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Abstract. Supply chain planning in the forestry industry includes a wide range of 
decisions, with time horizons ranging from real-time operational problems to long-term 
strategic problems.  When forest companies plan over a length of approximately one year, 
referred to as the tactical stage of planning, the decisions commonly made are the 
schedules of forest sites to be visited by harvest teams in order to produce enough 
volume to meet all demands over the horizon, and also the allocation of this volume to the 
different demand points.  This allocation allows for an estimation of transportation costs, 
with more detailed routing and scheduling decisions left for operational planning. The 
problem described in this article generalizes this tactical problem to include routing 
decisions, and hence falls into the classes of production-routing problems and pickup-and-
delivery problems.  This formulation was motivated by an industrial partner, whose goal is 
to ensure that they have a reliable source of permanent fleet drivers.  In order to do this, 
they must be able to guarantee a variety of different schedules to several trucking 
contractors whom they hire drivers from, and harvest team scheduling has been identified 
as more flexible in order to accommodate this requirement.  Additionally, significant 
savings in transportation costs can arise from determining a plan that emphasizes the 
creation of backhaul opportunities of a heterogeneous set of products.  We model this 
problem as a mixed integer program and develop an effective branch-and-price based 
heuristic capable of generating solutions to medium sized problems in reasonable 
execution time.  Compared to a decomposed and sequential optimization scheme that 
more accurately represents current industry practice, this methodology is able to fulfil 
higher demand levels while decreasing transportation costs by an average of $1.41 per 
cubic meter, or 12.4%. 
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1 Introduction

Canada has approximately 400 million hectares of tree cover, and the forest
sector contributed to 1.1% of national gross domestic product (Natural Re-
sources Canada 2014). With 146.7 million cubic meters of harvest in 2011,
transportation expenses represent a multi-billion dollar expense for Canadian
forestry companies (Canadian Council of Forest Ministers 2014). In the con-
text of an economy of this scale, small relative reductions in transportation
costs can represent substantial savings. Therefore, the use of optimization
models and decision support systems is of high importance, and in recent
years research initiatives pursuing these models have been highly prioritized.

We present here a problem that arises in the Canadian forestry industry
in tactical planning; in our context this refers a planning horizon of one fiscal
year. The decisions commonly made at this level of forest planning are the
schedules of harvest teams, storage decisions, and the allocation each month
of volume from supply points to demand points. This is a demand-driven
problem based on the needs of a heterogeneous set of products at the mills
to be served, and a host of industry-specific constraints must be respected in
this plan.

While most tactical plans consider these production and allocation deci-
sions, little emphasis is placed on the routing and scheduling decisions that
will be encountered by planners in short term operational planning. The for-
mulation proposed in this article considers generalizing the tactical model to
include routing decisions, and we list three reasons for considering this more
robust plan. First, a critical component of operations in Canadian forestry
companies is to guarantee a variety of different driver schedules to their truck-
ing contractors throughout the year. In Canada, the demand for drivers is
high with multiple industries competing for services; hence delivering these
schedules is a necessity in order to ensure a reliable source of permanent
drivers. Second, transportation costs represent a very significant portion of
the total cost of the wood supply chain, with 36% being a reported average
in the Canadian context (Audy et al., 2012). Therefore optimizing back-
haul opportunities is a major priority when scheduling wood procurement
at the operational level, and we look to measure the potential savings if we
can plan the harvest to optimize future backhaul opportunities. Third, most
companies have their wood delivered via a heterogeneous truck fleet, thus
necessitating synchronizing transportation decisions with harvest planning
with respect to the length into which harvested timber is cut.
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While it is very time consuming to formulate a complete annual plan by
hand, this is what is done in many companies. Moreover, it is often the case
that a plan must be revised due to unexpected events. Therefore the goal was
to create a decision support system (DSS) that can be used to formulate a
complete plan in a short computational time, with the option to easily modify
inputs to generate several different scenarios if needed. Detailed reports must
be given in the form of an Excel workbook, including the schedules and
volumes produced by each harvest team, and the set of schedules assigned
to each trucking contractor throughout the year.

Our contributions in this paper are a model and methodology for solving
the problem. We first model this generalized tactical problem as a mixed
integer program (MIP), and give two related formulations. To our knowl-
edge these are the first formulations applied to the forest supply chain that
enforce routing decisions in a tactical harvest planning problem. We next
develop a branch-and-price heuristic capable of generating quality solutions
in a reasonable time limit. We compare this methodology to a decomposed
approach that first schedules the harvest while allocating flows to contrac-
tors, and then iteratively generates schedules for the trucks. This allows us
to measure the benefits of incorporating these routing decisions at this stage
of planning.

In Section 2, we describe the problem in more detail. In Section 3, we
discuss related work. In Section 4, we present a mathematical formulation of
the problem. Section 5 gives the details behind the branch-and-price heuristic
used to solve this problem. In Sections 6 and 7 we discuss the case studies
that motivated this problem and the computational results. Finally, Section
8 concludes the paper.

2 Problem Definition

We consider the following activities of the value chain: harvesting and for-
warding in the forest, roadside wood inventory, transportation, and mill in-
ventory. Additionally, we include the use of intermediate storage locations
(remote pits) where wood can be stored before arriving to the mill. These
pits usually act as demand nodes in the winter, having their inventory re-
plenished from the forest areas. Then in the spring and summer, when it is
more difficult or impossible to traverse much of the transportation network
with heavy log-trucks, the pits act as supply nodes serving the mills.

A Transportation-Driven Approach to Annual Harvest Planning
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The planning horizon over which we work is one year, with monthly
demands and inventory requirements at each mill and pit. These demands
exist for each of a set of different log assortments, which may differ with
respect to diameter, species, quality, freshness, or other characteristics. All
volumes are measured in cubic meters and are based on estimates made by
the company.

The total forest management area is partitioned into a set of planning
units, and the units that will be harvested are pre-selected at the start of
the planning horizon rather than the total available forest management area;
this is to avoid creaming of the supply points. If this was not the case, and
supply was significantly greater than demand, an optimization model would
always choose the supply points that are closest and the average distances
would increase over time. In practice, supply is generally chosen to be up to
25% greater than demand, to allow for fluctuations that may arise over the
year.

Each planning unit contains a set of subunits which differ in terms of
seasonal availability throughout the year. Our harvest decisions are made
at the subunit level. Subunits may also differ from each other in terms of
their priority: it is important to harvest high priority subunits as soon as
possible for any number of reasons, including conflict with caribou hunting
seasons or the need to coordinate with other industries such as oil mining.
Any roadside inventory in the forest that exists prior to the start of the year
must be hauled by the end of the year.

