgradient method is used with an initial scalar δk = 2.0. This scale factor
halves every 25 consecutive iterations without improvement in the lower bound. The algorithm terminates
if δk falls below 0.005. For the bundle method, an implementation similar to the one described by Frangioni
(2005) has been used as a black box. The bundle implementation has four principal internal performance
and termination criteria, which are set as follows. Parameters tStar, EpsLin have been set to 104 and 10−6,
respectively. The long-term t-strategy has been set to “soft” with a parameter value of 0.1. In addition to
the stopping criteria mentioned above, a 1% optimality stopping criterion has been used, i.e., the algorithms
stop as soon as the best lower and upper bounds found are within 1%. All experiments have been limited
to a maximum of 2 hours of computing time.

5.2.1 Combining the Lagrangian Dual Solution Methods with a Restricted MIP

After performing the subgradient method, a restricted MIP can be solved based on the Lagrangian solutions
(see Section 4.1). When using the bundle method, the restricted MIP can be generated based on either
the Lagrangian solutions or on the convexified bundle solution (see Section 4.2). We now compare the
performance of different combinations for the heuristic, i.e., the use of the subgradient method and the bundle
method to solve the Lagrangian dual, and the use of the restricted MIP based on Lagrangian solutions and
the convexified solutions to further improve the solution quality. The bundle method has shown significantly
faster convergence than the subgradient method. We therefore stop the method when a maximum of 500
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iterations has been performed. For the subgradient method, due to its slower convergence, we also tested
configurations with a maximum of 1000 iterations.

Table 1 summarizes the results for seven different solution strategies: the subgradient method without
(“only”) and with a restricted MIP based on the Lagrangian Solutions (“w/ LS R-MIP”), as well as the
bundle method without (“only”) and with a restricted MIP, based either on the Lagrangian solutions (“w/
LS R-MIP”) or on the convexified bundle solution (“w/ CS R-MIP”). As mentioned above, the subgradient
method has been tested in two variants, stopping either after a maximum of 500 iterations or after a maximum
of 1000 iterations. When using the restricted MIP based on the Lagrangian solutions, we use parameter
values that have led to good performance (see Section 5.2.2): pF ix = 70% and nS = 3. For the bundle
method with the restricted MIP based on the convexified solutions, we used pF ix = 0.85 and nS = 4, which
led to smaller average and maximum optimality gaps than setting pF ix to 0.7, 0.8 or 0.9. Note that for the
restricted MIP based on the convexified solutions, we only tested nS values of 2, 3 and 4.

Subgradient method Bundle method
500 max iter 1000 max iter 500 max iter
only w/ LS only w/ LS only w/ LS w/ CS

R-MIP R-MIP R-MIP R-MIP
DFLPG
Avg Gap % 3.01 0.81 1.67 0.72 1.64 0.76 0.72
Max Gap % 17.31 17.31 13.06 7.28 8.83 7.85 2.88
Avg Time (sec) 374.8 1,140.0 486.5 714.5 258.9 844.6 359.3
# prov. 1% gap 211 386 329 407 331 405 407
DMCFLP CR
Avg Gap % 3.85 0.82 2.28 0.88 2.10 0.86 0.81
Max Gap % 22.26 12.96 14.38 9.73 10.39 10.39 3.78
Avg Time (sec) 846.9 1,532.2 1,130.1 1,447.2 617.8 1,370.0 884.6
# prov. 1% gap 160 378 287 385 292 392 397
DMCFLP ER
Avg Gap % 3.18 0.78 1.72 0.70 1.64 0.74 0.69
Max Gap % 17.58 14.68 12.45 6.63 10.47 8.56 2.57
Avg Time (sec) 379.5 1,137.0 484.4 712.9 247.7 833.9 348.8
# prov. 1% gap 205 391 317 405 325 410 411
DMCFLP CR ER
Avg Gap % 3.77 0.87 2.11 0.82 1.96 0.83 0.77
Max Gap % 21.00 17.76 15.92 8.37 10.14 9.15 3.44
Avg Time (sec) 840.3 1,703.7 1,091.7 1,493.7 569.9 1,335.4 857.6
# prov. 1% gap 174 373 295 389 310 399 395

Table 1: Comparison of different configurations for the Lagrangian based heuristics for the four problems.

The results take into account all 540 instances and are reported for each of the four problem variants. We
indicate the average and maximum gap (when compared to the best lower bounds known for the instances),
the average computing time and the number of instances for which a 1% optimality has been proved (“#
1% gap proved”).

The results are consistent for the four different problem variants. Solving only the Lagrangian dual, the
bundle method clearly stays ahead of the subgradient method. Given its stronger convergence properties,
it finishes, on average, in significantly shorter computing times. For the subgradient method, allowing 1000
instead of 500 iterations strongly improves the solution quality. After this first phase, a 1% optimality has
been proved for more than half of the instances.

Adding the Lagrangian solution based restricted MIP to the subgradient method significantly improved
the optimality gap when up to 1000 iterations are performed. With only 500 iterations, the improvement is
less significant. This illustrates the importance of reasonably solving the Lagrangian dual before constructing
a restricted MIP, because “high-quality” decisions tend to appear in the later stage of the subgradient method.

For the bundle method, a larger improvement of the maximum optimality gap can be observed. Both
versions of the restricted MIP result in very competitive results. The maximum optimality gap is always kept
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below 4.25%, while the average computing time is very reasonable. Using the restricted MIP to improve the
solution quality, the number of instances where a 1% optimality gap could be proved increased to over 75%
of all instances. While both approaches show similar maximum optimality gaps, the convexified solution
presents better average gaps and is capable of proving a 1% gap for more instances.

The results based on the bundle method are clearly better than those based on the subgradient method, as
the subgradient method itself already takes a significant portion of the available computing time. Therefore,
there is often not enough time left to solve the restricted MIP. However, a heuristic based on the latter could
still be effective. Tuning the maximum number of subgradient iterations and the parameters used to define
the restricted MIP will hereby make the crucial difference. Such tuning is exemplified in the next section.

5.2.2 Restricted MIP Parameter Tuning

The restricted MIP, performed after the solution of the Lagrangian dual, has to be sufficiently restricted in
a way in that it can be reasonably solved within the remaining time. This is done by appropriately setting
the two parameters nS and pF ix, indicating the maximum number of decisions considered for each location
and time period, and the percentage necessary to fix a decision, respectively.

pF ix nS = 2 nS = 3 nS = 4 nS = 10
51% Avg / Max gap % 1.48 / 8.83 1.48 / 8.83 1.48 / 8.83 1.48 / 8.83

Avg time 233.3 sec 231.5 sec 231.2 sec 228.4 sec

70% Avg / Max gap % 0.82 / 5.37 0.80 / 5.37 0.80 / 5.37 0.80 / 5.37
Avg time 235.6 sec 239.3 sec 243.6 sec 242.3 sec

80% Avg / Max gap % 0.75 / 3.47 0.74 / 3.36 0.73 / 3.15 0.73 / 3.20
Avg time 286.6 sec 296.2 sec 301.1 sec 302.3 sec

90% Avg / Max gap % 0.74 / 7.85 0.72 / 3.35 0.71 / 3.35 0.71 / 3.35
Avg time 385.7 sec 415.0 sec 422.7 sec 419.6 sec

100% Avg / Max gap % 0.74 / 7.85 0.72 / 7.85 0.72 / 7.85 0.72 / 7.85
Avg time 597.7 sec 620.0 sec 623.3 sec 614.1 sec

No Avg / Max gap % 0.74 / 7.85 0.72 / 7.85 0.72 / 7.85 0.72 / 7.85
Fixing Avg time 582.2 sec 595.9 sec 613.6 sec 601.6 sec

Table 2: Comparison of results for different parameters for the bundle method with MIP based on Lagrangian
solutions, applied to the DFLPG.

Table 2 summarizes the results for different parameter values, using the bundle method with a restricted
MIP based on the Lagrangian solutions applied to the DFLPG. The results are given for all combinations
between different pF ix and nS values, reporting the average and maximum optimality gap, as well as the
average computation time. The average computation times increase due to two factors: more capacity level
decisions in the MIP (i.e., higher values of nS), and less variable fixing (i.e., higher values of pF ix). For the
given time limit of 2 hours, well performing values can be found by balancing these two parameters. Setting
nS to 3, 4 or even 10, and pF ix between 80% and 90% results in a maximum optimality gap of around
3.36%, while other parameter values may result in gaps of up to 8.83%. Clearly, if more computing time is
available, one may allow higher values for these parameters, which may further improve the solution quality.

Similar experiments were performed for different parameter values for the restricted MIP based on the
convexified bundle solutions. Not restricting the MIP at all resulted in significantly better results than for
the non-restricted MIP based on the Lagrangian solutions. Furthermore, it was found that the restricted
MIP based on the convexified bundle solution is less sensitive to changes in the parameter value pF ix than
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the one based on the Lagrangian solutions. These results suggest that the decisions that are part of solutions
selected by the bundle are those which are also present in high quality solutions.

5.3 Comparisons with CPLEX

The performance of one of the Lagrangian based heuristics is now compared to CPLEX. We chose the
configuration that provided the lowest average and maximum optimality gaps: the bundle method with
restricted MIP based on its convexified solution, with nS = 4 and pF ix = 0.85. CPLEX has been used with
standard parameters. As in the previous experiments, a 1% optimality stopping criterion and a time limit
of 2 hours have been applied.

Computational Results. Tables 3, 4, 5 and 6 summarize the results for CPLEX, as well as for the
Lagrangian based heuristic outlined above for the four different problems DFLPG, DMCLFP CR, DM-
CFLP ER and DMCFLP CR ER, respectively. All results are grouped by the number of capacity levels q
and the problem dimension defined by the number of candidate facility locations and the number of cus-
tomers. Each group given by such a combination includes 18 instances. The tables report the average and
maximum gaps of the best feasible integer solutions found by the algorithm when compared to the best lower
bound known for the corresponding problem instance, as well as the average computing times. Note that
the results shown in the Tables 3 – 6 only take into account the instances where CPLEX found a feasible
integer solution within the time limit of 2 hours. The number of instances for which CPLEX did not find any
feasible solution is indicated by column “#ns”. Furthermore, column “# prov. 1% gap” gives the number
of instances (out of those for which CPLEX found a feasible solution) where a 1% optimality gap has been
proven by the algorithm. For the Lagrangian heuristic, the number in brackets to the right represents the
same count, but for all 540 instances.