A set of harvest teams is defined, and each harvest team has a capacity
measured in cubic meters of harvest per month. This may vary per month
due to seasonal access restrictions and holiday time. When a team is assigned
to a subunit, it must not leave until the entire standing volume is harvested.
Additionally, each assortment can be harvested in a choice of lengths ranging
from 32 foot to full tree lengths, and the team must be told the proportion of
harvest to produce in each length. We emphasize here that this optimization
model only considers lengths as they relate to the transportation constraints,
and that mill demands can be satisfied with any length of timber.

Several trucking contractors are used to transport the harvested timber.
Each contractor has a set of schedules, defined by the truck class, the shift
length in hours, and the cumulative working days each month (based on the
number of drivers and the days worked by each driver). Each shift assigned
to a particular schedule must start and end at the location representing
the home base of the contractor that month, and alternate between supply
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nodes (forests or pits) and demand nodes (pits or mills) before ending the
shifts. For model feasibility purposes, we define each shift by a maximum
and minimum target shift length as opposed to a single number. Every truck
class is only compatible with specific log assortments and lengths, and has a
fixed capacity in cubic meters.

The harvest teams and trucking contractors are each assigned a priority:
it is most important to give the high priority contractors their desired work-
load over the course of the year, with the remaining necessary work assigned
to lower priority contractors.

3 Literature Review

Our problem formulation is a variant of the inventory-routing problem (IRP),
a well studied problem that integrates inventory management and vehicle
routing decisions and has been adapted to many industries. Coelho, Cordeau,
et al. (2013) give a recent survey and classify the current IRP literature
according to a number of criteria, a few of which we will discuss. While the
majority of IRPs considered in literature deal with a homogeneous vehicle
fleet, or in many cases a single vehicle, heterogeneous vehicle fleets have been
considered. Coelho and Laporte (2012) formulated this problem, and gave a
branch-and-cut procedure for its resolution.

Coelho, Cordeau, et al. (2013) further classify three basic problem struc-
tures: one-to-one, one-to-many, and many-to-many. As in our problem sites
can serve as a source or as a destination for any commodity, it is classified
as a many-to-many structure. This is a less-studied variant; Ramkumar et
al. (2012) considered a many-to-many problem involving multiple commodi-
ties and give a MIP formulation. A column generation based approach was
also been successfully applied to a many-to-many IRP in maritime logistics
(Christiansen and Nygreen, 2005).

Van Anholt et al. (2013) introduced the inventory-routing problem with
pickups and deliveries (IRPPD) in the context of replenishment of automated
teller machines, and utilized a branch-and-cut algorithm to resolve the prob-
lem. The IRPPD combines the features of the IRP and the well-studied
pickup-and-delivery problem (Berbeglia et al., 2007), which is commonly
adapted to vehicle routing problems in forestry due to the inherent pickup-
and-delivery nature of the industry.

It is natural to think that integrating further elements of the supply chain
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can lead to even better performance, and Chandra and Fisher (1994) were
among the first to include production decisions within the IRP, producing
operating cost reductions from 3 to 20%. This problem is classified as the
production-routing problem (PRP). Adulyasak et al. (2013) gave strong for-
mulations of this problem in the multi-vehicle context, and solved with an
adaptive large neighborhood search heuristic to find initial solutions, followed
by a branch-and-cut procedure. Other recent methodological focuses in this
field have included tabu search (Bard and Nananukul, 2009) and branch-and-
price (Bard and Nananukul, 2010).

Within the forest products industry, D’Amours et al. (2008) present an
overview of different planning problems and review the contributions in an
operational research (OR) setting. They distinguish between the strategic,
tactical and operational planning levels, and comment that while operational
problems must be solved in minutes or even seconds, strategic and tactical
problems can be solved over a period of up to several hours. For this reason,
while heuristics, meta-heuristics and network methods are generally used in
operational planning; MIP and stochastic programming based methods are
often used to solve tactical and strategic problems.

Tactical models in forest management are commonly used to decide where
and when to harvest, which team to use in each harvest decision made,
and where and when to transport and store the harvested timber. These
plans are made up to 5 years in advance, but are often re-evaluated annually
when doing budget projections for the following year. Rönnqvist (2003) gives
a simple MIP model incorporating these decisions in which the objective
function measures two costs: the cost of harvesting a forest area by a team
in a specific period, and the cost of delivering each unit of wood from a forest
site to a mill. Gémieux (2009) gives a recent survey on wood procurement
planning and outlines a MIP model in the Canadian context.

Karlsson et al. (2004) consider an annual harvest planning problem that
arises in Sweden, in which inventory management and road openings and
closings must be managed. To solve the MIP model, they utilize a variable
fixing heuristic in which they iteratively solve LP relaxations, at each iter-
ation fixing binary variables with a fraction value in a chronological order
until a feasible solution is found.

Bredström et al. (2010) consider a tactical problem in which machines
must be scheduled to plan the harvest, and also include the minimization
of their movement in the objective function. They do not, however, include
transportation or inventory costs of the timber. They utilize a two-phase
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approach in which they first assign machines to forest locations, and then
schedule each machine to minimize their moving costs.

Similar models appear in planning over a shorter time horizon, including
more operational details to increase efficiency. Karlsson et al. (2003) consider
a harvest planning model over a period of 4 to 6 weeks, in which harvest teams
are scheduled, transportation and inventory are managed, and additionally
the management and maintenance of roads must be considered to yield a
feasible solution.

Mitchell (2004) gives a very detailed description of operational harvest
scheduling in the Australian and New Zealand context. Road maintenance
and management are not considered in this model; however a key term of
their objective is to maximize profitability by incorporating the revenue as-
sociated with each potential log type produced. They utilize a branch-and-
price scheme by pricing variables that represent harvest crew schedules via
dynamic programming.

Epstein et al. (1999) present OPTICORT, created for use in the Chilean
forest sector. They additionally include machine assignment and bucking
decisions in a short term (3 months) harvesting model. OPTICORT uses a
MIP model, solved by column generation.

Gerasimov et al. (2013) integrate harvesting and transportation decisions
into a single DSS for use in the Russian forestry sector. On an extensive
transportation network, optimal paths are generated heuristically and used to
influence the routing of both harvest teams and trucks, solved via a dynamic
programming algorithm. Potential cost savings of 14 to 25% were reported.