The observations made for the results of CPLEX and the Lagrangian based heuristics are similar for
all four problems. The number of instances where CPLEX did not find feasible solutions is fairly high,
at least 25% of the instances for each of the four problems. In most of the cases, this happens due to
memory limitations when the number of capacity levels or the number of candidate facility locations is
high. Even though the average quality of solutions found by CPLEX is quite good, the solver provides large
optimality gaps on many instances. This is mostly the case when a large number of capacity levels (q = 10) is
available. As the solver constantly improves its bounds, the optimality gaps proven by the algorithm (shown
in brackets) are very close to the gaps when compared to the best known lower bound for the instances.
CPLEX is capable of proving a 1% optimality gap for at least 342 out of the 540 instances for each of the
four problems.

The Lagrangian based heuristic provides stable results for each of the four problems. When compared
to the same instances, it provides an average gap lower than that of CPLEX in computing times that are,
on average, significantly lower. For the DFLPG and the DMCFLP ER, the Lagrangian heuristic is, on
average, twelve times faster than CPLEX. For the DMCFLP CR and the DMCFLP CR ER, the heuristic
is, on average, five times faster. Most importantly, the maximum optimality gap is at most 3.78%. Due to
the strength of the GMC formulation, the maximum optimality gap proven by the Lagrangian heuristic is
4.87%. Furthermore, considering the same set of instances, the heuristic proves a 1% gap for almost the
same number of instances as CPLEX. When considering all 540 instances (even those for which CPLEX does
not find feasible solutions), the Lagrangian heuristic proves a 1% gap for 395 or more of the 540 instances
for each of the four problems.

Interestingly, the difficulty of a problem is not always linked to its dimension. Instances where the number
of customers is close to the number of candidate facility locations are significantly harder to solve than those
where the number of customers is higher. In particular, this can be observed for instances of dimension
(50/50). An analysis showed that these instances tend to possess larger integrality gaps, which may be
linked to the fact that the more customers are available, the easier it is to make efficient use of a facility (in
terms of allocation costs and capacity usage) in an integer solution.

A Note on the Model Size. As the previous results show, general-purpose MIP solvers such as CPLEX
may perform very well on small instances, i.e., when the number of capacity levels is low (q ∈ {3, 5}) and the
number of candidate facility locations is small (|J | ≤ 100). Clearly, adding the SIs (8) a priori to the model
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CPLEX (with SIs a priori) Lagrangian Heuristic
Instance Avg Max Avg # prov. # Avg Max Avg # prov.

q size Gap % Gap % Time 1% gap ns Gap % Gap % Time 1% gap
3 50/50 0.26 0.99 531.7 18 0 0.44 1.32 6.7 7 [7]

50/200 0.02 0.12 15.1 18 0 0.43 0.92 7.6 18 [18]
100/100 0.11 0.51 54.1 18 0 0.43 0.95 13.0 17 [17]
100/400 0.04 0.37 63.9 18 0 0.58 0.95 39.7 18 [18]
150/150 0.13 0.76 82.4 18 0 0.38 0.87 33.3 18 [18]
150/600 0.06 0.64 179.7 18 0 0.66 0.96 104.6 18 [18]
200/200 0.17 0.86 116.3 18 0 0.51 0.98 49.2 18 [18]
200/800 0.09 0.52 370.1 12 6 0.67 0.90 184.1 12 [18]
250/250 0.04 0.37 179.7 18 0 0.44 0.92 88.8 18 [18]
250/1000 0.15 0.86 373.5 6 12 0.52 0.94 262.3 6 [18]
All 0.10 0.99 177.1 162 18 0.50 1.32 61.5 150 [168]

[0.18] [1.00] [0.67] [2.32]
5 50/50 0.71 2.11 3,122.8 13 0 0.88 2.06 28.4 3 [3]

50/200 0.17 0.79 90.7 18 0 0.48 0.89 17.5 16 [16]
100/100 0.46 1.30 1,268.3 16 0 0.64 1.26 36.8 9 [9]
100/400 0.04 0.16 145.8 18 0 0.55 0.87 58.3 18 [18]
150/150 0.39 1.13 1,106.5 15 1 0.61 1.24 98.5 12 [13]
150/600 0.08 0.67 255.0 12 6 0.63 0.96 116.2 12 [18]
200/200 0.22 0.84 762.6 16 2 0.52 0.92 89.3 15 [16]
200/800 0.06 0.20 552.0 6 12 0.53 0.89 243.8 6 [18]
250/250 0.15 0.52 885.7 17 1 0.46 0.95 151.2 17 [17]
250/1000 0.13 0.75 683.3 6 12 0.49 0.94 348.5 6 [18]
All 0.27 2.11 957.8 137 34 0.59 2.06 90.2 114 [146]

[0.39] [2.11] [0.86] [4.59]
10 50/50 23.11 92.72 6,472.0 2 0 1.90 2.88 282.7 0 [0]