We note that while many tactical models do minimize transportation
costs, it is done under the assumption that the timber will be transported in
an out-and-back fashion. However in the operational level of planning when
more detailed transportation plans are determined, log-trucks are routed in
order to take advantage of backhaul opportunities, while also considering
loader capacity at supply and demand nodes. The problem of creating these
plans is commonly called the log-truck scheduling problem (LTSP), or some-
times the synchronized log-truck scheduling problem (SLTSP) when trucks
must share loading equipment at supply or demand points. Audy et al.
(2012) provide a recent survey in this field, covering both methodologies and
implementations into DSSs.

Hachemi et al. (2014) and Rix et al. (2014) included these routing and
scheduling decisions in similar problem formulations in a tactical setting, with
supply availability predetermined but loader assignment, wood allocation and
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inventory decisions remaining to be solved: a generalization of the IRPPD
to the forest products industry. In the former article, successive MIPs are
solved with the first assigning loaders to supply points by day and determin-
ing the destinations of full truckloads of wood, and the second determining
the routing and scheduling of the vehicles. In the latter article, a similar
formulation is not solved in phases, but instead the problem is reformulated
via Dantzig-Wolfe decomposition and solved with column generation, with
the generated columns (representing daily vehicle schedules) solved through
dynamic programming.

4 Model Formulation

The model consists of input data, decision variables, an objective function,
and constraints. The input data appears in Tables 1 through 3 and the
decision variables are listed in Table 4.

4.1 Objective Function

Our objective function contains 7 components that contribute to the total
cost of a solution. The first and second components are the real costs asso-
ciated with transportation and storage. The third component is a penalty
associated with the total volume produced by each harvest team compared
to their desired production. The fourth component is a penalty associated
with unsatisfied requested hours on each trucking schedule. The fifth through
seventh components are the penalty costs associated with failure to meet de-
mand, failure to meet inventory requirements, and the costs associated with
discarding wood at the end of the planning horizon by failing to meet the
freshness constraints. These components are listed in Table 5.

4.2 Constraints

All of the constraints of the model are listed in this section.

A Transportation-Driven Approach to Annual Harvest Planning
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Table 1: Input Sets

Notation Representation
P = {1, 2, . . . , |P |} Set of planning periods

P ′ = {1, 2, . . . , |P |+ 1} Set of planning periods including dummy period
for next horizon

F Set of forest planning units
Sf Set of subunits of forest f
S =

⋃
f∈F Sf Set of all subunits

M Set of mills
R Set of remote pits
K Set of log assortments
Lk Set of lengths for assortment k
N = M ∪R ∪ S Set of all nodes
N in = M ∪R Set of all demand nodes
N out = S ∪R Set of all supply nodes
H Set of all harvest teams
T Set of all trucking schedules
Θt Set of all feasible routes for schedule t
Θ =

⋃
t∈T Θt Set of all routes

A Transportation-Driven Approach to Annual Harvest Planning

8 CIRRELT-2014-24



Table 2: Input Data

Notation Representation
vsk Volume of assortment k in subunit s available to harvest

vs =
∑
k∈K

vsk Volume of all assortments in subunit s available to harvest

dmkp Demand of assortment k at mill m in period p
inkl Initial inventory of assortment k in length l at node n
imaxn Maximum capacity at demand node n

iminnkp

Minimum capacity of assortment k at demand node n
in period p

cn Loader capacity at demand node n in loads per period
chp Harvesting capacity of team h in period p

Ch =
∑
p∈P

chp Target production volume for team h over horizon

ehsp
Number of periods for team h to harvest subunit s

if commencing in period p

ahsp
Binary parameter equals 1 iff team h can harvest subunit s

in period p based on seasonal availability
of subunit and team

αhsp =

min{|P |,p+dhsp−1}∏
i=p

ahsp

Binary parameter equals 1 iff team h can begin harvest
of subunit s in period p

βs
Latest period in which subunit s can have

remaining standing volume

ctkl
Capacity of assortment k of length l

on truck used in schedule t

btp
Binary parameter equals 1 iff schedule t

is available in period p
hmint Minimum hours per shift for schedule t
hmaxt Maximum hours per shift for schedule t

dtp
Cumulative requested working days for schedule t

in period p

ρθn1n2kl
Number of trips on route θ carrying assortment k

in length l from node n1 to node n2

hθ Shift length (in hours) of route θ

A Transportation-Driven Approach to Annual Harvest Planning
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Table 3: Costs and Penalties

Notation Representation

γtransportt Per hour cost of operating (driving, loading, unloading) truck on schedule t
γholdingnp Cost per m3 of inventory at node n entering period p
γharvesth Cost per m3 of shortfall from desired horizon volume of harvest team h
γtruckt Cost per unsatisfied shift for trucking schedule t
γdemandmkp Cost per m3 of missed demand of assortment k at mill m in period p

γinventorynkp

Cost per m3 of missed minimum inventory of assortment k
at demand node n in period p

γfreshnessnkl Cost per m3 of discarded product k of length l at supply node n

Table 4: Variables

Notation Representation

xn1n2klpt ∈ R≥0
Volume of flow of assortment k of length l from supply node n1

to demand node n2 in period p on schedule t

wnklp ∈ R≥0
Volume of assortment k of length l stored at node n

entering period p in P ′

d̂mklp ∈ R≥0
Volume of length l used to fill demand at mill m

of assortment k in period p
d′mkp ∈ R≥0 Volume of missed demand of assortment k at mill m in period p

w′nkp ∈ R≥0
Volume of missed inventory of assortment k

at demand node n in period p

f ′nkl ∈ R≥0
Discarded volume of length l of assortment k at supply node n

at the end of the planning horizon
yhsp ∈ B Equals 1 iff harvest team h commences harvesting subunit s in period p

v̂skl ∈ [0, 1]
Proportion of harvested volume of assortment k

from subunit s cut into length l

vhspkl ∈ R≥0
Volume of assortment k of length l produced by harvest team h

at subunit s in period p
zs ∈ R≥0 Period in which subunit s has all remaining standing volume harvested
Lnp ∈ R≥0 Number of trucks loaded and/or unloaded at node n in period p
qθp ∈ Z≥0 Number of times route θ is traversed in period p

A Transportation-Driven Approach to Annual Harvest Planning
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Table 5: Objective Function Components
Name Formula

Ztransport
∑
p∈P

∑
θ∈Θ

γtransportt hθqθp

Zstorage
∑
n∈N

∑
k∈K

∑
l∈Lk

∑
p∈P ′

γstoragenp wnklp

Zharvest
∑
h∈H

γharvesth

(
Ch −

∑
s∈S

∑
p∈p

∑
k∈K

∑
l∈Lk

vhspkl

)