50/200 0.86 2.19 2,823.1 12 3 0.73 1.28 108.0 8 [9]
100/100 3.03 14.82 5,312.7 4 7 1.26 2.44 131.1 2 [2]
100/400 0.30 1.44 991.3 10 7 0.55 0.91 123.4 11 [18]
150/150 2.59 11.93 5,014.6 3 11 0.85 1.31 105.0 2 [2]
150/600 0.07 0.17 541.2 6 12 0.43 0.67 125.2 6 [17]
200/200 0.88 1.66 3,400.7 4 12 0.80 1.62 193.3 3 [4]
200/800 0.12 0.12 1,743.0 1 17 0.15 0.15 681.0 1 [18]
250/250 0.20 0.36 1,052.7 3 15 0.27 0.40 171.3 3 [5]
250/1000 - - - 0 18 - - - - [18]
All 6.28 92.72 3,741.6 45 102 1.02 2.88 171.1 36 [93]

[6.36] [92.72] [1.18] [3.63]
All All 1.42 92.72 1,192.7 344 154 0.64 2.88 94.5 300 [407]

[1.51] [92.72] [0.90] [4.59]

Table 3: Comparison of CPLEX and Lagrangian based heuristics for the DFLPG: average and maximum
optimality gap when compared to the best known lower bound.
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CPLEX (with SIs a priori) Lagrangian Heuristic
Instance Avg Max Avg # prov. # Avg Max Avg # prov.

q size Gap % Gap % Time 1% gap ns Gap % Gap % Time 1% gap
3 50/50 0.29 1.14 650.6 17 0 0.51 1.54 13.9 7 [7]

50/200 0.08 0.67 18.5 18 0 0.61 0.99 15.6 18 [18]
100/100 0.11 0.55 41.2 18 0 0.44 0.84 27.3 17 [17]
100/400 0.08 0.66 90.6 18 0 0.62 0.94 86.8 18 [18]
150/150 0.04 0.23 102.4 18 0 0.52 0.99 62.4 18 [18]
150/600 0.10 0.85 275.5 18 0 0.72 0.98 243.4 18 [18]
200/200 0.13 0.92 198.0 18 0 0.56 0.95 137.8 16 [16]
200/800 0.19 0.93 589.3 12 6 0.57 0.95 530.9 12 [18]
250/250 0.06 0.34 496.3 18 0 0.56 0.95 219.1 18 [18]
250/1000 0.15 0.73 791.0 6 12 0.67 0.96 596.7 6 [18]
All 0.12 1.14 281.1 161 18 0.57 1.54 151.0 148 [166]

[0.19] [1.27] [0.74] [2.75]
5 50/50 0.67 2.44 1,973.7 14 0 0.91 2.24 32.2 3 [3]

50/200 0.26 0.69 86.4 18 0 0.54 1.04 46.9 16 [16]
100/100 0.37 0.93 1,144.2 17 0 0.45 1.05 91.8 13 [13]
100/400 0.11 0.89 203.6 18 0 0.61 0.97 136.9 18 [18]
150/150 0.39 1.00 1,104.5 17 0 0.54 1.19 191.7 15 [15]
150/600 0.09 0.85 413.8 12 6 0.69 0.95 280.6 12 [18]
200/200 0.23 0.88 992.8 18 0 0.52 0.96 322.6 18 [18]
200/800 0.16 0.60 868.0 6 12 0.36 0.94 597.0 6 [18]
250/250 0.48 3.88 1,473.8 16 1 0.54 1.12 457.3 16 [17]
250/1000 0.16 0.81 1,214.5 6 12 0.64 0.98 734.3 6 [18]
All 0.32 3.88 950.4 142 31 0.59 2.24 227.7 123 [154]

[0.47] [3.95] [0.89] [3.70]
10 50/50 4.27 19.79 5,779.7 4.00 1 2.32 3.78 977.8 0 [0]

50/200 0.74 1.51 3,308.0 9 5 0.82 1.53 202.8 4 [4]
100/100 7.84 66.50 5,449.2 4 5 1.67 3.19 376.4 0 [0]
100/400 0.92 8.29 1,151.1 11 6 0.66 0.99 370.7 11 [15]
150/150 17.03 88.13 5,172.8 4 7 1.26 2.40 331.3 1 [1]
150/600 0.26 0.89 1,010.3 6 12 0.55 0.88 440.5 6 [15]
200/200 23.45 89.67 4,217.1 4 10 1.09 1.73 506.6 3 [3]
200/800 0.22 0.63 3,467.8 6 12 0.44 0.95 1,395.0 6 [17]
250/250 1.02 2.91 3,064.0 3 14 0.52 0.80 664.8 4 [6]
250/1000 - - - 0 18 - - - - [16]
All 6.41 89.67 3,951.9 51 90 1.23 3.78 555.2 35 [77]

[7.08] [100.00] [1.53] [4.50]
All All 1.61 89.67 1,353.7 354 139 0.72 3.78 270.2 306 [397]

[1.84] [100.00] [1.05] [4.50]

Table 4: Comparison of CPLEX and Lagrangian based heuristics for the DMCFLP CR: average and maxi-
mum optimality gap when compared to the best known lower bound.
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CPLEX (with SIs a priori) Lagrangian Heuristic
Instance Avg Max Avg # prov. # Avg Max Avg # prov.

q size Gap % Gap % Time 1% gap ns Gap % Gap % Time 1% gap
3 50/50 0.25 0.94 779.8 17 0 0.25 0.86 6.7 11 [11]

50/200 0.01 0.10 20.5 18 0 0.59 0.97 6.9 18 [18]
100/100 0.17 0.67 40.7 18 0 0.37 0.94 13.8 17 [17]
100/400 0.04 0.37 89.0 18 0 0.65 0.99 40.7 18 [18]
150/150 0.20 0.74 120.3 18 0 0.46 0.96 26.4 18 [18]
150/600 0.01 0.17 263.9 18 0 0.67 0.95 105.0 18 [18]
200/200 0.06 0.43 189.7 18 0 0.31 0.86 46.3 18 [18]
200/800 0.11 0.76 466.3 12 6 0.75 0.96 190.3 12 [18]
250/250 0.04 0.40 393.0 18 0 0.50 0.91 97.1 18 [18]
250/1000 0.31 0.91 538.8 6 12 0.50 0.91 247.3 6 [18]
All 0.11 0.94 265.3 161 18 0.50 0.99 61.4 154 [172]

[0.20] [1.39] [0.68] [2.11]
5 50/50 0.56 1.60 2,521.3 15 0 0.85 1.79 34.7 3 [3]

50/200 0.19 0.65 100.7 18 0 0.48 0.86 18.3 15 [15]
100/100 0.44 1.83 1,376.8 15 0 0.58 1.35 35.1 10 [10]
100/400 0.10 0.45 240.1 18 0 0.57 0.83 58.2 18 [18]
150/150 0.43 1.44 1,286.9 16 0 0.50 1.21 91.9 13 [13]
150/600 0.01 0.11 393.4 12 6 0.67 0.97 118.4 12 [18]
200/200 0.38 2.58 1,061.8 16 1 0.53 0.98 113.6 16 [16]
200/800 0.05 0.11 796.5 6 12 0.51 0.94 239.0 6 [18]
250/250 0.17 0.63 1,211.4 16 2 0.51 0.91 174.9 16 [17]
250/1000 0.32 0.82 1,076.8 6 12 0.54 0.94 328.2 6 [18]
All 0.29 2.58 1,039.8 138 33 0.58 1.79 94.2 115 [146]

[0.43] [2.60] [0.87] [3.84]
10 50/50 6.31 87.99 5,595.0 6.00 0 1.44 2.57 149.9 1 [1]

50/200 0.83 5.76 2,029.6 15 1 0.64 1.19 125.5 9 [10]
100/100 8.18 91.36 4,867.1 6 3 1.22 2.43 157.3 2 [2]
100/400 0.23 0.63 1,012.0 11 7 0.51 0.86 125.1 11 [17]
150/150 11.78 95.92 5,188.2 4 9 1.06 1.92 570.4 2 [2]
150/600 0.09 0.31 1,139.2 6 12 0.44 0.67 154.3 6 [16]
200/200 0.61 1.91 2,713.2 4 13 0.80 1.48 166.0 2 [3]
200/800 3.20 6.33 3,544.0 1 16 0.02 0.04 507.0 2 [18]
250/250 0.10 0.19 1,570.0 3 15 0.40 0.84 165.3 3 [6]
250/1000 - - - 0 18 - - - - [18]
All 4.30 95.92 3,468.0 56 94 0.91 2.57 197.3 38 [93]

[4.62] [100.00] [1.18] [3.83]
All All 1.09 95.92 1,250.8 355 145 0.62 2.57 103.2 307 [411]

[1.25] [100.00] [0.91] [3.84]

Table 5: Comparison of CPLEX and Lagrangian based heuristics for the DMCFLP ER: average and maxi-
mum optimality gap when compared to the best known lower bound.
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CPLEX (with SIs a priori) Lagrangian Heuristic
Instance Avg Max Avg # prov. # Avg Max Avg # prov.

q size Gap % Gap % Time 1% gap ns Gap % Gap % Time 1% gap
3 50/50 0.23 1.20 738.9 17 0 0.48 1.40 13.9 7 [7]

50/200 0.05 0.44 20.6 18 0 0.46 0.94 16.0 18 [18]
100/100 0.15 0.73 70.4 18 0 0.38 0.93 32.5 17 [17]
100/400 0.13 0.87 99.0 18 0 0.53 0.90 84.5 18 [18]
150/150 0.09 0.39 127.3 18 0 0.49 0.94 58.3 18 [18]
150/600 0.03 0.28 302.9 18 0 0.74 0.97 217.0 18 [18]
200/200 0.13 0.79 248.5 18 0 0.52 0.96 126.4 18 [18]
200/800 0.15 0.93 666.7 12 6 0.64 0.98 422.9 12 [18]
250/250 0.11 0.83 453.1 18 0 0.41 0.87 201.0 18 [18]
250/1000 0.04 0.12 812.3 6 12 0.69 0.95 428.2 6 [18]
All 0.12 1.20 308.4 161 18 0.52 1.40 130.5 150 [168]

[0.19] [1.23] [0.68] [2.39]
5 50/50 0.71 2.96 2,951.6 13 0 0.91 2.42 48.4 3 [3]