Ztruck
∑
t∈T

∑
p∈P

γtruckt

(
dtp −

∑
θ∈Θt

qθp

)
Zdemand

∑
m∈M

∑
k∈K

∑
p∈P

γdemandmkp d′mkp

Zinventory
∑
n∈N in

∑
k∈K

∑
p∈P

γinventorynkp w′nkp

Zfreshness
∑

n∈Nout

∑
k∈K

∑
l∈L

γfreshnessnkl f ′nkl

4.2.1 Inventory

Constraints (1) fix the initial inventories at every node. Constraints (2) and
(3) impose the minima and maxima at each mill and pit each period.

wnkl1 = inkl,∀n ∈ N, (1)∑
l∈Lk

wnklp + w′nkp = iminnkp ,∀n ∈ N in, k ∈ K, p ∈ P, (2)∑
k∈K

∑
l∈Lk

wnklp ≤ imaxn ,∀n ∈ N in, p ∈ P. (3)
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4.2.2 Flow Conservation

Constraints (4) through (6) are flow conservation constraints at mills, forests,
and pits.

wmklp +
∑

n∈Nout

∑
t∈T

xnmklpt − d̂mklp = wmkl(p+1), (4)

∀m ∈M,k ∈ K, l ∈ Lk, p ∈ P,

wsklp −
∑
n∈N in

∑
t∈T

xsnklpt + vspkl = wskl(p+1), (5)

∀s ∈ S, k ∈ K, l ∈ Lk, p ∈ P,

wrklp +
∑
s∈S

∑
t∈T

xsrklpt −
∑
m∈M

∑
t∈T

xrmklpt = wrkl(p+1), (6)

∀r ∈ R, k ∈ K, l ∈ Lk, p ∈ P.

4.2.3 Stockout

Constraints (7) and (8) impose that we never have stockouts at forests and
penalize stockout at mills: a mill must always be able to meet its demand,
else a penalty is accrued, and a forest can never supply more than it has in
inventory entering the given period.∑

l∈Lk

d̂mklp + d′mkp = dmkp,∀m ∈M,k ∈ K, p ∈ P, (7)∑
n∈N in

∑
t∈T

xsnklpt ≤ wsklp,∀s ∈ S, k ∈ K, l ∈ Lk, p ∈ P. (8)

4.2.4 Freshness

Constraints (9) are freshness constraints that impose that all roadside inven-
tory at the start of the planning horizon must be hauled by the end of the
horizon, else a penalty is accrued.∑

n2∈N in

∑
p∈P

∑
t∈T

xn1n2klpt + f ′n1kl
= wn1kl1,∀n1 ∈ N out, k ∈ K, l ∈ Lk. (9)
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4.2.5 Harvest

Constraints (10) impose that a subunit can only be harvested once and by
one team. ∑

h∈H

∑
p∈P

yhsp ≤ 1,∀s ∈ S. (10)

Constraints (11) impose that there be only one harvest team per forest
unit at a time.∑

h∈H

∑
s∈Sf

min{p−1,ehsp−1}∑
i=0

yhs(p−i) ≤ 1,∀f ∈ F, p ∈ P. (11)

Constraints (12) impose that a contractor can only a harvest a subunit
when allowed.

yhsp ≤ αhsp,∀h ∈ H, s ∈ S, p ∈ P. (12)

Constraints (13) impose that a team can only harvest one subunit at a
time. ∑

s∈S

p∑
p′=0

1(p′ + ehsp′ − 1 ≥ p)yhsp′ ≤ 1,∀h ∈ H, p ∈ P. (13)

Constraints (14) impose that if harvested, a subunit must be either fully
cleaned or be cleaned up to contractor capacity until the end of the horizon.∑
p∈P

∑
k∈K

∑
l∈Lk

vhspkl ≥
∑
p∈P

min (vs, (|P | − p+ 1)chp) yhsp,∀h ∈ H, s ∈ S. (14)

Constraints (15) impose that the harvested volume from a subunit is
bounded by team capacity.∑

k∈K

∑
l∈Lk

vhspkl ≤ chp

p∑
p′=0

1(p′ + ehsp′ − 1 ≥ p)yhsp′ ,∀h ∈ H, s ∈ S, p ∈ P.

(15)

Constraints (16) impose that the total horizon volume from a subunit is
bounded by what is available.∑

h∈H

∑
p∈P

∑
l∈Lk

vhspkl ≤ vsk,∀s ∈ S, k ∈ K. (16)
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Constraints (17) impose that if nothing is harvested, the team cannot be
assigned.

p∑
p′=0

1(p′ + ehsp′ − 1 ≥ p)yhsp′ ≤
∑
k∈K

∑
l∈Lk

vhspkl, ∀h ∈ H, s ∈ S, p ∈ P. (17)

Constraints (18) impose that a subunit’s assortment can only be cut into
a single length. ∑

l∈Lk

v̂skl ≤ 1, ∀s ∈ S, k ∈ K. (18)

Constraints (19) impose that all lengths not assigned to that subunit
cannot be produced.∑

h∈H

∑
p∈P

vhspkl ≤ vskv̂skl,∀s ∈ S, k ∈ K, l ∈ Lk. (19)

Constraints (20) impose that no length is produced if nothing is harvested.

v̂skl ≤
∑
h∈H

∑
p∈P

vhspkl, ∀s ∈ S, k ∈ K, l ∈ Lk. (20)

Constraints (21) disallow the situation of harvest teams producing at full
capacity during periods i and i+ 2 in the same subunit, but partial capacity
during period i + 1, in order to optimize contractor satisfaction. Thus we
force a contractor to work at full capacity during all intermediate periods:

∑
k∈K

∑
l∈Lk

p+ehsp−2∑
p′=p+1

vhsp′kl ≥

(
p+ehsp−2∑
p′=p+1

chp′

)
yhsp,∀h ∈ H, s ∈ S, p ∈ P, ehsp ≥ 3.

(21)

Constraints (22) link the zs variables, that determine the period in which
a subunit is fully harvested, to the formulation. Constraints (23) then bound
these variables when necessary.