50/200 0.23 0.81 187.3 18 0 0.45 0.82 41.4 14 [14]
100/100 0.47 1.85 1,286.9 16 0 0.54 1.42 88.8 10 [10]
100/400 0.12 0.63 273.7 18 0 0.55 0.95 129.6 18 [18]
150/150 0.41 1.13 1,242.1 16 1 0.52 0.87 164.8 15 [15]
150/600 0.10 0.89 475.3 12 6 0.67 0.96 242.3 12 [18]
200/200 0.26 0.84 1,193.9 18 0 0.40 0.86 319.4 17 [17]
200/800 0.17 0.89 1,202.3 6 12 0.68 0.97 599.5 6 [18]
250/250 0.47 4.61 1,230.1 15 2 0.52 0.98 358.8 16 [17]
250/1000 0.03 0.15 1,347.3 6 12 0.66 0.86 640.3 6 [18]
All 0.33 4.61 1,142.0 138 33 0.57 2.42 205.3 117 [148]

[0.47] [4.61] [0.87] [4.00]
10 50/50 8.06 87.78 6,168.2 3.00 0 2.14 3.44 1,632.8 0 [0]

50/200 0.63 1.55 2,561.8 11 5 0.70 1.23 172.5 6 [7]
100/100 15.65 94.16 5,781.8 3 4 1.72 2.59 776.1 0 [0]
100/400 0.28 0.68 705.1 10 8 0.66 0.96 194.3 10 [14]
150/150 0.98 1.82 4,655.6 4 11 1.02 1.66 289.4 1 [1]
150/600 0.04 0.19 1,394.0 6 12 0.53 0.99 492.5 6 [15]
200/200 19.75 96.06 4,567.4 3 13 0.97 1.69 384.0 2 [2]
200/800 - - - 0 18 - - - - [17]
250/250 0.23 0.50 3,733.7 3 15 0.40 0.57 453.3 3 [6]
250/1000 - - - 0 18 - - - - [17]
All 6.34 96.06 4,043.6 43 104 1.24 3.44 693.4 28 [79]

[6.74] [100.00] [1.44] [4.87]
All All 1.43 96.06 1,364.1 342 155 0.68 3.44 270.2 295 [395]

[1.59] [100.00] [1.00] [4.87]

Table 6: Comparison of CPLEX and Lagrangian based heuristics for the DMCFLP CR ER: average and
maximum optimality gap when compared to the best known lower bound.
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significantly increases the number of constraints and, therefore, the memory requirements of the model. As
noted by Jena et al. (2013), the addition of the SIs to the GMC based models significantly facilitates the
solution of the problems. In fact, for the instances used in this work, without the use of the SIs, CPLEX
provides very low solution quality even for small instances. Other studies, such as the one by Gendron
and Larose (2014) applied to a network design problem, confirm that it may be beneficial to add these
inequalities in a branch-and-cut scheme. However, this only yields good performance if only a small number
of SIs are violated and therefore added to the model. In the case of the DFLPG, a significant number of
SIs are violated in its LP relaxation. Adding the inequalities as CPLEX user cuts to reduce the size of the
model showed less competitive results. For more than 40% of the instances, the solver could not find feasible
solutions. When feasible solutions were found, the average optimality gap was consistently high, on average,
more than 10%.

We also note that, even though we use information from the Lagrangian solutions, other mechanism
could be used to rate the importance of opening decisions to generate a MIP that is significantly restricted
in its size. Theoretically, using the LP relaxation solution would be one alternative. However, as the LP
relaxation cannot be efficiently solved (or not at all) for large instances, such a solution strategy would be
applicable only to small and medium sized instances, or in computing environments with significantly larger
memory and time resources.

We finally would like to remark that, even though the computational results are reported using CPLEX
v12.6, all experiments had previously been performed with v12.4. We observed a significant improvement
of the computing times: solving the models with CPLEX was, on average, about 20% to 50% faster for
each of the four problem variants. The improvement for the Lagrangian heuristics has been found to be, on
average, between 35% and 80%. This may be due to the fact that the solver improved particularly for small
problems, as it is the case for the restricted MIP used in the Lagrangian heuristics.

6 Conclusions and Future Research

In this work, we have extended the Dynamic Facility Location Problem with Generalized Modular Capacities
by considering demands for multiple commodities. We addressed the solution of large-scale instances and
proposed a heuristic based on two optimization phases. First, the Lagrangian dual is solved, involving the
iterated solution of the Lagrangian subproblem. In this phase, feasible solutions of reasonable quality are
found in very short computing times. Then, a restricted MIP is generated taking into consideration only
decisions that have been found important during the solution of the Lagrangian dual. Using this approach,
the final solution quality is consistently within 3.78% from the best known lower bound, even for instances
for which CPLEX does not find feasible solutions due to the large memory and solution time required by
the model.

The general cost structure of this problem allows for representing several existing facility location prob-
lems. In addition to the DFLPG, in which the capacity change costs are based on a cost matrix, this has been
exemplified on three special cases. Given the strength of the GMC formulation, the Lagrangian heuristic was
able to prove optimality within 1% for most of the small and medium sized instances. The proposed model
and solution method may be applied to other problems, especially to those where the model size passes the
limits of state-of-the-art MIP solvers. It may also be applied to larger instances than those addressed in this
work, as the method consumes very little memory.

The Lagrangian dual has been solved by the classical subgradient method and a bundle implementation.
Although the bundle method requires more time to compute the Lagrangian multipliers, it consistently
outperformed the subgradient approach due to its strong convergence properties. On average, it required
half of the time and resulted in a higher solution quality.

While local improvement heuristics such as tabu search have been common as a second phase optimization,
the use of a restricted MIP is an interesting alternative, as general-purpose MIP solvers constantly improve.
The implementation of a restricted MIP is very simple. Furthermore, one can handle any kind of problem
structure that can be defined as a MIP. Even though one does not have to worry about finding the right
trade-off between size and inspection time of a neighborhood, the question of how to significantly restrict
the size of the original MIP is crucial. The bundle method with restricted MIP resulted in very competitive
results, especially since the use of the convexified solutions already limits the decisions to those stored in the
bundle. For the subgradient method, a well performing filtering approach based on the Lagrangian solutions
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may be designed, for example, by better tuning the maximum number of subgradient iterations and the
parameter values for the restricted MIP.
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A Test Instances

Instances for multi-period facility location problems essentially contain information about the customer
demand for each time period, construction costs of the facilities and the costs to allocate demand between
customers and facilities. The DFLPG and the three special cases additionally involve a detailed cost structure
for the capacity changes. Due to the lack of openly available instance sets that include these properties, we
generated a total of 540 instances, 180 for each capacity level, to test the presented models. These essentially
extend the instances used by Jena et al. (2013) by adding multiple commodities, the use of a cost matrix
for capacity changes and a larger set of candidate facility locations. In the following we present how these
instance properties are generated and which parameters are used.

A.1 Problem dimension

Instances were generated with different numbers of candidate facility locations |J | and customers |I|, combin-
ing all pairs of J ∈ {50, 100, 150, 200, 250} and I ∈ {|J |, 4 · |J |}. To be precise, the instance dimensions are:
(10/20), (50/50), (50/200), (100/100), (100/400), (150/150), (150/600), (200/200), (200/800), (250/250)
and (250/1000).

A.2 Number of capacity levels

The number of capacity levels q also impacts on the size of the models. Instances are generated with a
maximum of 3, 5 and 10 capacity levels, which are assumed to be reasonable values for a broad variety of
different application contexts.

The capacities uj` are generated based on the total number of customers and are chosen such that a
considerably large number of facilities (about half of the candidate locations) is selected. The larger the
set of customers, the higher is the capacity of each level. To be precise, we set uj1 = 300 if the instance
covers 50 customers, uj1 = 600 if the instance covers 100 customers, uj1 = 800 if the instance covers 150
customers, uj1 = 1000 if the instance covers 200 customers, uj1 = 1200 if the instance covers 250 customers,
uj1 = 2000 if the instance covers 400 customers, uj1 = 2500 if the instance covers 600 customers, uj1 = 3000
if the instance covers 800 customers and uj1 = 5000 if the instance covers 1000 customers. The capacities
of higher capacity levels ` ≥ 2 are set as multiples of the first capacity level, i.e., uj` = ` · uj1. Note that we
assume that the problem instances do not contain initially existing facilities, i.e., the initial capacity level of
each facility is 0.

A.2.1 Number of time periods

All generated instances contain ten time periods, which is found to be sufficient to demonstrate capacity
changes along time and small enough to not increase the size of the models too much.

A.3 Customer/facility locations

For each of the different problem sizes, |I| customer demand points have been randomly generated following
a continuous uniform distribution, rounding the x and y coordinates to the next lowest integer value. The
first |J | points of |I| customer locations have additionally been defined as candidate facility locations and
therefore coincide with the customer demand points. The networks were generated on squares of the following
three sizes: 300km, 380km and 450km.

A.4 Demand allocation costs

Costs are divided into fixed and variable costs. Fixed costs are given by the construction of facilities and
the change of their capacity levels. Variable costs are composed of the costs to produce and transport the
commodities.
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Transportation costs have been computed based on the Euclidean distance between the points, includ-
ing a small modification that results in a slight clustering effect of the customers close to a facility. The
transportation costs are composed of two components:

1. A cost that depends on the total distance, referred to as the vehicle cost. The vehicle cost is linear in
function of the Euclidean distance between the two points on the network (5$/km).

2. A cost that depends on the travel time, referred to as the driver’s payment. The driver’s payment is 0
if the two points are within one-hour of transportation distance (assuming an average vehicle speed of
62km/h) and linear in function of the Euclidean distance if the two points are at more than one hour
of driving distance (50$/h).

Let distij denote the distance between facility location j and customer i. The costs to transport one unit
of demand from facility j to customer i is therefore set to:

gtij = 5 · distij + 50 ·max

(
0,
distij

62
− 1

)
The variable and fixed costs include economies of scale in function of the size of the facility. These costs

are therefore described by concave cost functions, as explained in the following. The production costs for
each unit served from a facility to a customer is defined as the cost to operate a facility and depends on the
size of the facility. The cost to produce one commodity unit at capacity level 1 is set to 20.90$. At each
higher capacity level, the production cost is 3% cheaper than at the previous level:

gpj0 = 20.90

gpj` = 0.97 · gpj(`−1)
Note that the production costs are added to the transportation costs to determine the total demand

allocation costs gij`t to serve the customer demands:

gij`t = gtij + gpj`

In addition to the demand allocation costs as discussed above, a second set of instances was generated
with five times higher transportation costs.