2|P |

(
1−

∑
h∈H

∑
p∈P

yhsp

)
+
∑
h∈H

∑
p∈P

(p+ ehsp − 1) yhsp = zs,∀s ∈ S, (22)

zs ≤ βs, ∀s ∈ S. (23)
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4.2.6 Trucking

Constraints (24) impose that there must be enough trucks working to ac-
commodate flow. We emphasize that this is modeled as an inequality due to
volumes being expressed in cubic meters rather than truckloads due to the
heterogeneous truck fleet.∑

t∈T

∑
θ∈Θt

ctklρθn1n2klqθp ≥ xn1n2klpt, (24)

∀n1 ∈ N out, n2 ∈ N in, k ∈ K, l ∈ Lk, p ∈ P.

Constraints (25) respect the schedule maximum each period.∑
θ∈Θt

qθp ≤ dtp,∀t ∈ T, p ∈ P. (25)

Constraints (26) through (28) determine and constrain loader usage.∑
θ∈Θ

∑
k∈K

∑
l∈Lk

∑
n∈Nout

ρθnmklqθp = Lmp,∀m ∈M, p ∈ P, (26)

∑
θ∈Θ

∑
k∈K

∑
l∈Lk

(∑
s∈S

ρθsrkl +
∑
m∈M

ρθrmkl

)
qθp = Lrp,∀r ∈ R, p ∈ P, (27)

Lnp ≤ cn,∀n ∈ N in, p ∈ P. (28)

4.2.7 Mathematical Formulation

The complete mathematical formulation of the model, which we denote as
problem (P1), is then the minimization of the objective function

Z = Zstorage + Ztransport + Zharvest + Ztruck

+ Zdemand + Zinventory + Zfreshness

subject to constraints (1) through (28).

4.3 A Reformulation for More Accurate Harvest Plan-
ning

A key issue that arose during preliminary experimentation is that the current
formulation does not allow a team to work in more than one subunit in a
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single period, regardless of whether they have the remaining capacity to do
so. Therefore we allow harvesting of any subunit to be done in one of exactly
two patterns: where teams produce at partial capacity during either the
terminating or commencing period of harvest of a single subunit. In these
periods of partial capacity, the team is free to work in up to 2 different
subunits. During all other periods, the team is working at full capacity.
We introduce two new families of variables, respectively y1

hsp and y2
hsp, that

represent the two aforementioned patterns. Constraints (29) link the new
families of variables to the variables yhsp.

yhsp = y1
hsp + y2

hsp,∀h ∈ H, s ∈ S, p ∈ P. (29)

Constraints (30) and (31) enforce the appropriate production for the given
patterns: ∑

k∈K

∑
l∈Lk

vhspkl ≥ chpy
1
hsp,∀h ∈ H, s ∈ S, p ∈ P, (30)∑

k∈K

∑
l∈Lk

vhs(p+ehsp−1)kl ≥ ch(p+ehsp−1)y
2
hsp,∀h ∈ H, s ∈ S, p ∈ P. (31)

Finally, we replace constraints (13) and (14) with constraints (32) and
(33), stipulating that a team can be in up to 2 subunits in a given period,

∑
s∈S

p∑
p′=0

1(p′ + ehsp′ − 1 ≥ p)yhsp′ ≤ 2,∀h ∈ H, p ∈ P, (32)

but only 1 when producing at full capacity.

∑
s∈S

(
p∑

p′=0

1(p′ + ehsp′ − 2 ≥ p)y1
hsp′+

p−1∑
p′=0

1(p′ + ehsp′ − 1 ≥ p)y2
hsp′

)
≤ 1,∀h ∈ H, p ∈ P. (33)

It is then trivial to determine whether the team harvesting subunits s1 in
period p and s2 in period p2 = p+ dhs1p− 1 has the capacity to harvest both
remainder volumes in the period p2. We define the binary parameter ghs1s2p
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to this effect.

ghs1s2p =


1

vs1 + vs2 −
p2−1∑
p′=p

chp′ −
p2+ehs2p2−1∑
p′=p2+1

chp′

 ≤ chp2

0 Otherwise.

Constraints (34) allow a team producing at partial capacity to move from
one subunit to another, provided the total production is sufficiently low.

y1
hs1p

+ y2
hs2(p+ehs1p−1) ≤ 1 + ghs1s2p,∀h ∈ H, s1, s2 ∈ S, p ∈ P. (34)

Constraints (35) are required to enforce harvest team capacity per period;
in this formulation we must sum these constraints over all subunits in order
to account for teams potentially working in multiple harvest locations per
period. ∑

s∈S

∑
k∈K

∑
l∈Lk

vhspkl ≤ chp,∀h ∈ H, p ∈ P. (35)

We denote the problem (P2) as the minimization of the objective function
Z subject to constraints (1) through (12) and (15) through (35).

5 Methodology

The biggest obstacle in formulating the model in this matter is the expo-
nential number of variables representing log-truck routes. Hence we use a
branch-and-price based methodology in which we start with an empty pool
of routes and generate improving ones a priori. The column generation pro-
cedure is adapted from the one used by Rix et al. (2014).

5.1 Initial Restricted Problem

We first relax the problem (P1) to a linear model to be solved via column
generation. Since our initial route set Θ is empty, we additionally relax
constraints (24) to a soft constraint and give any violation a large penalty in
the objective function. This restricted master problem is denoted (P’).

After solving the linear relaxation of (P’), we store the dual values as-
sociated with constraints (24) through (27); which we denote λn1n2klpt, πtp,
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σMmp and σRrp, respectively. Our search then begins for negative reduced cost
columns with which to enrich the model to improve the objective value of
the optimal solution. We propose to find these columns by performing a set
of dynamic programming algorithms: one for period p, and for each truck
schedule t.

5.2 Enriching the Model with Column Generation

To solve these subproblems, we must first construct a space-time network,
which we denote Gtp = (Ntp, Atp), for the given schedule and period. We
discretize the time dimension, whose horizon ranges from 0 to hmaxt , into ω
intervals of length δ = hmaxt /ω. We denote this discretized time dimension
I = {i0, i1, . . . , iω}.

We define the network with vertex set

Vtp = source
⋃

sink
⋃

((N in
⋃

N out)× I),

where the source and sink nodes correspond to a geographical location where
the contractor’s trucks are situated. The source node has outgoing arcs to all
nodes N out, with the arc originating at time i0. Similarly, the sink node has
incoming arcs from all arcs in N in such that the minimum route length hmint is
respected. The arc set is then Atp = Asource

⋃
Asink

⋃
Al
⋃
Au where Asource,

Asink, Al, and Au represent out-of-source, into-sink, loaded driving (including
loading and unloading time), and unloaded driving arcs, respectively. The
cost cn1n2 of each arc (n1, n2) is then easily calculated as a function of per
hour operating costs and trucking penalties of that schedule and the distance
of the arc.