A.5 Fixed costs

The construction cost, also referred to as capacity expansion cost, is set to 100,000$ for a facility of level 1.
Each additional capacity level is 10% cheaper than the previous one. The construction costs for facilities of
different capacity levels are therefore computed according to the following formula:

foj0 = 100, 000

foj1 = 190, 000

foj` = foj(`−1) + 0.9 · (foj(`−1) − f
o
j(`−2))

The maintenance costs for a facility of a certain size are computed in a similar fashion. They are set
relatively high to motivate capacity changes. The maintenance costs for a facility of capacity level 1 are
set to 51,000$. The maintenance costs for each additional capacity level are 15% cheaper than the previous
ones:

F oj0 = 51, 000

F oj1 = 94, 350

F oj` = F oj(`−1) + 0.85 · (F oj(`−1) − F
o
j(`−2))

Fixed Costs for the Special Cases
For the three special cases, i.e., the DMCFLP CR, DMCFLP ER and the DMCFLP CR ER, the cost to
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reduce the capacity of a facility by ` capacity levels is set to 10% of the costs to expand the capacity of a
facility by ` capacity levels.

Finally, the costs for reopening and closing existing facilities were taken from the input data of the previ-
ously mentioned industrial application introduced by Jena et al. (2012). Although being strictly increasing,
these costs do not necessarily represent economies of scale. The costs to reopen a closed facility of capacity
level 1, . . . , 10 are 3,138.34, 4,084.69, 4,924.58, 5,693.26, 7,085.07, 7,727.50, 8,342.34, 8,933.68, 10,057.70 and
10,594.80, respectively. The costs to close an open facility of capacity level 1, . . . , 10 are 8,624.93, 11,595.80,
14,305.60, 16,836.50, 21,524.10, 23,727.90, 25,858.30, 27,925.70, 31,901.10 and 33,820.70, respectively.

Fixed Costs for the DFLPG
For the DFLPG, the construction costs are as indicated above, i.e., the costs to construct a facility of size `
and its maintenance costs at time period t are set to: fj0`t = foj` + F oj`.

The costs to change capacity levels for this problem are based on a cost matrix, and, therefore, differ from
the costs for capacity expansion and reduction shown above for the special cases. The cost to completely
remove a facility are set to 25% of the construction costs of a facility of the same size: fj`0t = foj`/4.

Finally, the cost to change the capacity level from `1 ≥ 1 to `2 ≥ 1 are set to the difference of their
construction costs, scaled by 50%:

fj`1`2t =

{
1.5 · (foj`2 − f

o
j`1

) , if `1 < `2
1.5 · (foj`1 − f

o
j`2

) , if `1 > `2.

A.6 Demand distribution

We consider two different demand scenarios. In both scenarios, the demand for each of the customers is
randomly generated and randomly distributed over time. The two scenarios differ in their total demand
summed over all customers in each time period. In the first scenario (regular), the total demand is similar
in each time period. We set the average demand for a customer to 12 units per time period. The total
demand for all customers is therefore approximately 10 · |I| units at each time period. The second scenario
(irregular) assumes that the total demand follows strong variations along time and therefore varies at each
time period. In this scenario, the total demand for all customers is multiplied by a random distortion factor
at each time period. This random distortion factor is set to the absolute value of a normal random variable
with mean value 1.0 and standard deviation 0.6 (note that this procedure produced distortion factors from
0.14 to 2.24). Let totDemt be the total customer demand for time period t, computed as explained above
for one of the two scenarios.

We now explain how the individual demands for each of the customers are generated and distributed on
the different time periods such that its total sum equals approximately the value of totDemt at each of the
time periods. For all customers and all time periods, the total demand covers approximately 12 · |I| · |T |
units. In a first step, this total demand is randomly distributed on each of the customers. In a second step,
each customer demand is distributed on different time periods:

1. Let totRemDem denote the total demand for all customers and time periods that has not yet been
allocated to any customer. Furthermore, let numRemCust indicate the number of customers that have
not yet been allocated any demand. For each customer, its total demand for all time periods, denoted to
totJDemj , is computed as a random normal variable with a mean µ = totRemDemand/numRemCust
and standard deviation σ = µ/2. Note that, throughout our instance generation, this method did not
produce any negative value.

2. The total demand for each customer, totJDemj is then divided into four equal parts. One part of the
demand is allocated to a time period that is randomly selected following a uniform distribution. Each
of the other three parts is allocated to the time period t that has the highest gap between the total
demand yet allocated to period t and its value totDemt.

The demands for the second to fifth commodity are computed based on the demand of the first commodity.
To be precise, the demand dipt for p ≥ 2 is computed as dipt = di1t · rand(1.0, 0.2) · avgDemp/avgDem1,
where avgDem1 = 10, avgDem2 = 6, avgDem3 = 9, avgDem4 = 5, avgDem5 = 8 and rand(1.0, 0.2) is a
random variable with normal distribution, a mean of 1.0 and a standard deviation of 0.2.
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Note that the choice of allocating demand to only a few of the time periods is motivated by the afore-
mentioned industrial application in the forest industry, where each logging region is harvested, on average,
about four seasons over the ten-period planning horizon. Furthermore, it results in a geographically more
dispersed distribution of the demand which creates the need to adjust capacities at the facilities.
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