However in calculating the reduced cost of a route, we modify these arc
costs as follows:

cn1n2 ←



cn1n2 − πtp (n1, n2) ∈ Asource,
cn1n2 (n1, n2) ∈ Asink,
cn1n2 (n1, n2) ∈ Au,
cn1n2 − λn1n2klpt − σMn2p

(n1, n2) ∈ Al, n1 ∈ S, n2 ∈M,

cn1n2 − λn1n2klpt − σRn1p
− σMn2p

(n1, n2) ∈ Al, n1 ∈ R, n2 ∈M,

cn1n2 − λn1n2klpt − σRn2p
(n1, n2) ∈ Al, n2 ∈ S, n2 ∈ R,

where we associate with each loaded driving arc (n1, n2) in Al the assort-
ment k and length l that maximize λn1n2klp. Any feasible route can then be
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expressed as a source-to-sink path in this network, with the reduced cost of
this route equal to the cost of the path.

We note that this network has a clear topological ordering, which is a
chronological ordering with ties broken arbitrarily. To find negative reduced
cost routes to add to the master problem, we therefore utilize the standard
label setting algorithm given by Cormen et al. (1990), in which we associate
with each node n a label [predn, RCn] which denotes the predecessor node
of n and the length (reduced cost) of the shortest path to n. All nodes only
hold one label at any time, except the sink node which holds a set Υ of labels
that holds all paths of negative reduced cost. For any schedule t and period
p, we provide the details of this algorithm in Algorithm 1. Lines 1 through
4 initialize the labels. Lines 5 through 12 push through the network and
update labels as required.

Algorithm 1 Shortest Path Dynamic Programming Algorithm

1: for all n in Ntp do
2: predn ← null
3: RCn ←∞
4: RCsource = 0
5: for all n1 in Ntp following the topological ordering do
6: for all (n1, n2) in Atp do
7: if n2 = sink and RCn1 + cn1n2 < 0 then
8: Υ← Υ

⋃
{[n1, RCn1 + cn1n2 ]}

9: if RCn2 < RCn1 + cn1n2 then
10: RCn2 ← RCn1 + cn2n2

11: predn2 ← n1

Thus at every master iteration we store the dual values of constraints
(24) through (27), and then solve |T ||P | subproblems. All negative reduced
cost routes are stored and the columns are added to the master problem. We
iterate through this process until no negative reduced cost routes remain or
another stopping criterion is achieved.

5.3 Column Pool Management

At each iteration, upon the resolution of all subproblems, the most general
method would be to add all negative reduced cost columns found to the LP.
However many of these routes will prove unnecessary and remain non-basic
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until the algorithm terminates. As managing the column pool can require a
significant amount of computation time when the pool is very large, we utilize
two methods to control the size of the column pool. First, at each iteration
we simply added the best (most negative reduced cost) 200 columns found.
Second, upon passing a predetermined upper limit on pool size, columns are
eliminated randomly until a lower limit is achieved (set to 70% of the upper
limit).

5.4 Heuristic Branch-and-Price

In order to solve our problem to optimality, we would have to embed our
column generation procedure into a branch-and-bound tree (Barnhart et al.,
1998). However we choose to more quickly find integer feasible solutions
through the use of an efficient heuristic branching method motivated by
Prescott-Gagnon et al. (2009).

We impose branching decisions on the harvest variables yhsp by fixing the
one with the largest fractional value to 1 upon the resolution of an LP. We
do not fix variables to 0 as this does not significantly modify the problem.
Moreover we do not allow backtracking: branching decisions cannot be re-
versed. We continue this process until none of these variables that remain
unfixed remain with value greater than a parameter ψ in [0, 1].

For the formulation (P2), the branching strategy is analogous on the
variables yihsp. As an addendum, preliminary experimentation found that the
resolution of the linear programs slowed considerably when all constraints
(34) (cardinality |H||S|2|P |) were initially added to the model. Therefore
we only enforce the relevant constraints that become tight after enforcing a
branching decision.

To terminate the algorithm and generate an integer feasible solution,
we then enforce integrality constraints on all remaining variables that are
integral in the MIP formulation, and solve the resulting problem using a
branch-and-bound solver.

6 Decomposed Approach

To assess the benefit of incorporating routing decisions in tactical planning,
we compare the methodology to an implementation that more accurately
reflects the current industry practice. We first derive a model that represents
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the annual harvest plan, giving schedules to the harvest teams, allocating
flow to transportation fleets by month, and managing monthly demands and
inventory levels. This is a MIP model including most of the variables and
constraints of the model developed in Section 4.

For this first phase, we eliminate the qθp variables from the above formu-
lations. Let d(n1, n2) represent the cycle time of a truck from supply point
n1 to demand point n2 and back, including loading and unloading times.
We replace the Ztransport and Ztruck terms in the objective function by their
flow-based approximations:

Ztransport
H =

∑
n1∈Nout

∑
n2∈N in

∑
k∈K

∑
l∈Lk

∑
p∈P

∑
t∈T

γtransportt

d(n1, n2)

ctkl
xn1n2klpt,

Ztruck
H =

∑
t∈T

∑
p∈P

γtruckt

dtp − ∑
n1∈Nout

∑
n2∈N in

∑
k∈K

∑
l∈Lk

d(n1, n2)

ctklhmaxt

xn1n2klpt

 .

We similarly replace constraints (25) through (27):∑
n1∈Nout

∑
n2∈N in

∑
k∈K

∑
l∈Lk

d(n1, n2)

ctklhmaxt

xn1n2klpt ≤ dtp,∀p ∈ P, t ∈ T, (25H)

∑
k∈K

∑
l∈Lk

∑
t∈T

∑
n∈Nout

1

ctkl
xnmklpt = Lmp,∀m ∈M, p ∈ P, (26H)

∑
k∈K

∑
l∈Lk

∑
t∈T

1

ctkl

(∑
s∈S

xsrklpt +
∑
m∈M

xrmklpt

)
= Lrp,∀r ∈ R, p ∈ P. (27H)

We denote the resulting harvest-flow model by (PH1), in which we min-
imize the objective function

ZH = Zstorage + Ztransport
H + Zharvest + Ztruck

H

+ Zdemand + Zinventory + Zfreshness

subject to constraints (1) through (24), (25H) through (27H), and (28). Anal-
ogously to problem (P2), we define (PH2) to be the minimization of ZH
subject to constraints (1) through (12), (15) through (23), (25H) through
(27H), and (28) through (35).

After solving (PH1) or (PH2), we can solve the vehicle routing decisions
on a rolling horizon basis, as is the case in practice. We let (x∗n1n2klpt

) denote
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the optimal values of the corresponding variables. We then solve a problem
(PR)p for each period p to determine the optimal routing plan based on the
given flow. This is solved by the minimization of ZRp = Ztransport

p + Ztruck
p

where Ztransport
p and Ztruck

p are the terms of Ztransport and Ztruck that represent
a single period. We then define constraints (35) to fix total wood flow to the
optimal values determined in the annual harvest plan:∑

t∈T

xn1n2klpt ≤
∑
t∈T

x∗n1n2klpt
,∀n1 ∈ Nout, n2 ∈ N in, k ∈ K, l ∈ L. (36)

After solving each routing problem per period, the cumulative objective value
is equal to:

Zstorage + Zharvest + Zdemand + Zinventory + Zfreshness +
∑
p∈P

ZRp.

We emphasize that the decomposed methodology of this section more
accurately represents the current industry practice, but is in many cases
superior to this manual practice. For our purposes, it represents a point of
comparison to measure the resulting savings from implementing a routing-
based methodology over an annual time horizon.

7 Case Studies

This project was motivated by several case studies provided by FPInnova-
tions (2014), a Canadian not-for-profit organization which carries out scien-
tific research and technology transfer for the Canadian forest industry. Three
case studies were built out of previous years’ historical data provided by an
industrial partner in western Canada, which we denote by A, B and C. In
all cases, the demand points to be served are a single mill and 4 remote pits.
This demand is of 2 log assortments, deciduous and conifer, each of which
can be cut into 3 different lengths: 32 foot, 37 foot, and full tree.

Harvested volumes for 8 harvesting contractors, with varying availability
and target production each month of the year, were cumulated over the year
to generate the information to be used for available supply. Gross harvested
volumes ranged from 1.1 to 1.5 million cubic meters, with an additional 0.3
to 0.5 million cubic meters of roadside inventory at the start of the plan-
ning year. This represents roughly 20000 to 30000 truckloads, depending on
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the truck configuration used. Approximately 75% to 85% of the supply is
deciduous, with the remainder being conifer.

Average loaded and empty driving times between all supply and demand
points were generated from the forest supply chain control platform FPIn-
terface (2014), developed by FPInnovations. Cycle times were generally be-
tween 3 and 8 hours.

Demand consumption and inventory requirements were not as readily
available in previous years, but were simulated based upon forecasted con-
sumption for the following year, and scaled to match the gross supply (stand-
ing and roadside) information of the year being optimized.

The same approach was used to generate the requirements of the 7 driver
profiles, with varying monthly available working days of shift lengths ranging
from 12 to 16 hours and 5 unique truck configurations. The monthly avail-
abilities of the following year were scaled to match the supply and demand
information of the previous years.

Storage and transportation costs are easy to measure, and vary from 0
to 2 $/m3 and 70 to 100 $/hr, respectively. However the other penalties
in the objective function are more difficult to measure, but their setting
will dramatically affect the final solution. Both harvest and transportation
contractors fell into 2 priority classes, and hence the lower priority contractors
were assigned a penalty of 0. Based on discussion with industry decision
makers and preliminary sensitivity analysis, the other penalties were assigned
as follows:

γharvesth = $2/m3,

γtruckt = $(0.5)(γtransportt hmaxt )/day,

γdemandmkp = $60/m3,

γinventorymkp = $50/m3,

γfreshnessmkp = $50/m3.

8 Computational Results

The program was modeled in C++, with Gurobi 5.6.2 used as a solver of
the master problem. For all linear programs, we utilized the included barrier
optimizer in order to generate interior solutions and hence more useful dual
values. All other Gurobi parameters were set to the default setting.
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We chose to discretize the subproblem into intervals of 20 minutes, as that
is approximately the degree of accuracy to which we can measure driving
distances. All experimentation was done on an Intel Core i7, 2.67 GHz
processor with 4.0 GB of memory, with time limit set to 20 minutes.

For each case study we scaled the demand and inventory requirements
to represent a percentage of the total supply, iterating over 80% to 90% to
100%, though we note that 80% most accurately reflects the current industry
practice. For each of these problem sets we applied 4 methodologies, allowing
for both harvest team scheduling formulations (1 and 2) and both the branch-
and-price (BP) and decomposed (D) methodologies.

Solution quality was measured based on several key performance indi-
cators. The total objective value was of course important, as well as the
total spent on transportation. The percentage of the demand and inventory
requirements that were attained, and the percentage of desired work given
to both high priority harvest and trucking contractors were measured. To
compare Formulation 2 to Formulation 1 with respect to harvest scheduling,
the difference between the work levels of high priority harvest contractors
was calculated. Cumulating the total volume of hauled wood over the course
of the year allows for expression of the transportation cost in dollars per
cubic meter delivered, and for each case study and formulation the improve-
ment of the branch-and-price formulation over the decomposed approach was
measured in both absolute and relative terms. All results appear in Table 6.

It is clear that incorporating routing decisions into the harvest planning
model allows us to attain a higher percentage of the requested demand and
inventory levels, as the decomposition attains lower levels in all cases. More-
over, by linking these decisions into a single model, the savings generated in
transportation costs from planning the harvest to emphasize backhaul routes
for the trucks over the planning horizon are significant, with an average value
of $1.41 per cubic meter or 12.4%.

With respect to driver satisfaction, in all scenarios the branch-and-price
approach gives an average of 98.4% of the requested shifts to high priority
drivers; hence the allocated flow generated can then be easily assigned as
a guarantee of work over the planning horizon. We note that in two out
of three case studies, the decomposed methodology does not perform sig-
nificantly worse in this regard. However in case study C, the decomposed
methodology is outperformed due to poor decisions made in the tactical plan-
ning phase with respect to the assignment of flow to months in which the
combination of driving distance and wood product are incompatible with the
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Table 6: Experimental Results
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A 80 1 BP 21.968 18.459 99.94 99.98 99.98 88.26 - 1,539,612 11.99 1.51 12.63
A 80 2 BP 21.908 18.569 99.94 99.99 100 97.42 9.16 1,539,517 12.06 1.84 15.23
A 80 1 D 38.504 18.647 92 95.7 100 90.36 - 1,380,920 13.50 - -
A 80 2 D 39.660 19.161 91.59 95.04 99.97 94.71 4.35 1,378,647 13.90 - -
A 90 1 BP 29.096 21.548 95.71 99.99 99.81 88.88 - 1,714,409 12.57 1.20 9.55
A 90 2 BP 29.697 21.293 95.23 99.56 99.98 90.81 1.93 1,699,018 12.53 1.21 9.67
A 90 1 D 45.294 20.418 84.94 96.59 98.11 86.9 - 1,482,841 13.77 - -
A 90 2 D 46.886 20.562 85.54 95.73 95.59 89.17 2.27 1,496,061 13.74 - -
A 100 1 BP 42.878 21.294 84.11 98.85 99.98 86.15 - 1,704,574 12.49 1.34 10.74
A 100 2 BP 43.161 21.285 83.67 98.9 100 92.48 6.33 1,686,244 12.62 0.97 7.70
A 100 1 D 62.867 19.996 72.51 96.02 96.27 85.72 - 1,445,512 13.83 - -
A 100 2 D 62.436 19.504 72.16 94.21 95.46 78.22 -7.50 1,434,679 13.59 - -
B 80 1 BP 20.730 17.422 99.99 100.00 99.93 75.68 - 1,470,925 11.84 1.13 9.58
B 80 2 BP 20.643 17.377 99.92 99.97 99.93 81.37 5.69 1,477,908 11.76 1.22 10.36
B 80 1 D 24.190 18.342 97.84 98.96 99.99 73.87 - 1,413,189 12.98 - -
B 80 2 D 23.811 18.465 97.45 99.98 99.99 71.67 -2.19 1,423,037 12.98 - -
B 90 1 BP 32.099 17.166 86.54 99.73 99.99 75.68 - 1,465,857 11.71 1.43 12.22
B 90 2 BP 31.181 17.614 87.91 99.94 99.94 78.16 2.48 1,500,811 11.74 1.03 8.79
B 90 1 D 35.519 18.583 84.68 99.62 100.00 76.82 - 1,414,056 13.14 - -
B 90 2 D 35.529 18.613 84.79 99.22 100.00 72.24 -4.58 1,457,706 12.77 - -
B 100 1 BP 42.951 17.456 76.71 99.71 99.94 75.19 - 1,497,923 11.65 1.51 12.98
B 100 2 BP 42.597 17.517 77.02 99.77 99.96 78.16 2.96 1,494,002 11.72 1.37 11.72
B 100 1 D 46.986 18.635 74.56 98.91 100.00 73.85 - 1,415,364 13.17 - -
B 100 2 D 48.085 17.958 73.83 98.03 100.00 75.20 1.34 1,370,956 13.10 - -
C 80 1 BP 19.204 17.127 99.98 99.43 97.24 87.27 - 1,683,723 10.17 1.54 15.13
C 80 2 BP 25.137 16.430 93.56 98.26 89.18 85.61 -1.66 1,568,948 10.47 2.97 28.40
C 80 1 D 30.273 17.805 91.45 98.40 83.30 85.31 - 1,520,460 11.71 - -
C 80 2 D 35.875 19.782 88.79 97.25 86.76 70.40 -14.91 1,471,222 13.45 - -
C 90 1 BP 33.847 18.409 88.56 97.76 98.25 88.47 - 1,702,256 10.81 0.60 5.56
C 90 2 BP 26.178 19.298 94.70 98.77 99.46 97.81 9.34 1,816,003 10.63 1.86 17.47
C 90 1 D 36.842 19.080 86.93 97.18 94.06 86.45 - 1,671,492 11.41 - -
C 90 2 D 58.773 16.872 69.60 95.94 85.49 63.04 -23.41 1,351,531 12.48 - -
C 100 1 BP 46.528 17.934 78.34 97.64 94.54 85.00 - 1,735,904 10.33 1.32 12.80
C 100 2 BP 45.590 19.277 79.67 97.67 92.94 92.59 7.60 1,758,843 10.96 1.44 13.15
C 100 1 D 54.377 18.869 75.43 96.02 87.30 87.64 - 1,619,111 11.65 - -
C 100 2 D 49.601 21.425 79.40 96.38 93.70 89.21 1.58 1,727,622 12.40 - -
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drivers working those months. This situation further illustrates the need to
have more detailed vehicle routing decisions taken into account in tactical
planning.

Extending the formulation to account for mid-period harvest team move-
ment allows for an increase in the annual harvested volume assigned to high
priority harvest teams. In our branch-and-price based formulation, over all
case studies and demand scenarios, this average volume assigned is increased
by 4.9%. Though the additional variables and constraints present in this
formulation do make the model more computationally difficult, without a
significant change in the other costs and penalties of the resulting solution,
the trade off appears to be beneficial to the industry decision makers.

9 Conclusions

We have introduced a tactical harvest planning model that, unlike prior
models in the industry, incorporates vehicle routing decisions along with al-
location wood flow decisions in the transportation constraints. This problem
was modeled as a mixed integer linear program, and solved via a branch-and-
price heuristic with columns generated by a branch-and-price heuristic. The
generated columns represent vehicle routes and are generated via dynamic
programming, and the branching decisions are made on the harvest teams,
with no backtracking in the search tree.

This has been implemented in a decision support system for use by our re-
search partner FPInnovations, and tested on case studies built from 3 years
of historical data of a Canadian forest company. Under an array of de-
mand scenarios, and compared to a decomposed and sequential optimization
scheme representing the current industrial practice, we are able to meet a
higher proportion of demand and inventory requirements, while decreasing
transportation costs by an average of 12.4%.
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decision support systems in vehicle routing problems for timber trans-
portation: A review. Tech. rep. CIRRELT-2012-38. CIRRELT, July
2012.

[3] J.F. Bard and N. Nananukul. “A branch-and-price algorithm for an
integrated production and inventory routing problem”. In: Computers
& Operations Research 37.12 (2010), pp. 2202–2217.

[4] J.F. Bard and N. Nananukul. “The integrated production–inventory–
distribution–routing problem”. In: Journal of Scheduling 12.3 (2009),
pp. 257–280.

[5] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and
P.H. Vance. “Branch-and-price: column generation for solving huge in-
teger programs”. In: Operations Research 46.3 (Mar. 1998), pp. 316–
329.

[6] G. Berbeglia, J.-F. Cordeau, I. Gribkovskaia, and G. Laporte. “Static
pickup and delivery problems: a classification scheme and survey”. In:
TOP 15.1 (2007), pp. 1–31.

[7] D. Bredström, P. Jönsson, and M. Rönnqvist. “Annual planning of har-
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